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1 Introduction

Binomial congestion control was proposed by Bansal and Balakrishnan in [2].
However, the sending rate derivation in [2] is greatly simplified and does not con-
sider the effect of timeouts. Further, even though the authorsause 1 and

B = 0.6 for TCP-friendliness in their experiments; this selection is not justified by
their analysis. On the contrary, according to the authorsqfer 1, they should
selects such that% = 01—5 therefore, 5 = 0.5.

The motivation of this paper is to analyze the sending rate of binomial conges-
tion window adjustment policy, considering both tripli-duplicate loss indications
and timeout loss indications. We also consider the selectianayid 3 for IIAD
and SQRT congestion control strategies [2] to be TCP-friendly. This paper suggests
that the authors of Binomial should test their protocol under higher loss scenarios.

The balance of this paper is as follows. In Section 2, we describe the Binomial
congestion control and state the analysis assumptions. The detail of the derivations
is put in the Appendix. In Section 3, we use the sending rate formula to derive
conditions under which a Binomial flow is TCP-friendly.

*Research sponsored in part by National Science Foundation grant No. ANI-9977267 and grant
no. ANI-9506048. Experiments were performed on equipment procured with NSF grant no. CDA-
9624082.



2 Model and Analysis Assumptions

Formally, the Binomial window adjustment policy is

(1)

wir ¢+ wg+a/wf ifnoloss
wirse — wg— Pwt  when loss

We can see that TCP is a special case when 0, [ = 1. In this paper, we
analysis the two cases considered by the authors: whenl, [ = 0, which is
called IIAD (inverse-increase/additive decrease) And [ = 0.5, which is called
SQRT (square-root).

Window adjustment policy, however, is only one component of a complete
congestion control protocol. Other mechanisms such as congestion detection and
round-trip time estimation are needed to make a complete protocol. Since TCP
congestion control has been studied extensively for many years, Binomial adopts
these other mechanisms from TCP Reno [5, 6, 8, 1]. In the next subsection, we
give a brief description of the Binomial congestion window adjustment algorithm.
All other algorithms are the same as those of TCP Reno.

2.1 Congestion window adjustment

A Binomial session begins in ttowstartstate. In this state, the congestion win-
dow size is doubled for every window of packets acknowledged. Upon the first
congestion indication, the congestion window size is cut in half and the session
enters theeongestion avoidancstate. In this state, the congestion window size is
increased byx/W* in each round-trip time, wher# is the current congestion
window size. Notice that in this analysis we assume that the receiver returns one
new ACK for each received data packet. It is straightforward to extend the analysis
to consider delayed ACK. Binomial reduces the window size when congestion is
detected. Same as TCP Reno, Binomial detects congestion by two eviiés:
duplicate ACKandtimeout If congestion is detected by a triple-duplicate ACK,
Binomial changes the window size W5 — gW'. If the congestion indication is a
timeout, the window size is set 1o

2.2 Modeling assumptions

The assumptions and simplifications made in this analysis are summarized below.

¢ We assume that the sender always has data to send (i.e., a saturated sender).
The receiver always advertises a large enough receiver window size such
that the send window size is determined by the Binomial congestion window
size.



e The sending rate is a random process. We have limited our efforts to mod-
eling the mean value of the sending rate. An interesting future topic will be
to study the variance of the sending rate which is beyond the scope of this
paper.

¢ We focus on Binomial’'s congestion avoidance mechanisms. The impact of
slowstart has been ignored.

¢ We model Binomial’s congestion avoidance behavior in terms of rounds. A
round starts with the back-to-back transmissionlfpackets, wheréy
is the current window size. Once all packets falling within the congestion
window have been sent in this back-to-back manner, no more packet is sent
until the first ACK is received for one of tH& packets. This ACK reception
marks the end of the current round and the beginning of the next round. In
this model, the duration of a round is equal to the round-trip time and is
assumed to be independent of the window size. Also, it is assumed that
the time needed to send all of the packets in a window is smaller than the
round-trip time.

e We assume that losses in different rounds are independent. When a packet
in a round is lost, however, we assume all packets following it in the same
round are also lost. Therefonejs defined to be the probability that a packet
is lost, given that it is either the first packet in its round or the preceding
packet in its round is not lost [7].

