
Optimal Distribution Tree for Internet Streaming Media∗†

Min Sik Kim Simon S. Lam Dong-Young Lee

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712–1188, USA
{minskim,lam,dylee}@cs.utexas.edu

TR–02–48, September 2002
Revised, April 2003

Abstract

Internet radio and television stations require significant bandwidth to support deliv-
ery of high quality audio and video streams to a large number of receivers. IP multicast
is an appropriate delivery model for these applications. However, widespread deploy-
ment of IP multicast on the Internet is unlikely in the near future. An alternative is
to build a multicast tree in the application layer. Previous studies have addressed tree
construction in the application layer. However, most of them focus on reducing delay.
Few systems have been designed to achieve a high throughput for bandwidth-intensive
applications. In this paper, we present a distributed algorithm to build an application-
layer tree. We prove that our algorithm finds a tree such that the average incoming
rate of receivers in the tree is maximized (under certain network model assumptions).
We also describe protocols that implement the algorithm. For implementation on the
Internet, there is a tradeoff between the overhead of available bandwidth measurements
and fast convergence to the optimal tree. This tradeoff can be controlled by tuning
some parameters in our protocols. Our protocols are also designed to maintain a small
number, O(log n), of soft states per node to adapt to network changes and node failures.

Keywords: optimal distribution tree, streaming media, application-layer multicast,
peer-to-peer

1 Introduction

Internet radio and television stations have, in the past, been operated by companies with
high-performance dedicated servers. The availability of broadband access and increasing
computing performance of PCs have made it feasible for individuals to run their own radio
stations. As a result, thousands of channels are serving multimedia on the Internet.1

∗Research sponsored by National Science Foundation grant no. ANI–9977267 and Texas Advanced Re-
search Program grant no. 003658–0439–2001.

†An abbreviated version of this paper to appear in Proceedings of IEEE ICDCS, Providence, RI, 2003.
1See Icecast (http://yp.icecast.org/) and SHOUTcast (http://www.shoutcast.com/).

1

These applications require one-way data transmission to a large number of receivers,
for which IP multicast is an appropriate delivery model. The availability of IP multicast
is, however, extremely limited, and unlikely to improve much in the near future. An al-
ternative to IP multicast is end-system multicast. In end-system multicast, participants
form an overlay distribution tree in the application layer and perform multicasting among
themselves. The main advantage is that it does not require multicast support from the
underlying network. The overlay multicast tree can be constructed on top of any network
that provides a unicast transport service.

Many end-system multicast systems have been proposed for different target applications.
Each of them has its own way to create a distribution tree. Of the ones that try to perform
tree optimization, they generally fall into one of two categories depending on which metric
they emphasize in tree construction, i.e., reducing delay or increasing throughput.2

Consider a set of nodes (end systems) that form an overlay on the Internet. In systems
with the goal of reducing delay [1, 3, 4, 14], a mesh consisting of all nodes and a subset of
logical links connecting them are first constructed. Then the nodes measure Internet delays
of the logical links, and run a routing algorithm, such as the distance vector algorithm, to
find best paths from each node to others.

In one system with the goal of increasing throughput [11], logical links with high (avail-
able) bandwidth3 are first chosen as edges of the distribution tree. Then the system keeps
trying to increase the bandwidth between each pair of nodes by modifying the tree topology.
Unlike systems with the goal of reducing delay, for which the distance vector algorithm is
proved to lead to an optimal state, the proposal in [11] lacks an algorithmic method to
achieve an optimal solution. In another proposal [5], a centralized algorithm was presented
to compute, for a given graph, a “maximal bottleneck” spanning tree rooted at a given
vertex.

Since increasing throughput is more important than reducing delay in one-way multime-
dia delivery, it is desirable to have a distributed algorithm that finds a tree with “maximal
throughput.” However, this is not a straightforward task due to the difficulties described
below.

The first is the result of a fundamental limitation of today’s Internet, namely: there
is no simple mechanism to measure the bandwidth available to a flow between two nodes.
Generally, many packets need to be sent to detect the congestion status of a path as well
as how much bandwidth a flow can use without adversely affecting other flows. In other
words, bandwidth measurement requires a lot more traffic than delay measurement in the
Internet. Therefore, in designing the distributed algorithm, we should avoid measuring the
bandwidth of too many logical links. Thus, the first difficulty we encounter is how to choose
logical links that need to be measured. If we choose too few, we may be unable to find an
optimal tree due to insufficient information. On the other hand, if we choose too many,
there would be substantial measurement overhead on the network.

Another difficulty is node failures. Because end-system multicast depends on partici-
pating nodes, which are user machines, rather than routers, it is likely that many nodes
leave the multicast group during a session. Losing some nodes would definitely change the
optimal tree; thus the algorithm should be designed to be adaptive, with the ability to

2The throughput of a distribution tree is a notion we will make more precise later.
3For simplicity, we will use bandwidth and available bandwidth interchangeably.

2

re-compute a new optimal tree without too much additional overhead.
In this paper, we first present a distributed algorithm that builds a tree in which the

average receiving rate, computed over all receivers in the tree, is maximized. Convergence
of the tree to an optimal tree is proved under certain network model assumptions. Proto-
cols that implement our distributed algorithm are then designed to address the difficulties
discussed above. In our protocols, each node measures bandwidth from at most O(log n)
nodes. The distribution tree is continuously updated as it converges towards an optimal
tree. When there is a node failure, our protocols will adapt and the distribution tree will
start converging towards a new optimal tree.

We evaluated our algorithm experimentally by simulation. Our simulation results show
that significant bandwidth gain is obtained within a relatively short time duration. The
optimal tree derived achieves an average receiving rate (per receiver) as much as 30 times
that of a random tree depending on the network configuration. The simulation results also
demonstrate how the average receiving rate increases as the distribution tree evolves. For
a topology consisting of 51 end hosts and 100 routers, it takes about eighty seconds to get
close to the maximum. Considering the usual playback time of audio and video streams,
we believe this is reasonably fast.

The remainder of this paper is organized as follows. We introduce our network model
and assumptions in Section 2. In Section 3, we first present a centralized algorithm to find
an optimal tree. We then present a distributed algorithm that is guaranteed to converge to
a tree as good as the one found by the centralized algorithm. These results are stated as
two theorems. In Section 4, we present protocols implementing the distributed algorithm
and address various implementation issues in the Internet. An experimental evaluation of
our algorithm is presented in Section 5. We conclude in Section 6.

2 Network Model

It is difficult to find a simple model capturing all aspects of the Internet. In building
a streaming media distribution tree, however, our main concern is bandwidth. In other
words, our goal is to find a tree that provides the largest (available) bandwidth we can
utilize. Accordingly, we develop a network model to focus on that aspect.

