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Abstract tained K-consistent neighbor tables after the concurrent joins
and failures in every experiment. We also present an analysis
Several proposed peer-to-peer networks use hypercubeof the communication and storage overheads of Silk protocols
routing for scalability. In a previous paper, we showed that and show that Silk is scalable to a large number of network
consistency of neighbor tables in hypercube routing guaran- nodes.
tees the existence of a path from any source node to any desti-
nation node. Consistency, however, can be broken by the fail- .
ure of one node. To improve the robustness of hypercube routd ~ Introduction

ing, we generalize the conceptaainsistencyo K -consistency  stryctured peer-to-peer networks are being investigated as a
for K > 1. We then show that & -consistent hypercube patform for building large-scale distributed systems [8, 9, 12,
routing network provides at leadt’ disjoint paths from any 11 14, 5. These networks use location-independent naming
source node to any destination node with a probability close to anq routing schemes. Specifically, consider a set of (over-
1. The first objective of this report is the design and specifica- |5y network) nodes and a set of objects. Nodes and objects
tion of a new join protocol together with a proof that it gener-  haye identifiers (IDs), which are fixed-length random binary
atesK -consistent neighbor tables for an arbitrary number of strings! Node and object IDs are drawn from the same 1D
concurrentjoins (under the assumption that there is no concur-gpace. Object IDs are also calledmes The primary function
rent leave or failure). To do so, we construct a more general of each scheme (8,9, 12, 11, 14, Shisme resolutionthat is,
definition ofC-set treethan our previous one as the concep- mapping a name to a node. (In the literature, names are also re-
tual foundation for protocol design and reasoning abdi  ferred to akeys and name resolution referred toley-based
consistency. Both the new protocol and proof require major routing.)
extensions to the ones in our previous paper to generalize them oy efficient routing in these schemes, each node maintains
from 1-consistency t& -consistency. O(logn) pointers to other nodes, to be called neighbor point-
The second objective of this report is the design and evalu-grs, wheren is the number of network nodes. To resolve a
ation of a failure recovery protocol fak'-consistent networks.  name, the average number of application-level hops required
From simulation experiments in which up to 50% of the nodesig O(logn) for every scheme except CAN [9], which main-
in a K -consistent network failed (when a node fails, it becomesizins, pointers per node and routing tak@érn'/") hops. For
silent), we found that, foK" > 2, K-consistency was recov- these schemes, a simple measure of scalability is the number
ered in every experiment. The third objective of this report is of application-level hops between any two nodes. However,
to extend our join and failure recovery protocols such that they the average distance traveled for each hop in the underlying
construct and maintaitk’-consistent neighbor tables for net- |nternet (ocality) is also important. Various ideas have been
works whose nodes join and fail concurrently and frequently. proposed to improve routing locality [3, 2, 10, 1].
In particular, our jOin prOtOCOI is extended with rules to han- An important pr0b|em that has not been addressed ade-
dle failures of not only existing nodes but also other joining quately is the design and specification of protocols together
nodes. These extended protocols, being implemented in oUfith a proof that they construct and maintaonsistenneigh-
prototype system named Silk, will be referred to as Silk pro- hor tables (tables containing neighbor pointers) for network
tocols. From simulation experiments in which the number of nodes that may join, leave, and fail concurrently. Of interest in
concurrent joins and failures was up to 50% of the initial net- thig report is a hypercube routing scheme used in several pro-
work size, we found that, fd€ > 2, Silk generated and main- posed peer-to-peer systems [8, 11, 14, 5]. To implement the

*Research sponsored by NSF grant no. ANI-9977267 and Texas Advanced 1These IDs are typically generated using a hash function, such as MD5 or
Research Program grant no. 003658-0439-2001. SHA-1. Each ID can be represented as a sequendaligfits of baseb.



hypercube routing scheme in a dynamic, distributed environ-rent joins. To do so, we first construct a more general defini-
ment, we need to address the following probléms: tion of C-set tree than the one in [7]. While the new protocol

e Given a set of nodes, a join protocol is needed for the t© be designed is similar in structure to the one in [7], major
nodes to initialize their neighbor tables such that the ta- €xtensions are needed to generalize it frbroonsistencyo
bles areconsistent (Hereafter, a “consistent network” K -consistency In particular, in al-consistent network, each
means a set of nodes with consistent neighbor tables.) neighbor is stored at only one level of the neighbor table of a
« Protocols are needed for nodes to join and leave a consis'0de’ For K > 2, however, it is possible for a table to store
tent network such that the neighbor tables are still consis-the same neighbor at multiple levels; as a result, we introduced
tent after a set of joins and leaves. When a node fails, a& New concept (théowest attach-levedf a node) to ensure

recovery protocol is needed to re-establish consistency ofdrotocol correctness. We then construct a rigorous proof that
neighbor tables. the new protocol generatds-consistent neighbor tables, for

« A protocol is needed for nodes to optimize their neighbor £ = 1, after an arbitrary number of concurrent joins (assum-
tables ing reliable message delivery and no node failure or leave).
Solvi Il ofth bl is b dth ¢ 2 sinal The structure of the proof, based upon induction on C-set trees,
olving afl of these problems 1S beyond the Scope ot a SiNgI€; gimjjar to the one in [7] with major extensions added to gen-
report. In a previous paper [7], we began by defining consis-

. . eralize it from1-consistencyo K-consistency We also ana-
Eency fand c?nstrlu(;:tm_g a co;ceptual_foung atlto n, caﬂlttasbt flyze the expected communication cost of a join.
e e e n_The Second jectve o I reprt & h cesn and el
. ‘ o uation of a failure recovery protocol, which handles recovery
protocol and constructed a rigorous proof that the join protocol

enerates consistent neighbor tables faaudnitrary number of from voluntary leave as a special case, forconsistent net-
9 L 9 . y : works? For K > 2, we found a simple protocol based upon lo-
concurrent joins The crux of our proof is based upon induc-

. cal information that is very effective for failure recovery. From
tion on a C-set tree.

. . . ) : 0
Neighbor table consistency guarantees the existence of 2,080 simulation experiments in which up to 50% of network

ath from anv source node to anv destination node in the ne,fnodes failed, we found that all “recoverable holes” in neighbor
P y sou y - tables due to failed nodes were recovered by our protocol for
work. Such consistency however can be broken by the fail-

ure of a single node. To increase robustness and facilitate theK > 2, thats, the neighbor tables regain&dconsistency

. ; - after the failures ireveryexperiment.
design of failure recovery protocols, our original goal was to

. C The third objective of this report is to extend our join and
design a new join protocol that constructégaconnected hy- . .
. . . . . failure recovery protocols such that they construct and main-
percube routing network, that is, a network in which neighbor

. . tain K-consistent neighbor tables for networks whose nodes
tables provide at leask” disjoint paths £ > 1) from any - . : )
L : join and fail concurrently and frequently. In particular our fail-
source node to any destination node. However, we quickly re- . RO )
ure recovery protocol is extended to distinguish between “tran-

alized that for a smath and some specific realization of node .~ = u i
I . . sient” nodes and “stable” nodes (T-nodes and S-nodes, respec-
IDs, it is possible that d& -connected network does not exist. . : : . o .
tively, defined in Section 4.2). Our join protocol is extended

_(Recall that node I.DS are rapdon?ly g?nerated.) Thisis becaus%vith rules to handle failures of both stable nodes and transient
in hypercube routing, only “qualified” nodes whose IDs have

the suffix (or prefix) required by a table entry can be stored in nodes. These extended protocols, being implemented in our
the table entrs (see Seqction 2)y y prototype system named Silk, will be referred to as Silk proto-

We introduce in this repotk -consistencyX > 1, which cols. We ran 980 simulation experiments in which the number

eneralizesonsistencylefined in our previous paper [7] (1- of concurrent joins and failures was up to 50% of the initial
gene - . P pap . network size. We found that, fak > 2, Silk constructed and
consistency is the same as consistency). Informally, neighbor

: : . maintainedK -consistent neighbor tables after the concurrent

tables arekK -consistent if and only if each table entry stores . . : ; :
min(K,H) neighbors, whered is the number of qualified joins and failures ireveryexperiment.
nodes in the network for that table entry (a more precise defi-
nition is given in Section 3). It is easy to see that f6r> 0,
K -consistent neighbor tables can be constructed for any realdn PRR [8], a static set of nodes and preexistence of consis-
ization of node IDs. Moreover, in Section 3, we show th&fa  tent and optimal neighbor tables are assumed. CAN [9], Pas-
consistent network provides at ledstdisjoint paths fromany  try [11], and SPRR [5] each has join, leave, and failure recov-
source node to any destination node with a probability close toery protocols, but the issue of neighbor table consistency was
1 provided that: is not too small (e.qg., the probability is higher not explicitly addressed. In Chord [12], maintaining consis-
than 0.99 fom = 300 andK = 3.) tency of neighbor tables (“finger tables” in Chord) was con-

The first objective of this report is to design and specify a sidered difficult in the presence of concurrent joins in a large
new join protocol together with a proof that it generatés network. A stabilization protocol was designed to maintain
consistent neighbor tables for an arbitrary number of concur-

1.1 Related work

3In our scheme, the node itself is stored at every level of its own table.
2For simplicity, we will saynetworkinstead ofhypercube routing network 4When a node fails, it becomes silent. We do not consider Byzantine fail-
andtableinstead ofheighbor tablevhenever there is no ambiguity. ures in this report.




consistency of just one neighbor pointer per node (“successom path exists, name resolution is achievedifiog, n) steps
pointer”), which is sufficient to guarantee correctness of nameon the average andisteps in the worst case.
resolution. To implement hypercube routing, each node maintains a
In Tapestry [2], a join protocol was presented with a proof data structure, calledeighbor table The entry; at leveli,
of correctness for concurrent joins. Their join protocolis based0 < j <b—1,0 < < d — 1, referred to as the (j)-entry, in
upon the use of multicast. The existence of a joining node isthe table of node: contains link information to nodes whose
announced by a multicast message. Each intermediate nodi®ds andz.ID share a common suffix of lengthdigits, and
in the multicast tree keeps the joining node on a list (one list whoseith digit is .° These nodes are said to heighbors
per table entry being updated) until it has received acknowl-of z. The link information for each neighbor consists of the
edgments from all downstream nodes. In this approach, manyneighbor’s ID and its IP address. For simplicity, we will use
existing nodes have to store and process extra states as well &aeighbor” or “node” instead of “node’s ID and IP address”
send and receive messages on behalf of joining nodes. whenever the meaning is clear from context.
Storing several qualified nodes in each neighbor table entry  If multiple nodes exist with the required suffix of thi {)-
was first suggested in PRR [8] to facilitate the location of repli- entry, then a subset of these nodes, chosen according to some
cated objects. In Tapestry [14], storing two backup neighborscriterion, may be stored in the entry with the “nearest” one
in addition to the primary neighbor in each table entry (that designated as therimary(, j)-neighbor Each node also
is, K = 3) was recommended for fault-tolerance and to im- keeps track of itseverse-neighbordNodez is a reverse( j)-
prove hypercube routing performance. However, these paperseighbor of nodey if y is a ¢, j)-neighbor ofz. Figure 1
do not have thé -consistency concept, nor protocols specified shows an example neighbor table, where IP addresses of the

to constructK -consistent neighbor tables. neighbors are omitted. The number to the right of each en-
o try is the required suffix for that entry. An empty entry in-
1.2 Report organization dicates that there does not exist a node in the network whose

The balance of this report is organized as follows. In Section 2,ID has the required suffix. Consider a message being routed
we present an overview of the hypercube routing scheme.from source 21233 to a destination node, say 03231. The mes-
In Section 3, we present definitions of consistency &d  sage is first forwarded to the primaby()-neighbor of 21233,
consistency, and show thatZé-consistent network provides Which is 33121 in Figure 1, then to the primaty§)-neighbor

at leastK disjoint paths from any source node to any desti- of 33121, say, 13331, and so on, until it reaches 03231.

nation node provided that is not too small. In Section 4, Neighbor table of node 21233 ( b=4, d=5)

we present a generalized definition of C-set tree, introduce the
concept of lowest attach-level, and present a new join protocol.
(A pseudocode specification of the protocol is in Appendix A.)
The correctness properties and an analysis of the communica-
tion cost of the new join protocol are presented in Theorems 2
to 6. In Section 5, we present our failure recovery protocol
together with extensive simulation results. In Section 6, we
present protocol extensions to handle concurrent joins and fail- .
ures (namely, Silk protocols) together with extensive simula- 3 K-consistent Networks

tion results. In Section 7, we further investigate storage andConstructing and maintaining consistent neighbor tables is an

A 01233 | 10233 | 0233 | 31033 | 033 | 22303 |03 | 01100
11233 | 11233 | 21233 |1233 | 03133 |133 | 13113 |13 | 33121
21233 | 21233 A 2233 | 21233 | 233 | 00123 |23 | 12232

A 31233 | 03233 | 3233 A 333 | 21233 |33 | 21233

w N O

level 4 level 3 level 2 level 1 level 0
Figure 1. An example neighbor table

communication overheads of Silk as a functiorkofWe con- important design objective for structured peer-to-peer over-
clude in Section 8. lay networks. We next present a rigorous definition of con-

sistency from [7] and then introduce a stronger property,
2 Overview of Hypercube Routing Scheme K-consistency, for the hypercube routing scheme. Table 1

In this section, we briefly introduce the hypercube routing Présents notation used throughout this report.

scheme, following the notation and terminology in PRR [8]. Definition 3.1 Consider a networKV, N'(V)). The network,

Consider a set of nodes. Each node has a unique ID, which is & N (V), is consistentif for any noder, z € V, each entry in

fixed-length random binary string. A node’s ID is represented its table satisfies the following conditions:

by d digits of baseb. For example, a 160-bit ID can be repre- () If Vj.,i—1)..00) # 0, i € [d], j € [b], then there exists a

sented by 40 Hex digitsi(= 40, b = 16). Hereafter, we use nodey, y € Vj.z[i—1]...z[0], SUCh thaty € N, (4, j).

z.ID to denote the ID of node. (b) 1f Vjgfi—1]...af0) = 0, @ € [d], j € [b], thenN,(i, j) = 0.
Given a message with destination node0O,D, the objec- . . -

tive of each hypercube routing step is to forward the message Intuitively, parF (@) in th_e above definition stgtes that for

from its current node, say, to a next node, say, such that the each table entry, if there exists at least one node in the network

suffix (or prefix) match betweenID andz.ID is atleast one  try [11], Tapestry [14], and SPRR [5] use prefix matching. The choice is

digit longer than the match betweer/ D andz.ID.° If such arbitrary and conceptually insignificant.
6We count digits in an ID from right to left, with the Oth digit being the
5In this report, we follow PRR [8] and use suffix matching, whereas Pas- rightmostdigit.




Notation Definition ' _ Definition 3.3 is a generalization of Definition 3.1. Intu-
(V,N(V)) i:hszl%erfkcj\?aff‘)es“’vtﬂfgg g]ji Z@th%fo"r?ﬁEE n the itively, part (a) states that if S&.,;_1] (o (the set of nodes
- in V with suffix j - z[¢ — 1]...z[0]) is not empty, therV, (¢, j)

4] the set{0, ...,£ — 1}, £ is a positive integer s ) ] ]

d the number of digits in a node’s 1D should be filled with eitheK nodes inV;.,(;_1]....[0) OF all of

b the base of each digit the nodes ifV;.,[i—1)...210] < K. Part (b) remains the same.
z[i] theﬁ’_th ‘:'9” in -deD m— It is easy to see that'-consistency is a stronger property than
2li — 1]...z[0] | suffix of z.ID; denotes emply string if = 0 consistency. In particular, &-consistent networki’' > 1, is
z.table the neighbor table of node ) .

7w digit 7 concatenated with suffie a consistent network.. In .the palance of .th|s rgport, for each
o] the number of digits in suffiw nodez, we chooseV, (i, z[i]). first to bez itself, i € [d], for

Nz (3,7) the set of nodes ik, j)-entry ofz.table, also efficient routing.

referred as thé¢i, j)-neighborsof nodex
Nz (i,7).s1z€ the number of nodes iV (z, j)
Nz (i,7).first | the first node inV; (i, 5)

To study the robustness df-consistent networks in the
presence of failures, we conducted simulation experiments as

csuf(wi,ws) | the longest common suffix af; andws follows: For every node in a network af nodes, each entry

Vi, 1o asuffix sebf V, which is the set of nodes W, in its neighbor table was filled witik neighbors if there were
each of which has an ID with the suffix...lo K or more qualified nodes in the network for that entry; oth-

V] the number of nodes in st erwise, all qualified nodes (if any) were stored in the entry.

Table 1. Notation We then randomly picked nodes and let them fail. Next, we

e g e = e counted the number of disconnected source-destination pairs

sl e TR ) sl USRS TR in the network. By a disconnected source-destination pair,

w0} T84 o} TG-S (z,y), we mean that botl andy have not failed but: can-

not reachy. Each simulation is identified by a combination of
n, b, d, K andf values, wher¢g is the number of failed nodes
and the maximum value ¢f is 20% ofn. For each combina-

)
S
)
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Percentage of disconnected pairs
w
3
=
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Percentage of disconnected pairs
w
3

& ] . . . .
K evenwnnnsft®se R B 5. 0 tion, we ran five simulations and calculated the average value
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 . . . .
Numberof aed nodes i he network Numberof aed nodes i he netvork of the percentage of source-destination pairs that became dis-
(a) b=4, n=4000 (b) b=16, n=4000 connected. Figure 2 shows some simulation results. First, note
Figure 2. Percentage of disconnected source-destination pairs for that the results are insensitive to the Vall_JeiOﬂn each plot,
different K values for eachK value, the two curves for two differedtvalues are

almost the same. In Figure 2, we can distinguish three curves
in each plot, with the top curve beinf = 1 and the bot-

tom K = 3. Second, wherK is increased from 1 to 2, the
percentage of disconnected pairs decreases dramatically. For
K = 3, even after 20% of the nodes have failed, the number
of disconnected source-destination pairs is less than 1% of all
source-destination pairs. The results also show that increasing
Definition 3.2 Consider two nodesz and y, in network the value ofb from 4 to 16 leads to a significant reduction in
(V,N(V)). If there exists a neighbor sequence (a path), the percentage of disconnected source-destination pairs. This

that has the required suffix of the entry, then the entry must
not be empty and it is filled with at least one node having the
required suffix. Part (b) in the above definition states that if the
network does not have any node with the required suffix of a
particular table entry, then that table entry must be empty.

(uo, .., ug), k < d, such thatug is z, u is y, andu;11 € is because with a largér more neighbors are stored in a table
Ny, (i,y[i]), © € [k], theny is reachablefrom z, or z can (the number is proportional t& b log, n).
reachy, in k£ hops. As expected, the simulation results show that with more

neighbors stored in each entry, a network is more robust in the
presence of failures. (In fact, it is also easier for the network
to recover from failures and maintain consistency of neighbor
tables, as shown in Section 5.)

Multiple neighbors stored in each table entry provide al-
ternative paths from a source node to a destination node, and
some of them are disjoint. More precisely, we say that two
Definition 3.3 Consider a networkV, V'(V))). The network,  paths from source nodeto destination nodg aredisjoint iff

In a consistent network, every node is reachable from every
other node. If many nodes may fail in a network, an approach
to improve robustness is to store in each table entry multiple
qualified nodesi.e., nodes with the required suffix for the en-
try. We define ak(-consistent (hypercube routing) network as
follows:

or M (V), satisfiesk -consistency K > 1, if for any noder, any node in each path that is neithemory does not appear in

x € V, each entry in its table satisfies the following condi- the other path. Further, a set of paths frero y aredisjoint
tions: iff every pair of paths in the set are disjoint. For example, let
@ I Vigpo1)o) # 0. then N,(i,j).size = a, b, andc denote nodes. Then the following paths are disjoint:

7
min(K, [Vypioa), o) @ € [, j € [¢, and T ¥ TTezyandr—bocoy.

