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Abstract

Several proposed peer-to-peer networks use hypercube
routing for scalability. In a previous paper, we showed that
consistency of neighbor tables in hypercube routing guaran-
tees the existence of a path from any source node to any desti-
nation node. Consistency, however, can be broken by the fail-
ure of one node. To improve the robustness of hypercube rout-
ing, we generalize the concept ofconsistencytoK-consistency
for K � 1. We then show that aK-consistent hypercube
routing network provides at leastK disjoint paths from any
source node to any destination node with a probability close to
1. The first objective of this report is the design and specifica-
tion of a new join protocol together with a proof that it gener-
atesK-consistent neighbor tables for an arbitrary number of
concurrent joins (under the assumption that there is no concur-
rent leave or failure). To do so, we construct a more general
definition ofC-set treethan our previous one as the concep-
tual foundation for protocol design and reasoning aboutK-
consistency. Both the new protocol and proof require major
extensions to the ones in our previous paper to generalize them
from 1-consistency toK-consistency.

The second objective of this report is the design and evalu-
ation of a failure recovery protocol forK-consistent networks.
From simulation experiments in which up to 50% of the nodes
in aK-consistent network failed (when a node fails, it becomes
silent), we found that, forK � 2, K-consistency was recov-
ered in every experiment. The third objective of this report is
to extend our join and failure recovery protocols such that they
construct and maintainK-consistent neighbor tables for net-
works whose nodes join and fail concurrently and frequently.
In particular, our join protocol is extended with rules to han-
dle failures of not only existing nodes but also other joining
nodes. These extended protocols, being implemented in our
prototype system named Silk, will be referred to as Silk pro-
tocols. From simulation experiments in which the number of
concurrent joins and failures was up to 50% of the initial net-
work size, we found that, forK � 2, Silk generated and main-
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tained K-consistent neighbor tables after the concurrent joins
and failures in every experiment. We also present an analysis
of the communication and storage overheads of Silk protocols
and show that Silk is scalable to a large number of network
nodes.

1 Introduction
Structured peer-to-peer networks are being investigated as a
platform for building large-scale distributed systems [8, 9, 12,
11, 14, 5]. These networks use location-independent naming
and routing schemes. Specifically, consider a set of (over-
lay network) nodes and a set of objects. Nodes and objects
have identifiers (IDs), which are fixed-length random binary
strings.1 Node and object IDs are drawn from the same ID
space. Object IDs are also callednames. The primary function
of each scheme [8, 9, 12, 11, 14, 5] isname resolution, that is,
mapping a name to a node. (In the literature, names are also re-
ferred to askeys, and name resolution referred to askey-based
routing.)

For efficient routing in these schemes, each node maintains
O(logn) pointers to other nodes, to be called neighbor point-
ers, wheren is the number of network nodes. To resolve a
name, the average number of application-level hops required
is O(logn) for every scheme except CAN [9], which main-
tainsr pointers per node and routing takesO(rn1=r) hops. For
these schemes, a simple measure of scalability is the number
of application-level hops between any two nodes. However,
the average distance traveled for each hop in the underlying
Internet (locality) is also important. Various ideas have been
proposed to improve routing locality [3, 2, 10, 1].

An important problem that has not been addressed ade-
quately is the design and specification of protocols together
with a proof that they construct and maintainconsistentneigh-
bor tables (tables containing neighbor pointers) for network
nodes that may join, leave, and fail concurrently. Of interest in
this report is a hypercube routing scheme used in several pro-
posed peer-to-peer systems [8, 11, 14, 5]. To implement the

1These IDs are typically generated using a hash function, such as MD5 or
SHA-1. Each ID can be represented as a sequence ofd digits of baseb.
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hypercube routing scheme in a dynamic, distributed environ-
ment, we need to address the following problems:2

� Given a set of nodes, a join protocol is needed for the
nodes to initialize their neighbor tables such that the ta-
bles areconsistent. (Hereafter, a “consistent network”
means a set of nodes with consistent neighbor tables.)

� Protocols are needed for nodes to join and leave a consis-
tent network such that the neighbor tables are still consis-
tent after a set of joins and leaves. When a node fails, a
recovery protocol is needed to re-establish consistency of
neighbor tables.

� A protocol is needed for nodes to optimize their neighbor
tables.

Solving all of these problems is beyond the scope of a single
report. In a previous paper [7], we began by defining consis-
tency and constructing a conceptual foundation, calledC-set
trees, for protocol design and reasoning about consistency of
neighbor tables in hypercube routing. We also specified a join
protocol and constructed a rigorous proof that the join protocol
generates consistent neighbor tables for anarbitrary number of
concurrent joins. The crux of our proof is based upon induc-
tion on a C-set tree.

Neighbor table consistency guarantees the existence of a
path from any source node to any destination node in the net-
work. Such consistency however can be broken by the fail-
ure of a single node. To increase robustness and facilitate the
design of failure recovery protocols, our original goal was to
design a new join protocol that constructs aK-connected hy-
percube routing network, that is, a network in which neighbor
tables provide at leastK disjoint paths (K > 1) from any
source node to any destination node. However, we quickly re-
alized that for a smalln and some specific realization of node
IDs, it is possible that aK-connected network does not exist.
(Recall that node IDs are randomly generated.) This is because
in hypercube routing, only “qualified” nodes whose IDs have
the suffix (or prefix) required by a table entry can be stored in
the table entry (see Section 2).

We introduce in this reportK-consistency, K � 1, which
generalizesconsistencydefined in our previous paper [7] (1-
consistency is the same as consistency). Informally, neighbor
tables areK-consistent if and only if each table entry stores
min(K,H) neighbors, whereH is the number of qualified
nodes in the network for that table entry (a more precise defi-
nition is given in Section 3). It is easy to see that forH � 0,
K-consistent neighbor tables can be constructed for any real-
ization of node IDs. Moreover, in Section 3, we show that aK-
consistent network provides at leastK disjoint paths from any
source node to any destination node with a probability close to
1 provided thatn is not too small (e.g., the probability is higher
than 0.99 forn = 300 andK = 3.)