Even when we limit our concern to bandwidth only, there are still many factors to be
considered. Available bandwidth is determined by many parameters. In particular, the
available bandwidth between two nodes is a function of the underlying Internet topology
and existing traffic. Based upon the following observations, we abstract away detailed
topology and traffic information in our network model.4

• Usually access links are bottlenecks causing congestion while backbone links are loss-
free [16].

• An access link has incoming and outgoing bandwidths that do not affect each other.

An access link means a link that connects a host or its local area network to the network of
its ISP. We use these observations to simplify our model. Since congestion occurs mainly

4This abstraction is needed by our theorems in Section 3, but not by our protocol implementation in
Section 4.

3

bi
in

node i

b i
out

Internet

Figure 1: Network Model

on access links, we assume that the bandwidth available to a flow between two nodes is
determined by the congestion status of the access links of the nodes. The links in between
add delay, but do not limit the bandwidth of the flow. Based on these observations, we
propose an abstract model.

2.1 Abstract Model

A visual representation of our model is shown in Figure 1. A node is connected to the
Internet through an access link, which has a pair of parameters: incoming and outgoing
bandwidths. The incoming bandwidth of a node is the bandwidth from the ISP to the
node, and the outgoing bandwidth is the bandwidth from the node to its ISP. In Figure 1,
bin
i represents the incoming bandwidth of the access link of node i, and bout

i the outgoing
bandwidth. A configuration of our network model is defined to be M = (N, B), where N is
a set of nodes and B is the set, {(bin

i , bout
i), i ∈ N}. N has n + 1 elements: a sender and n

receivers. For convenience in presenting algorithms, we assume N = {0, 1, 2, . . . , n}, where
0 represents the sender, and {1, 2, . . . , n} receivers.

Consider a distribution tree consisting of the nodes in N . The root of the tree is node 0,
the sender. An intermediate node in the tree has one incoming connection from its parent
and one or more outgoing connections to its children. We assume that the outgoing link
bandwidth is allocated equally to its children. Let ci denote the number of children of node
i. We make the following assumption on bi,j , the edge bandwidth from node i to a child
node j, for every edge in the distribution tree.

Edge Bandwidth Assumption Each node i is characterized by bin
i and bout

i such that
if node j is a child of node i in the tree, then bi,j = min

(
1
ci

bout
i , bin

j

)
, where i = 0, 1, . . . , n,

j = 1, 2, . . . , n, and i 6= j.

If backbone links are not congested, then the bottleneck between two nodes should be
one of the access links at either end. Therefore, we abstract away Internet topology and
traffic by this assumption, and consider only access link bandwidths in our abstract model.
(This abstraction is used by our theorems in Section 3. In our protocol implementation,
described in Section 4, bi,j is obtained by measuring the available bandwidth from node i
to node j.)

The three quantities defined above are determined by access link characteristics. We
define two more quantities in the context of a distribution tree. The incoming (receiving)
rate of node i is defined to be the minimum of edge bandwidths on the path from the root

4

Variable Description
bin
i incoming access link bandwidth of node i

bout
i outgoing access link bandwidth of node i
bi,j edge bandwidth from node i to node j
rin
i incoming rate of node i

rout
i outgoing rate of node i
ci number of children of node i

Table 1: Variables

node to node i:
rin
i = min

k=1,...,l
bik−1,ik (1)

where (0 = i0, i1, . . . , il = i) is a path from the root node 0 to node i. The outgoing (sending)
rate of node i is defined as follows.

rout
i = min

(
rin
i ,

1
ci

bout
i

)
(2)

Table 1 summarizes the variables we have defined in this section.

2.2 Fair Contribution Requirement

The centralized and distributed algorithms presented in Section 3 are “greedy” algorithms.
For these algorithms, in order for the distribution tree to converge to a global optimum,
rather than a local optimum, the following condition is needed.5

Fair Contribution Requirement If bin
i > bin

j , then 1
ci

bout
i > 1

cj
bout
j , for i, j ∈ {1, 2, . . . , n},

i 6= j.

This requirement states that a node that receives more should provide more to each of
its children. Suppose this requirement is not satisfied by a node that has a large incoming
access link bandwidth and, relatively, a very small outgoing access link bandwidth. (This
is typical of an ADSL access link.) If this node is placed high (closer to the root) in
the distribution tree, selected by the greedy approach on the basis of its large incoming
bandwidth without regard to its small outgoing bandwidth, then it is possible that the tree
would fail to converge to the global optimum. Thus, before using one of the algorithms in
Section 3 to find a distribution tree, the values of bin

i and bout
i , for i = 1, 2, . . . , n should be

chosen such that the Fair Contribution Requirement is satisfied.
In particular, for a node with an ADSL access link, the incoming bandwidth should be

reduced to a value such that the node’s incoming and outgoing bandwidth values conform
to the Fair Contribution Requirement. On the other hand, if a node, say i, has a very large
outgoing access link bandwidth relative to its incoming access link bandwidth, it would be
desirable to choose a large value for ci so long as the Fair Contribution Requirement is not
violated.

5See proof of Theorem 1 in Appendix A.

5

We name this requirement “Fair Contribution” because, assuming that ci is the same,
for all i, the requirement states that a node that receives more from the system should
provide more to the system. We consider this to be a basic fairness principle for peer-to-
peer networks.

2.3 Tree Evaluation

The incoming rate of each receiver is a good measure for evaluating a distribution tree,
because it represents the amount of data that can be delivered from the root to the receiver
per unit time. Given a network model M = (N, B) and a tree consisting of the nodes in
N , we can compute the incoming rate for every node except the root. A list of these rates
is called a rate vector :

R = (rin
1 , rin

2 , . . . , rin
n) . (3)

Note that each tree has an associated rate vector.
We can compare distribution trees by comparing their rate vectors. However, it is

difficult to determine which vector is better. The best vector for one receiver is not nec-
essarily the best for another. We can define a partial order as follows: For rate vectors,
R1 = (r1

1, r
1
2, . . . , r

1
n) and R2 = (r2

1, r
2
2, . . . , r

2
n), R1 ≥ R2 if and only if r1

i ≥ r2
i for all i,

1 ≤ i ≤ n. With the partial order, although we do not know in general which rate vector
is “best,” it should be clear that if there is a best vector, it must be a rate vector that
is not less than any other rate vector. However, for a given network model M , there are
usually more than one such “locally optimum” rate vectors. Trying to find one of these
is too conservative a strategy. If we stop after finding a rate vector that is not less than
any other, we may overlook another that increases a large amount of rate for one receiver
by sacrificing a little for another. To take the overall rate increase into account, we will
evaluate a distribution tree by its average incoming rate 1

n

∑n
i=1 rin

i . In the next section,
we present a centralized algorithm and then a distributed algorithm to find a distribution
tree that maximizes the average incoming rate of receivers.

3 Optimal Algorithms

We define an optimal distribution tree to be a tree that maximizes the average incoming
rate of a receiver. Given an abstract network model, M = (N, B), we can find an optimal
distribution tree by enumerating all trees. However, it is an infeasible approach even with
a reasonable size N since there are exponentially many trees. We need more efficient
algorithms to find an optimal tree.