Nz(i,5) CVigrie .
2(1,7) C Jxli 1]---?[0] ) o "Note that nodes here are user machines in a peer-to-peer network. Thus,
(b) If Vj-w[ifl]...w[O] =0,i€e [dL JE€ [b], thenNz(ZaJ) =0. it is possible for two disjoint paths in a hypercube routing network to share a




Theorem 1 In a K-consistent network(V, N/(V)), for any
two nodesgz andy, z € V,y € V andz # y, a lower
bound of the probability that there exist at least disjoint

paths frome toy is (1— £=L) o7 C(bdfl’i)g((ﬁj;;’dil’"_i)

n:l i=K
whereC'(X,Y) is the number o -combinations o objects.

To prove Theorem 1, we first present two lemmas. Proofs
of these lemmas are presented in Appendix B.1.

Lemma 3.1 In a K-consistent network(V, N'(V)), for any
two nodesg andy, z € V,y € V andx # y, if y & z.table,
then there exist at leagdt” disjoint paths frome to y.

Lemma 3.1 says that in K -consistent network, if destina-
tion nodey is not a neighbor stored in the table of nagd¢hen
at leastK disjoint paths exist fronx to y. However, if desti-
nationy is stored inz.table, then a tight lower bound of the
number of disjoint paths from to y depends upon whethegr
is stored inN, (0, z[0]). Lemma 3.2 summarizes all the cases.

Lemma 3.2 In a K-consistent network(V, N'(V)), for any
two nodesx andy, z € V,y € Vandz # y,ify &
N (0, z[0]), then there exist at leashin(K, |Vyo)|) disjoint
paths fromz to y; if y € N;(0, z[0]), then there exist at least
min(K, |Vyo|) — 1 disjoint paths fromz to y.

Proof of Theorem 1: Let A be the event that there exist at
leastK disjoint paths frome to y, andB be the event that ¢
N,(0, z[0]) (which includeg; ¢ z.table andy € z.table Ay &
N, (0,z[0])). For any event X, leP(X) denote the probability
of X. We first deriveP(A A B).
P(A A B) = P(A|B)P(B)
P(A|B) is the probability that there exist at ledstdisjoint
paths fromz to y, giveny ¢ N.(0,z[0]). By Lemma 3.2, if
y & N.(0,z[0]), then there exist at leastin(K, |V, q|) dis-
joint paths fromz toy. Thus,P(A|B) = P(min(K, |Vyo|) =
K) = P([Vyq| = K). |Vyj0)l > K means that there exist at
leastK nodes inV” with suffix y[0].
" Cd e ®? — b4t n — i)
P(A|B) = P(|Vy)| > K) = ,:ZK Codon)
We next deriveP(B). Let K’ be the number of neighbors
stored inN, (0, z[0]) other thanz itself. ThenK’ < K — 1.

P(B)=1—-P(y € Nz(0,2[0])) > 1— I;__ll

Combining the above results, we have
P(A) > P(AAB)
= P(A|B)P(B)
_ "L Cbd e — bt n — i)
= P(B) 2 o)
K—1_ <~ Ccd14)Cc®? —bi=1 n—1i)
z (- n—l).Z C(bd,n)

]
Figure 3 plots the lower bound of the probability that there
exist at leas# disjoint paths for every source-destination pair

router in the underlying Internet. This would not be a reliability concern since
routers are generally much more resilient than user machines.
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Figure 3. Lower bound of the probability that there exist at least
K disjoint paths for every source-destination pair
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Figure 4. Simulation results on the fraction of source-destination
pairs with at least K disjoint paths

in a K-consistent network. Observe that when increases,
the probability lower bound approaches 1. For example, the
lower bound is higher than 0.99 far= 300 and K = 3.

To validate the above analysis, we conducted simulations
to evaluate the number of disjoint paths for each source-
destination pair in d-consistent network. In each simulation,
there was a sét of n nodes, each with a randomly generated
ID. The neighbor table of each node was constructed accord-
ing to Definition 3.3 andV, (¢, z[i]). first = z forall z € V,

i € [d]. Then for each source-destination pair, the number of
disjoint paths from source to destination was counted. For each
combination ofb, d, n and K values, we ran five simulations
and obtained the average value of the ratio of the number of
source-destination pairs that have at lefgstlisjoint paths to

the total number of source-destination pairs. Figure 4 presents
our simulation results. Observe that the results in Figure 4 are
much closer to 1 than the corresponding lower bound results
in Figure 3, as expected. For example, the fraction of source-
destination pairs with at leagt disjoint paths is greater than
0.996 forn = 300, K = 3, andb = 16 in Figure 4(b) and
greater than 0.9999 for = 300, K = 3, andb = 4 in Fig-

ure 4(a).

4 Join Protocol for K-consistency

Analysis and simulation results in the previous section demon-
strate the advantages @f-consistency. We next design a
new join protocol that constructs and maintakisconsistent
neighbor tables for concurrent joins. Design of the join proto-
col for K-consistencyK > 1, is based on our prior work for

8We observed that this probability is insensitive to the valud.obiffer-
ences between results in (a) and (b) of Figure 3 for the sAhare due to
differentb values for (a) and (b).



K = 1[7]. Major extensions are needed, which are presented o If W;,., # 0,1, € [b], then set}, ., is a child ofV,,, and

in Sections 4.1 and 4.2. l; - wis the associated suffix 6f;, ..,;
In designing the protocol for a node to join network o If Wi, 4., #0,2 <j <d—k,I,.J; € [b], then set
(V,N(V)), we make the following assumptions: §) # 0 Ci;..1;w is achild of seCy; | ;..

and (V, N (V)) is a K-consistent network, (ii) each joining
node, by some means, knows a nod&imnitially, (iii) mes-
sages between nodes are delivered reliably, and (iv) there is n
node deletion (leave or failure) during the joins.

GivenV, W and K, the tree template is determined. For
gxample, suppose a set of nodes<8,d = 5), W ={30633,
41633, 33153, join a K -consistent networkV, N'(V)), V =
{02700, 14233, 53013, 62332, 7243@nd K = 2. Then
4.1 Generalized C-set tree C(V,W, K) is as shown in Figure 5(a). The valueléfaffects
the tree template through the noti-sets of node®in Sup-
poseK = 1inthe above example, then nodgkl633, 30633
have {14233 as their noti-set, and node 33153 H&$8013,
14233 as its noti-set, and there would be two separate C-set
trees instead of one.

In [7], we definedC-set treesas a conceptual foundation for
reasoning about 1-consistency and guiding our protocol de-
sign. In this section, we present generalized definitions as well
as correctness conditions for reasoning akldutonsistency.
We begin with a generalized definition for thetification set

of z regardingV, denoted by, N°/¥ . Suppose node joins

a network(V, N'(V)). Then, intuitively,V,V°*f¥ is the set of
nodes inV that need to update their tablesrifvere the only
node that joingV, V' (V)).

Definition 4.1 Suppose a set of nodé¥, = {z1,....,, }, m >

1, join a K-consistent networkV, N'(V')). For any nodez,

r € W, it [Vap_1).apo]l > K and|Vyp.. .20 < K, k € [d],

(b)

thenV 1, _1)...2[0) IS thenotification set of z regardingV'. Figure 5. C-settree

Given V and z, as K is increased from 1, the set The task of the join protocol is to construct and update
Vv Netify 'may get larger (never smaller). For instance, neighbor tables such that paths are established between nodes;
supposex =10261 ¢ = 8d = 5), andV = conceptuallynodes are filled into each C-set iV, W, K).
{13061, 31701,00261,10353}. If K = 1, thenV,Notify = For example, when 14233 updates its (1,3)-entry and fills
{00261}; if K = 2, thenV,Notfv = {00261,13061}; if 30633 into the entry, then conceptually 30633 is filled into
K = 3, thenV,Notify = {00261, 13061, 31701}. Cs3. We usecset(V, W, K) to denote the C-set tree realized

Next, we introduce the generalized concept of a C-setat the end of all joins, defined as follows. Hereafter,tlet
tree. When a set of nodé¥ join a K-consistent network  denote the end of the joining period [7] of and¢¢ denote
(V,N(V)), the tasks of a join protocol are to update neigh- max(tS ,...,t5 ).
bor tables of nodes ilr and to construct tables for nodes in
W. A joining node can copy neighborinformatio'n from nodes m > 2, join a K-consistent networkV, A’(V')), and for any
inV to reach nodes il However, how to establish nelghb'or nodez, z € W, VNoUfy = v, |w| = k. Then the C-set tree
p0|_nters from nodes iy to nodes i/ and between nodes in rFaIized attime®, is defined as follows:

W is a more complex task. We use C-set trees as a conceptua .
tool that guides protocol design to establish these pointers. In- * Vi, Is Fhe roqt of the tree. )
tuitively, a C-set tree organizes noded/irthat need to update * CipisachidofVy, b € [b], if Wy, # 0 andCy,., =

Definition 4.3 Suppose a set of nodeB/ = {z1,...,zm},

their tables and nodes # into a tree, if the notification sets {z,z € (VUW)w A (Qu,u€ Vo Az € Ny(k,h))}is
regardingV’ (noti-sets in short) of all joining nodes are the notempty.

same. Generally, the noti-sets of all nodeglihmay not be * O,.nwisachildofCy_, 10,2 <j<d=k ..
the same. Then, nodes i with the same noti-set belong to € [o, if Wi, 1.0 # 0 andCy,. 4,0 = {z,z € (VU
the same C-set tree and the C-set trees for all noddsfarm Wi o A Qu,u € Cyyw Ao € Ny(k + 7 —

a forest. Each C-set tree in the forest can be treated separately 1 1;))} is not empty.
in proving protocol correctness. In the balance of this subsec- Ngte that in a C-set tree realization & = 1, C-sets only

tion, our discussion is focused on a single C-set tree. We nextontain nodes ifi”, while for K > 2, a C-set may also contain
present the generalized definitions @@ &et tree templatand nodes inV,,, the root set of the tree. Figure 5(b) shows one

aC-set tree realization possible realization of the tree template in Figure 5(a). By the
Definition 4.2 Suppose a set of nodeB] = {zi,....,zn}, end of the joins, neighbor tables of nodesVinu W are K -

m > 1, join a K-consistent networkV, N'(V)), and for any  consistent if the followingorrectness conditionshold:

nodez, z € W, V0" =V, where|w| = k. Thenthe (1) cset(V, W, K) has the same structure &V, W, K).

C-settree template associated withi” and W, denoted by Also, for any C-set(,,, it contains at leask’ nodes with
C(V,W, K), is defined as follows: suffix ' if there exist at leask nodes in(V U W),,;
e V,, is the root of the tree (the root is not a C-set); otherwise, it contains all nodes (¥ U W),,.



(2) Foreach nodg, y € V,, (root of the C-set tree), for each e j = i if there exists a level, such that0 < i < k,
child C-set ofV,,, denoted a€;.,,, [ € [b], y has stored Ny(i',xz[i']).size < K forall ¢/, i < i’ <k, andN,(: —
min(K, |C;.,|) nodes with suffiX-w in Ny (k,1), k = |w|. 1,z[i — 1]).size = K;;

(3) For each node, z € W, the C-set whose suffix is.].D e an attach-level does not exist/i, (k, z[k]).size = K.

is a leaf node in the tree. For any C-set along the path  The attach-level defined above is tevestlevel at which
from this leaf node to the root, if it has any sibling C-set, nodez can be stored iy.table. One of the conditions for a
Cy..r, thenz has storeanin (K, |Cy..r|) nodes with suffix  joining node,z, to change status fromopyingto waiting is
[-w"in Ny (K',1), k' = |']. that when it receives a reply from noge z finds that there
exists an attach-level for itself in the copymptable received.
The condition forz to change status fromvaiting to notifying

The join protocol fork -consistency is similar in structure to IS thatwhen a node, which receives a request franto store
the one for 1_C0nsistency [7] The status of a joining node % n z.table, finds that there exists an attaCh-|eve|, say |@'\(e|-
begins in Copying then Changes t@vaiting, notifying and for z in z.table, storesz and sends a pOSitive I’ep|y. Leveb'-

4.2 Lowest attach-level

an S-node otherwise, it is al-node Briefly, in statuscopy- npt_ifying, :z:_seeks and notifies nodes that share t_h_e rightmost
ing' a joining node;v, Copies neighbor information from Other dIgItS W|th It. Any nOde that rec'e|VeS SUCh a n0t|f|cat|0n from
nodes to fill in most entries of its table. In stataiting, = z cannot store into a level that is lower thaj Conceptually,

tries to “attach” itself to the network, i.e., to find an S-node this means that onceis filled into a C-set, it will not be filled
that will store it as a neighbor, which indicates (conceptually) into any ancestor of that C-set in its C-set tree.
that it finds a position for itself in the C-set tree. In stabas

tifying, z seeks and notifies nodes that are conceptually in the4'3 Protocol description

subtree rooted at the parent set of the Casés filled into. Figure 6 presents the state variables of a joining node. Note
Lastly, when it finds no more node to notify,changes status  that each node stores, for each neighbor in its table, the neigh-
toin_systemand becomes an S-node. bor’s state, which can bg& indicating that the neighbor is in

However, there are major differences between the new joinstatusin_systeror T" indicating that it is not yet.
protocol and the one in [7]. The first and the most obvious

difference is that in the join protocol fdt -consistency, a join- State variables of a joining node

ing node,z, needs to search fak neighbors for each of its z.status € {copying waiting, notifying in_systeny, initially copying
table entry. Second, the conditions foto change status from Na(i, j): the set of { j)-neighbors of, initially empty
copyingto waiting, and fromwaiting to notifyingare different, z.state(y) € {T, S}, the state of neighbay stored inz.table.

as explained below. Third, while in statostifying, the set of Ra (i, j): the set of reverse(j)-neighbors ofz, initially empty

nodesr seeks and sends notifications to may become largerfor | 4 at¢_ievel: an integer, initially 0.

a largerK value (see Section 4.3). Q. a set of nodes from which waits for replies, initiallyempty
To illustrate the last two differences, we first discuss howa | @»’asetofnodes has sent notifications to, initiallgmpty
L . . . Q;: a set of nodes that have sana JoinWaitMsg initially empty
joining node is attachgd to A -consistent networl§. First, for Q'sr, Qsn: @ set of nodes, initiallgmpty
K =1, a neighborg, is only stored at one level in the table
of a nodey (howevery itself is stored at every level of its own Figure 6. State variables
table). More specificallyy is only stored at levek-in y.table, The protocol messages are listed in Figure 7. They are simi-

wherek = |csuf(z.ID,y.ID)|, sincey itself is stored in  |arto those in [7], with the following major extension: An inte-
Ny (i, z[4]) for all level4, 0 < i < k (bothz andy have the  ger is included irJoinWaitRlyMsgandJoinNotiMsgto explic-
required suffix for these entries). For example, node 00261 isitly indicate the attach-level of a joining node in the network.
only stored at level-4 in the table of 10261, since 10261 itself |n a JoinWaitRlyMsgthe integer indicates the attach-level of
is already filled into entries at lower levels (for each suffix of the receiver, and in doinNotiMsg the integer indicates the
0261). ForK > 2, however, it is possible fayto storer at any attach-level of the sender.
level that is no higher than levél- Thus, levelk is the highest Next, we describe the new join protocol informally. A spec-
level thatz can be stored ig.table. In constructing a correct-  ffication of the protocol in pseudocode is given in Appendix A.
ness proof for the join protocol, we found that a constraint on |n statuscopying a joining nodey, fills in most entries of its
the lowest level that can be stored ip.table is needed. We  table, level by level, as follows. To construct its table at leyel-
call it thelowest attach-levedf z, or simply theattach-levebf i € [d], z needs to find a nodeg;, that shares the rightmost
= for notational convenience. digits with it and send £pRstMsgo g; to request a copy of
_— . g;.table. We assume that each joining node knows a node in
Definition 44 'Bhiatticg—le\ielgf nodga; ngtheftailble of nfge V. Let this node bgy for z. = begins withgy. Fromgg.table,
ge(iofqi;:j‘gx D J fD)|_) » determined as follows. (Lét z finds a nodey; that shares the rightmost digit with it, and re-
LY ' questsy; .table from g, if such a node exists and is an S-node.
o j=0if Ny(i,z[i]).size < K forall 4,0 <i < k; Fromg; .table, z tries to findgs, and so on.



Messages exchanged by nodes: Upon receiving a negative reply from = has to send an-

CpRstMsgsent by to request a copy of receiver’s neighbor table other JoinWaitMsg this time tou, u = N, (k, z[k]). first.

CpRIyMsgg.table), sent byz in response to £pRstMsg This process may be repeated for several times (at étoses
JoinWaitMsg sent byz to notify receiver of the existence af since each time the receiver shares at least one more digit with
| _a\r,‘\? Fng“&St;(he_ recte';)’ff)w St‘i”g‘”’h_e”””-status 'ts waiting. z than the previous receiver) unilreceives a positive reply,
oinWaitRIlyMsgf, 7, z.table), sent byz in response to L

aJoinWaitMsg whenz. status is in.system which indicates that has been stored by an S-node gn_d there-

r € {negative, positivk, i: an integer. fore attached to the network.then changes statusrtotifying
JoinNotiMsgt, z.table), sent byz to notify receiver of the Note that beforer is attached to the network, communication

existence ofs, whena.status is notifying 4 an integer. between the network and nogés one-way:z can reach nodes
JoinNotiRlyMsgt, Q, z.table, f), sent byz in response to . . .

aJoinNotiMsg in the network. Afterz is attached to the network, communi-

r € {negative, positivly Q: a set of integersf € {true, falsg. cation becomes two-way: other nodes already in the network
InSysNotiMsgsent byz whenz.status changes ton_system can reachr now.

SpeNotiMsg¢, y), sent or forwarded by a node to inform receiver

of the existence of, wherez is the initial sender. In statusnotifying, = searches and notifies nodes that share

SpeNotiRlyMsgf, y), response to 8peNotiMsg the rightmostj digits vyith |t Jj = a:.att_le_vel, so that these
RvNghNotiMsgy, s), sent byz to notify y thatz is a reverse nodes will update their neighbor tables if necessangtarts
neighbor ofy, s € {T, S}. this process by sendintpinNotiMsg which includes;j and a

RvNghNotiRlyMsg), sent byz in response to & NghNotiMsg

s = Sif z.status is in_systemotherwises — T copy of z.table, to its neighbors at levels and higher. Each

JoinNotiMsgserves as a notification as well as a request for
a copy of the receiver’s table. Upon receivinganNotiMsg
a receiverg, storesz into all (i, z[i])-entries that are not full

In statuscopying each time after receiving @pRIyMsg with K neighbors yet, wherg < i < |esuf(z.ID, 2.ID)|,
containing a neighbor table from, i € [d], = checks whether  searchesr.table for new neighbors to updates table, and
it should change status twaiting. Supposez receives a  then replies tar with z.table. From the replyz may find
CpRIyMsgromy. Then the condition for to change statusto  more nodes that share the rightmgstigits with it and send
waitingis: (i) there exists an attach-level forin the copy of  jpinNotiMsgto these nodes. Meanwhile,searches the copy
y.table included in the reply, or (ii) an attach-level does not ex- of » table for new neighbors to update its own table.

Figure 7. Protocol messages

ist for z and nodex is a T-node, where = N, (k, z[k]). first When z has received replies from all of the nodes it has
andk = |csuf(z.ID,y.ID)|. If the condition is satisfied, potified and finds no more node to notify, it changes status to
thenz changes status tgaitingand sends doinWaitMsgo y in_systemand becomes an S-node. It then informs all of its
(case (i) holds) or ta (case (ii) holds). Otherwise,remains  reyerse-neighbors, i.e., nodes that have steras a neighbor,
in statuscopyingand sends &pRstMsgo u. that it has become an S-nodezlhas delayed processidgin-

In statuswaiting, the main task of: is to find an S-node  \;itMsgfrom some nodes, it should process these messages
in the network to store: as a neighbor by sending odbin- and reply to these nodes at this time.