The first objective of this report is to design and specify a
new join protocol together with a proof that it generatesK-
consistent neighbor tables for an arbitrary number of concur-

2For simplicity, we will saynetworkinstead ofhypercube routing network
andtable instead ofneighbor tablewhenever there is no ambiguity.

rent joins. To do so, we first construct a more general defini-
tion of C-set tree than the one in [7]. While the new protocol
to be designed is similar in structure to the one in [7], major
extensions are needed to generalize it from1-consistencyto
K-consistency. In particular, in a1-consistent network, each
neighbor is stored at only one level of the neighbor table of a
node.3 ForK � 2, however, it is possible for a table to store
the same neighbor at multiple levels; as a result, we introduced
a new concept (thelowest attach-levelof a node) to ensure
protocol correctness. We then construct a rigorous proof that
the new protocol generatesK-consistent neighbor tables, for
K � 1, after an arbitrary number of concurrent joins (assum-
ing reliable message delivery and no node failure or leave).
The structure of the proof, based upon induction on C-set trees,
is similar to the one in [7] with major extensions added to gen-
eralize it from1-consistencyto K-consistency. We also ana-
lyze the expected communication cost of a join.

The second objective of this report is the design and eval-
uation of a failure recovery protocol, which handles recovery
from voluntary leave as a special case, forK-consistent net-
works.4 ForK � 2, we found a simple protocol based upon lo-
cal information that is very effective for failure recovery. From
2,080 simulation experiments in which up to 50% of network
nodes failed, we found that all “recoverable holes” in neighbor
tables due to failed nodes were recovered by our protocol for
K � 2, that is, the neighbor tables regainedK-consistency
after the failures ineveryexperiment.

The third objective of this report is to extend our join and
failure recovery protocols such that they construct and main-
tain K-consistent neighbor tables for networks whose nodes
join and fail concurrently and frequently. In particular our fail-
ure recovery protocol is extended to distinguish between “tran-
sient” nodes and “stable” nodes (T-nodes and S-nodes, respec-
tively, defined in Section 4.2). Our join protocol is extended
with rules to handle failures of both stable nodes and transient
nodes. These extended protocols, being implemented in our
prototype system named Silk, will be referred to as Silk proto-
cols. We ran 980 simulation experiments in which the number
of concurrent joins and failures was up to 50% of the initial
network size. We found that, forK � 2, Silk constructed and
maintainedK-consistent neighbor tables after the concurrent
joins and failures ineveryexperiment.

1.1 Related work

In PRR [8], a static set of nodes and preexistence of consis-
tent and optimal neighbor tables are assumed. CAN [9], Pas-
try [11], and SPRR [5] each has join, leave, and failure recov-
ery protocols, but the issue of neighbor table consistency was
not explicitly addressed. In Chord [12], maintaining consis-
tency of neighbor tables (“finger tables” in Chord) was con-
sidered difficult in the presence of concurrent joins in a large
network. A stabilization protocol was designed to maintain

3In our scheme, the node itself is stored at every level of its own table.
4When a node fails, it becomes silent. We do not consider Byzantine fail-

ures in this report.
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consistency of just one neighbor pointer per node (“successor
pointer”), which is sufficient to guarantee correctness of name
resolution.

In Tapestry [2], a join protocol was presented with a proof
of correctness for concurrent joins. Their join protocol is based
upon the use of multicast. The existence of a joining node is
announced by a multicast message. Each intermediate node
in the multicast tree keeps the joining node on a list (one list
per table entry being updated) until it has received acknowl-
edgments from all downstream nodes. In this approach, many
existing nodes have to store and process extra states as well as
send and receive messages on behalf of joining nodes.

Storing several qualified nodes in each neighbor table entry
was first suggested in PRR [8] to facilitate the location of repli-
cated objects. In Tapestry [14], storing two backup neighbors
in addition to the primary neighbor in each table entry (that
is, K = 3) was recommended for fault-tolerance and to im-
prove hypercube routing performance. However, these papers
do not have theK-consistency concept, nor protocols specified
to constructK-consistent neighbor tables.

1.2 Report organization

The balance of this report is organized as follows. In Section 2,
we present an overview of the hypercube routing scheme.
In Section 3, we present definitions of consistency andK-
consistency, and show that aK-consistent network provides
at leastK disjoint paths from any source node to any desti-
nation node provided thatn is not too small. In Section 4,
we present a generalized definition of C-set tree, introduce the
concept of lowest attach-level, and present a new join protocol.
(A pseudocode specification of the protocol is in Appendix A.)
The correctness properties and an analysis of the communica-
tion cost of the new join protocol are presented in Theorems 2
to 6. In Section 5, we present our failure recovery protocol
together with extensive simulation results. In Section 6, we
present protocol extensions to handle concurrent joins and fail-
ures (namely, Silk protocols) together with extensive simula-
tion results. In Section 7, we further investigate storage and
communication overheads of Silk as a function ofK. We con-
clude in Section 8.

2 Overview of Hypercube Routing Scheme
In this section, we briefly introduce the hypercube routing
scheme, following the notation and terminology in PRR [8].
Consider a set of nodes. Each node has a unique ID, which is a
fixed-length random binary string. A node’s ID is represented
by d digits of baseb. For example, a 160-bit ID can be repre-
sented by 40 Hex digits (d = 40, b = 16). Hereafter, we use
x:ID to denote the ID of nodex.

Given a message with destination node ID,z:ID, the objec-
tive of each hypercube routing step is to forward the message
from its current node, sayx, to a next node, sayy, such that the
suffix (or prefix) match betweeny:ID andz:ID is at least one
digit longer than the match betweenx:ID andz:ID.5 If such

5In this report, we follow PRR [8] and use suffix matching, whereas Pas-

a path exists, name resolution is achieved inO(logb n) steps
on the average andd steps in the worst case.