¢ Tovoid having too many parameters, we assume that the receiver returns one
new ACK for each received data packet, i.e., no delayed ACK. To model the
effect of delayed ACK, we can simply replace allvith «/b, wherea is the
increasing parameter, amds the number of data packets before an ACK is
sent.

e To derive an analytic result, sometimes in the analysis we as&jg] ~
E[W]t, whereW is the window size and € (0, cc).

3 TCP-friendly Binomial Congestion Control

As derived in Appendix, the sending rate of both IIAD and SQRT can be expressed
as

1
R gp + Tp min <1, 34/ §p>p(1 + 32p?)

TBinomial(aa ﬂapa Ra TO) ~ (2)



wherep is the loss rateR the mean round-trip time, ari the timeout. We should
emphasize that to derive (2), in some cases we have asguimschall. For detail,
refer to the Appendix.

To be TCP-friendly, we need to mat@;,omiai (@, 5, p, R, Tp) to that of TCP
sending rate formula, which is

R\/7+T0m1n<1 3\/7) (14 32p?)

Under low loss scenario, the first terms in the denominators of (2) and (3)
dominates, and we have the expression:

3 2

a3 @

Trcp(p, R, Ty) =

®3)

For example, when the Binomial congestion control uses 1, we select
B = 0.66 so that the control is TCP-friendly.

To consider the sensitivity of the TCP-friendliness on thearameters, we
define

1
Flo,g) = M (5)
_ [3B
= /2 (6)

Under small loss ratg, F is the relative throughput of a IAD/SQRT flow and
a TCP flow. Figure 1 plot#’ as a function of3 whena = 1. Compare Figure 1
with the experimental results in Figure 16 of [2], we find that the two figures are
very similar. This can be considered a validation of (2).

However, it is important to point out that is valid only when loss ratg is
small. When loss rate is high, we should use the complete sending rate formula to
derive the TCP-friendlyr and 3, using the methods as iff][ It also suggests that
the authors of Binomial should evaluate Binomial under high loss scenarios.
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Figure 1. F' as a function of whena = 1

A Sending Rate Derivation

We carry the derivation in two steps. In the first step, we only consider the case
when congestion indications are exclusively of type “triple duplicate” ACK (TD).
In the next step, we consider both TD and timeout loss indications.

A.1 Congestion indications are exclusively triple-duplicate ACKs

We first consider the case when congestion indications are exclusively of type
“triple duplicate” ACK (TD). Consider a Binomial flow starting at time= 0. For

any given time > 0, defineN; as the number of packets transmitted in the interval
[0,t], andT; = N;/t, the sending rate on that interval. Note tfais the number

of packets sent per unit of time regardless of their eventual fate (i.e. whether they
are received or not). Thu§; represents the sending rate of the connection. We
define the long-term steady-state rat¢o be

N,
T=lim T; = lim —* (7
t— o0 t—oo t

Define a TD period (TDP) to be the interval of time between two TD congestion
indications. For théth TD period we define random variablg as the number of
packets send in the period, the duration of the period, arid; the window size
at the end of the period. ConsidfiV;} to be a Markov regenerative process with
rewards{Y;}. From renewal theory [3, 4], we know that

7= ®)

(61



In order to derive an expression fr, the long-term steady-state Binomial
sending rate, we next derive expressions for the mealisayfd A.
Consider a TD period as in Figure 2.
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E Lost packet
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Figure 2: A triple-duplicate period (TDP)

A TD period starts immediately after a TD congestion indication, and thus the
congestion window size at the start of iltle TD period is equal t&v; ; — ﬁWZLl.
At the end of each round, the window is incrementecaldyV*, whereW is the
window size at the beginning of the round. We denoteppihe first packet lost
in TDP;, and X; the round where this loss occurs. After packgtiV; — 1 more
packets are sent in an additional round before a TD congestion indication occurs
(and the current TD period ends). Thus a totakpf= n; + W; — 1 packets are
sent inX; + 1 rounds. It follows that:

ElY] = E[n + EW] -1 9)

To derive E[n], consider a random proce$s; }, wheren; is the number of
packets sent in a TD period up to and including the first packet that is lost. Based
on the assumption that packets are lost in a round independently of any packets
lost in other rounds,{n;} is a sequence of independent and identically distributed
(i.i.d.) random variables. Given the loss model, the probability;of & is equal
to the probability that exactlg — 1 packets are successfully acknowledged before
a loss occurs