WaitMsg another task is to copy more neighbors into its ta-
ble. When a nodey, receives aloinWaitMsgfrom z, there 4.4 Protocol Analysis
are two cases. lf is not an S-node, it stores the message to

be processed after it has become an S-nodgisifan S-node In this section, we present theorems about correctness of the

it checks whether there exists an attach-levelddn its ta- join protocol specified in Section 4.3, and our analytical results

ble. If an attach-level exists, say levgly storesz into level-j for'the cqmmunication c':ost of each join. Theorem 2 is proved
through levelk, k = |csuf(z.ID,y.ID)|, and sends doin- by induction on generalized C-set trees. Proofs of the theorems

WaitRlyMsgpositive 7, y.table) to z, to informz that the low-  &re presented in Appendix B. o
est levelz is stored is level. Level-j is then the attach-level Theorem 2 states that if a set of nodes use the join protocol
of z in the network, stored by in z.att_level. If an attach-  t© Jjoin @ K-consistent network, then at the end of the joins,

level does not exist for, y sends a negativépinWaitRlyMsg the resulting network is & -consistent network. Theorem 3
including y.table to z. After receiving the reply (positive or states that the join process of each node eventually terminates.

negative)z searches the neighbor table included in the reply Recall that® denotesnax(i;,, ..., ¢; ), wheret; denotes the

for new neighbors to update its own table. end of the joining period of node.

Note that if an attach-level does not exist fom y.table, Theorem 2 Suppose a set of noded] ={z1,...zm}, m >
then even if there is some entry, for whigthas the required 1 join a K-consistent networkV, A'(V)). Then, at times¢,
suffix, is not full (fewer thank neighbors)y will not storez. (VUW,N(V UW)) is a K-consistent network.

For example, when node 30061 receivela\WaitMsgfrom
node 00261, if in the table of node 30062, Z)-entry is full
(thus an attach-level does not exists for 00261), then even i
(1, 6)-entry is not full, 30061 will not store 00261 inta,6)-
entry. As shown in our proofs, thé (6)-entry in this example Next, we analyze the communication cost of each join.
will eventually be filled up by other nodes. Here we only present results for the number of messages of

Theorem 3 Suppose a set of nodé¥, ={z1,...2,,}, m > 1,
fjoin a K-consistent networkV, A'(V))). Then, each node,
x € W, eventually becomes an S-node.
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Figure 8. Upper bound of expected number of JoinNotiMsg sent
by a joining node versusn for different values of K and m

type CpRstMsg JoinWaitMsg andJoinNotiMsg® since these

5 Failure Recovery

In this section, we design a protocol for nodes to recover from
failures of other nodes in A -consistent network. We consider
the “fail-stop” model only, i.e., when a node fails, it becomes
silent and stays silent. If some neighbor in a node’s table has
failed, we assume that the node will detect the failure after a
timeout duration, e.g., timeout after sending a periodic probe.
Note that the failure of a reverse-neighbor affects neifkier
consistency nor consistency of neighbor tables. Therefore, if
a reverse-neighbor has failed, the reverse-neighbor pointer is
simply deleted without any recovery action. Hence, the proto-
col being designed is for recovery from neighbor failures only.
Consider a network af nodes that satisfie& -consistency

messages may include a copy of a neighbor table and thusnitially. Supposef out of then nodes (chosen randomly) fail
could be big in size. Analysis of other types of messages isat the same time or within a relatively short time duration. Our

presented in Appendix B. In Theorem@B(X,Y’) denotes the
number ofY -combinations ofX objects.

Theorem 4 Suppose a set of nodé¥, = {z1,....., }, m > 1,
join a K-consistent networkV, N'(V)). Then, for anyz, z €
W, the total number of CpRstMsg and JoinWaitMsg sent by
is at mostd + 1.

Theorem 5 Suppose node: joins a K-consistent network
(V,N(V)), [V| = n. Then, the expected number of Join-

NotiMsg sent byr is S0} ZP;(n) — 1, where Py(n) is

S AU Py, for 1 < i < d - 1,

. K—1 1 . min(n—j,B) C(B,k)C bd—bdfi, —k—j
ISZ]‘:O C(b41 1—1,])219:1&73‘] = )C(’(bd—l,n)n ])’

whereB = (b—1)b% "1 and Py_y(n) is 1 — Y75 P;(n).
Theorem 6 Suppose a set of nodé¥, = {z1,....., }, m > 2,
join a K-consistent networkV, N'(V)), |V| = n. Then for
any nodez, z € W, an upper bound of the expected number
of JoinNotiMsg sent by is Z?;Ol("',;m)Pi(n), whereP;(n)

is defined in Theorem 5.

Figure 8 plots the upper bound of expected numbeoai-

NotiMsgsent by a joining node according to Theorem 6, where

n is the number of nodes in the initial network, is the num-
ber of nodes that join the network, ai#(J) is the expected
number ofJoinNotiMsg Notice that the upper bound increases
with K, however, for a fixed value ok, the upper bound is
insensitive to the value of, and stays flat as becomes large.

4.5 Network initialization

The join protocol can also be used for network initialization.
To initialize a K-consistent network of. nodes, we can put
any one of the nodes, say in V, and construct:.table as
follows:

e N,(i,z[i]).first = z, z.state(z) = 5,1 € [d].

e N.(i,7) =0,7€[d],j € [b] andj # z][i].
Next, let the other, — 1 nodes join the network concurrently.

Each node is givem to start with and executes the join proto-
col. Eventually, a-consistent network is constructed.

objective in this section is to design a recovery protocol such
that some time after thé failures have occurred, neighbor ta-
bles in the remaining — f nodes satisfy-consistency again.
(In the next section, our protocols will be extended to handle
concurrent joins and failures.)

Suppose a node in the network, ggyhas failed ang has
been stored in thei(j)-entry of the table of node. We say
that the failure ofy leaves aholein the (, j)-entry of z.table.

To maintaink -consistencyz needs to find a qualified substi-
tute fory, i.e., x needs to find a node such thatu has the
required suffix of thei j)-entry in z.table, u has not failed,
andu ¢ N, (i, 7). (Itis possible that fails later andz needs to
find a qualified substitute far.) To determine whether or not
the network ofr — f remaining nodes satisfids-consistency,
we distinguish betweerecoverable holesnd irrecoverable
holes A hole in the ¢, j)-entry ofz.table is irrecoverable af-
ter thef failures if a qualified substitute does not exist among
then — f remaining nodes, i.e., every node in the set ef f
nodes that has the required suffix of thgjj-entry inz.table

is already inN, (4, 7).

Theobjective of a failure recovery protocisl to find a qual-
ified substitute for every recoverable hole in each node’s neigh-
bor table. Irrecoverable holes, on the other hand, cannot possi-
bly be filled and do not have to be filled, according to Defini-
tion 3.3, for neighbor tables to satisfy-consistency.

A difficulty in failure recovery is that individual nodes do
not have global information and cannot distinguish recoverable
from irrecoverable hole¥. We design our recovery process for
each hole in a node’s table as a sequence of search steps exe-
cuted by the node based on local information (its neighbors
and reverse-neighbors). After the entire sequence of steps has
been executed and no qualified substitute is found, the node
considers the hole to be irrecoverable and the recovery process
terminates. We then evaluate our failure recovery protocol in
a large number of simulation experiments. In a simulation ex-
periment, we can check how fast our failure recovery proto-
col finds a qualified substitute for a recoverable hole. Further-

10)f the network is not partitioned, a broadcast protocol can be used to search

9The number of replies to these messages are the same since request arall nodes to determine if a hole is recoverable. A broadcast protocol, of course,

reply are one-to-one related.

is not a scalable approach.



more, we can check how often our failure recovery protocol 5.2 Simulation results
terminates correctly when it considers a hole to be irrecover-

i . N . To evaluate the performance and accuracy of our failure recov-
able (since we have global information in simulation).

ery protocol, we conducted 2,080 simulation experiméhts.
We used the GIITM package [13] to generate network topolo-
gies. For a generated topology with a set of routersyerlay
5.1 Protocol design nodes (end hosts) were attached randomly to the routers. For
) ) the simulations reported in Table 2, three topologies were used.
Suppose a node;, detects that a neighbay, has failed and  The 1000-node and 2000-node simulations used a topology
left a hole in the {, j)-entry,i € [d], j € [b], in z.table. Letw  wjth 1056 routers. The 4000-node simulations used a topology
denote the required suffix of the ¢)-entry inz.table. Tofind  jth 2112 routers. The 8000-node simulations used a topol-
a qualified substitute fay with reasonable cost, we propose a gy with 8320 routers. We simulated the sending of a message
sequence of four steps, (a)-(d) below, basedsriocal infor- and the reception of a message as events, but abstracted away
mation. At the beginning of each step, except stepi(@gts a  queueing delays. The end-to-end delay of a message from its
timer. If the timer expires and no qualified substituteffdras  goyrce to destination was modeled as a random variable with

been found, them proceeds to the next step. mean value proportional to the shortest path length in the un-
To determine whether some nodés a qualified substitute  derlying network!3
for y, z needs to know whether has failed. In our proto- In each simulation, a network afnodes withK -consistent

col, z makes this decision based upon local information. More neighbor tables was first constructed. Then a numpeof
specifically,z maintains a list of failed nodes it has detected so randomly chosen nodes failed. For 1000-node and 8000-node
far!! ¢ accepts: as a qualified substitute farif « is not on simulations, thef nodes failed at the same time. For 2000-
the list,u has the required suffix, andu ¢ N, (1, j). node simulations and each spec#icvalue, thef nodes failed

Step (a)z deletesy from its table, then searches its neigh- at the same time for 84 out of the 130 experiments; a Pois-
bors and reverse-neighbors to find a qualified substitutg.for ~SON Process was used to generate failures in the balance of the
experiments, with half of the experiments at the rate of 1 fail-

o trv of its table (if | h nclud ure per second and the other half at the rate of 1 failure every
(i, j)-entry of its table (if any). In each query, includes a 10 seconds. For comparison, the timeout value used to de-

gaggyogrg?r?esitlZ\gag(’:a)ésvxgenne?g?]ggg 2% rree?/(:;/:es r?gicghhiorstermine whether a neighbor has failed was 5 seconds, and the
€T - . .
i ’ . . ) : | h of th I - 2

to find a node that has suffixand is notinV,(z, j). If one is timeout value used in each of the protocol steps (b)-(d) was 20

. . , seconds. Therefore, most failure recovery processes ran con-
found, > replies toz with the node's ID (and IP address). currently even when the Poisson rate was slowed to one failure

Step (b) z queries each of the remaining neighbors in the

_Step (c)z queries each of its neighbors at levefall en-  every ten seconds. For 4000-node experiments and each spe-
tries) including neighbors in thé,(j)-entry, using a protocol  cific K value, thef nodes failed at the same time in 104 out
same as the one in step (b). of the 116 experiments, with a Poisson process at the rate of 1

Step (d) z queries every one of its neighbors (all levels) failure per second used in the balance of the experiments.
including neighbors at level- using a protocol same as the We conducted simulations for different combinations of
one in step (b). b, d, K, n and f values. For each network of nodes,
b-" € {1000, 2000, 4000, 8000}, four pairs of 6, d) were used,

4 namely: (4,16), (4,64), (16,8), and (16,40)Then, for each
(b, d) pair, K was varied from 1 to 5. For each,(, d, K) com-
bination, f was varied fron0.05n to 0.1n, 0.15n, 0.2n, 0.3n,

When the timer in step (d) expires and no qualified su
stitute has been founda, terminates the recovery process an
considers the hole left hyto be irrecoverable. (For clarity, we

have described just our basic recovery protocol, without vari- _
0.4n, and0.5n (1540 experiments were run fgr = 0.05n

ous optimizations that are possible in a protocol implementa- B ith . v th ber of
tion.) The earlier a hole is recovered, the less is the commu-© f = 0.2n, with approximately the same number of exper-

nication overhead incurred. If a hole is recovered in step (a),Iments for each; 540 experiments were run for 0.3n to

there is no communication overhead. If a hole is recovered inf - 05" with 1.80 experiments for e.ach).. n constructlng
step (b), at mos2(K — 1) messages are exchangdd,— 1 the initial K-consistent networks for simulations, we experi-
queries andk — 1 replies. If a hole is recovered in step (c), mented with four approaches to choose neighbors for each en-

there are at moXK'b messages, plus the messages exchangedry: (i) choosex neighbors randomly ”‘?T“ qualified n..(.)des’ (i)
in step (b). If a hole is recovered in step (d), approximately chooseK closest neighbors from qualified nodes, (iii) choose

2Kblog, n messages, plus the messages in steps (b) and (c){( neighbors randomly from qualified nodes that are within a

are exchanged. 12These 2,080 experiments together with the 980 experiments to be pre-

sented in Section 6 required several months of execution time on several work-

stations. A typical experiment took several hours to run on a Linux workstation
Hn implementation, a failed node only needs to stay in the list long enough with 2.66 GHz CPU and 2 GB memory. Each simulation experiment for 8,000

for all its reverse-neighbors to detect its failure. To keep the list from growing nodesp = 16, andK > 3 shown in Table 2 took 40 - 72 hours to run.

without boundz can delete nodes that have been in the list for a sufficiently ~ 3The maximum end-to-end delay in 8000-node simulations was 969 ms.

long time. 14In Tapestryp = 16 andd = 40, while in Pastryp = 16 andd = 32.
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multiple of the closest neighbor’s distance, (iv) use our join step (b) did not increase much wil; it actually declined in

protocol in Section 4 to initialize table entries. steps (c) and (d).
b,d, K total irreco- number of recoverable
K,n Number of | Numberof [| K, n Number of | Number of number | verable holes recovered at each step
simulations | perfect simulations | perfect of holes | holes step step step step | notrec-
recoveries recoveries (a) (b) (c) (d) overed
1,1000 | 100 51 1,2000 | 180 96 4,64,1 13125 1484 5257 0 5464 907 | 13
2,1000 | 100 100 2,2000 | 180 180 4,64, 2 28616 3660 16675 6737 1496 48 0
3,1000 | 100 100 3,2000 | 180 180 4,64,3 43323 5798 28527 8613 339 46 0
4,1000 | 100 100 4,2000 | 180 180 4,64, 4 57462 7997 40370 8988 70 37 0
5,1000 | 100 100 5,2000 | 180 180 4,64,5 70798 10174 51626 8945 37 16 0
1,4000 | 116 65 1,8000 | 20 14 16,40, 1 | 29803 4442 11505 0 13833 | 23 0
2,4000 | 116 116 2,8000 [ 20 20 16,40, 2 | 55977 8161 30305 14301 | 3203 7 0
3,4000 | 116 116 3,8000 [ 20 20 16,40, 3 | 81406 9945 51203 19493 | 764 1 0
4,4000 | 116 116 4,8000 | 20 20 16,40,4 | 107547 | 10500 75028 21804 | 215 0 0
5,4000 | 116 116 5,8000 | 20 20 16,40,5 | 132257 | 10696 100157 | 21336 | 68 0 0
Table 2. Results from 2,080 simulation experiments £ Table 4. Total number of holes, irrecoverable holes, and re-
was0.05n, 0.1n, 0.15n, 0.2n, 0.3n, 0.4n or 0.5n) coverable holes recovered at each step=4000, f=800

Table 2 shows results of 2,080 simulation experiments. In
a simulation, if all recoverable holes are recovered (thus 5.3 Voluntary leaves

consistency maintained) at the end of the simulation, it is o yoluntary leave can be handled as a special case of node
recorded as perfect recoveryn Table 2. In these simulation  fajlure if necessary. When a node, sayeaves, it can actively
experiments, every simulation féf > 2 finished as a perfect jnform its reverse-neighbors and neighbors. To each reverse-
recovery, i.e., every recoverable hole was recovered. Thus imeighbor,z suggests a possible substitute for itself. When a
K-consistent networks, fak > 2, our failure recovery proto- - pode receives a leave notification framfor each hole left by
colis extremely effective. z, it checks whether the substitute providedbig a qualified

Table 3 presents results on the cumulative fraction of recov-sypstitute. If so, the hole is filled with the substitute; otherwise,
erable holes that were recovered by the end of each step in thgjlure recovery is initiated for the hole left by

recovery protocol. The results are from ten simulations for a

network with 4,000 nodes and 800 failures; the initial neighbor 6  Silk Protocols for Concurrent Joins and Fail-
tables were constructed using approach (iii), described above. jreg

From Table 3, observe that step (d) in our recovery protocol _ )

was seldom used. There was a dramatic improvement in thé-onsider aK-consistent network(V, V'(V)). Suppose a set
recovery protocol’s performance whéfwas increased from  Of new nodesJ¥, join the network while a set of nodes;

1 to 2. Also observe that the fraction of recoverable holes thatfa": F C Vuw andV - F # 0.' Our goal in this section
were recovered after each step increases ittFor K > 2, is to design extend.ec.i join and failure recovery protocols_ such
more than 93% of recoverable holes were recovered within thethat eventually the join process of each nodélin- F* termi-

first two steps and more than 99.8% within the first three steps.nates and(V UW) — F, N ((V UW) — F)) is aK -consistent
For K > 3. more than 98.9% of recoverable holes were recov- network. These extended protocols will be referred to as Silk

ered within the first two steps. protqcols. In general, deglgnlng a fallure recovery protocol to
provide perfect recovery is an impossible task; for example,

b a K | T Step@ [ sep®) | sep© | step @ consider a scenario in which an arbitrary number of nodes in
j, 23,; 3888, ggg 8-22;?32 g-ggéigi g-gggggg g-ggggggS V U W fail. On the other hand, we observed in Section 5 that
264 3 | 4000 800 0760213 | 0.98974 | 0.998774 | 1.000000 the basic failure recovery protocol achieved perfect recovery
4,64,4 | 4000,800 | 0.816133 | 0.997837 | 0.999252 | 1.000000 for K-consistent networks, fak > 2, in which up to 50% of
4,645 | 4000,800] 0851577 0.999126] 0.999736 | 1.000000 the nodes failed. This level of performance, we believe, would
16, 40,1 | 4000, 800 | 0.453649 | 0.453649 | 0.999093 1.000000 b d f l .
16, 40, 2 | 4000, 800 | 0.633784 | 0.032868 | 0.9998539 | 1.000000 e adequate for many applications. o '
16, 40,3 | 4000, 800 | 0.716517 | 0.989295 | 0.9999861| 1.000000 Design of Silk’s join and failure protocols in this section fol-
16, 40,4 | 4000,800| 0.77311 0.997785 | 1.000000 1.000000
16, 40,5 | 4000,800 | 0.823924 | 0.999441 | 1.000000 1.000000 lows the Lam-Shankar approaCh [4] on how to compose mod-

ules. The service provided by a composition of the two pro-
tocols herein is construction and maintenance of K-consistent
neighbor tables. The join protocol is designed with the as-
Table 4 shows the total number of holes, the number of ir- sumption that the failure recovery protocol provides a “perfect
recoverable holes, as well as the number of recoverable holesecovery” service, that is, for every hole found in the neighbor
recovered at each step for the same simulation experimentsable of a node, the node calls failure recovery and within a
shown in Table 3. Observe from Table 4 that even thoughbounded duration, failure recovery returns with a qualified sub-
the total number of holes increased whEnwas increased, stitute for the hole or the conclusion that the hole is irrecover-
the number of recoverable holes recovered at step (a) also inable at that time. Following the protocol composition approach
creased withK. The number of recoverable holes recoveredin in [4], we ensure that progress of the failure recovery protocol

Table 3. Cumulative fraction of recoverable holes recovered
at each step
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does not depend upon progress of the join protocol. Thusin theble, it starts a failure recovery process for each hole left by the
extensions to be presented, failure recovery actions are alwayfailed neighbor with the following exception, which requires

executed before join actions. backtracking by the T-node.
Consider a T-node, say. In order to backtracky keeps
6.1 Protocol extensions a list of nodes, (o, ..., g;) to which it has sent £pRstMsg

When there are nodes joining a network, the network consists>. aJoinWaitMsgin order of sending times. Backtracking is
J 9 X required if failure of the last node on the ligt;, is detected

of both S-nodes and T-nodes. Recall that if a node is in status nder one of the followin nditions: (i) whenis in stat
in_system it is an S-node; otherwise, it is a T-node. Silk's under one ot the fotlowing co ons: (i) enis In status
) L : . . copyingand waiting for aCpRlyMsgfrom g;, (ii) when z is
extensions to the basic join protocol in Section 4.3 and failure . . . . .
. . in statuswaiting and waiting for aloinWaitRlyMsdgrom g;, or

recovery protocol in Section 5.1 are stated as a set of rules.