To implement hypercube routing, each node maintains a
data structure, calledneighbor table. The entryj at level i,
0 � j � b� 1, 0 � i � d� 1, referred to as the (i; j)-entry, in
the table of nodex contains link information to nodes whose
IDs andx:ID share a common suffix of lengthi digits, and
whoseith digit is j.6 These nodes are said to beneighbors
of x. The link information for each neighbor consists of the
neighbor’s ID and its IP address. For simplicity, we will use
“neighbor” or “node” instead of “node’s ID and IP address”
whenever the meaning is clear from context.

If multiple nodes exist with the required suffix of the (i; j)-
entry, then a subset of these nodes, chosen according to some
criterion, may be stored in the entry with the “nearest” one
designated as theprimary(i; j)-neighbor. Each node also
keeps track of itsreverse-neighbors. Nodex is a reverse(i; j)-
neighbor of nodey if y is a (i; j)-neighbor ofx. Figure 1
shows an example neighbor table, where IP addresses of the
neighbors are omitted. The number to the right of each en-
try is the required suffix for that entry. An empty entry in-
dicates that there does not exist a node in the network whose
ID has the required suffix. Consider a message being routed
from source 21233 to a destination node, say 03231. The mes-
sage is first forwarded to the primary(0; 1)-neighbor of 21233,
which is 33121 in Figure 1, then to the primary(1; 3)-neighbor
of 33121, say, 13331, and so on, until it reaches 03231.
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01100

33121
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21233

22303

13113

00123
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21233

0233

1233

2233

3233

10233

21233

03233

01233

11233

31233

21233

11233

21233

level 4 level 3 level 2 level 1 level 0

03133

Neighbor table of node 21233  ( b=4, d=5)

Figure 1. An example neighbor table

3 K-consistent Networks
Constructing and maintaining consistent neighbor tables is an
important design objective for structured peer-to-peer over-
lay networks. We next present a rigorous definition of con-
sistency from [7] and then introduce a stronger property,
K-consistency, for the hypercube routing scheme. Table 1
presents notation used throughout this report.
Definition 3.1 Consider a networkhV;N (V )i. The network,
or N (V ), is consistentif for any nodex, x 2 V , each entry in
its table satisfies the following conditions:

(a) If Vj�x[i�1]:::x[0] 6= ;, i 2 [d], j 2 [b], then there exists a
nodey, y 2 Vj�x[i�1]:::x[0], such thaty 2 Nx(i; j).

(b) If Vj�x[i�1]:::x[0] = ;, i 2 [d], j 2 [b], thenNx(i; j) = ;.

Intuitively, part (a) in the above definition states that for
each table entry, if there exists at least one node in the network

try [11], Tapestry [14], and SPRR [5] use prefix matching. The choice is
arbitrary and conceptually insignificant.

6We count digits in an ID from right to left, with the 0th digit being the
rightmostdigit.
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Notation Definition
hV;N (V )i a hypercube network:V is the set of nodes in the

network,N (V ) is the set of neighbor tables
[`] the setf0, ...,`� 1g, ` is a positive integer
d the number of digits in a node’s ID
b the base of each digit
x[i] theith digit in x:ID
x[i� 1]:::x[0] suffix of x:ID; denotes empty string ifi = 0
x:table the neighbor table of nodex
j � ! digit j concatenated with suffix!
j!j the number of digits in suffix!
Nx(i; j) the set of nodes in(i; j)-entry ofx:table, also

referred as the(i; j)-neighborsof nodex
Nx(i; j):size the number of nodes inNx(i; j)
Nx(i; j):first the first node inNx(i; j)
csuf(!1; !2) the longest common suffix of!1 and!2
Vli:::l0 asuffix setof V , which is the set of nodes inV ,

each of which has an ID with the suffixli:::l0
jV j the number of nodes in setV

Table 1. Notation
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Figure 2. Percentage of disconnected source-destination pairs for

different K values

that has the required suffix of the entry, then the entry must
not be empty and it is filled with at least one node having the
required suffix. Part (b) in the above definition states that if the
network does not have any node with the required suffix of a
particular table entry, then that table entry must be empty.

Definition 3.2 Consider two nodes,x and y, in network
hV;N (V )i. If there exists a neighbor sequence (a path),
(u0; :::; uk), k � d, such thatu0 is x, uk is y, andui+1 2
Nui(i; y[i]), i 2 [k], theny is reachable from x, or x can
reachy, in k hops.

In a consistent network, every node is reachable from every
other node. If many nodes may fail in a network, an approach
to improve robustness is to store in each table entry multiple
qualified nodes, i.e., nodes with the required suffix for the en-
try. We define aK-consistent (hypercube routing) network as
follows:

Definition 3.3 Consider a networkhV;N (V )i. The network,
or N (V ), satisfiesK-consistency, K � 1, if for any nodex,
x 2 V , each entry in its table satisfies the following condi-
tions:

(a) If Vj�x[i�1]:::x[0] 6= ;, then Nx(i; j):size =
min(K; jVj�x[i�1]:::x[0]j), i 2 [d], j 2 [b], and
Nx(i; j) � Vj�x[i�1]:::x[0].

(b) If Vj�x[i�1]:::x[0] = ;, i 2 [d], j 2 [b], thenNx(i; j) = ;.

Definition 3.3 is a generalization of Definition 3.1. Intu-
itively, part (a) states that if setVj�x[i�1]:::x[0] (the set of nodes
in V with suffix j � x[i� 1]:::x[0]) is not empty, thenNx(i; j)
should be filled with eitherK nodes inVj�x[i�1]:::x[0] or all of
the nodes ifjVj�x[i�1]:::x[0]j < K. Part (b) remains the same.
It is easy to see thatK-consistency is a stronger property than
consistency. In particular, aK-consistent network,K � 1, is
a consistent network. In the balance of this report, for each
nodex, we chooseNx(i; x[i]):first to bex itself, i 2 [d], for
efficient routing.