In this section, we will first present a centralized algorithm and prove that it computes
an optimal tree. Next we present a distributed version of the algorithm and prove that
it converges to a tree that has the same rate vector as the optimal tree computed by
the centralized algorithm. That is, the tree obtained by the distributed algorithm also
maximizes the average incoming rate of a receiver.

6

Centralized-Optimal-Tree
1 T ← ∅

2 X ← {0}
3 Y ← N − {0}
4 rin

0 ←∞
5 while Y 6= ∅

6 do v ← a node in X such that rout
v = maxi∈X rout

i

7 w ← a node in Y such that bin
w = maxi∈Y bin

i

8 T ← T ∪ {(v, w)}
9 X ← X ∪ {w}

10 Y ← Y − {w}
11 if |{x|(v, x) ∈ T}| = cv

12 then X ← X − {v}
13 return T

Figure 2: Centralized Algorithm

3.1 Centralized Algorithm

Figure 2 shows the centralized algorithm to find an optimal distribution tree. X is a set
of nodes that can accommodate more children, and Y a set of nodes that are not added
to the tree yet. Initially, only node 0, the root node, is in X, and all other nodes are in
Y . In each iteration, the algorithm selects a node that can provide the highest outgoing
rate in X, and a node that has the highest incoming access link bandwidth in Y . The edge
connecting them is then added to the tree T . If the node selected in X cannot accept a
child any more, it is deleted from X.

This algorithm is similar to the centralized algorithm in [5] in that both algorithms
are based upon the greedy method [6]. However, both our abstract model and objective
function for optimization are different from the ones in [5].

A proof of the following theorem about our centralized algorithm is given in Appendix A.

Theorem 1 With Edge Bandwidth Assumption and Fair Contribution Requirement,
Centralized-Optimal-Tree yields a tree T that maximizes the average incoming rate
1
n

∑n
i=1 rin

i .

3.2 Distributed Algorithm

In a distributed version of our algorithm, each node maintains O(log n) states about its
ancestors in the tree. The distributed algorithm is specified by the actions of each node,
presented in Figure 3, where node x denotes some node in N . State variables maintained
by node x are shown in Table 2. Protocol messages sent and received between nodes are
shown in Table 3.

Initially, we assume that the state variables, p and C, in each node have been assigned
values such that the nodes in N form a random tree rooted at node 0. The variables, p and
C, are updated as shown in code for node x in Figure 3. In our abstract network model,
bin
i , bout

i , and ci, are known constants, for all i ∈ N , and they satisfy the Fair Contribution
Requirement. Also, bi,j , for all i, j ∈ N , are known constants, and they satisfy the Edge

7

Distributed-Optimal-Tree
. Code for node x (0 ≤ x ≤ n).

1 periodic probe:
2 choose a random ancestor a ∈ A
3 if min(rin

a , ba,x) > rin
x

4 then send 〈probe; x, rin
x , bin

x , bout
x , cx〉 to a

5 upon receiving 〈probe; y, rin
y , bin

y , bout
y , cy〉:

6 if y 6∈ C and rin
y < rout

x

7 then if |C| < cx or minv∈C rout
v < min

(
rout
x , bin

y , 1
cy

bout
y

)
8 then NewChild ← y
9 else if minv∈C bx,v > rin

y

10 then m← a random child
11 send 〈probe; y, rin

y , bin
y , bout

y , cy〉 to node m
12 else ignore the 〈probe〉 message
13 else ignore the 〈probe〉 message

14 upon receiving 〈child, y〉 or NewChild 6= Nil:
15 if NewChild 6= Nil
16 then y ← NewChild
17 NewChild ← Nil
18 C ← C ∪ {y}
19 if |C| > cx

20 then find l such that bx,l = minv∈C bx,v

21 C ← C − {l}
22 if y 6= l
23 then send 〈accept; x〉 to y
24 find i such that bx,i = maxv∈C bx,v

25 send 〈child; l〉 to node i
26 else send 〈accept; x〉 to y

27 upon receiving 〈accept; y〉:
28 send 〈leave; x〉 to node p
29 p← y

30 upon receiving 〈leave; y〉:
31 C ← C − {y}

Figure 3: Distributed Algorithm

Bandwidth Assumption. (In our protocol implementation of the distributed algorithm,
presented in Section 4, we describe several protocols that provide node x with up-to-date
values of its variables.)

The code for node x in Figure 3 consists of five parts. In the first part (Lines 1–4), node
x chooses an ancestor randomly. Random choice does not compromise algorithm correctness
as long as the root node has nonzero probability to be chosen. It only affects how fast a tree
converges to an optimal distribution tree. If the chosen ancestor can be a better parent than
its current one, node x sends a 〈probe〉 message to the ancestor. The second part (Lines 5–

8

Variable Description
p parent
C set of children
A set of ancestors
bin
x incoming access link bandwidth of node x

bout
x outgoing access link bandwidth of node x

bx,c bandwidth from node x to a child c (c ∈ C)
cx maximum number of children
rin
x incoming rate of node x

rout
x outgoing rate of node x

ba,x bandwidth from an ancestor a to node x (a ∈ A)
rin
a incoming rate of an ancestor a (a ∈ A)

Table 2: State variables of node x

Message Sender Meaning

〈probe; i, rin
i , bin

i , bout
i , cy〉 i or receiver’s parent The receiver is asked to be a new parent of node i.

〈child; i〉 receiver’s parent The receiver is asked to accept node i as a child.
〈accept; i〉 i Node i has accepted the receiver as its child.
〈leave; i〉 i Node i is no longer a child of the receiver.

Table 3: Messages of Distributed-Optimal-Tree (0 ≤ i ≤ n)

13) describes the actions taken when a node receives a 〈probe〉 message. If the node cannot
provide a higher rate than the current incoming rate of the probing node, the message is
discarded. If it has room for a new child or the probing node is able to provide a higher
rate to child nodes than one of the children of x, it accepts the probing node by setting
NewChild to the probing node, which activates the third part of its code. Otherwise, the
〈probe〉 message is forwarded to a node chosen randomly among its children. The reception
of a 〈child〉 message is handled in the third part (Lines 14–26). The new node is added to
the children set, and the worst child (lowest edge bandwidth) is cut and forwarded to the
best child. The fourth part (Lines 27–29) handles the reception of an 〈accept〉 message from
a new parent, and the last part (Lines 30–31) handles the reception of a 〈leave〉 message
from a child.

Theorem 2 With Edge Bandwidth Assumption and Fair Contribution Requirement,
Distributed-Optimal-Tree makes the distribution tree converge to a tree that has the
same rate vector as the one obtained with Centralized-Optimal-Tree.

A proof of Theorem 2 is presented in Appendix B.