Rule 1 In filling a table entry with a qualified node, do not (iif) when z is n statusnotifyingand nodey; is currently thg
: o only reverse-neighbor af (g; must be a node that has replied
choose a T-node unless there is no qualified S-node.

o ositively to aJoinWaitMsgfrom z).
Rule 1 extends the basic failure recovery protocol as fol- P y Y z)

lows: When a nodez, locates a qualified substitute for a hole Note that under conditions (i) and (ii}, has not been at-
in z.table using step (a), (b), (c), or (d) of the failure recov- tached to the network. Under condition (jii), failure gfmay

ery protocol, if the qualified substitute is an S-node, then ;Zii?;o zilgﬁtnach(evsgir;:n htgs Pa?lt(\e/\(,j(;rﬁblr: iiiggf?gﬁn
fills the hole with it and terminates the recovery process. How- y ¥ ' 9

ever, if the qualified substitute is a T-nodesaves the T-node 't§iiﬁﬂasego?:}a;ﬂggr'nzgsendt'ng ?omWang/l sgtohgi ; 1.’| with f

) L . gi ge, to infogp_; about the failure o

in a waiting list for the entry and continues the recovery pro- *° and requesy;  to storez into g;_;.table. If g; 1 has also
cess. Only vyhen the reécovery process terminatg§ at the en <’:li|ed thgnx ccl)Biacthi_z and g(l)iclJﬁ. 177 .bagli;r;cks tayo

of step (d) without locating any S-node as a qualified substi- andg, has also failed, them has to obtain another node from
tute, will z remove a T-node from the entry’s waiting list to fill the network to startjo7ining from the beginning again

the hole (provided that the list is not empty). Also, because of Rule 4 A T-node must wait until its status imtifyingb.efore
Rule 1, when a node searches among its neighbors and reverse- . . . . . .

neighbors to find a qualified substitute for a hole in its table, or EG?SQSQIOE_?N'?S”S %Tej\?(;,t \;vr']rl-ﬂ;(\jl\gllfriarsgnzss;e:g:/:c;s;s_ a

in response 1o a query from another node, it does_ pot select l'?lsubstitute for a hole before it is attached to the network.)
T-node as long as there are S-nodes that are qualified.

Rule 1 extends the basic join protocol as follows: Consider a h?)?eleir??ghtzrl;li Ti-fnt?\dee'lt-encoec;\(laeiz ?;i?;):x:;y?nsu;:gtg: for
a nodey, that discovers a new neighbgr,for one of its table . ' . ying .

. . substitute node should be notified (see condition for sending
entries after receiving a message from another nadean out aJoinNotiMsgin Figure 15), then the T-node senddin-
storey in the table entry, if the table entry is not full witkt NotiMsgto the sgbstit%te nodé even if the substitute node is
neighbors yet ang is an S-node, according to the following Y '

steps. Firstg checks if there exists any vacancy amongkhe not qualified to be filled into the hole. . .

“slots” of the entry that is not a hole for which failure recovery Rule 6_A T-npde cannot change statusitasystenf it has

is in progress. If there exists such a vacanadg filled into it; any ongoing failure recovery process. . .
otherwisey (an S-node) is filled into a hole in the entry and __Rule 7When a T-node changes statusricsystemit must
the recovery process for the hole is terminated. On the othefNform all its neighbors, in addition to its reverse-neighbors,
hand, if the new neighbay is still a T-node, thery can be that it has become an S-node.

stored in the entry if the total number of neighbors and holes , ,

in the entry is less thak. Otherwisey (a T-node) is saved ~©-2 Simulation results

in the entry’s waiting list and may be stored into the entry later \we implemented the extended join and failure recovery pro-
when the recovery process of a hole in the entry terminates. tocols and conducted 980 simulation experiments to evaluate
Next, we present more extensions to the join protocol, pre-them. Each simulation began with fé-consistent network,
sented as Rules 2-7. Rule 2 applies to both S-nodes and T{y, A/(V')), of n nodes £ = |V|). Then a set¥ of nodes
nodes, while Rules 3-7 apply to T-nodes only. joined and a sef’ of nodes failed during the simulation. Each
Rule 2 A node cannot reply t€pRstMsgJoinWaitMsgor simulation was identified by a combinationigfd, K, n, and
JoinNotiMsg if the node has any ongoing recovery process at || + |F| values, wheréWW | + | F| is the total number of join
the time it receives such a message. and failure events.K was varied from 1 to 5,b(d) values
When a nodegz, receives aCpRstMsg JoinWaitMsgor ~ were chosen from (4,16),(4,64), (16,8) and (16,40), and three
JoinNotiMsg if z has at least one recovery process that has notvalues, 1600, 3200 and 3600, were used for the initial network
terminatedx needs to save the message and process it latersize (). For 3200-node and 3600-node simulations, all joins
Each time a recovery process terminates;hecks whether  and failures occurred at the same time. For 1600-node simu-
there is any more recovery process still running. If notan lations, join and failure events were generated according to a
process the above three types of messages it has saved so faloisson process at the rate of 1 event per second in 220 exper-
Rule 3When a T-node detects failure of a neighbor in its ta- iments, 1 event every 10 seconds in 180 experiments, 1 event

12



every 20 seconds in 60 experiments, and 1 event every 10Q V] = 3600, [W] = 387, [F] = 413 | n = 3208, m = 366, no failures

. . . . K,b,d Average number K,b,d Upper bound
seconds in 60 experiments. K-consistent neighbor tables fof—+ 7 &2 2_519225 7,64 2_229764
the initial network were constructed using the four approacheg 2.4 24 2'283542 4, 24 2-20;782
. . . 4,64 80874 4,64 9527
described in Section 5. 4,64 | 9.606721 74,64 | 12.253937
4,64 14.925359

16,40 | 6.814094

16,40 | 11.842158
16,40 | 13.861656
16,40 | 14.633307
16,40 | 15.553342

processes of all joining nodes that did not fail (node®in- F) i
terminated. We then checked whether the neighbor tables of all 3,76, 40 | 14.404371
remaining nodes (nodes InNU W — F) satisfy K -consistency. LR R A
Table 5 presents a summary of results of the 980 simulation ex-—— '

periments. We observed that, f&r > 2, in everysimulation, Table 6. Average number of JoinNotiMsg with failures vs.

the join processes of all nodesWi — F' terminated and the without failures (upper bound)

neighbor tables of all remaining nodes satisfiédonsistency.

Each such experiment is referred to in Table 5 as a simulationcOme with a price. First, with a largéf, more neighbors are

1
2
3
4
At the end of every simulation, we checked whether the join [ 5,4,64 | 12.193989
1
2
3
4
5

L e R I o Kl B I K

with perfect outcome. stored in each table. As a result, each node has to send more
messages when it probes neighbors and exchanges information
K=1 K=2,3,45 with neighbors. Also, with more neighbors in a table, the big-
n Num. of Num. 1 Num. of sim. [ Num. | Num. of sim. ger a message would be if it includes a copy of the table.
events of sim. | w/ perfect of sim. | w/ perfect . Al . .
(W] + |F)) outcome outcome Second, with a largeK, the overhead of a join to maintain
1600 | 200(38+162) | 16 16 64 64 K-consistency is higher. For example, a joining node needs to
1600 | 200 (110+90) 16 16 64 64 d goinNotiM
1600 | 200 (160+40) | 12 i 8 78 send moreJoinNotiMsg
1600 | 400 (85+315) | 12 10 48 48 We first study the storage cost for maintaining-
1600 | 400 (204+196) 12 11 48 48 . Th b f iahb di de’
1600 | 400 (323+77) | 12 12 75 78 consistency. The number of neighbors stored in a node’s ta-
1600 | 800 (386+414) | 24 22 96 96 ble is used as a measure of storage cost. We ran simulations
3600 | 400 (81+319) 16 13 64 64 : : ; _
3600 | 400 (210+190) | 16 — o o for different combinations ok, b, d, andn values to calcu .
3600 | 400 (324+76) | 12 2 78 48 late the average number of neighbors per node. In each sim-
gggg ggg gg?:iig 5 21 jg jg ulation, neighbor tables were constructed according to Defi-
3600 | 548 (400+148) | 12 10 8 8 nition 3.3. Then the number of neighbors in each node’s ta-
3200 | 1600 (v80+820)] 12 9 48 48 ble was counted® For each combination of parameter val-

ues, we ran five simulations to obtain the average number of
neighbors per node. The results are shown in Figure 9, which
In the protocol extensions, the recovery process for a hole inshows that the average number of neighbors in a node’s ta-
a table has priority over a joining node in filling the hole. This ple depends on the valuesifK andn, but not on the value
tends to prevent a joining node from getting a low attach-level of 4. In Figure 9, in decreasing order of the average num-
in the network, and thus from sending too maieynNotiMsg  per of neighbors, the curves are fior= 16 andn = 5000,
We conjecture that when joins and failures occur concurrently,p — 16 andn = 1000, b = 4 andn = 5000, andb = 4
the number ofloinNotiMsgsent by a joining node is compara- andn = 1000. Note that the average number of neighbors
ble to that in a failure-free scenario. To validate the conjecture,per node is approximatehi log, n, given that node IDs are
we counted the number dbinNotiMsgsent by each joining  uniformly distributed over the ID space. Similarly, the average
node in the simulation experiments. For each simulation, wenumber of reverse-neighbors maintained by each node is also
calculated the average numberJofinNotiMsgsent by nodes  approximatelyp K log n.
in W — F, and then compared the average number with the  Next, we study the communication overhead of maintaining
upper bound on the expected numbedoinNotiMsgsent by g _consistency. Simulation results in Section 5 show that for
a_joining node_ i_n_the absence of failures (for initial network g~ > 2, most of recoverable holes can be recovered within the
sizen andm joining nodes, such that = |W — F| and  first two steps, where the first step imposes no overhead and the
n = |V — F|). The upper bound is calculated according to second step imposes at magf — 1) messages. Therefore,
Theorem 6. Tablle 6 presents results from 10 simulations foraintenance overhead tends to be dominated by the overhead
[V|] = 3600, which demonstrates that the average numbersyf joins. Next, we evaluate the communication overhead of
from simulations (for concurrent joins and failures) are com- 4 join for differentk values in the absence of failures, since
parable to the upper bounds from Theorem 6 (for concurrentyom simulation results in Section 6, we observed that the num-

joins in absence of failures). ber of messages sent by a joining node in the presence of fail-
7 K vs. Maintenance Cost

Table 5. Results for concurrent joins and failures

15In [7], we discussed how to reduce the size of messages that include a
As shown in previous sections, the larger thievalue in a copy of a table.
K -consistent network. the more resilient is the network when 18The node itself is not included in the number, but a neighbor stored in
. T different entries of the table is counted multiple times. As a result, the total
nodes fail and the easier it is for the network to recover from number of neighbors per node does not depend on how the neighbors in each

failures and maintait-consistency. However, these benefits entry are chosen from the set of qualified nodes in the network.
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8 Conclusions

We generalized the concept of consistencykteconsistency

(K > 1) to improve the robustness of a hypercube routing
scheme that is used in several proposed peer-to-peer networks.
We showed that d&-consistent network provides at ledst
disjoint paths to every source-destination pair with probability
close to 1. We then presented a generalized definition of C-set
trees for protocol design and reasoning ab&utonsistency.

&
20 | ﬁ;:i‘
1

K We designed and specified a new join protocol together with
a proof that it generate& -consistent neighbor tables for an
arbitrary number of concurrent joins under the assumption that
there is no concurrent leave or failure.

Figure 9. Average number of neighbors per node

ures is comparable to that in the absence of failures. _ _

From Theorem 4, the combined number of messages sent We next designed and evaluated a failure recovery proto-
by a joining node in statusopyingand statuswaiting is at col based upon local information. Extensions to the basic join
mostd + 1, which does not depend oii. However, the size and failure recovery protocols to handle concurrent joins and

of the reply to each of these messages becomes larggr as failures were then presented. For an initigifyconsistent net-

becomes larger, because each reply includes a neighbor tav_vork, the impact of concurrent joins and failures was studied
ble. In Section 4.4, we presented an upper bound of the ex-m a large number of simulation experiments. We found that

pected number odoinNotiMsg and found that the larger the " EVETy experiment, foi" > 2, our protocols constructed
K, the higher the upper bound. We next study the distribu- and maintained{ -consistent tables after the joins and failures.

tion of the number ofoinNotiMsgsent by a joining node from These extended protocols are being implemented in our proto-

simulation results. In each simulation, initially the network YP€ System named Silk.

consisted of nodes withK -consistent neighbor tables, where ~ An observation from our study is that networks in which

n € {1600,6400} andK € {1,...,5}. Thenm nodes joined ~ €ach node maintains a large number of consistent neighbor

the network;m = n/8 or m = n/4. The number ofloinNo- pointers are not only more resilient, but they alsocover more

tiMsgsent by each node during the simulation was counted anduickly and completeljrom node failures than networks in

|Ogged_ For each combination of parameter Va|ues7 we ran f|VéNh|Ch each node maintains a small number of consistent neigh'

simulations, each time with a different seed for random num- Por pointers. From our analytic and simulation results in Sec-

ber generation. The distribution of the numbedoinNotiMsg ~ tions 3 to 6, we found that the improvement in network re-

sent by a joining node was computed from results of the five Silience fromK = 1to K > 2 is dramatic. We conclude

runs. Figure 10 presents distributions of the numbéoaiNo- ~ that hypercube routing networks should Keconsistent with

tiMsg for different values ofk’,1” which shows that the larger K > 2. Figure 10 shows that fak” < 4, most joining nodes

the K value, the smaller is the percentage of nodes that sengend a fairly small number dbinNotiMsg Therefore, we rec-

a given number ofloinNotiMsg For the other types of join  0mmend choosing a value &f in the range of [2,4].

protocol messages, the number of them sent by a joining node

may also increase witK but these are small messages (which
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to Definition 3.2, we need to establish paths as folloWs=
. . . 0 kY - 0 _ E_
A Pseudocode for Join Protocol in Section 4 {?z“z hi€lKlL 1<k < d whereu; =z, u; =y, and
. o o _ouj € Ny1(j—1y[j—1]),1 < j < k. First, letu; = =
We have presented the state variables of a joining node in F'g'for each ]oatrPi, i € [K]. Next, starting withP, for each path

ure 6 and protocol messages in Figure 7. Variables in the topp 1o ,1' ,, 'such thaw € N,(0,y[0]) andv ¢ P, for all I
_pa_lr_t in Figure 6 are also used by node/inthe nodes in the 0<I< li— 1, thatis,v is notincluded in path#; to P;_; (this
in-Systormu fase fs popuiated In a way hat satsfies condi- > 225Y 10 achieve since there dtenodies n; (0,4{0)). Le
tions in Definition 3.3, and.state(v) = S for every neighbor gt;;’(réf;r;l?égg:g’gé&y[o]|)’ and execute the following
v that is stored iru.table. Figures 11 to 16 present a pseu- . L
docode specification of the protocol, in whiehy, v andv 1. ‘Z%rn(Z?Cth?}’ﬂ’Di, ¢ {EP[KI]J, Ifsur%ot:ngr:(g%n“;noagg;; 23

. - (2l K3

denote nodes, and 4, j andk denote integers. . .
When any nodez, storesy into N, (i, j), y # &, « needs to |P |_ =1. NoteI]élK. In the next t_hree/ steps, we will

sends &vNghNotiMsfy, z.state(y)) toy, andy should reply assign a node ta; " for each patiF; in P'. , .

to z if z.state(y) is not consistent withy.status. For clarity 2. ForeachP;, P, € P, if u][j] = y[j] then letu! ™" = u].

of presentation, we have omitted the sending and reception of ~ Suppose there arfe such paths. Then, re-number these

these messages in the pseudocode. We also omit the sending Paths ash to P,_1, and the other paths iR’ as P, to

of a CpRstMsgfrom z to g, and the reception of &pRIyMsg Pr . Then, for any pattP;, h < i < I — 1, we have
from g to z, in Figure 11. ul[j] # y[j]. In the next two steps, we will assign a node

towu? ™t for each pattP; in { Py, Pyy1,..., Pr_1}.
3. If f > I, then starting withP,, for each pathP;, h <
i <I-1,letul"" =, suchthav € N, (j,yls]) and
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Action ofy on receiving JoinWaitMsg from:

k=|csuf(z.ID,y.ID)|;h=-1,5=0;
if (y.status == in_system{
while (j <k Ah==-1){
if (for eachl, j < I < k, Ny (I, z[l]).size < K) {
h=j;for (I = ;1 < k; I++) { SetNeighbor(, z[l], z,T); }
}elsej++;

if (h == —1) SendJoinWaitRlyMsg(negatives, y.table) to z;
elseSendJoinWaitRlyMsg(positivel, y.table) to x;
JelseQ, = Q; U {x};

Action ofz on receiving JoinWaitRlyMsg(z, y.table) fromy:

Qr=Qr — {y}; k=|esuf(z.ID,y.ID)|; z.state(y) = S;
if (r == positive {

z.status = notifying z.att_level =1,

for (j =4;5 < k; j++) { Re (4, 2[5]) = Ra (4, 2[5]) U {v}: }
}else{ // a negative reply, needs to send anotl@nWaitMsg

v = Ny (k, z[k]).first;

SendJoinWaitMsgto v; @, = Qn U{v}; Qr = Qr U {v};

}
CheckNgh_Tablefy.table);
if (z.status == notifying A\ Q,

¢ A Qsr == ¢) Switch.To_S_Node();

Figure 12. Action on receiving JoinWaitMsg and JoinWaitRlyMsg

v # /T foralll,0 < 1 < i— 1. Such a node must

exist, since there argdifferentnodesinv, ; (5, y[4]), and

at mostl — 1 of them are already assignéd to other paths

in P' (where there aré — 1 paths other tha®;) for the

(5 + 1)th position.
. If f < I, then (i) starting withPy, for path P;, h <

i < f—1,letul™ = v, suchthav € N (j,y[j]) and

v #ul foralll,0 <1< i~ 1,and (ii) for each path

P, f<i<I-1,letul™ =y, becausg < I indicates

[ < K,i.e,|Vy. g0 < K, soeverynode ;..o

includingy, is in Nug’ (4, yl4D)
Next, increasg by 1 and execute the above four steps for an-
other round if there still exist paths that are not marked “done”
yet. Eventually, each path will be marked “done”, since the
network is aK -consistent network, and a path exists from any
node toy (see Lemma 3.1 in [7]).