To study the robustness ofK-consistent networks in the
presence of failures, we conducted simulation experiments as
follows: For every node in a network ofn nodes, each entry
in its neighbor table was filled withK neighbors if there were
K or more qualified nodes in the network for that entry; oth-
erwise, all qualified nodes (if any) were stored in the entry.
We then randomly pickedf nodes and let them fail. Next, we
counted the number of disconnected source-destination pairs
in the network. By a disconnected source-destination pair,
(x; y), we mean that bothx andy have not failed butx can-
not reachy. Each simulation is identified by a combination of
n, b, d, K andf values, wheref is the number of failed nodes
and the maximum value off is 20% ofn. For each combina-
tion, we ran five simulations and calculated the average value
of the percentage of source-destination pairs that became dis-
connected. Figure 2 shows some simulation results. First, note
that the results are insensitive to the value ofd. In each plot,
for eachK value, the two curves for two differentd values are
almost the same. In Figure 2, we can distinguish three curves
in each plot, with the top curve beingK = 1 and the bot-
tom K = 3. Second, whenK is increased from 1 to 2, the
percentage of disconnected pairs decreases dramatically. For
K = 3, even after 20% of the nodes have failed, the number
of disconnected source-destination pairs is less than 1% of all
source-destination pairs. The results also show that increasing
the value ofb from 4 to 16 leads to a significant reduction in
the percentage of disconnected source-destination pairs. This
is because with a largerb, more neighbors are stored in a table
(the number is proportional toKb logb n).

As expected, the simulation results show that with more
neighbors stored in each entry, a network is more robust in the
presence of failures. (In fact, it is also easier for the network
to recover from failures and maintain consistency of neighbor
tables, as shown in Section 5.)

Multiple neighbors stored in each table entry provide al-
ternative paths from a source node to a destination node, and
some of them are disjoint. More precisely, we say that two
paths from source nodex to destination nodey aredisjoint iff
any node in each path that is neitherx nory does not appear in
the other path. Further, a set of paths fromx to y aredisjoint
iff every pair of paths in the set are disjoint. For example, let
a, b, andc denote nodes. Then the following paths are disjoint:
x! y, x! a! y, andx! b! c! y. 7

7Note that nodes here are user machines in a peer-to-peer network. Thus,
it is possible for two disjoint paths in a hypercube routing network to share a
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Theorem 1 In a K-consistent network,hV;N (V )i, for any
two nodes,x and y, x 2 V , y 2 V and x 6= y, a lower
bound of the probability that there exist at leastK disjoint

paths fromx to y is (1�K�1
n�1 )

Pn
i=K

C(bd�1;i)C(bd�bd�1;n�i)
C(bd;n)

,

whereC(X;Y ) is the number ofY -combinations ofX objects.

To prove Theorem 1, we first present two lemmas. Proofs
of these lemmas are presented in Appendix B.1.

Lemma 3.1 In a K-consistent network,hV;N (V )i, for any
two nodes,x andy, x 2 V , y 2 V andx 6= y, if y 62 x:table,
then there exist at leastK disjoint paths fromx to y.

Lemma 3.1 says that in aK-consistent network, if destina-
tion nodey is not a neighbor stored in the table of nodex, then
at leastK disjoint paths exist fromx to y. However, if desti-
nationy is stored inx:table, then a tight lower bound of the
number of disjoint paths fromx to y depends upon whethery
is stored inNx(0; x[0]). Lemma 3.2 summarizes all the cases.

Lemma 3.2 In a K-consistent network,hV;N (V )i, for any
two nodes,x and y, x 2 V , y 2 V and x 6= y, if y 62
Nx(0; x[0]), then there exist at leastmin(K; jVy[0]j) disjoint
paths fromx to y; if y 2 Nx(0; x[0]), then there exist at least
min(K; jVy[0]j)� 1 disjoint paths fromx to y.

Proof of Theorem 1: Let A be the event that there exist at
leastK disjoint paths fromx to y, andB be the event thaty 62
Nx(0; x[0]) (which includesy 62 x:table andy 2 x:table^y 62
Nx(0; x[0])). For any event X, letP (X) denote the probability
of X . We first deriveP (A ^ B).

P (A ^B) = P (AjB)P (B)

P (AjB) is the probability that there exist at leastK disjoint
paths fromx to y, giveny 62 Nx(0; x[0]). By Lemma 3.2, if
y 62 Nx(0; x[0]), then there exist at leastmin(K; jVy[0]j) dis-
joint paths fromx toy. Thus,P (AjB) = P (min(K; jVy[0]j) =
K) = P (jVy[0]j � K). jVy[0]j � K means that there exist at
leastK nodes inV with suffix y[0].

P (AjB) = P (jVy[0]j � K) =
nX

i=K

C(bd�1; i)C(bd � bd�1; n� i)

C(bd; n)

We next deriveP (B). LetK 0 be the number of neighbors
stored inNx(0; x[0]) other thanx itself. ThenK 0 � K � 1.

P (B) = 1� P (y 2 Nx(0; x[0])) � 1�
K � 1

n� 1

Combining the above results, we have
P (A) � P (A ^B)

= P (AjB)P (B)

= P (B)
nX

i=K

C(bd�1; i)C(bd � bd�1; n� i)

C(bd; n)

� (1 �
K � 1

n� 1
)

nX

i=K

C(bd�1; i)C(bd � bd�1; n� i)

C(bd; n)

Figure 3 plots the lower bound of the probability that there
exist at leastK disjoint paths for every source-destination pair

router in the underlying Internet. This would not be a reliability concern since
routers are generally much more resilient than user machines.
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Figure 4. Simulation results on the fraction of source-destination

pairs with at least K disjoint paths

in a K-consistent network.8 Observe that whenn increases,
the probability lower bound approaches 1. For example, the
lower bound is higher than 0.99 forn = 300 andK = 3.

To validate the above analysis, we conducted simulations
to evaluate the number of disjoint paths for each source-
destination pair in aK-consistent network. In each simulation,
there was a setV of n nodes, each with a randomly generated
ID. The neighbor table of each node was constructed accord-
ing to Definition 3.3 andNx(i; x[i]):first = x for all x 2 V ,
i 2 [d]. Then for each source-destination pair, the number of
disjoint paths from source to destination was counted. For each
combination ofb, d, n andK values, we ran five simulations
and obtained the average value of the ratio of the number of
source-destination pairs that have at leastK disjoint paths to
the total number of source-destination pairs. Figure 4 presents
our simulation results. Observe that the results in Figure 4 are
much closer to 1 than the corresponding lower bound results
in Figure 3, as expected. For example, the fraction of source-
destination pairs with at leastK disjoint paths is greater than
0.996 forn = 300, K = 3, andb = 16 in Figure 4(b) and
greater than 0.9999 forn = 300, K = 3, andb = 4 in Fig-
ure 4(a).