Pp=k=>010-pF1p, k=12,... (10)



The mean o is thus

Bl =3 (1 p)lpk = - a1
k=1 p
Plugging (11) into (9), we have
BlY] = 1%’ + B[W] (12)

To derive E[W] and E[A], consider agaif' D P;. Definer;; to be the dura-
tion of the jth round of TDP;. Then, the duration a'DP; is A; = ijl Tij-
Consider the round-trip time;; to be random variables that are assumed to be in-
dependent of congestion window size, and thus independent of the round number,
j. It follows that

E[A] = (E[X] + 1)E]r] (13)

Henceforth, letR = E[r] denote the average value of the round-trip time.
Finally, to derive an expression fd[X], consider the evolution ofV; as a
function of the number of rounds. First we observe that duringtth&D period,
the window size increases betwef_; — W), andW; (see Figure 2).
Consider the differential equation:

aw «
dt ~ RWk 14
Solve the differential equation, we have that far [0, RX;]
1
1 X FHL
W (t) = (ng Vi s W1 - ﬁW}f)”l) v (15)

From (15), and plug itV (RX;) = W;, we solve the expression fof; as

1 _
- gt (o)

The fact thafy; packets are transmitted D P; is expressed by

RX;
Y, = W (t)dt + 6 (17)
0
W~k+2 _ W-k+2 1— W.l*]. k+2
— ) i—1 ( ﬁ 271> + 91 (18)
alk +2)

7



where#; is the number of packets sent in the last round. Consideréhdhe
number of packets in the last round, is uniformly distributed betwieand 17;,
and thus

E[6) = E[W]/2 (19)

{W;} is a Markov process for which a stationary distribution can be obtained
numerically. However, a simpler approximate solution can be obtained.

Next, we consider two special cases. The first case is called liARrse-
increase/additive decreasahe second, SQRT (because the increase and decrease
are proportional to the square-root of the current window).

A.1.1 1IAD (k=1,1=0)
First, plug ink = 1,1 = 0 into (16), we have

_ L

X —
Y 2a

(W7 — (Wiz1 — 8)%) (20)
Take expectation on (20), and we have

_ 2BEW] -

50, (21)

E[X]

Plugink = 1,1 = 0 into (18), take expectations on both sides, compare to
(12), we have

D 2 3a
21 2 3
T UG RS TGRS o3

SinceVar[W] = E[W?] - E[W]?, and we assume the variance of W is small,
therefore, we can approximafg{i'2] by E[W]2. We solve the Equation (23) and
derive the expression fd@[W] as

_a+t 232 a  3a? —48af + 12a3% — 434
W~ =5 "\ B 1445 @4
Simplify, and we have
EIW] =[5+ o(1/yP 25)



Therefore, for small value g¢f, we have

EW] ~ \/% (26)

According to (21), and plug in the expression fBf1¥], we can derive the
expression folZ[ X |, simplify, and we have

BlX] = \/QZ;JF o(1/V/p) (27)

Next, consider the derivation fdt[A]. Plugging the expression f&[X] into
(13), we have

E[A] = R(E[X]+1) (28)
= Ry[ 2 +ol1/vp (29)

Then, according to (8) for’, (12) for E[Y], (24) for E[W], (29) for E[A], we
have

. 2+ E[W] 0
T EA (30)
1-p «a
i 4 _l’_ -
~ JL_T%? (31)
Ry ap
Simplify, and we have
1 [«
~—,/=—4+o(1 32
71/ 5 HO0VD) (32)
A.1.2 SQRT(k=1=0.5)
First, plug ink =1 = 0.5 into (16), we have
1
Xi= T5a (W? — (Wit — W) (33)
AssumeE[W!] ~ E[W]t, take expectations on (33), we have
E[W]1'5 _ E[W]1'5(1 _ Ef}[W]>1.5
BX] = (34)

1.5«



Plug ink = [ = 0.5 into (18), take expectations on both sides, assume
E[W'] ~ E[W]t, and compare to (12), we have

E[W]2'5(1 _ (1 _ B )2.5)