So far we have establishdd paths fromz to y. We then

prove that they are disjoint. We need to prove the following
claim first:

Claim B.1 Forany two paths?; and P, if u} # y andu # y,
ji>1, thenu{ # u{
Proof: Prove by induction. Base step: by the way we assign
nodes tou}, for each pathP;, we know thatu} # u;.
Inductive step: Supposg # u!, j > 1, whereu! # y and
u] #y. We next prove that! ™ # u/*" if neitheru!*" nor
u{‘H iSy.
o If u![j] = y[j] andu{[j] = yl[j], then according to step
2 in each round of path construction)™ = «/ and
u{‘H = u{, thUSuz"'1 #* u{“.
o If ul[4] # y[j] oru][4] # y[4], then without loss of gener-
ality, supposm{ [7] # y[4]- Also, suppose in this round of
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Action ofy on receiving JoinNotiMsg( x.table) from z:
Q: a set of integers, initially empty

k=|csuf(z.ID,y.ID)|; f =false

for (j =4; j < k, j++){ SetNeighbor§, z[j], 2, T);}

for =45 <k, j+){if (z € Ny (4, z[j])) {@ =Q U {i}:}}
if (y € Ne(k,y[k]) A y.status == in_systen) f = true;

if (Q # 0) SendJoinNotiRlyMsg(positiveR, y.table, f) to z;
elseSendJoinNotiRlyMsg(negative), y.table, f) to z;
CheckNgh_Table.table);

Action ofz on receiving JoinNotiRlyMsg( Q, y.table, f) fromy:

if (r==positivg {for (eachi in Q) R (i, z[¢]) = Rz (¢, z[i]) U {y};}
Qr=Qr —{y}i k= |csuf(z.ID,y.ID)|;
if (f ==true Ak > z.att_level Ny & Ngo(k,ylk]) Ny & Qsn){
SendSpeNotiMsgg,y) to N (k, y[k]).first;
an = an U {y}, QS’I“ = QS’I“ U {y},

}
CheckNgh_Tablefy.table);
if (Qr == ¢ N Qsr == @) Switch.To_S_Node();

Figure 13. Action on receiving JoinNotiMsg and JoinNotiRlyMsg

Action ofu on receiving SpeNotiMsg(y) from v:
k=|csuf(y.ID,u.ID)|; SetNeighborg, y[k],y, S);

if (y € Nu(k,y[k])) SendSpeNotiMsgt, y) to Ny, (k, y[k]).first;
elseSendSpeNotiRlyMsgf, y) to z;

Action ofz on receiving SpeNotiRlyMsg(y) from u:

Qsr =Qsr— {y}; if (Qr==¢ andQsr==¢) Switch.To_S_Node();

Figure 14. Action on receiving SpeNotiMsg and SpeNotiRlyMsg

node assignment (roundt+ 1), pathP; is re-numbered as
Py (see step 2), patR; is re-numbered aB, andi’ < I
(if u![4] = y[j], then according to step 2, we have< I;
otherwise, we supposé< ['). Letv = u{“. According
to step 3 (or 4) in path construction,if ™' # y, then
w/ ™" is chosen in such a way that it is not the same as any
(7+1)th node in the Oth path to thi&h path (the paths that
are re-numbered as the Oth path to ttile path in round
j+1). Henceu/ ' £ v, ie,ul ™ #ulth
|

Second, by Claim B.1, we can show that no path is of the
form (z, ..., 2, ..., z, ..., y), wherez # x. Suppose there exists
a pathP; of the above form, that is, there exists a p&ftsuch
that for the nodes i, u) = =, u! = z, andu! ™" = z, where
j > 0. uf“ = z indicates thatc.ID shares the rightmost
j+1digits withy.I D, henceg[0] = y[0] andz € N,(0, y[0]).
Hence, there must exist a pathsuch that; = z (by the way
we assign nodes to}, for each pathP;). Thus,P, is not the
same path withP;. Then, by step 2y} = ... = v} = uJ™" =
z. Next, by Claim B.1, for any other pai,, b # [, u] # ul
for1 < j' < j+ 1. Hence, ng’th node in any path other than
P, could be noder for 1 < j' < j + 1. We conclude with
ul*t £ z, which contradicts with the assumptiofi™ = z.

Third, we point out that th& paths are different from each
other, since in each path, at least is different from each
other.



CheckNgh. Tablegy.table) at z:

for (eachNy (i, j),i € [d],j € [d]) {
for (eachu, u € Ny (%,j) ANu # x) {
k=|esuf(z.ID,u.ID)|; s = y.state(u);
for (h =1; h < k; h++) { SetNeighborg, u[h],u, s); }
if (z.status == notifying\ k > z.attlevel Au & Qn) {
SendJoinNotiMsg.att_level, x.table) to u;

}Qn =Qn U {u}, Qr=QrU {U},

}
}

SetNeighborg, j, u, s) at z:

if (u+# A Ng(i,j).5tze < K Au & Ng(i,7))
{ Nz(%,j) = Nz (3,j) U {u}; z.state(u) = s;}

Switch To_.S Node() atz:

z.status = in_systemz.state(z) = S;
for (eachv of z's reverse neighbors) SehaSysNotiMsgto v;
for (each node:, u € Q;) {
k=|csuf(z.ID,u.ID)|;h=-1;j=0;
while ( < kA h==-1){
if (foreachl, 5 <1 <k, Nz(l,u[l]).size < K){
h =y, for (I = h; 1 < k; I++) { SetNeighbor(, u[l],u, T); }
Jelsej++;

if (h # —1) SendJoinWaitRlyMsg(positivel, z.table) to u;
elseSendJoinWaitRlyMsg(negativey, z.table) to u;
}

Figure 15. Subroutines

Action ofy on receiving a InSysNotiMsg from

y.state(z) = S;

Figure 16. Action on receiving InSysNotiMsg

Based on the above results, we prove thatkheaths are
disjoint. Consider any two pathB; and ;. By Claim B.1,
u] # v}, that is, thejth node inP; is different from thejth
node inP;. We next show thah{ is different from anyj’th
node inP, j' < j, by contradiction. Suppose = v . Then
sinceu! has suffixy[j]...y[0], so does:d . According to step
2 in path constructiony!’ = u/ ' = ... = u. Thus, we get
w] = u, a contradiction. Similarly, we can prove thaf is
different from any;’th node inP;, for j' > j. Therefore, any
node inP; that is notz or y does not appear in any other path
P,. Thus, theK paths are disjoint. |

Proof of Lemma 3.2: (Outline) By Lemma 3.1, ify € z.table,
then there exist at leadt” disjoint paths fromz to y. Also,
as shown in the proof of Lemma 3.1, gf € z.table, then
N (0,y[0]).size = K and thusmin(K, |Vyoj|) = K. Hence,
the lemma holds when ¢ z.table. If y € x.table, however,
y & Nz(0,2[0]), then, N;(0,z[0]).size = min(K, |Vyq]).
Similar to the proof for Lemma 3.1, we can constractlis-
joint paths fromz to y, whereh min(K, |Vyol). I
y € z.table andy € N.(0,z[0]), theny[0] = z[0]. Recall
thatz € N,(0,z[0]). Similar to the proof for Lemma 3.1, we
can construch — 1 paths fromz to y, b = min(K, [Vyq),
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where in assigning nodesg for each path, we only consider
the nodes in selN’, N' = N,(0,z[0]) — {z}. (If we also
considerz in assigning nodes ta}, two of the paths maybe
the same path that goes directly franto y: path P;, where
uj = z and pathP, whereu; = y.) Hence, at leask — 1
disjoint paths exist from: to y. |

B.2 Correctness of join protocol

In this section, we present proofs for Theorems 2 and 3. Recall
that we made the following assumptions in designing the join
protocol: (i) The initial network is d-consistent network, (ii)
each joining node, by some means, knows a node in the initial
network initially, (iii) messages between nodes are delivered
reliably, and (iv) there is no node deletion (leave or failure)
during the joins. We also assume that the actions specified by
Figures 11, 12, 13, 14, and 16 are atomic.

Theorem 2 Suppose a set of noddd] ={z1,...;n}, m >
1, join a K-consistent networkV, N'(V')). Then, at times¢,
(VUW,N(VUW))is a K-consistent network.

To prove Theorem 2, we first prove some auxilary lemmas
and propositions. We start by presenting some definitions. Re-
call thatV,Ve*ifv | the notification set of regardingV, is de-
fined in Definition 4.1.

Definition B.1 Lett® be the time when nodebegins joining

a network, and¢, be the time whem becomes an S-node. The
period from¢? to ¢¢, denoted byt?, t¢], is thejoining period
of z.

Definition B.2 Suppose a set of noded/ = {zi,...2m},
m > 2, join a network. If the joining period of each node
does not overlap with that of any other, then the joins sge
guential.

Definition B.3 Suppose a set of noded/ = {zi,...2m},

m > 2, join a network. Lett’® = min(¢® ,...,t} ) and

t® = max(t; ,...,t; ). If for each noder, z € W, there
exists a node, y € W andy # z, such that their joining pe-
riods overlap, and there does not exist a sub-intervadtyf®]
that does not overlap with the joining period of any node in
W, then the joins areoncurrent.

Definition B.4 Suppose a set of noded/ = {zi1,...2m},
m > 2, join a network(V, N'(V)). The joins areindepen-
dent if for any pair of nodes andy,z € W,y € W,z # y,
VzNotify N VyNotify — @

Definition B.5 Suppose a set of noded/ = {zi,...2m},
m > 2, join a network(V, N'(V)). The joins aredependentif
for any pair of nodes: andy, x € W,y € W, z # y, one of
the following is true:

° VzNotify N VyNotify ?é @

e Ju,u € W,u # x Au # y, such that/ Notifv c v Notify
andvyNotify C V'uNotify_



Definition
z can reachy within k£ hops

Notation
(= Yk
xr i} Yy

the action that: sends aN or aJWto y

T ]—"> y the action thatc sends aNto y

Jw
Ty
A(e)

the action that: sends aWto y

the action thatc sends &£Ptoy
theattaching-nodeof z, which is the node that
sends a positivdWRIyto

the timez changes status fo_systemi.e., the end
of z's join process,

max(tg ,.t5, )

t€

x

t€

Table 7. Notation in proofs

Abbreviation
CPRIly

JwW

JWRIy

Protocol Message
CpRIyMsg
JoinWaitMsg
JoinWaitRlyMsg
JoinNotiMsg
JoinNotiRlyMsg
SpeNotiMsg
SpeNotiRlyMsg
RvNghNotiMsg
RvNghNotiRlyMsg

Table 8. Abbreviations for protocol messages

Table 7 presents the notation used in the following proofs,
while Table 8 shows the abbreviations we will use for protocol
messages in the proofs.

The following facts, which are easily oberved from the join
protocol, are used frequently in the proofs.

Fact B.1 Messages of typ€P, JW, andJN are only sent by
T-nodes.

Fact B.2 If nodez sends out dWRly at timet, thenz is al-
ready an S-node at time

FactB.3 If A(z) = u, thenz.att_level < h, whereh =
|esuf(z.ID,w.ID)|, and for eachyj, z.att_level < j < h,

z € Ny (h,z[h]) afteru receives @Wfromz. Also,z changes
status from waiting to notifying immediately after it receives a
JWRIy from .

FactB.4 If A(z) = w and z.attlevel = k, 0 < k <
|esuf(z.ID,u.ID)|, then beforeu receives aJW from z,
Nu(j,z[j]).size < K forall j, k < j <|esuf(z.ID,u.ID)|.

Fact B.5 A joining node,z, only sends alN to y if z is in
status notifying andesu f (z.ID,y.ID)| > z.att level.

FactB.6 If z 2% y happensy will send a reply that includes
y.table to z immediately. Moreover, eadiN sent byz includes
x.table.

Fact B.7 x sends a message of typ&/ or JN to y at most
once ¢ does not send both types of messageg.to

Fact B.8 By timet:, z has received all of the replies for mes-
sages of typ€P, JW, JN, andSN it has sent out.
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Proposition B.1 Suppose a set of nodd¥, = {z1, ...,z },

m > 1, join a consistent networly/, N'(V')). Consider node
z,z € W. Letu = A(zx) and lett be the timeu sends its
positive reply, JWRIy, to z. Suppose one of the following is
true, wherey € V.U W andy # z:

oz % y happens;

* Yy =u.
Then, if at timet¢, (y — 2z)4, 2 € V U W, and
lesuf(x.ID, z.ID)| > z.att_level, thenz % 2 happens be-
fore timet¢,.

Proof: See the proof oProposition A.1in [6]. (Note that
in this report, we rename the variabitenoti_level in [6] as
x.att_level.) |

Lemma B.1 Suppose node joins a K-consistent network
(V,N(V)). Then, at timets, (V U {z}, N(V U {z})) is a
K-consistent network.

Proof:  SupposeV NV = Vi 1y 0, k € [d], that is,
|Vz[k]...z[0]| <K and|Vz[k_1]___z[0]| > K. LetV' =V U {z}.
ThenVy i 1y a0) = Viali—1]..afo] If 5 # 2[il, i € [d], and
le[i]....z‘[o] = Va[i)...zj0) U {2} ]

Let g be the last node that sends &CP to in statuscopy-
ing. Then it must be thay € V,;_1...[0) Because that
the condition forz to change status is thatfinds there ex-
ists a levelh in the table ofyg, such thatV, (¢, z[i]).size < K,
h <i < esuf(x.ID,g.ID)|. And sinceV,(i_1)...10) > K,
Vaikl...zfo) > K, and(V,N(V)) is K-consistent, then before
z is stored in any other node’s tabldi, (i, z[i]).size > K
for0 < i < k — 1, and Ny(k,z[k]).size < K. There-
fore, by copying neighbor information from nodes 1A,
by the timez changes status twaiting, N,(i,7).size =
mln(Kvn/Jz[zfl]z[O]D = mln(Kvn/JIz[,fl]z[o]D if J 7é
z[i]; if j = z[¢i] and0 < ¢ < k, thenN,(3, j).size = K since
\Vi.ali-1]..0l0]] > K, for (i, z[i])-entry,k < i < d -1, for
any nodey, if y € V.. .210), theny € N(i, z[:]). Moreover,
sincez € N,(i,z[i]), s € [d], it follows that fork <14 < d—1,
N (i, z[i]) = Va2l Uiz} = V] q...2j0 1herefore, entries
in z.tabe satisfy the conditions in Definition 3.3.

After x changes status fromopyingto waiting, it sends
a JWto nodeg, which will then storez in N,(k,z[k]) (and
levels higher thark if z and g share a suffix that is longer
thanz[k — 1]...z[0]) and sends back a positid&VRIly Thus,
z.att_level = k. Next, z needs to notify any node, z €
Vilk—1]...z0] @bout its join. Since the initial network i& -
consistent, thugg — 2)4 at the timeg sends the positive

JWRIyto z. By Proposition B.1,z % z eventually hap-
pens. Therefore, eventually (i, z[i]) = V.20 U {2},
i.e., N,(i,z[i]) = le[i]...z[ p k<1< |esuf(z.ID,z.1D)].
The other entries remain unchanged. It is trivial to check that
the unchanged entries satisfy conditions in Definition 3.3 for

the new network. [ |

Corollary B.1 Suppose a set of nodé¥, ={z1,...xzp, }, m >
1, join a K-consistent networkl’, N'(V')). Then for any node



z,z € W, by timety, N, (i,j).size = K if |Vj.5[i-1]...2j0]] =
K;and N, (4, 5) 2 Vjoli-1)...cf0] If [Via[i=1]...2[0)] < K-

Corollary B.2 Suppose a set of nodé¥, ={z1,...xm}, m >
1, join a K-consistent networkV, N'(V)). Then for any node
z,z € W,and any nodg, y € V, (x — y)q by timetg.

Lemma B.2 Suppose asetof nodé¥, ={z1,...zm}, m > 2,
join a K-consistent networkV, N'(V')) sequentially. Then, at
timet¢, (V U W, N (V UW)) is a K-consistent network.

Proof:  Prove by induction ont; , 1 < i < m. By
Lemma B.1, Lemma B.2 holds when= 1. Assume when
1 < i < m, Lemma B.2 holds. Then at timg_, (V U
W' N(V U W')) is a K-consistent network, wher@’’
{z1,...,z;}. Since the nodes join sequentialtﬂ,i+1 > 1.
Thus, whenz;,; joins, the network, which is composed of
nodes inV U W', is K-consistent and there is no other joins
in the period of i’;m,t;m]. By Lemma B.1, at timet;m,
(Vu{zi,..ziy1}, N(VU{z1,...,zir1})) is K-consistent.
Hence, Lemma B.2 holds fér+ 1. |

Lemma B.3 Suppose a set of nodé¥, = {z1, ...,z }, m >
2, join a K -consistent networkV, (V') independently. For
any nodex, x € W, if |V z1i—1). 20 < K,0 <i <d—1,
jE [b], then (V U Wl)j-z[i—l]...z[O] = Vja[i—1]...z[0] where
W' CW — {z}.

Proof: Similar to the proof oLemma A.3in [6]. |

Corollary B.3 Suppose a set of node®] = {z1,...,z; },
join a K-consistent networkV, N (V)). Let G(V,,) =
{z,z €W, VzNOtify =V }h G(Voo) ={y,y €W, VyNOtify =
Voo }- If V,,, NV, = 0, then forany node, z € G(V,,,), (VU
G (Vo)) jali=1]...2/0] = Vjali=1]...a[0] If |V}.ali-1]..a[0)| < K.

Lemma B.4 Suppose asetofnodé¥, ={z1,...xn}, m > 2,
join a K-consistent networkV, A/(V)) concurrently. If the
joins are independent, then at tinfe (V U W, N (V UW)) is
a K -consistent network.

Proof: Consider any node, = € W. If |V} ,;_1]._ 40l
K, then by Corollary B.1, by time®, N,(i,j).size
K. It |Vigrica)...p00] < K, then by Lemma B.3, we
have (V U W);.afi1]...c[0] Viali-1]..el0) fOr j #
z[i], and (V U W);.ufi—1)...xfo) = Vi-ali-1]...al0) U {z} for
j = z[&g], ¢ € [d andj € [b]. Then, by Corol-
lary B.1, N, (i,j).size = |Vj4[i—1]...00]] fOr j # z[i]; and
Ny (i,j).size = |Vjgrio1]..zi0] + 1 for j = z[i], where
N (i,5) = Vjali-1]...al0) U{z}. Therefore, entries in the table
of z satisfy conditions in Definition 3.3.

Next, consider any nodg, y € V, and the(z, j)-entry in
y.table, i € [d] andj € [b]. If |Vj.y[i_1]___y[0]| > K, then
Ny (i,7).size = K since the initial network ig(-consistent. If
Vieytimt1.pfo)] < K andWj.yi_j._yj0) = 0, thenh, (i, j) =
Vigli-1].glo] = (VUW)jytioa)ypo) I Viylio1).yp0] < K
andW;.y;—1..410) 7 0, then there exists a nodg z € W,

v
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such thay - y[i — 1]...y[0] is a suffix ofz. By LemmaB.3z is
the only node if¥ has the suffix - y[¢ — 1]...y[0]. Similar to

the argument in proving Lemma B.1, we can prove that y
happens before timg&,. Hence,N,(i,7) = Vj.y[i—1]...y[0] U
{2} = (VUW);yi-1]. yp0)-

The above results are true for every nodélin Hence, by
timet¢, (V UW,N(V UW)) is aK-consistent network. Bl

Lemma B.5 Suppose a set of nodé¥, ={z1,...xn }, m > 2,
join a K-consistent networkV, A'(V)) concurrently. If the
joins are dependent, then at time (V U W, N(V U W)) is
K-consistent.

We prove Lemma B.5 by induction upon the C-set trees re-
alized by the end of all joins (see Definition 4.3). We first
consider the case where all joining nodedihbelong to the
same C-set tree and prove that eventually, neighbor tables of
these joining nodes as well as the nodes that are initially in
the network satisfyK -consistency conditions (stated in Propo-
sition B.12). Then, we prove Proposition B.13, which states
when joining nodes belong to different C-set trees, their neigh-
bor tables eventually satisfif -consistency conditions. Based
on Proposition B.12 and Proposition B.13, we present our
proof of Lemma B.5.