4 Join Protocol forK-consistency

Analysis and simulation results in the previous section demon-
strate the advantages ofK-consistency. We next design a
new join protocol that constructs and maintainsK-consistent
neighbor tables for concurrent joins. Design of the join proto-
col for K-consistency,K � 1, is based on our prior work for

8We observed that this probability is insensitive to the value ofd. Differ-
ences between results in (a) and (b) of Figure 3 for the sameK are due to
differentb values for (a) and (b).
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K = 1 [7]. Major extensions are needed, which are presented
in Sections 4.1 and 4.2.

In designing the protocol for a node to join network
hV;N (V )i, we make the following assumptions: (i)V 6= ;
and hV;N (V )i is a K-consistent network, (ii) each joining
node, by some means, knows a node inV initially, (iii) mes-
sages between nodes are delivered reliably, and (iv) there is no
node deletion (leave or failure) during the joins.

4.1 Generalized C-set tree

In [7], we definedC-set treesas a conceptual foundation for
reasoning about 1-consistency and guiding our protocol de-
sign. In this section, we present generalized definitions as well
as correctness conditions for reasoning aboutK-consistency.
We begin with a generalized definition for thenotification set
of x regardingV , denoted byV Notify

x . Suppose nodex joins
a networkhV;N (V )i. Then, intuitively,V Notify

x is the set of
nodes inV that need to update their tables ifx were the only
node that joinshV;N (V )i.

Definition 4.1 Suppose a set of nodes,W = fx1,...,xmg,m �
1, join a K-consistent networkhV;N (V )i. For any nodex,
x 2 W , if jVx[k�1]:::x[0]j � K and jVx[k]:::x[0]j < K, k 2 [d],
thenV x[k�1]:::x[0] is thenotification set of x regardingV .

Given V and x, as K is increased from 1, the set
V Notify
x may get larger (never smaller). For instance,

supposex =10261 (b = 8; d = 5), and V =
f13061; 31701; 00261; 10353g. If K = 1, thenV Notify

x =
f00261g; if K = 2, then V Notify

x = f00261; 13061g; if
K = 3, thenV Notify

x = f00261; 13061; 31701g.
Next, we introduce the generalized concept of a C-set

tree. When a set of nodesW join a K-consistent network
hV;N (V )i, the tasks of a join protocol are to update neigh-
bor tables of nodes inV and to construct tables for nodes in
W . A joining node can copy neighbor information from nodes
in V to reach nodes inV . However, how to establish neighbor
pointers from nodes inV to nodes inW and between nodes in
W is a more complex task. We use C-set trees as a conceptual
tool that guides protocol design to establish these pointers. In-
tuitively, a C-set tree organizes nodes inV that need to update
their tables and nodes inW into a tree, if the notification sets
regardingV (noti-sets, in short) of all joining nodes are the
same. Generally, the noti-sets of all nodes inW may not be
the same. Then, nodes inW with the same noti-set belong to
the same C-set tree and the C-set trees for all nodes inW form
a forest. Each C-set tree in the forest can be treated separately
in proving protocol correctness. In the balance of this subsec-
tion, our discussion is focused on a single C-set tree. We next
present the generalized definitions of aC-set tree templateand
aC-set tree realization.

Definition 4.2 Suppose a set of nodes,W = fx1; :::; xmg,
m � 1, join a K-consistent networkhV;N (V )i, and for any
nodex, x 2 W , V Notify

x = V! , wherej!j = k. Then the
C-set tree template associated withV and W , denoted by
C(V;W;K), is defined as follows:
� V! is the root of the tree (the root is not a C-set);

� If Wl1�! 6= ;, l1 2 [b], then setCl1�! is a child ofV! , and
l1 � ! is the associated suffix ofCl1�!;

� If Wlj :::l1�! 6= ;, 2 � j � d � k, l1,...,lj 2 [b], then set
Clj :::l1�! is a child of setClj�1 :::l1�!.

GivenV , W andK, the tree template is determined. For
example, suppose a set of nodes (b = 8; d = 5),W =f30633,
41633, 33153g, join aK-consistent networkhV;N (V )i, V =
f02700, 14233, 53013, 62332, 72430g, andK = 2. Then
C(V;W;K) is as shown in Figure 5(a). The value ofK affects
the tree template through the noti-sets of nodes inW . Sup-
poseK = 1 in the above example, then nodesf41633, 30633g
havef14233g as their noti-set, and node 33153 hasf53013,
14233g as its noti-set, and there would be two separate C-set
trees instead of one.

C33

C633

C53

C1633 0633C

C30633

C153

C3153

C33153

C33 C53

C633 C153

C41633 C30633 C33153

C31530633CC1633

C41633

V

V3

14233 30633

41633 30633

41633

41633

33153

33153

33153

(a) (b)

V

V314233 53013 14233 53013

30633

30633

33153

Figure 5. C-set tree

The task of the join protocol is to construct and update
neighbor tables such that paths are established between nodes;
conceptuallynodes are filled into each C-set inC(V;W;K).
For example, when 14233 updates its (1,3)-entry and fills
30633 into the entry, then conceptually 30633 is filled into
C33. We usecset(V;W;K) to denote the C-set tree realized
at the end of all joins, defined as follows. Hereafter, lettex
denote the end of the joining period [7] ofx, andte denote
max(tex1 ; :::; t

e
xm).