1—p  EW] _ E[W]
P Tty T 2.5 (35)
To get an analytical expression f@[W], approximate(l — E?[W})M asl —
2.5—B2_  we solve the equation to get
TETW q g
a 1 [a?2 4dal-p
E[W]—E+§\/4—ﬂ2+?7 (36)

Simplify, and we have
(6%
EW] = ‘/6_ +o(1/v/p) (37)
D
Therefore, for small value gf, we have

EW] ~ \/% (38)

Plug in (36) into (34), simplify, and we have

B[X] = Jaz; +o(1//p) (39)

Next, consider the derivation fa£[A]. Plug in the expression faf[X] into
(13), we have have

E[A] = R(E[X]+1) (40)
= R 0%4—0(1/\/5) (41)

Then, according to (8) for’, (12) for E[Y], (36) for E[W], (41) for E[A], we
have

Le 4 Bw)
T £ - A (42)
~ LD ! \/% (43)
i

ap
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Simplify, and we have

1 «

T R\ Bp

Summarize the result for IAD and SQRT, we found that for both cases,

+o(1/y/p) (44)

EW] = i (45)
and
BX]~ /2 (46)
ap

A.2 Congestion indications are triple-duplicate ACKs and timeouts

Next, we extend the analysis to include timeouts. The derivation in this section is
the same as in [7] except fé}(E(W)). However, we include it here for complete-
ness.

In the previous section, we considered Binomial flows where all congestion
indications are due to “triple-duplicate” ACKs. However, under certain circum-
stances the majority of window decreases can be due to timeouts. Therefore, a
good model should also capture timeout congestion indications.

Timeout occurs when packets (or ACKs) are lost, and less than three duplicate
ACKs are received. The sender waits for a period of time denotét) bgnd then
retransmits the first unacknowledged packet. Following a timeout, the congestion
window is reduced to one, and one packet is resent in the first round after a timeout.
If this retransmission is unsuccessful, the period of timeout double§ipthis
doubling is repeated for each unsuccessful retransmission64fijl is reached,
after which the timeout period remains constari4it;.

Figure 3 shows a trace with both TDP and timeouts.

Wi,

Wll Wi3 t
w R=2 l|

/—/\

| 1 1

A ‘ Az iAi:% To‘ 2o ‘ 4Ty t
z/°® z1°
S;

Figure 3: A trace with both TDP and timeouts
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Let ZI'© denote the duration of a sequence of timeouts ZA& the time
interval between two consecutive timeout sequences. Dgfitebe

S =2]P +7]° (47)

Also, definelM; to be the number of packets sent durifig Then{(.S;, M;)}

is an i.i.d sequence of random variables, and we have
E[M]
T= 5] (48)

Extend the definition of TD period defined previously to include periods start-
ing after, or ending in, a TO congestion indication (besides periods between two
TD congestion indications). Let; be the number of TD periods in intervaf .
For thejth TD period of intervalZI' P we defineY;; to be the number of packets
sent in the periodA;; to be the duration of the period;; to be the number of
rounds in the period, and’;; to be the window size at the end of the period. Also,
R; denotes the number of packets sent during timeout sequgtféeWe have

n;
M, = ZYU-FRZ'
j=1

n;
S; = ZAU—{—Z?O

j=1
And thus,
EM] = E[i Yi;] + E[R] (49)
j=1
E[S] = E[i Ayl + E|Z79) (50)
j=1

If n; is ani.i.d. sequence of random variables, independefit;g} and{4;;},
then for anyi we have

B> Yy)] = EEY] (51)
j=1

E[(XZ:Aij)i] = E[n]E[A] (52)
j=1

12



To derive E[n], observe that, durin@iT D the time between two consecutive
timeout sequences, there areTDPs, where each of the firat — 1 end in a TD,
and the last TDP ends in a TO. It follows that &} there is one TO out of;
loss indications. Therefore, if we denote §ythe probability that a congestion
indication ending a TDP is a TO, we hage= 1/E[n]. Consequently,

ElY] + QE[R]

T'= B+ EZTO]

(53)

SinceY;; and A;; do not depend on timeouts, their means are those derived
before.
However, we still need to derive expressions@rE[R], E[ZT°).