In the following proofs, we defing;...I; to be the empty
string if j = 0. Also, we definghe first C-set z belongs to
foranodez, z € W, tobe (i)Cy, .., if z € C,.0; (i) O 40
forj >1,ifz e Cl]-...ll-w andz ¢ Cl,-_l...lyw-

Proposition B.2 Suppose a set of nodd§, = {z1, ...,z },
m > 1, join a K-consistent networkV, N'(V)). For any two

nodesz andy, z € W andy € V U W, if % y happens,
then by time¢, (y — z)q4.

Proof: Similar to the proof ofProposition A.2 in [6], by
replacing ‘N, (hi, z[h;]) = null” by “ Ny, (hi, z[h;]).size <
K" in case (1), and replacingV,, (h;, z[hi]) = v, v # "
by “Ny, (hi, z[h;]).size = K,y & Ny, (h;, z[h;])", and “let
uir1 = v” by “let uj1 = Ny, (hi, z[hi]). first” in case (2).
|

Proposition B.3 Suppose a set of nodd¥, = {z1, ...,z },
m > 2, join a K-consistent networkKV,N'(V)). Letz
and y be two nodes if¥/. Suppose there exists a nodge

uw € V U W, such that by time¢, z % u has happened, and

y & wory 5 u has happened. lesuf(z.ID,y.ID)| = h
and z.att_level < h, then by timel,,, t;, = max(ti,ti),
at least one of the following is truex € N,(h,z[h]) or

Ny (h, z[h]).size = K.

Proof: Case 1 |csuf(u.ID,z.ID)| > h. Let the timeu
replies toz bet,, and the timeu replies toy bet,.

If t, < t,, then after receiving the notification from(i.e.,
time t,), u will store z in N, (h, z[h]) if N, (h,z[h]).size <
K beforet, (z.att_level < h, henceu can storer at level
h). Sincet, < t,, at timet,, eitherz € N,(h,z[h]) or



N, (h,z[h]).size = K is true. Next, fromu’s reply that
includesu.table, y copies nodes invV, (h, z[h]) (after time
t, but before timet,,). Thus, eitherz € N,(h,z[h]) or
Ny(h, z[h]).size = K by timet,,.

If t, > t,, then consider the nodgscontacts after it sends
the CP message ta, i.e., contact-chaing,u) [6].2® Suppose

Ny, (hi, z[h;]). first”, and “N, (h', z[h']) = v, wherev #
andv # y" by “y & Nu(h', z[h])". u
Proofs of the following propositions and corollaries are
based on induction upon C-set trees. Propositions B.4 to
B.12 assume that all joining nodes belong to the same C-set
tree, which is the same assumption as made in Definition 4.3,

contact-chaing,u) is (uo, 1, ..., uf, ug+1), Whereug = u
anduyi1 = y. Then, for each node in the chain;, ei-

thery 5 w; ory - u; happensp < i < f. Observe
that|csuf(z.ID,u;.ID)| > h (because each;.ID has suf-
fix z[h — 1]...2[0] since bothug.ID andy.ID have this suf-
fix), therefore|csuf(z.ID,u;.ID)| > z.att_level for each,
0 <i < f. We then prove the following claim:

Claim B.2 (Property of contact-chainy, u)) If after y has re-
ceived all replies fromu to u; and copied nodes from neigh-
bor tables included in the repliesy, (k, z[h]).size < K

andz ¢ Ny(h,z[h]), thenz % wu;y; happens eventually,
0<i<f.

We prove the above claim by induction énln what fol-
lows, we say that linkw;, u;1+1) exists at timet, if u;.1 €
u;i.table by timet.

Proof of Claim B.2: Base stepAt time ¢,, link (uo, u1) al-
ready exists (otherwise,; = y). Therefore, the link also ex-
ists at timet,, (we have assumet}, > t,). z then learngy

from uo’s reply. If the reply is aINRIy, thenz 2% u; eventu-
ally happens becauseatt_level < h (by the assumption of
the proposition); if the reply is &WRIy thenz will send an-

otherJWto uq, that isz 2% w; will happen. Thusz 2% u;
eventually happens.

Inductive step Assume the claim holds for afl, 0 < j < 1,
0 <i < m—1. Lett; be the timeu;4, sends its reply to
y, andt. be the timeu;;, sends its reply ta:. Then it must
bet; < t,, otherwise, at time,, eitherz € N, (h,z[h])
or Ny, (h,z[h]).size = K is true, which implies aftey
copies nodes fromu;;1's reply, eitherz € N, (h,z[h]) or
Ny(h, z[h]).size = K is true, which contradicts with the as-
sumption of the claim. Hence, linku(;1, u;12) exists at time
t1 as well asts. Consequentlyzx knowsw;o from u;y1's
reply and will notifyu;,; if it has not done so (similar to the
arguemntin the base stepsends either &Wor aJNto u; 1).

|

It can then be shown that if after receiving all replies from

up to ug, Ny(h,z[h]).size < K andz ¢ N, (h,z[h]), then

eventuallyz % y happens. Thus, the proposition holds.

Case 2 |csuf(u.ID,z.ID)| < h. Proof in this case is sim-
ilar to that in Case 3 in the proof ¢froposition A.3in [6],
by replacing notation in the form ofN, (i, z[i]) = 2" by
“z € Nu(hl,fv[hl])", “'Ui-i—l = Nvi(hi,x[hi])" by “'Ui—i-l =

18The definition ofcontact-chaing,z) in a K-consistent network is sim-
ilar to what is presented in the proof &froposition A.3 in [6], by re-
placing “Nuy, (hi,y[hi]) = y” by “y € Ny, (hi,y[hi])", “u has set
N“i(hi’y[hi}) = v,v # y by “|Nui(hi7y[hi])| = K,y ¢
Ny, (hi,y[hi]), andv = Ny, (hs, y[h;]).first".
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namely:

Assumption B.1 (for Propositions B.4 to B.12)
AsetofnodesV = {zy,...,zm }, m > 2, join a K-consistent
network (V, N'(V)) concurrently and for anyr, z € W,
yNotify =V, | |w| = k.

Proposition B.4 For each node:, z € W, there exists a C-set
Ciy..ywr 1 <j < d—k,suchthatbytime®, z € Cj,. 4,0,
wherel;...l, - w is a suffix ofc.ID.

Proof: Considercontact-chaing,g), whereg is the node that
x is given to start its join process. Suppasmtact-chant,g)
iS (o, U1, ...uf,urt1), Whereuy = g anduyy; = z. Then
uy is the node that sends a posit@/Rlyto z (see Defini-
tion of acontact-chain[6]). Let the lowest level; storesxz
in uys.table (the attach-level o) be levelh, thenk < h <
lesuf(u.ID,z.ID)| (recallk = |w|, as defined in Assump-
tion B.1). Create a new sequengg,(..., g») based orcontact-
chain(z,g) as follows:

e Letgo = gandj = 0.

e Foreach,,0 <i < h—1,letg;11 = g;if gi[i] = z[i]
andi < h — 1; if g;[i] # z[i] andi < h — 1, letg; = u;
and increasg.

® gnh =Uf.

Then, g, € V,, becausgy, € V andgi[k — 1]...gx[0] =
zlk — 1]...z[0]. Hence,gy+1 € Ci,.., Wherel; = z[k],
since gy+1 € N, (k,z[k]) (by the definition ofcontact-
chain) and gi+1[k] = z[k]. Consequentlygrio € Cii;-w,

Hence
S Cw[h]-lh_k...ll-w- .

Corollary B.4 For each noder, x € W, there exists a hode
such thatu = A(z), andu belongs to a C-set inset(V, W)
orucV,.

Proposition B.5 If |V}, 1,0 < K andWi, 1,0 # 0,1 <

J<d—kl;,.. 1 €[b],then

@ Cioyw 2 Vijty w5

(b) if [(VUW), 1,0l < K, thenC, 1.0 = (VU
Wi,y 0

© if[(VUW), 40l > K, then|C; .| > K.

Proof: Consider set;; ;,.,. For any nodeu, u € V,, if
u.ID has suffix;...l; - w, thenu € Cy;. 4, ., by the definition
of cset(V, W). Hence, part (a) holds trivially.

We prove parts (b) and (c) by contradiction. Assume
|Clj,,,11.w| < h, whereh = |(V @] W)l]‘...ll'w| if |(V U
W)l]-...ll-w| < K, andh = K if |(V U W)lj...l1~w| > K.

If |Ci;...,.v] < h, then there exists a node, such that



r € Wi, .1,oandz ¢ Cj,. 1,... By Corollary B.4, there
exists a node, such thats = A(z) andu.ID has suffixw.
First, consider the case wheje= 1, thenz € W,,.,, and
z & Cj,.,. Sinceu = A(z) andu.ID has suffixw, then it
must be that, € V,,. However, by Definition 4.3, this implies

to y, then|csuf(z.ID,y.ID)| > |csuf(z.ID,z.ID)|, since
both z.ID andy.ID have the same desired suffix of an en-
try in z.table. However, we know thgtsuf(z.I1D,y.ID)| <
lesuf(z.ID,z.ID)|, becausdesuf(z.ID,y.ID)| = j + k,
lesuf(z.ID,z.ID)| =i+ k andi > j. Therefore, case (iii)

z € C},.,. A contradiction. Second, consider the case where is impossible, either. Thus, we conclude that ;.

j > 1. Suppose: € C};..1,.., Wherel;...l; - w is a suffix of
bothu.ID andz.ID. By the definition ofcset(V, W), z €
Cliyr.trwr ljv1 = z[i + k], and hencer € Cp,, .4, .., for all
,1+1 <74 <d-k,wherel;...l; - wis a suffix ofz.ID.
Therefore, it must be that+ 1 > j, i.e.,i > j (otherwise,
r € Cy;..1,.). However, by Corollary B.5|,C,J,,,,,,1.w| > K
for1 <j' <i,thus,|Cy;. 4,.»| > K. A contradiction. |

Proposition B.6 Consider any nodez, x € W, if z €
CljJrlmll.w and z € Clj...ll-wu 1 <5 <d-k-1, (or if
z € (., respectively), then

(@) there exists anode v € Cy;..4,., (Orv € V), such that
z € Ny(j+k,ljy1) (orz € Ny(k,l1)) andA(z) = v;
(b) z.attlevel = j + k (or z.attlevel = k).

Proof: By Corollary B.4, there exists a node such that
A(z) = u. Suppose: € Cy,. 1,., andz € N, (i + k, z[i + k]),
wherei+k is the attach-level af in u.table,0 < i < d—k—1.
Hencezx € Ci,,,..1,.w, Wherel;;; = z[i + k] and according
to the algorithmy setsz.att_level =i + k.

Then it must be that > j. Otherwise, ifi < 7, then since
z € Cpyy.0y.0 itfollows thatz € Cy, 4y, 1" <@ < d -k,
thusz € Cy;..4,.., Which contradicts with the assumption in
the proposition.

Next, we show thai < j, proving by contradiction. As-
sume: > j. Thusi;...l; - w is a longer suffix tham;...l; - w.
Sincez only sendsINto nodes with suffixe[i + k& — 1]...z[0]
(i.e. suffixl;...l; - w), other nodes can only know through
these nodes plus node (Note thatz would not be a neighbor
at any level lower than level-(+ k) in tables of these nodes,
because when a nodg, copiesz, from z.table, wherez is
one of the nodeg has sentINto or z = u, if z is stored
at levels no lower than levél+ & in z.table, theny will not
storez at a level lower than + k. See Figures 13 and 15.)
Given thatz € Cy,,,. 1,.. andz ¢ Cy;._4,.., by the defini-
tion of cset(V, W), there must exist one nogey € Cj; ..,
andy # z, such thatt € N,(j + k,l;41) by timet°. y
can not store: by receiving alWfrom z, since that indicates
A(z) = y andi = j, which contradicts with the assump-
tion that: > j. Also as discussed above, since- j, z will
only sendJN to nodes with suffixX;...l; - w and thus will not
send aJNto y. Hence,y knowsz through another node,
There are three possible cases: y(iyopiesz from z during
c-phase; (iily knowsz through a reply (aWRIlyor aJNRIy)
from z or aJNfrom z; (iii) y receives ésNinforming it about
z, which is sent or forwarded by. Both cases (i) and (ii)
are impossible, becausecan only storer at a level no lower
thani + k (see Figure 14), thus whencopiesz from z.table,
it can not fill z into a level lower than + & (again, see Fig-
ure 15). Now consider case (iii). i sends or forwards 8N
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Sincei > j andi < j, we conclude that = j. Hence,
u € Cy;..1,.» andz.att_level = j + k, whereu = A(z). W

Corollary B.5 If Cj;.. 1, .. is the first C-setr belongs to2 <
j<d-k,then|Ci,. 1,.w| > Kforl <i<j.

Proof: Considercontact-chaing,g) and construct a sequence
of nodes, {o,...,g1), Whereh = j + k, based orcontact-
chain,g), in the same way described in the proof of Proposi-
tion B.4. Thusg;[i' —1]...g0[0] = z[¢' —1]...2[0], 0 < i’ < h.
Assume|Cy;  1,.»| < K. We know thatgy; € C;, i,. Then,

by the definition ofcontact-chaing,g), gx+1 is @ node that
has sent &P or aJWto. If |C,. 1,.w| < K, then it must
be thatNy, ., (k + i, z[k + i]).size < K (implied by Defini-
tion 4.3), and hencd/y, .. (', z[h']).size < K, wherek+i <
h' < |esuf(z.ID, gi+i-ID)|. Thenz would not send £P to
gk+1, since whert finds Ny, .. (k + i, z[k + i]).size < K, it
will change status twaitingand send dWto g;1. However,
if  has sent dWto g, thengi; would storez since an
attach-level oft in gi;.table exists, whiche € Cj;. ;... A
contradiction with that th€';,__;, .., is the first C-set belongs
to,j > i. |

Proposition B.7 Consider a node, y € W, and letu, =
A(y). Suppos&’y;. .. is the first C-sety belongs to,1 <
j < d— k. Then for a noder, x €¢ W andz.ID has suffix
li—i..li - w, if 2 5 u, happens, o& € N, (j +k — 1,1;)
beforew, receives theJW from y, then by timet,,, t,y, =
max(t¢,t¢), (y — x)q.

Ty

Proof: Lett, be the timeu, sends its positivdWRIyto y, and

t, be the timeu, receives the notification from if = 2 u,
happens. Since, = A(y),y € Cj;...,.o andy € Cy;_, 1,0,
by Proposition B.6u, € Cj,_,..i,.w (Oruy, € V, if j = 1)
andy.att level = k + j — 1. Also, we know that before time
ty, Nu,(k+j —1,1;).size < K (by Fact B.4).

If z % u, happens and, > t¢,, thenz knowsy fromu,’s

reply andz 2 y will happen. By Proposition B.2y — z)q4
by timet¢.

If % u, happens and, < t,, then attimet,,, N,,, (k +
j — 1,1;).size < K, thereforequ,, storesr into N, (k + j —
1,1;). Then, by timet,, z € N, (k + j — 1,1;). In what
follows, we only consider the case thate N, (k + j —
1,1;) beforeu, receives thedWfromy. In this casey learns
z from u,’s IWRIly (i) If y also storese into Ny (k + j —
1,1;), then trivially, (y — z)4 by timet;. (ii) Otherwise,

y 5 = eventually happensdsuf(z.ID,y.ID)| > k +j >
y.att_level).



e If by the time z receives the notification frorg, z is

still a T-node, thenz 2 v must happen eventually,
wherev = N, (h, z[h]). first, h = |csuf(z.ID,y.ID)]|.
Thus, (v — z)4 is by time t¢, which implies{y —

z)q by time ¢, since there exists a neighbor sequence

(y,v,v1,...,vf,2), Where(v,v1,...,vs,2) is the neigh-
bor sequence fromto z.

e If by the time z receives the notification frorg, z is
already an S-node, then will set a flag to betrue
in its reply to y (see Figure 13). Seeing the flag,
y will send aSNg,z) to v, v = Ny(h,z[h]).first,
h = |esuf(z.ID,y.ID)|. v will either storez into
N, (KW, z[h']), B |esuf(v.ID,z.ID)|, or forward
SN, z) to N, (h', z[h']). first), until eventuallyz is or
has been stored by a receiver of the mesSidg, =) (see
Figure 14) and &NRlyis sent back tg.. Thus, by time
tg, (v — x)q. Therefore(y — )4 by timets,.

Corollary B.6 If y EAg happens, where € W andy € W,
and |csuf(z.ID,y.ID)| > y.att level, then{y — z)q4 by
timet,y, t,, = max(tg, ;).

Proof:
tion B.7.

See case (ii) in the last part of the proof of Proposi-
|

Proposition B.8 Consider any node, z € V,,. For any C-
Set,Cl.lj_l___ll.w, lly---)lj—l € [b] and! € [b], if lj—l---ll -wis
a suffix ofz.ID, then,

(a) for any nodey, y € Crq,_, 1.0 @ndy € W,y 5 =
happens before timg ;

(b) Nu(k +j —1,1).size = min(K, |(V U W)i,_, . 00])
by timet®.

Proof: Forany nodey, y € Ciy;_,.1,.., if y € W, then by
Proposition B.6y.att_level < j + k — 1 and there exists a
nodeu, such that = A(y). Then{u — z)4 by the timeu
sends itsIWRIyto y. (If w € V, then{u — z)4 because the
initial network is consistent; if. € 1, then by Corollary B.2,

(u — z)4.) By Proposition B.1y % z has happened by
ty, sincelcsuf(z.ID,y.ID)| > j — 1+ k > y.att level.
Moreover, by Proposition B.Z2z — y)q by timet;. Also, by
Corollary B.2,(y — z)4 by timet;. Therefore, part (a) holds.
Since the initial network isK'-consistent, we know that
before any join happensy,(k + j — 1,1) = Vi, 10
since |Viq,_,...,.0] < K. Part (a) shows that for any

v,y € Cuy ,.nwandy € W, y 5 z eventually

happens. It then follows thatv,(k + j — 1,1).size
min(K, [(V U W)iy,_,..1,.w]) by time t¢, since by Propo-
sition B.5, Cl-lj71...l1-w = (V U W)l-lj,l...ll-w if |(V @]
Wi, el < K, and |Cry, ;. 0,.0] > K if [(V U
W)i;_yhwl > K. u

Proposition B.9 For any C-set,(};. j,.0, 1 < j < d -k,
l1,...1; € [b], the following assertions hold:
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(@ If Wi, ..1,-»| > 2, then for any two nodes,andy, where
r€Cy. 1.0 Y €Cl. 1.0, T # Yy, andz andy are both

in W, by timet,,, at least one of % y andy % « has
happened, where;, = max(tg, ;). Moreover, at time
tzy, (2 = y)a and(y = z)q.

(b) For eachz, z € Cj;.1,.o andz € W, Ny(k +j —
1,0).size = min(K, |(V U W)i4,_,..1,.w]) by timete.

Proof: We prove the proposition by induction gnThe struc-
ture of the proof is very similar to that dProposition A.6
in [6].

Base step:j = 1. Consider nodes andy, z € W andz €
Cl v,y € Wandy € C.,,, wherely; € [b],1 € [b] (I may or
may not be the same with), andz # y. By Proposition B.6,
there exists a node,, u, € V,,, such that., = A(z) (thus,
z € N, (k,1)). Likewise there exists a nodg,, u, € V.,
such thaty € N, (k,1) andu, = A(y). By Proposition B.6,
z.att_level = y.att_level = k. Therefore, bothe 2 u, and
y 2 u, happens. Also, by part(a) of Proposition B8
happens. Likewisey % u, happens. By Proposition B.7,
(y = z)q and(z — y)q by timet,,.

Let ¢; be the timeu, sends its reply ta, ¢, be the time
u, sends its reply tg, 3 be the timeu, sends its reply tg,
andt, be the timeu, sends its reply ta:. Clearly,ts > t1,
because at, z is in statuswaiting, while att4, z is in status
notifying Likewise,t> > t3. Note that at time,, u, storese
in Ny, (k,1), and at timet3, u, storesy in N, (k,1).