Definition 4.3 Suppose a set of nodes,W = fx1; :::; xmg,
m � 2, join a K-consistent networkhV;N (V )i, and for any
nodex, x 2 W , V Notify

x = V!, j!j = k. Then the C-set tree
realized at timete, is defined as follows:

� V! is the root of the tree.
� Cl1�! is a child ofV! , l1 2 [b], if Wl1�! 6= ; andCl1�! =
fx; x 2 (V [W )l1�! ^ (9u; u 2 V! ^x 2 Nu(k; l1))g is
not empty.

� Clj :::l1�! is a child ofClj�1:::l1�!, 2 � j � d� k, l1,...,lj
2 [b], if Wlj :::l1�! 6= ; andClj :::l1�! = fx; x 2 (V [
W )lj :::l1�! ^ (9u; u 2 Clj�1:::l1�! ^ x 2 Nu(k + j �
1; lj))g is not empty.

Note that in a C-set tree realization forK = 1, C-sets only
contain nodes inW , while forK � 2, a C-set may also contain
nodes inV! , the root set of the tree. Figure 5(b) shows one
possible realization of the tree template in Figure 5(a). By the
end of the joins, neighbor tables of nodes inV [ W areK-
consistent if the followingcorrectness conditionshold:

(1) cset(V;W;K) has the same structure asC(V;W;K).
Also, for any C-set,C!0 , it contains at leastK nodes with
suffix !0 if there exist at leastK nodes in(V [ W )!0 ;
otherwise, it contains all nodes in(V [W )!0 .
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(2) For each nodey, y 2 V! (root of the C-set tree), for each
child C-set ofV! , denoted asCl�!, l 2 [b], y has stored
min(K; jCl�! j) nodes with suffixl�! inNy(k; l), k = j!j.

(3) For each nodex, x 2 W , the C-set whose suffix isx:ID
is a leaf node in the tree. For any C-set along the path
from this leaf node to the root, if it has any sibling C-set,
Cl�!0 , thenx has storedmin(K; jCl�!0 j) nodes with suffix
l � !0 in Nx(k

0; l), k0 = j!0j.

4.2 Lowest attach-level

The join protocol forK-consistency is similar in structure to
the one for 1-consistency [7]. The status of a joining node
begins incopying, then changes towaiting, notifying, and
in systemin that order. A node in statusin systemis called
an S-node; otherwise, it is aT-node. Briefly, in statuscopy-
ing, a joining node,x, copies neighbor information from other
nodes to fill in most entries of its table. In statuswaiting, x
tries to “attach” itself to the network, i.e., to find an S-node
that will store it as a neighbor, which indicates (conceptually)
that it finds a position for itself in the C-set tree. In statusno-
tifying, x seeks and notifies nodes that are conceptually in the
subtree rooted at the parent set of the C-setx is filled into.
Lastly, when it finds no more node to notify,x changes status
to in systemand becomes an S-node.

However, there are major differences between the new join
protocol and the one in [7]. The first and the most obvious
difference is that in the join protocol forK-consistency, a join-
ing node,x, needs to search forK neighbors for each of its
table entry. Second, the conditions forx to change status from
copyingto waiting, and fromwaiting to notifyingare different,
as explained below. Third, while in statusnotifying, the set of
nodesx seeks and sends notifications to may become larger for
a largerK value (see Section 4.3).

To illustrate the last two differences, we first discuss how a
joining node is attached to aK-consistent network. First, for
K = 1, a neighbor,x, is only stored at one level in the table
of a nodey (however,y itself is stored at every level of its own
table). More specifically,x is only stored at level-k in y:table,
wherek = jcsuf(x:ID; y:ID)j, sincey itself is stored in
Ny(i; x[i]) for all level-i, 0 � i < k (bothx andy have the
required suffix for these entries). For example, node 00261 is
only stored at level-4 in the table of 10261, since 10261 itself
is already filled into entries at lower levels (for each suffix of
0261). ForK � 2, however, it is possible fory to storex at any
level that is no higher than level-k. Thus, level-k is the highest
level thatx can be stored iny:table. In constructing a correct-
ness proof for the join protocol, we found that a constraint on
the lowest level thatx can be stored iny:table is needed. We
call it thelowest attach-levelof x, or simply theattach-levelof
x for notational convenience.

Definition 4.4 Theattach-levelof nodex in the table of node
y (x 6= y ) is j, 0 � j � d � 1, determined as follows. (Letk
denotejcsuf(x:ID; y:ID)j.)

� j = 0 if Ny(i; x[i]):size < K for all i, 0 � i � k;

� j = i if there exists a leveli, such that0 < i � k,
Ny(i

0; x[i0]):size < K for all i0, i � i0 � k, andNy(i�
1; x[i� 1]):size = K;

� an attach-level does not exist ifNy(k; x[k]):size = K.

The attach-level defined above is thelowestlevel at which
nodex can be stored iny:table. One of the conditions for a
joining node,x, to change status fromcopyingto waiting is
that when it receives a reply from nodey, x finds that there
exists an attach-level for itself in the copy ofy:table received.
The condition forx to change status fromwaiting to notifying
is that when a node,z, which receives a request fromx to store
x in z:table, finds that there exists an attach-level, say level-j,
for x in z:table, storesx and sendsx a positive reply. Level-j
is then called theattach-level ofx in the network. In status
notifying, x seeks and notifies nodes that share the rightmostj
digits with it. Any node that receives such a notification from
x cannot storex into a level that is lower thanj. Conceptually,
this means that oncex is filled into a C-set, it will not be filled
into any ancestor of that C-set in its C-set tree.

4.3 Protocol description

Figure 6 presents the state variables of a joining node. Note
that each node stores, for each neighbor in its table, the neigh-
bor’s state, which can beS indicating that the neighbor is in
statusin systemor T indicating that it is not yet.

State variables of a joining nodex:

x:status 2 fcopying, waiting, notifying, in systemg, initially copying.
Nx(i; j): the set of (i; j)-neighbors ofx, initially empty.
x:state(y) 2 fT; Sg, the state of neighbory stored inx:table.
Rx(i; j): the set of reverse(i; j)-neighbors ofx, initially empty.

x:att level: an integer, initially 0.
Qr: a set of nodes from whichx waits for replies, initiallyempty.
Qn: a set of nodesx has sent notifications to, initiallyempty.
Qj : a set of nodes that have sentx aJoinWaitMsg, initially empty.
Qsr, Qsn: a set of nodes, initiallyempty.