4 Protocol Implementation

We have proved that Distributed-Optimal-Tree finds an optimal tree for the abstract
network model. To implement the algorithm, however, several protocols are needed to
initialize state variables in each node and measure up-to-date values of these variables,
namely: the Join protocol, the Edge Bandwidth Measurement protocol, the Bottleneck
Discovery protocol, and the Ancestor Token protocol.

9

4.1 Joins

The distributed algorithm is assumed to begin with a tree consisting of all participating
nodes, which is unrealistic. For implementation, we provide the Join protocol which specifies
how a joining node finds an existing tree node to which it attaches as a child.

For streaming media distribution, we assume that each joining node knows the root
(sender) address, which can be obtained through an out-of-band channel, such as WWW.
When the root receives a join request from a node, say x, x 6= 0, the root accepts x as a
child if the root has fewer children than c0. Otherwise, the root replies to the request with
the address of one of its children, say node i. Then the joining node sends a join request
to i. The above procedure repeats until the joining node is accepted by some node in the
tree. With this protocol, the processing overhead of a join is distributed over all nodes and
the sender’s load is much reduced. Note that this protocol allows a joining node to join the
tree if it knows the address of any existing node in the tree. Therefore, the sender’s load
can be further reduced by simply announcing addresses of other tree nodes, in addition to
the sender, over the out-of-band channel.

When the request of a joining node, say x, is accepted by a tree node, say y, y sends to
x a range of sequence numbers indicating the part of the data stream currently available
from y. Then x sends to y a chosen starting sequence number in the range, and y starts
data transmission. After joining the tree, the state variables of x (1 ≤ x ≤ n) are initialized
as follows: p = y, cx = 2, C = ∅, A = ∅, bin

x = bout
x = ∞, and rin

x = rout
x = 0. The root

node has the same initial values except one: rin
0 =∞. After initialization, node x can begin

executing the algorithm in Figure 3 to try to find its optimal position in the tree.

4.2 Tree Information Update

To run Distributed-Optimal-Tree, state variables in node x that were assumed to be
up-to-date in the algorithm should be explicitly measured or calculated. We describe several
more protocols and explain below how to estimate these variables.

Edge bandwidth bx,c The edge bandwidth from a node x to its child node c is measured
with the Edge Bandwidth Measurement protocol. To avoid introducing extra traffic, this
protocol measures bandwidth from actual data transmission. When the data stream is
forwarded on the distribution tree from node x to node c, x transmits data packets using
the congestion control mechanism of TCP.6 In the data stream, there are marker packets,
or markers, inserted by the root. In between two consecutive markers, 32 kB of data are
transmitted. A marker has three fields: seq from, seq to, and r in. The last field, r in,
is the incoming rate of the node who sends the marker; this field, updated at every node, is
used by the Bottleneck Discovery protocol to be described below. seq from and seq to are
set by the root and they do not change. They contain the sequence numbers of the data
packet following this marker, and the data packet preceding the next marker.

When node c receives a marker, the time is recorded. Then node c tries to determine
when it finishes receiving the 32 kB of data packets that follow this marker. The finishing
time is detected either by the arrival of the next marker or a data packet whose sequence

6Our data transport protocol does not use other features of TCP, such as reliability.

10

number is larger than or equal to seq to. Node c calculates throughput from the amount
of data received divided by the elapsed time from receiving the marker to receiving the
last data packet. Node c then sends to x a protocol message containing the smaller of this
throughput value and bin

x . This smaller value is used as an estimate of bx,c at both nodes.
Edge bandwidth measurements are carried out by node c for every data interval in between
consecutive markers. (Note that in node x, until it has receive bx,c from c for the first time,
c is excluded whenever node x compares its children to select one of them in the distributed
algorithm.)

Throughput is a convenient metric for available bandwidth, used in some previous stud-
ies [11, 9]. Other available bandwidth estimation methods [8, 10] can also be used instead in
our protocols. A disadvantage of using throughput to estimate bandwidth is that x should
have received all of the data packets between two markers before it forwards the first marker
to c. Otherwise, data transmission rate may be limited by the receiving rate of x, rather
than the bandwidth between x and c. It certainly increases latency. Although we can avoid
this latency by using dummy data to measure bx,c, we let x wait to use the actual data
stream because our protocols are designed for bandwidth-intensive applications.

Outgoing access link bandwidth bout
x bout

x is estimated as follows.

bout
x =

{ cx
|C|

∑
c∈C bx,c if C 6= ∅

∞ otherwise
(4)

where C is x’s set of children. When |C| = cx, the above estimate is simply the total
edge bandwidth and might be inaccurate if the outgoing access link is not saturated. At
an intermediate node in a distribution tree, there is usually more outgoing traffic than
incoming traffic because the node has more than one child. Besides, an access link with
more outgoing bandwidth than incoming bandwidth is rare. Therefore outgoing links are
likely to be congested and the total edge bandwidth would be a good estimate for the
outgoing access link bandwidth. When |C| < cx, the above formula tends to overestimate
bout
x and accordingly gives an advantage to x in finding its position in the tree. However, in

the case that x is located higher in the tree than it should be, x has a higher probability to
get a new child. Eventually C of x becomes full and the inaccuracy is corrected.

Number of children cx and incoming access link bandwidth bin
x Initially cx is set

to 2. To satisfy Fair Contribution Requirement, bin
x is assigned to be 1

cx
bout
x . Although this

is a stronger condition than that in Fair Contribution Requirement, it is simple and easy to
implement. In this case, if node x is willing to support more children without reducing its
current incoming rate, it can increase cx while not violating Fair Contribution Requirement
so long as the following condition is satisfied.

bin
x =

1
cx

bout
x > rin

x (5)

The reason is as follows. When x increases cx, it should decrease bin
x to the new value of

1
cx

bout
x to satisfy Fair Contribution Requirement. The reduced bin

x might cause the optimal

11

position of x to be moved to another position by the algorithm. However, rin
x remains

unchanged, since any node y on the path from the root to x has a higher or equal incoming
bandwidth, i.e. bin

y ≥ bin
x . Because 1

cy
bout
y = bin

y ≥ bin
x , the new incoming rate of x is limited

only by its own incoming bandwidth, bin
x , which by Eq. 5 is not smaller than the previous

incoming rate of x.

Incoming rate rin
x The incoming rate of node x is provided by our Bottleneck Discovery

protocol as follows. As mentioned in the presentation of edge bandwidth measurements,
the root node sends a marker packet periodically. The last field of the marker, r in, is set
to “infinity” by the root. When a node, say i, receives the marker from its parent p, it
compares r in in the marker and bp,i measured by i. If bp,i is smaller, i overwrites r in
with bp,i; otherwise, it is left unchanged. The updated marker is then forwarded by i to
its child nodes. Thus, after the marker reaches node x and has been updated by x, r in
contains the minimum edge bandwidth on the path from the root to node x, which is rin

x .