<
<

Figure 17. Message sequence chart for base case

If t1 > to, thenit must be, > t3, as shown in Figure 17(a).
By FactB.4,N,,_ (k,l).size < K before timet;. Thus, attime
to, Nu, (k,1).size < K. Sincey.ID also has suffi{ - w, u,
storegy in N, (k, 1) attimet,. Consequently, from,'s reply,

z knowsy and storeg in N, (k,[). (In the copy ofu,.table

included inu,'s reply, Sincdcsuf(z.ID,y.ID)| > k+1and

z.att_level = k, z % y will happen.

If t; < t9, then consider the following cases.

e If t3 > t4, as shown in Figure 17(b), then this case is
symmetric to the case whete > t», by reversing the
role of x andy.

o If t3 < t4, as shownin Figure 17(c), then fram’s reply,

x knowsy and will notify y if it has not done so. Simi-
larly, y knowsz from u,’s reply and will notifyz if it has
not done so.

Then, ifl = [1, that is, bothe andy belong toC;, ..., part

(a) of the proposition holds, since we have shown above that

at least one of % y andy % z will happen before time,,,,
and(z — y)q and(y — x)q by timet,,,.



Part (b) of the proposition also holds, since we have shown  (ii) 4, € V andu, € W. By Proposition B.8yu, EN Uy

above that for any, [ € [b], z % y ory 2 z will happen.

happens. Let, be the time that., receives the notification

Thus, eventuallyr knowsy, for eachy, y € C;., andy € fromu,.
W. By Corollary B.1,N,(k,l) D Vi.,. Then, eventually,
Ny (k,l).size = min(K, (VU W),.,). t 7 J t 7 y : t 7
Inductive step: Next, we prove that if the proposition holds at v f ;/ v Vo v f\ .
j.thenitalsoholdsat+1,1<j<d—k— 1. W Y u ‘

X X

Consider node, z € Cj,_,..1,.» and the following cases:
e Caseliz € (1, ..., v ANz € C; 1, 0

— l.aln this case, we prove part(a) of the proposition
holds. If|C,,,..1,.»| > 1, then consider any node
v, ¥y€Ci .00,y #zandy € W:

* l.a.ly Q/ Clj...ll-w-
x l.a.2y € Cl]-...ll-w-

— 1.bIn this case, we prove part(b) of the proposition
holds. Consider any nodg y € Ci;...1,.», Where
l 75 l; andCl.lj,,,ll.w 7'5 0:

* 1b.1ly € i iy 0
* l.b.2y € Clj---ll'tc)'
e Case2:xz € Cy,,,..1,.w @Ndx € Cp; 4, -

— 2.aTo prove part(a) of the proposition holds, con-
sider any nodey, y € Ci,,,. .50, ¥ # = and
yeW:

* 2.a.1y Q/ Clj...ll-w-
*x 2.2.2y € Clj...ll'(d'

— 2.bTo prove part(b) of the proposition holds, con-
sider any nodey, y € Cj.;...1,.., Wherel # [; and
Crijotyw #0:

* 2.0.1y € C; 0y 0
% 2.b.2y € Clj...ll'u)'
We will use the following Claim in our proof:

1)

(2)

Claim B.3 Suppose Proposition B.9 holdsatl < j < d —
kE—1.1fz e Cy,, 000y € Cryj..i,.0, Wwherel may or may
not be equaltd; 1, howevery & Cy; i,., andy € Cy, 1,0,

then eitherz % y or y % z eventually happens.

The proof of Claim B.3 is similar to that @laim A.2 in [6]
and is omitted here. (Note that botrandy are inW'.)

We next prove the proposition case by case.
Case 1.a.1. By Proposition B.6, there exists a nodg,
ugz € Cy;..1,.0, SUCh thaty, = A(z) andz.att level = j + k.
Likewise, there exists a node,, u, € Cj;. ;,.», such that
u, = A(y) andy.att_level = j + k. Let the timeu, sends the
positive JWRIyto z bet,, and the timeu, sends the positive
JWRIyto y bet,. Without loss of generality, supposg < t,,.

By Claim B.3,y % z happens. By Proposition B.2; — y)4
by timet;.

Next, we need to shofy — z)4 by timet,,. Consider the
following cases:

(i) u, € V andu, € V, oru, € W andu, € V. In these

two cases{u, — u,)q by timet,. By Proposition B.1z %
u, happens befor&. Then by Proposition B.7y — ).

(1)

(2)

3)
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(b)
Figure 18. Message sequence chart for case 1.a.1

Supposé, < t,, as shown in Figure 18(a). By Fact B.3,
z € Ny, (I + k,lj41) after timet,. Therefore, when
u, replies tou,, z € u,.table. By Facts B.1 and B.2,
ty < ty. By FactB.4,N, (I +k,l;;1).size < K before
ty. Hence,N,, (I + k,lj11).size < K at timet, and
thereforeu, storesz in N, (I + k,1;11) attimet,. By
Proposition B.7{y — z)4.

Suppose, > t,, as shown in Figure 18(b). then first con-
sider the case that after, receives the notification from
Uy, Uy € ug.table. Then fromu,’s reply,z knowsu,, and
will notify w,,, becausécsuf(uy,.ID,z.ID)| > I+ k =

z.att_level (see Fact B.5). Hence, % u, happens. By
Proposition B.7(y — z)qby t,,. Second, consider the
case that aften, receives the notification from,, u, ¢
ug.table, thenN,, (h,uy[h]).size = K attimet,, h =
|csuf(uz-ID,uy.ID)|. Letv = Ny, (h,uy[h]).first.
Then,u, knowsv from u,’s reply Sinceu,.att_level <
I -1+ k and|csuf(v.ID,u,.ID)| > h > |+ k,

Uy 2, v eventually happens. Likewise, knowswv from

(c)

u,'s reply after timet, andz % v eventually happens,
sincez.att_level = [ + k and|csuf(v.ID,u,.ID)| >

[ + k. Then, by Proposition B.3, by timg,,,, tzu, =
max(tg,ty, ), eitherthate € Ny, (I+k,l;11) or Ny, (I+
k,lj11) = K. Ny, (I + k,1;41) = K is impossible, be-
causeV,, (I+k,lj11) < K beforetimel,, andt, > t,,
(we have assumet} > t,, and¢, > ¢7 by Fact B.2).
Thus,z € Ny, (I + k,l;11) at timet,,,. By Proposi-
tion B.7,(y — )q by tgy.

(iii) u, € W andu, € W. Then, by assuming the proposi-
tion holds atj, eitheru, % u, oru, % u, happens.

If u, EN ug happens ant}, < t,, then following the same
arguments in part (1) of the above case (i) (€ V' and
uy € W), (y = x)q by tzy.

If u, EAT. happens ant}, > t,, then following the same
arguments in part (2) of the above case (i) (€ V and
uy € W), (y = x)q by tzy.

If u, 5 u, happens, let, be the timeu, sends its no-
tification to u,, then by Facts B.1 and B.2, it must be
tz > tq, as shown in Figure 18(c). At timg,, u, al-
ready knowsu,. Then, there are two cases to consider:
Uy € ug.table oru, & u,.table attimet,. Following the
same argument as in part (2) of case (ii), it can be proved
that{y — z)q4.



Case 1.a.2 First, obeserve that in this casgatt_level <
j+k—1<|esuf(y.ID,z.ID)|. Letu, = A(z), thenu, €
Ci;..1,w- Thus bothu, andy belong toCy;. .., as shown

in Figure 19(a). Ifu, € V, then by Proposition B.8 <% u,
happens by;. If u, € W, by assuming the proposition holds
atj, we know that by the time both, andy are S-nodes, they
can reach each other; moreover, at least ong 6§ u, and
u, % y happens.

Let ¢; be the timeu, sends itsIWRIyto z. Also, letts be

the timeu,, receives the notification fromif y % u, happens;
otherwise, let, be the timeu, sends a notification tg.

Yy
\ \
e Lt - t2>N S
\\
x taN\

(€=)]

(b)
Figure 19. Message sequence chart for case 1.a.2
(i) If t1 < to, thenats, z € Ny, (k+ j,lj+1). Thent, must

be the time that, receives the notification from (by
Fact B.2, at timé» u, is already an S-node and will not

N.(j+k,l).size = K atthe timer knowsy. If y € Cy;..1, .0
(Case 1.h.2), then by assuming the proposition holgs ae
havey 2 u, oru, = y happens ifu, € W; andy % u,
happens its, € V, by Proposition B.8. Let, be the timeu,
sends its positivdWRIyto z. Lett, be the timeu, receives

the notification fromy if y %> u, happens; otherwise, &t be
the timeu, sends a notification tg.

o If y EA uz; happens and, < t, (thent, is the timeu,
receives the notification from), theny knowsz from

ug's reply andy > = happens.

o Ify ENT. happens and, > t,, then eithey € N, (7 +
k,l)or Ny, (j+k,l) = K attimet,, and therefore, either
Yy € N.(j+k,l)or N, (j+k,l).size = K afterz receives
uz's reply QWRIY and copies nodes from,.table.

o Ifu, & y happens, thety, > t,. Similar to the above ar-
gument, eithey € N, (j+k,l) or N, (j+&,1) = K after
x receiveau,’s reply and copies nodes fromy,..table.

The above analysis shows that for each nadey €
Cli;..1,. €ither that after time,, y € N, (j + k,1), No(j +
k,l) = K, or z eventually is notified byy. By Proposi-
tion B.5, |Cl-lj...l1-w| = IIliIl(K, |(V U W)l-lj...l1-w|)- Hence,

send out notifications), as shown in Figure 19(b) . Thus N, (j + k,1).size = min(K, |(V U W )i4;..1;-0|)-

y knows z from u,’s reply that includesu,.table, and
will notify z if it has not done so. Thug, % = happens
by timet;. By Proposition B.2(z — y)4. Also, since
y & z happens, anfksuf(z.ID,y.ID)| > k+j+1>
y.att_level, by Corollary B.6,(y — z)q by t,.

(i) If t4 > t; andy EN u, happens, then it must be
thaty € N, (I + k,l;41) after timet,. By Fact B.4,
Ny, (l + k,lj+1).size < K beforet;, thus N, (l +
k,lj11).size < K beforet,. Then, by Proposition B.7,

(x — y)g. Moreover,z % y happens, because
z.att level = j + k and|csuf(z.ID,y.ID)| < j + k.
By Proposition B.2{y — z)4.

(iii) If t; > t2 andu, EN y happens, then following the same
argument above in case (i), it must be that N, (I +
k,1;11) after timet,, and thereforez — y)q and(y —

z)4. Moreoverz % y happens.
Case 2.a.1 This case is symmetric to case 1.a.2.
Case 2.a.21In this case, botkr andy also belong ta;; . i, ..

By assuming Proposition B.9 holds atpart(a) holds in case
2.a.2 trivially.

So far, we have proved that part (a) of Proposition B.9 holds.

Next, we prove part (b).

Case 1.b Consider nodg, y € Ciy;..1,.0- If y € V, then by
Corollary B.1,y € N,(j + k,1) by time¢¢. Hence, in what
follows, we only consider the case wheyes C.;;. 1,.., and
y € W. Ify & (. 1,.. (Case 1.b.1), then by Claim B.3,

eitherz % y ory 2 z eventually happens. In either case,
z eventually knows,. Therefore, eithey € N, (5 + k,1) or
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Case 2.b Consider nodeg, y € Cy.;,..1,.»- Again, we only
consider the case whegee W (if y € V, by Corollary B.1,
y € No(j + k,1) by timet®). () If y € Cy;..4,.., then bothe
andy belong toC}; . ;,... By assuming the proposition holds

atj, atleastone of %> y ory > = happens. Hence,eventu-
ally knowsy. (i) If y € Ci; .1,., thenA(y) € Cj, ;... Let
uy, = A(y), andt, be the timeu, sends its positivdWRIyto
y. Recall thatin this case, bothandu,, belong toC;; . ;... If
uy € W, then by assuming the proposition holdg aat least

one ofz % u, oru, % « happens; ifs, € V, then by Propo-
sition B.8,z % u, happens. Let, be the timey, sends its no-

tification tox if u, 2, z happens; otherwise, léf be the time
u, receives the notification from. If ¢, < t,, then by timet,,
u, already knows:. Then by timet,,, Ny, (j+k,1).size < K,
and thus at time,, N, (j + k,l).size < K. Hence,u,
will store z into N, (j + k,[) at timet,. Hence, at time,,
& € Ny, (j + k,1). Then, fromu,’s reply,y knowsz and will

send alNto z (y % z), which enables to know the existence
ofy. If t, > t,, then at timet,, y € Ny, (j + k,1). Hence,
from u,’'reply (or u,’s notification),z knows the existence of
y. So far, we have shown that whethgre Cj;. ;,., or not,
= eventually knowsy. This is true for any, y € Ciy;..45.0-
By Proposition B.5 and Corollary B.1YV, (5 + k,1).size =
min(K, |(V UW).4;..1,.0]). Therefore, part (b) of the propo-
sition holds in Case 2.b. |

Corollary B.7 If z € Cy;. 4,., andCly,_, 1,0 # 0,1 € [b],
then for any nodeg, y € Cy.4;_,...1,.» andy # z, atleast one
of the following assertions is true:

1. y % z has happened by timeé;



2. Bytimels, y € Ny(j—1+k,l)or Ny(j—1+k,l).size =
K.

Proof: Proof of the corollary is implied by the proof of Propo-
sition B.9. If z € V, then by Proposition B.8, the corol-
lary holds. Ifz € W andy € V, then by Corollary B.1,
y € N, (7 — 1+ k,1), hence, the corollary also holds. In what
follows, we consider the case wherece W andy € W.

First, supposg = 1. Consider a node, =z € C,..,, l1 =

thenk < j < |esuf(u.ID,z.ID)| (recallk is defined in As-
sumption B.1). Create a new sequengs (., g;) as described
in the proof of Proposition B.4, such that = ¢, g; = uy, and
gy .ID shares suffixe[i’ — 1]...z[0] with z.ID, 0 < ¢/ < j.
Then, itis easy to check that € V,,, andgy 1. € Ci,, .1, -0,
1 <" <j. Thus,gitr € Ci,..0,-w- Sinceg; 1 is a node in

contact-chaing,g), eitherz = g, orz % g;,1 happens.
No matter which happens, let the timg.;, sends the reply to

z[k]. In the proof of base case in Proposition B.9, we have z bet;.

shown that for any nodeg, andy € C;., # 0,1 € [b], at
least one ofy & z or z > y happens eventually. Iif % z

happens, the the proposition holds. Otherwise, if anlss y
happens, them knowsy beforett. Hence, eithey € N, (k, 1)
or N (k,l).size= K.

Second, suppose< j < d — k. Consider a node, = €

Cy;..1, -, there are following cases:
ez & Cy_,. 1, Consideranynodg,y € Cri;_,. 1.0
First, suppose ¢ C,J.f By Claim B.3, at least

1...l1-KU'

one ofy Jy 2 andz % y happens eventually. if A

If |(VUW), e < K, then by Proposition B.5,
Cl~li...l1-w = (VUW)l.li___ll.w, i.e., for each/, Yy € Wl~li...l1~wv
y € Cry,..1,.w- Next, consider any node, vy € Wiy, 1.0

Then, ifg;1,, € W, by Corollary B.7, at least one of the fol-

lowing is true:y € Ny, (i —1+k,1) by timet; (t1 > tg, )

or thaty EA gi+r happens by time¢; if g;y, € V, then
y EN gi+r eventually happens by Proposition B.8. (i) If
Y € Ny, (i—1+k,I) by timet,, thenz knowsy fromg;, +'s
reply, hence) € N, (:—1+k,l) or N, (i—1+k,1).size afterz

receives the reply from; 5. (ii) If y 2 gi+x happens, then by

happens then the prop05|t|0n holds. Otherwise, if 0n|y Proposition B.3, at least one of the following is true: by time

z 2 y happens, them knowsy beforet¢. Hence, either
yeE N (j—1+k,1)orNy(j —1+k,1l).size = K byt:.

Second, supposg € Cj;_ By the proof of Case

1...l1-w-

1.b in proving Proposition B.9, either 2 z eventually
happens, or thaf € N,(j + k,1) or N.(j + k,1) =
afterz receivesu,'s reply JWRIy and copies nodes from
ug.table, whereu, = A(z).

ez € (y_,.1,»- Again, consider any nodg, y €
Cri;_y..1,w- First, suppose € Ci;_,. 1,.., then both
z andy belong to(Cy; By part(a) of Proposi-

_1...l1-L4J'

tion B.9, at least one of EN y ory EAg. happens

eventually. Similar to the argument above, at least one K. then N, (i — 1 + k,l).size = K.

of the following is truey 2 z, y € N, (j—1+k,0)or

N.(j —1+k,l).size = K.

Second, supposg ¢ Cy.i;_,..1,..- By the proof of Case
2.b in proving Proposition B.9, either % z eventually
happens, or thay € N,(j + k,I) or N, (j + k,1) =

K afterz receivesu,’s reply (or notification) and copies
nodes fromu, .table, whereu, = A(y).

[ |
Proposition B.10 For anyz, z € W, suppos&’;; i, ., is the
first C-setz belongstol < j < d—k, l1,...[; € [b]. Then

Ny(k+1,1).size = min(K, |[(VUW), ..
and! € [b].

l1'w|) for0 < i S]

Proof: Considercontact-chaing,g), whereg is the node that
x IS given to start its join process. Suppasmtact-chaing,g)
IS (uo, u1,...uf,ur+1), Whereug = g, uy is the node that
sends an positivdWRIyto z (see Definition of acontact-
chain in [6]) anduysy1 = z. T the lowest level:; storesz in
uy.table (the attach-level of) is levely (by Proposition B.6),

25

t&,y € Np(i — 1+ k1), orthatN,(i — 1 + k,1).size = K.

Slnce this conclusion is true for eaghy € Ci.,. 1,.w, PIUS
thatVi,. 1, C Nz (i—1+k,!) by timet¢ (by Corollary B.1),
we conclude thatV, (¢ — 1 + k,1).size = min(K,|(V U

W1, ..1,-w|) Dy timete.
If |(V.UW),.,0| > K, then by Proposition B.5,
|Ci1;. 1,w| > K. Next, consider any nodg y € Cii;..1, -0

andy € W. Let the timeg;,, receives the message ( ei-
ther aCP or aJW) from z bet;. Then, by Corollary B.7,
at least one of the following is true; € Ny, (i — 1+ k,1)
by time¢;,, or N, (i — 1+ k,l).size = K by timet;, or that

Gi+k
y 5 girr, happens. (i) If at timey, Ng =14k, 1).size =
(i) If at time tq,
Ny, oo (i =14 k,l).size < K andy € Ny, (i — 1+ k,1),
theny € N,(i — 1+ k,I) 0rN(z—1+kl).size = K
after = receives the reply fromy; . (i) If v 5 giis
happens, then by Proposition B.3, by tinfg eithery €
Ny(i — 1+ k,l) or Ny(¢ — 1+ k,l).size = K. Therefore,
foranyy, y € Cii,. 1,0, €itherthaty € N, (: — 1 + k,1) by
timet¢, or N, (i — 1 + k,l).size = K by timet¢. Hence,
N.(i — 1+ k,l).size = K by timet®. |

Proposition B.11 For any nodez, z € W, if (V U
Wi,..0,w # 0, wherel € [b] and [;...[; - w is a suf-
fix of z.ID, 0 < i < d — k, thenN,(i + k,l).size =
IIliIl(K, |(V U W)l-li...l1-w|) by timet©.

Proof: If VUW)1,..0,w = Vii;..0,.w, Dy Corollary B.1,
the proposition holds. ItV U W),..,..1,.w D Viii. 1,0, then
consider C-se€;; .. ,..,. SUPPOSE’; ;.. IS the first C-setr
belongstop < j < d — k. If j > 4, by Proposition B.10, the
proposition holds. Ifi < i, then by part(b) of Proposition B.9,
the proposition holds. |



Proposition B.12 For each noder, z € VU W, if (V U
min(K, [(V U W)j-z[ifl]...z[O]D by timete.