Figure 6. State variables

The protocol messages are listed in Figure 7. They are simi-
lar to those in [7], with the following major extension: An inte-
ger is included inJoinWaitRlyMsgandJoinNotiMsgto explic-
itly indicate the attach-level of a joining node in the network.
In a JoinWaitRlyMsg, the integer indicates the attach-level of
the receiver, and in aJoinNotiMsg, the integer indicates the
attach-level of the sender.

Next, we describe the new join protocol informally. A spec-
ification of the protocol in pseudocode is given in Appendix A.
In statuscopying, a joining node,x, fills in most entries of its
table, level by level, as follows. To construct its table at level-i,
i 2 [d], x needs to find a node,gi, that shares the rightmosti
digits with it and send aCpRstMsgto gi to request a copy of
gi:table. We assume that each joining node knows a node in
V . Let this node beg0 for x. x begins withg0. Fromg0:table,
x finds a nodeg1 that shares the rightmost digit with it, and re-
questsg1:table from g1 if such a node exists and is an S-node.
Fromg1:table, x tries to findg2, and so on.
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Messages exchanged by nodes:

CpRstMsg, sent byx to request a copy of receiver’s neighbor table.
CpRlyMsg(x:table), sent byx in response to aCpRstMsg.
JoinWaitMsg, sent byx to notify receiver of the existence ofx

and request the receiver to storex, whenx:status is waiting.
JoinWaitRlyMsg(r; i; x:table), sent byx in response to

aJoinWaitMsg, whenx:status is in system.
r 2 fnegative, positiveg, i: an integer.

JoinNotiMsg(i; x:table), sent byx to notify receiver of the
existence ofx, whenx:status is notifying. i: an integer.

JoinNotiRlyMsg(r; Q; x:table; f ), sent byx in response to
aJoinNotiMsg.
r 2 fnegative, positiveg, Q: a set of integers,f 2 ftrue, falseg.

InSysNotiMsg, sent byx whenx:status changes toin system.
SpeNotiMsg(x; y), sent or forwarded by a node to inform receiver

of the existence ofy, wherex is the initial sender.
SpeNotiRlyMsg(x; y), response to aSpeNotiMsg.
RvNghNotiMsg(y; s), sent byx to notify y thatx is a reverse

neighbor ofy, s 2 fT; Sg.
RvNghNotiRlyMsg(s), sent byx in response to aRvNghNotiMsg,

s = S if x:status is in system; otherwises = T .

Figure 7. Protocol messages

In statuscopying, each time after receiving aCpRlyMsg
containing a neighbor table fromgi, i 2 [d], x checks whether
it should change status towaiting. Supposex receives a
CpRlyMsgfrom y. Then the condition forx to change status to
waiting is: (i) there exists an attach-level forx in the copy of
y:table included in the reply, or (ii) an attach-level does not ex-
ist for x and nodeu is a T-node, whereu = Ny(k; x[k]):first
andk = jcsuf(x:ID; y:ID)j. If the condition is satisfied,
thenx changes status towaitingand sends aJoinWaitMsgto y
(case (i) holds) or tou (case (ii) holds). Otherwise,x remains
in statuscopyingand sends aCpRstMsgto u.

In statuswaiting, the main task ofx is to find an S-node
in the network to storex as a neighbor by sending outJoin-
WaitMsg; another task is to copy more neighbors into its ta-
ble. When a node,y, receives aJoinWaitMsgfrom x, there
are two cases. Ify is not an S-node, it stores the message to
be processed after it has become an S-node. Ify is an S-node,
it checks whether there exists an attach-level forx in its ta-
ble. If an attach-level exists, say level-j, y storesx into level-j
through level-k, k = jcsuf(x:ID; y:ID)j, and sends aJoin-
WaitRlyMsg(positive, j, y:table) tox, to informx that the low-
est levelx is stored is level-j. Level-j is then the attach-level
of x in the network, stored byx in x:att level. If an attach-
level does not exist forx, y sends a negativeJoinWaitRlyMsg
includingy:table to x. After receiving the reply (positive or
negative),x searches the neighbor table included in the reply
for new neighbors to update its own table.

Note that if an attach-level does not exist forx in y:table,
then even if there is some entry, for whichx has the required
suffix, is not full (fewer thanK neighbors),y will not storex.
For example, when node 30061 receives aJoinWaitMsgfrom
node 00261, if in the table of node 30061, (2; 2)-entry is full
(thus an attach-level does not exists for 00261), then even if
(1; 6)-entry is not full, 30061 will not store 00261 into (1; 6)-
entry. As shown in our proofs, the (1; 6)-entry in this example
will eventually be filled up by other nodes.

Upon receiving a negative reply fromy, x has to send an-
other JoinWaitMsg, this time tou, u = Ny(k; x[k]):first.
This process may be repeated for several times (at mostd times
since each time the receiver shares at least one more digit with
x than the previous receiver) untilx receives a positive reply,
which indicates thatx has been stored by an S-node and there-
fore attached to the network.x then changes status tonotifying.
Note that beforex is attached to the network, communication
between the network and nodex is one-way:x can reach nodes
in the network. Afterx is attached to the network, communi-
cation becomes two-way: other nodes already in the network
can reachx now.

In statusnotifying, x searches and notifies nodes that share
the rightmostj digits with it, j = x:att level, so that these
nodes will update their neighbor tables if necessary.x starts
this process by sendingJoinNotiMsg, which includesj and a
copy ofx:table, to its neighbors at levelsj and higher. Each
JoinNotiMsgserves as a notification as well as a request for
a copy of the receiver’s table. Upon receiving aJoinNotiMsg,
a receiver,z, storesx into all (i; x[i])-entries that are not full
with K neighbors yet, wherej � i � jcsuf(x:ID; z:ID)j,
searchesx:table for new neighbors to updatez’s table, and
then replies tox with z:table. From the reply,x may find
more nodes that share the rightmostj digits with it and send
JoinNotiMsgto these nodes. Meanwhile,x searches the copy
of z:table for new neighbors to update its own table.