LEGEND
sequence
number I:l received packet
IZ lost packet
‘ Sk — O Ack
k Sm+1 —
i
| S D occurs,
fy — TDPends
fer — {
. = O o000
O
. O
O
O
f @)
time
RTT RTT
penultimate round last round

Figure 4. Packet and ACK transmissions preceding a loss indication

First consider). Consider the round of packets where a loss indication oc-
curs; this round will be referred to as the “penultimate” round (see Figure 4) . We
choose the ACK such that ACKs acknowledge individual packets (i.e. ACKs are
not delayed). We will see that the analysis does not depend on whether ACKs are
delayed or not. Letv be the current window size. Thus packigt... , f,, are
sent in the penultimate round. Packgis. .. , fr are acknowledged, and packets
fr11 is the first packet to be lost (or not ACKed). We again assume packet losses
are correlated within a round: if a packet is lost, so too are all packets that follow,
until the end of the round. Thus all packets followifyg,; are also lost. However,
since packetdy,... , fir are ACKed, anothek packetsgsy,... , s; are sent in the
next round, which we refer to the “last” round. This round of packet may have
another loss, say packef,.1. Again, our assumption on packet loss correlation
mandates that packets, .o, . .. , s; are also lost in the last round. The packets

13



successfully sent in the last round are responded to by ACKs for pAgkethich

are counted as duplicate ACKs. These ACKs are not delayed, so the number of
duplicate ACKs is equal to the number of successfully received packets in the last
round. If the number of such ACKs is higher than three, then a TD indication oc-
curs, otherwise a TO occurs. In both cases the current period ends. We denote by
A(w, k) the probability that firs& packets are ACKed in a round af packets,

given there is a sequence of one or more losses in the round. Then

(1—p)kp
Aw, k) = 54
Also, letC(n, m) denote the probability that packets are ACKed in sequence

in the last round (where n packets are sent) and the rest of the packets in the round,
if any are lost. Then

(1—p)™p ifm<n-1

(L—p)®  otherwise (55)

C(n,m) = {
Then,Q(m), the probability that a loss in a window of sizeis a TO, is given
by

1 ifw <3
) = { Y i A(w, k) + X3 A(w, k) 37, C(k,m) otherwise )

~

After some algebraic manipulation, we have

ooy (L= (A=) A+ A —p)P(1—(1=p)*7?)
Q(w) = min <1, —{—p)» > (57)

Observe that

nm@m:% (58)

p—0

A numerical approximation o@(w) then is

~

Q(w) ~ min(1, ) (59)

Q, the probability that a congestion indication is a TO, is

Q=> Qw)P[W = w] = E[Q)] (60)

w=1

14



We approximate

Q ~ Q(E[W]) (61)

whereE[W] is from (45).

Next, consider the derivations &fR] and E[Z7©].

A sequence ok TOs occurs when there ake— 1 consecutive losses (the first
loss is given) followed by a successfully transmitted packet. Consequently, the
number of TOs in a TO sequence has a geometric distribution, and thus

PR=k]=p"'(1-p) (62)

Then we calculate the mean Bfas

B[R =) kP[R=Fkl=-—— (63)

Next, consider5[ZT©], the average duration of a timeout sequence excluding
retransmissions, which can be calculated in a similar way. We know that the first
six timeouts in one sequence have lengfth! Ty, with all immediately following
timeouts having length4T,. Then the duration of a sequence wittimeout is

[ @-11 fork <6

Ly = { (63 + 64(k — 6))Ty fork > 7 (64)
And the mean o279 is
o0

E[Z™] = Y LiP[R=k] (65)
k=1

2 3 4 5 6
_ T01+p+2p + 4p° + 8p~ + 16p° + 32p (66)

1-p

Now we can plug (12) foE[Y], (63) for E[R], (13) for E[A4], (66) for E[ZT°],
and (61) forQ into (53), and have

L2 4 W]+ QEW) L

T = ‘f’(’ ) (67)
R(E[X]+1) + QEW])To 15
where
f(p) =1+ p+2p® + 4p> + 8p* + 16p° + 32p° (68)

15



Now we can plug the common expression (45) of IIAD and SQR‘IE@IV],
the common expression (46) of IIAD and SQRT X ], and (59) forQ into (67),
simplify, and we have

Taﬂ (pa Ra TO) b) ~

- (69)
R gp + Ty min (1, 34/ §p>p(1 + 32p?)
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