Outgoing rate rout
x When node x has rin

x , bout
x , and cx, rout

x is obtained directly from
Eq. 2.

Ancestor information A, rin
a , ba,x State variables containing information about ances-

tors are used only in the first part (Lines 1–4) of Distributed-Optimal-Tree, where
node x finds an ancestor, say a, to probe. The edge bandwidth ba,x should be known in
Line 3 for x to decide if ancestor a can provide a higher rate. Since each node knows
edge bandwidths from its parent to itself and from itself to its children only from the Edge
Bandwidth Measurement protocol, ba,x needs to be measured separately. A concern is that
measuring ba,x may overwhelm node a if many descendants ask a to perform measurement
simultaneously. So, instead of letting x choose a arbitrarily, we design the Ancestor Token
protocol which takes care of choosing an ancestor in Line 2 and measuring ba,x in Line 3 of
the algorithm.

In the Ancestor Token protocol, node a sends out a token (packet) whenever a has one
or more children. The token contains rin

a . The token is passed to a’s descendants as follows.
When node a issues a token, it selects a child randomly, and passes the token to the child.
When node x receives a token from a, it also passes the token to a randomly selected child
if a is its parent. Otherwise, it either keeps the token with probability p, or forwards the
token to a randomly selected child with probability 1−p. If x is a leaf node, it always keeps
the token. Keeping the token means that x choose a in Line 2. While x has the token from
a, it is entitled to measure ba,x. Note that x retrieves rin

a from the token, which is needed
in Line 3.

The measurement procedure is similar to the one in the Edge Bandwidth Measurement
protocol. Each node is expected to store in its buffer at least two consecutive marker packets
and all data packets in between them. Node x sends a protocol message to a requesting
measurement and data transmission to x. Then a transmits the first marker, data packets,
and last marker. (Note that the markers carry rin

a needed by x.) ba,x is estimated as in the
Edge Bandwidth Measurement protocol. One difference is that the end of data transmission
is detected by timeout in case the second marker is lost.

12

After ba,x has been measured or the token is lost (detected by timeout), a is ready
to issue a new one. By adjusting how often tokens are issued, each node can control the
amount of traffic used for bandwidth measurement from itself to descendants.

After getting rin
a and ba,x, x runs the remaining part (Lines 3–4) of the algorithm. Note

that the Ancestor Token protocol removes the need for keeping information on ancestors.
That is, A is no longer needed to run the algorithm, and rin

a and ba,x are provided or
measured when needed. Therefore the amount of information kept by each node is O(cx).

4.3 Node Leaves and Failures

In end-system multicast, we should pay more attention to node failures, because end systems
are less reliable than routers in IP multicast. Therefore, it is critical to have address
information about ancestor nodes. In our implementation, an important side effect when a
node issues a token packet is propagating the node’s address to descendant nodes. When
a node has lost its parent, it is desirable for the node to contact its closest ancestor in the
tree. We add a field called distance into the token packet to enable each node to construct
a path from the root to itself. distance is initially set to 0 by the node issuing a token,
and incremented by one by every node receiving it. Each node caches a list of ancestors
containing their addresses and distances. Note that these are soft states to help recovery
from node failures; with the Ancestor Token protocol, there is no longer any need for A in
our algorithm implementation. If a node detects the loss of its parent by timeout, it sends
a join message to nodes in its ancestor cache starting from the closest one. In the case of
a voluntary leave, a leaving node sends its parent’s address to all its children, so that they
can send join messages to their grandparent.

4.4 Rate Adaptation

In an optimal distribution tree, a node farther from the root has a lower incoming rate.
Thus it may be necessary for a node to make the data stream forwarded to its child have
a lower rate than the rate of the data stream it receives. A straightforward way to deal
with this situation is to transcode the data stream whenever its rate should be lowered [13].
However, it may impose too much processing overhead on nodes. A better solution is to
use hierarchical encoding.

Multimedia data are often encoded in layers, such that the sender provides a base layer
and many enhancement layers. A receiver then subscribes to the base layer and upper layers
to the extent allowed by its incoming rate. If a server makes as many layers as receivers,
then every receiver can fully utilize its available bandwidth. On the other hand, with a
small number of layers, a tree topology change might not lead to quality improvement if the
new incoming rate of a node does not exceed the cumulative rate of the next layer. However,
Yang et al. have shown that 80% of the average incoming rate can be utilized with a few
(4 or 5) layers if the rates of layers are chosen carefully [17]. This indicates that available
bandwidth increase is likely to improve quality for receivers when layered encoding is used.

13

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

O
pt

im
al

 T
re

e
A

ve
ra

ge
 In

co
m

in
g

R
at

e

Random Tree Average Incoming Rate

100 nodes

800 nodes

Uniform
Normal

Bimodal

Figure 4: Optimal Trees vs. Random Trees

5 Evaluation

To evaluate our protocols, we run simulations using several distributions of access link
bandwidths. There are various types of access links ranging from 56 kbps telephone lines to
dedicated high-speed lines with bandwidth higher than 1 Mbps. Distribution of access link
bandwidths also varies. In the simulations, we use the following distributions that include
both slow (< 56 kbps ≈ 0.05 Mbps) and fast (≥ 5 Mbps) links. Similar distributions have
been used in previous multicast studies [12, 17].

• A uniform distribution over the interval [0.05, 5).

• A normal distribution with mean 2 and standard deviation 2.

• A bimodal distribution consisting of two normal distributions. The means are 0.05
and 2.5, and the standard deviations are 0.02 and 2, respectively. In our simulations,
twenty percent of the receivers are selected from the first normal distribution.

5.1 How Good is the Optimal Tree?

The first question to investigate is whether it is worthwhile to compute an optimal tree.
Randomly-constructed trees are compared with optimal trees to show that an optimal tree
actually increases the average incoming rate significantly.

A random tree is a tree built with a given number of nodes, whose access link bandwidths
are drawn from one of the three distributions described above. An optimal tree with the
same set of nodes is computed using Centralized-Optimal-Tree. We plot the average
incoming rates of both trees in Figure 4, with the number of nodes varied from 100 to 800.
Each point in the figure represents the mean over ten simulations.

Though the actual values depend on distributions, an optimal tree has a much higher
average incoming rate than a random tree. With the bimodal distribution, an optimal tree
achieves a rate 30 times higher than the rate of a random tree. Note that random trees
with the bimodal distribution have lower average incoming rates than those with the normal
distribution, even though the mean of the bimodal distribution is larger than that of the

14

 0

 100

 200

 300

 400

 500

 600

 700

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
on

ve
rg

en
ce

 T
im

e
(R

ou
nd

s)

p

100 nodes
200 nodes
400 nodes
800 nodes

Figure 5: Convergence Time vs. p

normal distribution. The reason is that twenty percent of the nodes drawn from the bimodal
distribution have very small bandwidths. It means that a small fraction of low bandwidth
users can significantly slow down a large part of the tree. In this case, tree improvement is
critical for the performance of bandwidth-intensive multicast applications.