Proof: First, pick any node;, z € W.

e If 0 < 7 < k, then by Corollary B.1, the proposition

holds.

o If i = k and|Vj.,i—11...200]l > K, then again by Corol-
lary B.1, the proposition holds.

e lf i =k |Vigi—1..0 < K, however,
Wi.ali=1]..al0) # 0, ork < i < d — 1, then by Propo-
sition B.11, the proposition holds.

Second, consider nodestn Picky,y € V.

o If (V U W)]y[zfl]y[()] = ij.y[ifl]my[o], then given
that (V,N(V)) is a K-consistent network,N,(i +
k,1).size = min(K, [Viyjiy)_y))) = min(K, [(V U
W) ;yli-1]...y0)])- The proposition holds.

o If Viyiiz1]..yj0) € (VUW); . yi—1)...y[0]» thenw must be a

suffix of j-y[¢ — 1]...y[0], which can be deduced from As-

sumption B.1 N0ty = v, for anyz, z € W), thusy €
Vo fw= j-y[i—l]...y[O], thenV, = Goy[i—1]...y[0]+ and
|Vo| > K by Assumption B.1. ThudV, (i + k,{).size =

K. If w# j-yli — 1]...y[0], thenw must be shorter
By part (b) of Proposition B.8,

thanj - y[i — 1]...y[0].
Ny(i + k,1).size = min(K, [(V U W);.y1i-1)..y0]]) DY
timet¢. The proposition holds.

|

[V | < K). And sincews # ws, |wz| > |ws|. Hencegz[ks]-ws

is a suffix ofw, since both of them are suffixes off D. Thus,
Vilksl-ws 2 Vs thus| Vi 1ws| > V| > K, which contra-
dicts With |V, j1,5).,| < K (by assuming/ X" =V, ).

Next, consider node:. If z € V andz.ID has suf-
fix wy, thenz € V,,. By part (b) of Proposition B.8
Ng(ko,l).size = min(K,[(V U G(Vyy))iw,|).  Thus,
Ny (k2,1).size = min(K, [(V U W)i.w,])-

If z € W, then considecontain-chaing,g), whereg is
the nodez is given to start joining, and create a sequence of
nodesyo, g1, ..., g» following the same way as discussed in the
proof of Proposition B.4, whergy = ¢, g, = A(u), andg;
shares one more digit with thang; 1, 1 < i < h. Clearly,
ks < k1 < h. Then,g;, has suffixw, and thusg, € V,,,.

Also, z < g, orz % gi, happens.

Next, we show that there exists a nodeljp, such that it
eventually notifiegy;,. Consider any node, v € C.,,, and
v € W (by Proposition B.5 , such a node must exist). By
Proposition B.6, there exists a nodg, such that., = A(z)

andu, € V,,. Hencep % u, happens. By Proposition B.1,

v gk, eventually happens for eaehu € V,,,, since by the
time u,, replies tov, (uy — gi,)d-

Then, by Proposition B.3, by timeg, eitherv € N, (ks,1)
or N,(k2,1).size = K is true. This conclusion is true for
eachv, v € Cj,, andv € W. Also, by Corollary B.1,
Viws C Ng(k2,1). Therefore, by time®, N, (k2,[).size =
min(K, |[(VUW).u,])- |

Propositions B.4 to B.12 are based on the assumption that \With the above propositions, we now can prove Lemma B.5.

all joining nodes belong to the same C-set tree. Next, we con-
sider the case where the joining nodes belong to different C-se

trees.

Proposition B.13 Suppose a set of nodd¥, = {z;,...xzm},
m > 2, join a K-consistent networkV, A’(V')) concurrently.
Let G(V,,) = {z,2 € W,V Notilv = V. }, G(V,,,) =
{y,y € W,V,Yotifv =V}, wherew; # w; andw, is a
suffix ofw;. Letks = |we|. Then, by time¢, Ny (k2,1).size =
min(K, |[(VUW)..,,]|) foranyz, z € VUW, such thate.1D
has suffixvs, wherel € [b].

Proof:

@) If Viw,] > K, thenN,(kz,l).size = K by Corol-
lary B.1.

(i) If |[Viw,| < K andW,.,,, = 0 thenN,(ks,[).size =
V.., by Corollary B.1.

(i) If |Vi.,| < K andW,.,, # 0, then it must be that

Wiws = G(Vi,)1w,, that is, the set of nodes IV with suffix
[ -w, are the same set of nodegGitV,,, ) with suffix - w,. We

prove the above claim by contradiction. Suppose there exists a

nodez, z € Wy.,,,, howeverz € G(V,,), i.e.,VNotfy =V
wherews # ws. Then, by the definition oF Vot | |V,,.| > K
and|V, i,].w,| < K, whereks = |ws|. Since|V,..,| < K, and
both! - wy andws are suffixes ok.I D, thenws must be a suf-
fix of wy (if [ - we is a suffix ofws, thenV,.,,, 2O V,,, and
thus|Vi..,| > |V.,| > K, which contradicts withV}.,,,| <

tProof of Lemma B.5: First, separate nodes W into groups
{G(Vy;), 1 <i < h}, wherew; # w; if i # j, such that for
any nodez in W, z € G(V,,,) if and only if V.Notifv =V, |

1<i<h. LetQ = {w;, 1 <i < h}. Then, at time*,

e Consider a node:, = € V. If |[Vji—1). 20 > K,
then N, (i, j).size = K since initially (V, N'(V)) is K-
consistent. V; ;1) 20| < K andWj (i 1) 2(0) =
0, then N,(i,j).size = (VU
W);i.ali-1)...af0)]-

If |‘/]z[z—1]z[0]| < K ande.z[i_l]_"z[o] 7’5 0, thenj -
z[i — 1]...2[0] € Q, because we know that for amy,
w € Q, |V,| > K by Definition 4.1. Also, we know that
there must exist a;, w; € €, such thaty; is a suffix of
j - z[i — 1]...z[0], sinceW = Ul G(V,,) and any node
in G(V,,) has suffixw;, w; € Q.

Viali-1]..afo]l =

Claim B.4 Suppose |V;.,[i-1]...«[0]l < K and
Wiali-1]..al0) 7 Also suppose there ex-
ists a w;, such thatw; € €, w; is a suffix of
Jj - zlt — 1]..z[0], and |w;| > |wpy| for any wy,
wp, € @ andwy, is a suffix ofj - z[¢ — 1]...2[0]. Then,

Wi.ali-1)..cl0) = G (Vi) j.ali-1]...a[0]-

Proof of Claim B.4:
W.

J-z

Clearly, G(Vi,)j.ali—1]...a[0]
li—1]...z[o]- e only need to ShowV;.,(;_1)...z[0]

INinN



G (Vi) j.a[i-1]..z[0]- In Other words, we need to show that
forany nodey, y € W;.z[i—1]...0[0]» VyNotify =1V, (thus
Y € G(Vo,)j.afi-1]...x[0])-

For any nodey, y € Wj.p[i—1)...0[0]s J - #[i — 1]...z[0] is
a suffix ofy.ID. Sincew; is a suffix ofj - z[i — 1]...z[0]
andw; # j - z[i — 1]...2[0], w; is also a suffix ofy.ID.
By the definition ofG(V,,), we know that|V,,| > K.
In order to provel,N°"¥ = V,,, we need to show that
|Vylki]-w:] < K, Wherek; = |w;|. We prove it by contra-
diction. AssumeV,(i,)..,| > K, thenV,Noiilv = v,
wherey[k;] - w; is a suffix ofw,. Hencew; is a suffix of
wy andw; # w,. Sincey € W, w, € Q. On the other
hand,w, must be a suffix of - z[¢ — 1]...z[0], since it is
given|V;.,1i—11...z[0)] < K. Howeverw; is picked in such
a way that for any;,, such thatv, € Q andwy, is also
a suffix ofj - z[¢ — 1]...2[0], |w;| > |wn|. Thereforew,
must be a suffix ofv;, which contradicts with the above
conclusionw; is a suffix ofw, andw; # w,. [ |

By part (b) of Proposition B.8N,(i,j).size =

mln(K, |(VUG(V(U1))].T[Z—1].T[O]) Then, by Claim B4,
N(i,7).-size = min(K, [(VUW);.4[i-1]...z[0)|) DY time
te.

Consider a node, x € W. Then there exists #, 1 <

f < h,suchthate € G(V,,,). () If [Vjigpiz1]. ajo)] =

K, then N,(i,j).size = K by Corollary B.1. (i)
If |V}-.z[i_.1]_.__z[0‘]| < K and Wj,i—1]..2000 = 0,
then N.(i,j).size = |Vjgi—1).00l = |(V U

W);.ai-1]...z[o] |» @gain, by Corollary B.1.

(i) If [Vfioa). afo)] < K andWj.zriq). zp0) # 0, then
J-z[i — 1]...z[0] € Q. Since bothvy andz[i — 1]...z[0]

are suffixes ofr.ID, we next consider two cases;y

is a suffix of z[i — 1]...z[0] or vice versa. Ifwy is

a suffix of z[i — 1]...z[0], then for any nodey, y €

Wi.ali-1]..cl0]» ¥ € G(V.,,) (thatis,z andy are in the
same C-set tree). By Proposition B.1¥, (i, j).size =

min(K, (VUG(wa))j.z[,’,l]mz[o]), thusN, (i, 7).size =

min(Ka (V U W)]m[zfl]m[()])

If z[i — 1]...z[0] is a suffix ofws, then there must ex-
ist aw;, w; € @ andw; # wy, such thatw; is the
longest suffix ofj - z[¢ — 1]...z[0] amongQ2. Then, by
Claim B.4, for any nodey, y € Wi [i—1)..z0p ¥ €
G(V,,) (z andy are in different C-set trees). Note that
since |Vj.z(i—1).../0) < K and|V,,| > K, itis im-
possible thatj - z[i — 1]...z[0] = w;. Hence,w; is a
suffix of z[¢ — 1]...z[0], which is a suffixws. There-
fore, w; is a suffix of wy, then by Proposition B.13,
N.(i,7)-size = min(K, (VUG(VL,,));.4[i-1]...z[0])» thUS
N (i,7).size = min(K, (V UW);.1-1]...200])-

Proof: First, separate nodes W into groups, such that joins
of nodes in the same group are dependent and joins of nodes in
different groups are mutually independent, as follows (initially,
let: = 1): '

e For each node, y € W— U;:l G;, if there exists a
nodez, z € G, such that(V,Notifv n Y Notify £ )
or Qu,u € W— U] G, (VNetifv c yNotifs) p
(V. Netify c yNotify)) puty in Gy;

o Pick any noder’, z' € W~ UJ;_, G, putz’ in Gi.,
increment; and repeat these two steps until there is no
node left®

Then, we get groupéG;, 1 < i < [}. It can be checked that

v Netify oy Notify =  for any noder, z € G, 1 <i <, and
any nodey, y € Gj,1 < j <landi # j. Thatis, nodesin the
same group join dependently, while nodes in different groups
join independently.

Then, for any suffix, if (G;), # 0 and|V,| < K,1 <
i <, then by Corollary B.3(V U W), = (VUG,),.

Consider any noder. If |V ri_1).00] > K, then
N, (i,j).size = K since initially (V, V'(V)) is K-consistent.

If [Viglic1).zi] < K and Wi i1y .00 = 0, then
Ne(i,5)-size = |Vigiz1]...zi0]l = |(VUW)j00i-1]...0[0] |-

If |Viafiz1]..zfo)] < K and Wj,i1).000) 7 0, then
(VU W)jeiia.zio = [(VUGE)jafi1. .0, Where
(Gf)j-z[i—l]...z[O] # 0. By Lemma B.5,N,(i,j).size =
min(K, [(V U Gf)j-z[i—l]...z[O]Dr hence, N, (i, j).size =
min(K, [(V U W)j~z[i—1]...z[0]|)' u

Proof of Theorem 2:
theorem holds.

If m > 2, then according to their joining periods, nodes
in W can be separated into several groufgs;, 1 < ¢ < [},
such that nodes in the same group join concurrently and nodes
in different groups join sequentially. Let the joining period of
G belty ,tg.],1 < i <[, wheretl, = min(t},z € Gy)
andtg, = max(t;,r € G;). We number the groups in such
a way thattf, < t’ém. Then, if|G1| > 2, by Lemma B.6,
attimety, , (V UG, N(V UG,)) is aK-consistent network;
if |G1| = 1, then by Lemma B.1{V U G1,N'(V U Gy)) is
a K-consistent network at time;, . Similarly, by applying
Lemma B.6 (or Lemma B.1) tG/, ..., G;, we conclude that
evetually, at time*, (V U W, N (V U W)) is a K-consistent
network. |

If m = 1, then by Lemma B.1, the

Theorem 3Suppose a set of nodég, ={z1,...xnm}, m > 1,
join a K-consistent networkV, A’(V)). Then, each node,
x € W, eventually becomes an S-node.

Proof: Similar to the proof ofTheorem 2in [6]. |
S

B.3 Communication cost of join protocol
Theorem 4Suppose a set of nodég, = {z1,...a2m}, m > 1,

Lemma B.6 Suppose a set of nodd¥, = {z1,...2m}, m > join a K-consistent networkV, N'(V')). Then, for any, = €

2, join a K -consistent networkV, N'(V')) concurrently. Then
attimet¢, (V U W, N (V UW)) is a K-consistent network.

19[6] presents an example of how to group nodes following the steps for
K = 1. SeeFootnote 16in [6].
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W, the total number of CpRstMsg and JoinWaitMsg sent by
is at mostd + 1.

Proof: Suppose in statusopying whenz receives &CPRIly
from nodeg, it finds that there exists an attach-level, level-
1,0 <1 <k, wherek = |csuf(z.ID,g.ID)| for itself in
g-table. (There must exist such a nogeand level¢, since
z.ID is unique and at leagV,(4_1). .0 < K.) Thenz
changes status teaiting. So far,z has sent outat most1 CP
(one for requesting a level of neighbor, from level-0 to level-
[). In statuswaiting, z sendsJWto w1, us2, and so on until a
nodeu; sends a positive reply te. For eachs;, 2 < j' < j,
d—1>|esuf(z.ID,u;.ID)| > |csuf(z.ID,uj_1.I1D) >

. Henceg can at most send— ¢ JWin statuswaiting. There-
fore, the total number &P andJWsent byz is at mostd + 1.

|

Theorem 5 Suppose node joins a K-consistent network
(V,N(V)), |V] n. Then, the expected number of Join-
NotiMsg sent byz is 37— 2 P;(n) — 1, where Py(n) is
SOOI 1O N nd) . pny for1 < i < d — 1,

=0 C(b—1,n)
. K—1 1.4 . min(n—j,B) C(B,k)C(b*—b%" % n—k—j
ISZ]':O C* 1 -1,7) k:Ign—jJ e )C(‘(bdfl,n) ])’

whereB = (b—1)b¢~"1;and Py_1(n) is 1 — Z?;g P;j(n).

Proof: Supposé&/ Nty = V,. Thenz needs to notify all
the nodes irV,,. By Proposition B.6, there exists a nodg,
u, = A(z). Then,z sends alWto u,, howeverz sendsIN
to any other node iV, (by Proposition B.1, for any node in
V., other thanu,, z will send aJN). Hence, the number of
JNz sends igV,,| — 1. LetY = |w| andZ = |V,|. We
denote the probability thaf equalsj given|V| = n asP;(n),

j € [d]. Then,Pj(n) = P(|V,| > K A [Vy1..] < K), i.e.,
Pj(n) = P(|Va[j—1)..20)] = K A |Va..000] < K). Hence,
we have de1

E(Z) = E(E(Z|Y)) = Y (E(Z]Y =))Pi(n) (1)
=0

i)) first, givenY = 4, V, =

We derive E(Z|Y

H nodes inV with suffix z[¢ — 1]...z[0], K < H < n.
Then, IDs of theh nodes with suffixz[]...z[0] are drawn from
b?=i=1 _ 1 possible values (any ID with suffix[i]...z[0] ex-
ceptz.ID), H — h IDs are drawn from(b — 1)b¢~*~! pos-
sible values (any ID that has suffi{; — 1]...z[0] but does
not have suffixz[z]...z[0]), andn — H IDs are drawn from

b — b?—* possible values (any ID that does not have suf-
fix z[¢ — 1]...z[0]). Hence, forl < i < d -1, Py(n) =

K- —1—i . min(n,B) C(B,k)C(b*—b%"  n—k—j
S O - 1,5) S B

whereB = (b — 1)b¢—" 1,

Finally, fori = d — 1, since each ID is uniquez.I1D
is different than the ID of any node ifv. Therefore,
|Vala—1]...2/0)] = O is always true, independent of whether
|Vala—2)...of0)| > K is empty or not.

Py_1(n) P(|Vaja—11...o00] < KA Vyia—2..2i0)] > K)
P(|Vaja—21..000] > K)

1 — P(|Vyia—2]...a00]| < K)

1-— P(|Vz[0]| <K

V([Vapo| > K A Vapjeo)] < K) V...

V(IVaia—3)...cf0]l > KA |Vaia—2..zi0] < K))
d—2

1-> " Pi(n)
=0

Plug P;(n) into Equation 1, we geE(Z). The expected num-
ber of IN z sends during its join i€ (Z) — 1. |

Theorem 6 Suppose a set of nodé¥, = {z1,...m}, m > 2,
join a K-consistent networkV, A’(V')), |V| = n. Then for
any noder, x € W, an upper bound of the expected number
of JoinNotiMsg sent by is Y7 (242 P;(n), whereP;(n)

is defined in Theorem 5.

Proof: See the proof oTheorem 5in [6]. |

Corollary B.8 Suppose a set of nodeB/ = {z1,...2m},

Vali—1]..z[o]- Since in a hypercube network, the node IDs are m > 2, join a K-consistent networkV, N'(V)). Then for

distributed randomly in the ID spa¢], the expect number of
nodes inV” whose IDs have suffix[i — 1]...z[0] is ;:. Hence,
E(Z|Y =1i) = &.

Next, we computeP’;(n), ¢ € [d — 1]. In general, IDs of
nodes inV’ can be drawn froma? — 1 possible values. That is,
foranyy, y € V, y.ID could be any value from 0 t&? — 1
exceptz.ID.

If i =0, then|V,q| < K, i.e., there is less thaR' nodes
in V" with suffix z[0]. Suppose there arle nodes inV with
suffix z[0], 0 < h < K. Then, IDs of thesé nodes are drawn
from b1 — 1 possible values (all possible IDs with suffix
z[0] exceptz.ID); while IDs of the othem — h nodes are
drawn fromb? — b9~1 values,n = |V|. Therefore,Py(n)

K—1 (b '—1,)C? b~ n—j)
ijo C(bi—1,n)

If 1 < i < d-1, then |V;_1)...0 = K| and
|Vari...zfo]l < K. Thatis, there are onlj nodes inV with
suffix z[i]...z[0], where0 < h < K, however, there are
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any noder, x € W, an upper bound of the expected number
of messages in the form of SN§) or SNRIyg, y) sent byz,

y # z,i8 Y0y (2 (d — i — 1)) P;(n), wheren = |V| and
P;(n) is defined in Theorem 5.

Proof: See the proof o€orollary A.6 in [6]. |

The upper bound defined in Theorem 6 is also an upper
bound for the expected number of messages in the forim-of
SysNotiMsgSee Section A.2 in [6] for arguments. Lastly, The
number of messages in the formRRNandRNRIyis O (K db),
becauser needs to inform each neighbor thatbecomes a
reverse-neighbor of it, by sendingRN SomeRN may be
replied (when the status of the receiver keptibig not con-
sistent with the status of the receiver). Actually, soRi¢are
piggyback’ed with some other messages, suciVERlyand
JNRIly Hence, the number of messages in the forrRifand
RNRIythat is related to a joining node is at m@st db.