Another thing to notice in Figure 4 is that the average incoming rate decreases (moves
toward the origin) as the number of nodes increases. Such decrease is more noticeable for
random trees. The corresponding decrease for optimal trees is, however, relatively small.
Therefore, a tree with more nodes gets more benefit by computing an optimal tree.

5.2 Convergence Speed

Even when the average incoming rate of an optimal tree is much higher than that of a
random tree, how fast a random tree converges to an optimal tree is more important in
practice. In this section, we investigate factors related to the convergence speed, especially
the token keeping probability p and the number of nodes.

The convergence speed is heavily dependent on how tokens are distributed, because they
give each node chances to relocate itself. Token distribution is governed by the Ancestor
Token protocol with parameter p, the probability for a node to keep a token. Figure 5 shows
how long it takes to achieve 80% of the maximum average incoming rate with different p
values. Each point represents an average over ten runs. To measure elapsed time in the
simulations, we use a round as a time unit. A round is the period during which each node
issues a token once. We assume that every node issues tokens periodically. One round should
be long enough for token propagation and edge bandwidth measurement. We also assume
that edge bandwidth measurements are accurate in this section. The effect of inaccurate
measurements will be discussed in Section 5.3.

As shown in Figure 5, p should be large in order for fast increase of average incoming rate.
With a small p, most tokens are used by leaf nodes, and the majority of the probe messages
caused by those tokens are discarded in the second part (Lines 5–13) of Distributed-
Optimal-Tree. In simulations with p larger than 0.9, the speed gain in achieving 80% of
the maximum becomes negligible. So we use p = 0.9 in later simulations.

Figure 6 demonstrates how the average incoming rate changes over time when p = 0.9.

15

A tree has 500 nodes, and the average incoming rate of the tree is normalized with respect
to the maximum average incoming rate. The evolution of average incoming rate looks
similar for all bandwidth distributions. Convergence to the maximum value takes hundreds
of rounds. However, most benefits of the algorithm can be achieved within a short duration,
about 50 rounds. To show that convergence time is not sensitive to the number of nodes,
we plot the normalized average incoming rate both at the beginning and after 50 rounds
in Figure 7. The normalized average incoming rate of each point is obtained by taking the
average of 10 runs.

Again, all three trees with different bandwidth distributions show similar behaviors.
Note that the average incoming rates after 50 rounds decreases as the number of nodes
increases from 100 to 800. However, the decrease speed is slow. The average incoming rate
for 800 nodes is 10% less than that for 100 nodes. Besides, the initial average incoming
rates also decrease as the number of nodes increases; in fact, the amount of decrease is more
than 30% from 100 nodes to 800 nodes. Therefore, the convergence speed is actually higher
for a larger group.

These simulations show that the benefits of an optimal tree are significant and that most
of them are achievable within a relatively short time.

5.3 Bandwidth Measurement Errors

We assumed that edge bandwidth measurements are accurate in the simulations presented
in Section 5.2. In practice, however, edge bandwidth measurements may contain errors.
These errors would adversely affect our protocols and lead to a sub-optimal tree.

In Figure 8, we investigate the impact of inaccurate bandwidth measurements on the
average incoming rate. The tree has 500 nodes. Whenever a node measures an edge
bandwidth, the value is drawn from the normal distribution with a mean value equal to
the accurate edge bandwidth. We change the coefficient of variation (CoV) of the normal
distribution to vary the degree of errors. The ratio of the average incoming rates (after 50
rounds) for trees with inaccurate and accurate measurement is plotted in Figure 8.

The ratio of the average incoming rates decreases linearly as CoV increases. In order

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

N
or

m
al

iz
ed

 A
ve

ra
ge

 In
co

m
in

g
R

at
e

Time (rounds)

Uniform
Normal

Bimodal

Figure 6: Evolution of Average Incoming
Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800

N
or

m
al

iz
ed

 A
ve

ra
ge

 In
co

m
in

g
R

at
e

Number of Nodes

at the beginning

after 50 rounds

Uniform
Normal

Bimodal

Figure 7: Average Incoming Rates at the
Beginning and After 50 Rounds

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
at

io
 o

f A
ve

ra
ge

 In
co

m
in

g
R

at
es

Coefficient of Variation of Measured Edge Bandwidth

Uniform
Normal

Bimodal

Figure 8: Measurement Errors and
Achieved Average Incoming Rate

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100 120 140

A
ve

ra
ge

 In
co

m
in

g
R

at
es

 (
kb

ps
)

Time (Seconds)

Uniform
Normal

Bimodal

Figure 9: Tree Improvement with Measured
Bandwidth

to achieve a ratio higher than 0.8, CoV should not exceed 0.3. Some congestion control
protocols designed to avoid sending rate fluctuations have sending rate CoV lower than
0.3 [18]; therefore, the throughput of one of these protocols would be suitable for edge
bandwidth estimation in our algorithm implementation. Protocols with larger CoV like
the AIMD (additive increase/multiplicative decrease) protocol of TCP can also be used by
having sufficiently large measurement timescale to decrease CoV [7].

Figure 9 shows the average incoming rate traces using AIMD throughput to estimate
edge bandwidths. The simulations are run using the ns–2.1b9 simulator,7 for a topology
generated with the Transit-Stub model of Georgia Tech Internetwork Topology Models
(GT-ITM) [2]. The topology contains 100 routers: 75 stub routers and 25 transit routers.
51 nodes are added to the topology. One of them is the sender, and the other nodes
are receivers. Access link bandwidths are drawn from the uniform, normal, and bimodal
distributions described at the beginning of this section. Due to large variation in throughput
measurements, the average incoming rate curves show large fluctuations. One thing to
notice is that the average incoming rate is much lower than the average of the bandwidth
distribution. The first reason is, as we have mentioned before, that measurement errors
result in a low average incoming rate. The second is that throughput measurements with
32 kB blocks give a significantly lower value than the actual edge bandwidth, especially for
those with high bandwidth; a 32 kB block may fail to saturate such a high bandwidth edge.
Due to low link utilization, the measured edge bandwidth becomes much lower than the
actual value, and the average incoming rate is also lower than it should be. However, the
algorithm is still effective because all it needs is relative comparison among edge bandwidths.

Even with the inaccurate bandwidth measurements, the curves in Figure 9 look similar
to those in Figure 6. In Figure 9, the average incoming rate increases for about eighty
seconds and stays at a relatively stable level. Since the usual playback time of audio and
video streams exceeds minutes and even hours, we believe this is acceptable.

7http://www.isi.edu/nsnam/ns/

17

6 Conclusion

Finding a good tree topology is critical for the performance of bandwidth-intensive multicast
applications. We have proposed a distributed algorithm to build a tree in the application
layer, and proved that it finds an optimal tree, which maximizes the average incoming
rate of receivers under certain network model assumptions. Unlike other approaches using
heuristics to find a local optimum, our algorithm is always heading towards the global
optimum. We have described protocols to implement the algorithm on the Internet. Since
a node does not keep any hard state in our implementation, it is resilient to membership
changes and failures. Any node can take care of join requests in the same way as the root
does, and can easily recover from leaves or failures of other nodes.

Our protocol implementation has room for improvement, especially in bandwidth mea-
surement. The AIMD throughput has large variations, caused in part by short-term unfair-
ness of the protocol and in part by interference from other flows. The former is avoidable
by adopting a more fair and smoother protocol such as TFRC [7] and TEAR [15]. Because
a basic assumption of our algorithm is that a node can measure the bandwidth between
another node and itself, we expect that a more accurate and stable estimation technique
will lead to better algorithm performance. This is a topic of our future study.

References

[1] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scalable ap-
plication layer multicast. In Proceedings of ACM SIGCOMM 2002, August 2002.

[2] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling Internet Topol-
ogy. IEEE Communications Magazine, 35(6):160–163, June 1997.

[3] Yatin Chawathe and Mukund Seshadri. Broadcast Federation: an application layer
broadcast internetwork. In Proceedings of the 12th International Workshop on Network
and Operating Systems Support for Digital Audio and Video, May 2002.

[4] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. Enabling conferenc-
ing applications on the Internet using an overlay multicast architecture. In Proceedings
of ACM SIGCOMM 2001, August 2001.

[5] Reuven Cohen and Gideon Kaempfer. A unicast-based approach for streaming multi-
cast. In Proceedings of IEEE INFOCOM 2001, April 2001.

[6] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms, chapter 17. MIT Press, 1990.

[7] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer. Equation-based con-
gestion control for unicast applications. In Proceedings of ACM SIGCOMM 2000,
August 2000.

[8] Mukul Goyal, Roch Guerin, and Raju Rajan. Predicting TCP throughput from non-
invasive network sampling. In Proceedings of IEEE INFOCOM 2002, June 2002.

18

[9] Katrina M. Hanna, Nandini Natarajan, and Brian Neil Levine. Evaluation of a novel
two-step server selection metric. In Proceedings of the 9th IEEE International Confer-
ence on Network Protocols, November 2001.

[10] Manish Jain and Constantionos Dovrolis. End-to-end available bandwidth: measure-
ment methodology, dynamics, and relation with TCP throughput. In Proceedings of
ACM SIGCOMM 2002, August 2002.

[11] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and Jr. James
W. O’Toole. Overcast: reliable multicasting with an overlay network. In Proceedings
of the 4th Symposium on Operating Systems Design and Implementation. USENIX,
October 2000.

[12] Tianji Jiang, Mostafa H. Ammar, and Ellen W. Zegura. Inter-receiver fairness: a novel
performance measure for multicast ABR sessions. In Proceedings of ACM SIGMET-
RICS ’98, June 1998.

[13] Zhijun Lei. Media transcoding for pervasive computing. In Proceedings of the 9th ACM
International Conference on Multimedia, September 2001.

[14] Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel. ALMI: an ap-
plication level multicast infrastructure. In Proceedings of the 3rd USENIX Symposium
on Internet Technologies and Systems, March 2001.

[15] Injong Rhee, Volkan Ozdemir, and Yung Yi. TEAR: TCP emulation at receivers —
flow control for multimedia streaming. Technical report, Department of Computer
Science, North Carolina State University, April 2000.

[16] Maya Yajnik, Jim Kurose, and Don Towsley. Packet loss correlation in the MBone
multicast network. In Proceedings of IEEE Global Internet 1996, November 1996.

[17] Y. Richard Yang, Min Sik Kim, and Simon S. Lam. Optimal partitioning of multi-
cast receivers. In Proceedings of the 8th IEEE International Conference on Network
Protocols, Osaka, Japan, November 2000.

[18] Y. Richard Yang, Min Sik Kim, and Simon S. Lam. Transient behaviors of TCP-
friendly congestion control protocols. Computer Networks, 41(2):193–210, February
2003; An abbreviated version in Proceedings of IEEE INFOCOM 2001, Anchorage,
Alaska, U.S.A., Apr. 2001.

A Proof of Theorem 1

Proof Let T be the tree built with Centralized-Optimal-Tree and R = (rin
1 , rin

2 , . . . , rin
n)

its rate vector. Suppose that T ∗ is a tree that maximizes the average incoming rate and
that its rate vector is R∗ = (rin

1
∗
, rin

2
∗
, . . . , rin

n
∗). Without loss of generality, we assume that

(1, 2, . . . , n) is the order in which receiver nodes are added to the tree T by the algorithm.
We will show that T ∗ can be transformed into T without changing the average incoming
rate, which proves that T also maximizes the average incoming rate.

19

We use induction on the number of steps in transforming T ∗ into T . Let Tk denote the
transformed tree after k steps. Then we prove that Tk has the following properties for all
k, where 0 ≤ k ≤ n.

P1. The subgraph consisting of nodes 0, 1, . . . , k and edges between them in Tk is equal
to the corresponding subgraph in T .

P2. The average incoming rate of Tk is equal to that of T ∗.

The base case is trivial. After step 0, the transformed tree T0 is T ∗ itself. Clearly, both
P1 and P2 are satisfied by T0.

Induction hypothesis : Tk−1 satisfies both P1 and P2.
Given the hypothesis, we will show how to construct Tk that satisfies both P1 and P2.
Let the rate vector of Tk−1 be R′ = (rin

1
′
, rin

2
′
, . . . , rin

n
′). By the induction hypothesis,

rin
i
′ = rin

i for all i, 1 ≤ i ≤ k − 1. The comparison of rin
k and rin

k
′ gives two cases: (i)

rin
k < rin

k
′ and (ii) rin

k ≥ rin
k
′. We first show that (i) leads to a contradiction.

Assuming (i), let node j be the first node on the path from the root to node k in Tk−1

that is not in {0, 1, 2, . . . , k − 1}. If j = k, k’s parent in Tk−1 must be in {0, . . . , k − 1},
and have an outgoing rate larger than k’s parent in T to satisfy (i). This is impossible
because k’s parent should have the largest outgoing rate among the remaining nodes when
it is selected by Line 6. If j > k, then rin

j
′ ≥ rin

k
′ because k is j’s descendant. From this and

(i), we conclude rin
j
′
> rin

k , which means j should have been chosen by Line 7 instead of k
in building T . It contradicts the assumption that T is obtained by the algorithm.

Since (i) is impossible, (ii) must hold. Consider k’s position in T .
(Case 1) If the same position in Tk−1 is empty, then Tk satisfying P1 is obtained by

moving k’s subtree (a tree rooted at k) to that empty position in Tk−1. This move does not
decrease any incoming rate for nodes in k’s subtree because of (ii). Note that no tree can
have a larger average incoming rate than that of T ∗ because T ∗ is an optimal tree. Since P2
in the induction hypothesis guarantees that the average incoming rates of Tk−1 and T ∗ are
equal, Tk cannot have a larger average incoming rate than that of Tk−1. Thus the average
incoming rate of Tk must be equal to that of Tk−1, which proves that Tk satisfies P2.

(Case 2) If k’s position in T is occupied by node l in Tk−1, there are two possibilities
depending on whether k is l’s descendant or not.

(Case 2–1) If k is l’s descendant, Tk satisfying P1 is obtained by exchanging k and l in
Tk−1. As we have shown in Case 1, the average incoming rate of Tk cannot exceed that of
Tk − 1 due to the induction hypothesis (P2). Therefore, to prove that Tk satisfies P2, it
suffices to show that the average incoming rate of Tk is larger than or equal to that of Tk−1.

By (ii), k’s incoming rate does not decrease. Since k and its location have been selected
in Lines 6 and 7 to maximize the incoming rate of the chosen node, we know the following
inequality holds.

rin
k ≥ rin

l
′

(6)

Besides, since k is selected in Line 7, bin
k ≥ bin

l and accordingly 1
ck

bout
k ≥ 1

cl
bout
l by the Fair

Contribution Requirement. This and Eq. 6 imply that rout
k ≥ rout

l by definition (Eq. 2).
Therefore, the incoming rates of the nodes on the path from l to k in Tk−1 do not decrease.
There is also no change to the incoming rates of k’s descendants in Tk−1 because their
ancestors remain same except the order. The only concern is node l.

20

l

m

k
q

m

0 0

k

p p

l
q

Figure 10: Converted Trees

To calculate l’s new incoming rate, suppose that p and q are parents of l and k in
Tk−1, respectively. The left tree in Figure 10 represents Tk−1, and the right Tk. The area
surrounded with a dotted line is the common part of T and Tk−1, and contains nodes
1, 2, . . . , k − 1.

Then rout
p = rout

p
′ ≥ rout

q
′ by the algorithm. Because the new incoming rate of l is

min
(
rout
q

′
, bin

l

)
by the Edge Bandwidth Assumption, there are two cases depending on

which value is the smaller. If rout
q

′ ≥ bin
l , l’s new incoming rate after exchange will be

bin
l , which is not less than the previous value because l cannot get more than its incoming

bandwidth. If rout
q

′
< bin

l , l’s new incoming rate will be rout
q

′, which is equal to rin
k
′, since

bin
l ≤ bin

k by Line 7. In this case the net effect for k’s and l’s incoming rates is as follows.

(k’s rate change) + (l’s rate change)

= (rin
k − rin

k
′
) +

(
rin
k
′ − rin

l
′) ≥ 0 (by Eq. 6)

Therefore Tk satisfies both P1 and P2 for Case 2–1.
(Case 2–2) If k is not l’s descendant, Tk satisfying P1 is obtained by exchanging k’s

subtree and l’s subtree in Tk−1. As in Case 2–1, we will prove that Tk satisfies P2 by
showing that the average incoming rate of Tk is larger than or equal to that of Tk−1.

As we showed in Case 2–1, k’s incoming rate does not decrease by exchange. Accordingly,
the incoming rates of k’s descendants do not decrease. We also showed that the sum of k’s
and l’s incoming rates does not decrease. Thus, it suffices to show that the incoming rates
of l’s descendants do not decrease.

Before calculating the incoming rate changes of l’s descendants, we claim

rout
q

′ ≥ min
(

bin
k ,

1
ck

bout
k

)
. (7)

If not, there exists in Tk−1 a bottleneck node m on the path from 0 to q such that rout
m

′ is
equal to rout

q
′ and m’s parent has a larger outgoing rate than rout

q
′. (m can be q itself.) It

means we can achieve a higher average incoming rate by exchanging node m and node k,
which contradicts that Tk−1 maximizes the average incoming rate (P2).

21

We know bin
l ≤ bin

k by Line 7, and accordingly 1
cl

bout
l ≤ 1

ck
bout
k by the Fair Contribution

Requirement. By this and Eq. 7, we get rout
q

′ ≥ min
(
bin
l , 1

cl
bout
l

)
. Since q provides a higher

rate than l can forward to its children, the incoming rates of l’s descendants do not decrease.
Therefore, Tk satisfies both P1 and P2 for Case 2–2.

We have proved the inductive step for Tk. By induction, Tn has the same average
incoming rate as T ∗. Since Tn = T by P1, T is a tree that maximizes the average bandwidth.
�

B Proof of Theorem 2

Proof Let T be the tree constructed by Centralized-Optimal-Tree. We first prove a
stronger version of the theorem under the assumption that all incoming and outgoing band-
widths are distinct. The stronger version is that, with Distributed-Optimal-Tree, a
tree rooted at node 0 converges to T . Without loss of generality, we assume that (1, 2, . . . , n)
is the order in which receiver nodes are added to T by Centralized-Optimal-Tree. We
use induction on the node sequence (0, 1, . . . , n). The base case is trivial, because node 0 is
the same for both Distributed-Optimal-Tree and Centralized-Optimal-Tree.

Induction hypothesis : Distributed-Optimal-Tree has constructed a tree T ′ such
that the tree (embedded in T ′) consisting of nodes 0, 1, . . . , k − 1 and edges between them
is the same as the corresponding tree embedded in T .

Given the hypothesis, we will show that T ′ evolves into a tree such that nodes 0, 1, . . . , k
satisfy the same condition as in the hypothesis. We note that none of nodes 0, 1, . . . , k − 1
will move because their 〈probe〉 messages are discarded in Lines 6–7 of the distributed
algorithm.

Consider node k in T ′. If k is already at the same position in T ′ as it is in T , the
induction step is done. Otherwise, k’s incoming rate in T ′ must be lower than k’s incoming
rate in T because T is an optimal tree and all bandwidths are distinct (no tie). Eventually
k sends a 〈probe〉 message to 0 because 0 clearly satisfies the condition in Line 3 if k is not
at an optimal position. (Sending a 〈probe〉 message to a non-root ancestor can accelerate
the convergence, without compromising this proof.) k cannot receive more in T ′ than it
does in T because all such positions are filled out by nodes 1, 2, . . . , k−1. However, it keeps
sending 〈probe〉 messages until it reaches k’s parent in T . Since k is the best node among
the remaining ones, k beats any other node in Line 7 and moves to its optimal position.

We have proved the inductive step. By induction on the node sequence 0, 1, . . . , n, each
node moves into its optimal position, resulting in forming a tree equal to T .

If bandwidths are not distinct, we may encounter ties. Exchanging nodes with the
same incoming and outgoing bandwidths, however, does not affect their incoming rates.
Therefore, Distributed-Optimal-Tree makes an arbitrary tree converge to a tree with
the same rate vector as T . �

22