Whenx has received replies from all of the nodes it has
notified and finds no more node to notify, it changes status to
in systemand becomes an S-node. It then informs all of its
reverse-neighbors, i.e., nodes that have storedx as a neighbor,
that it has become an S-node. Ifx has delayed processingJoin-
WaitMsgfrom some nodes, it should process these messages
and reply to these nodes at this time.

4.4 Protocol Analysis

In this section, we present theorems about correctness of the
join protocol specified in Section 4.3, and our analytical results
for the communication cost of each join. Theorem 2 is proved
by induction on generalized C-set trees. Proofs of the theorems
are presented in Appendix B.

Theorem 2 states that if a set of nodes use the join protocol
to join aK-consistent network, then at the end of the joins,
the resulting network is aK-consistent network. Theorem 3
states that the join process of each node eventually terminates.
Recall thatte denotesmax(tex1 ; :::; t

e
xm), wheretex denotes the

end of the joining period of nodex.

Theorem 2 Suppose a set of nodes,W =fx1,...,xmg, m �
1, join a K-consistent networkhV;N (V )i. Then, at timete,
hV [W;N (V [W )i is aK-consistent network.

Theorem 3 Suppose a set of nodes,W =fx1,...,xmg, m � 1,
join a K-consistent networkhV;N (V )i. Then, each nodex,
x 2W , eventually becomes an S-node.

Next, we analyze the communication cost of each join.
Here we only present results for the number of messages of

8



0

5

10

15

20

25

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

U
p
p
e
r
 
b
o
u
n
d
 
o
f
 
E
(
J
)

Number of nodes in the network (n)

K=4, m=500
K=4, m=1000

K=3, m=500
K=3, m=1000

K=2, m=500
K=2, m=1000

K=1, m=500
K=1, m=1000

0

10

20

30

40

50

60

70

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

U
p
p
e
r
 
b
o
u
n
d
 
o
f
 
E
(
J
)

Number of nodes in the network (n)

 K=4, m=500
 K=4, m=1000
 K=2, m=500
 K=3, m=500

 K=3, m=1000
 K=2, m=1000
 K=1, m=500

 K=1, m=1000

(a) b=4, d=64 (b) b=16, d=40

Figure 8. Upper bound of expected number of JoinNotiMsg sent

by a joining node versusn for different values of K andm

typeCpRstMsg, JoinWaitMsg, andJoinNotiMsg,9 since these
messages may include a copy of a neighbor table and thus
could be big in size. Analysis of other types of messages is
presented in Appendix B. In Theorem 5,C(X;Y ) denotes the
number ofY -combinations ofX objects.

Theorem 4 Suppose a set of nodes,W = fx1,...,xmg,m � 1,
join aK-consistent networkhV;N (V )i. Then, for anyx, x 2
W , the total number of CpRstMsg and JoinWaitMsg sent byx
is at mostd+ 1.
Theorem 5 Suppose nodex joins a K-consistent network
hV;N (V )i, jV j = n. Then, the expected number of Join-
NotiMsg sent byx is

Pd�1
i=0

n
biPi(n) � 1, whereP0(n) is

PK�1
j=0

C(bd�1�1;j)C(bd�bd�1;n�j)
C(bd�1;n) ; Pi(n), for 1 � i < d� 1,

is
PK�1

j=0 C(bd�1�i�1; j)
Pmin(n�j;B)

k=K�j
C(B;k)C(bd�bd�i;n�k�j)

C(bd�1;n)
,

whereB = (b� 1)bd�i�1; andPd�1(n) is 1�
Pd�2

j=0 Pj(n).
Theorem 6 Suppose a set of nodes,W = fx1,...,xmg,m � 2,
join a K-consistent networkhV;N (V )i, jV j = n. Then for
any nodex, x 2 W , an upper bound of the expected number
of JoinNotiMsg sent byx is

Pd�1
i=0 (

n+m
bi )Pi(n), wherePi(n)

is defined in Theorem 5.

Figure 8 plots the upper bound of expected number ofJoin-
NotiMsgsent by a joining node according to Theorem 6, where
n is the number of nodes in the initial network,m is the num-
ber of nodes that join the network, andE(J) is the expected
number ofJoinNotiMsg. Notice that the upper bound increases
with K, however, for a fixed value ofK, the upper bound is
insensitive to the value ofm, and stays flat asn becomes large.

4.5 Network initialization

The join protocol can also be used for network initialization.
To initialize aK-consistent network ofn nodes, we can put
any one of the nodes, sayx, in V , and constructx:table as
follows:

� Nx(i; x[i]):first = x, x:state(x) = S, i 2 [d].
� Nx(i; j) = ;, i 2 [d], j 2 [b] andj 6= x[i].

Next, let the othern� 1 nodes join the network concurrently.
Each node is givenx to start with and executes the join proto-
col. Eventually, aK-consistent network is constructed.

9The number of replies to these messages are the same since request and
reply are one-to-one related.

5 Failure Recovery

In this section, we design a protocol for nodes to recover from
failures of other nodes in aK-consistent network. We consider
the “fail-stop” model only, i.e., when a node fails, it becomes
silent and stays silent. If some neighbor in a node’s table has
failed, we assume that the node will detect the failure after a
timeout duration, e.g., timeout after sending a periodic probe.
Note that the failure of a reverse-neighbor affects neitherK-
consistency nor consistency of neighbor tables. Therefore, if
a reverse-neighbor has failed, the reverse-neighbor pointer is
simply deleted without any recovery action. Hence, the proto-
col being designed is for recovery from neighbor failures only.

Consider a network ofn nodes that satisfiesK-consistency
initially. Supposef out of then nodes (chosen randomly) fail
at the same time or within a relatively short time duration. Our
objective in this section is to design a recovery protocol such
that some time after thef failures have occurred, neighbor ta-
bles in the remainingn�f nodes satisfyK-consistency again.
(In the next section, our protocols will be extended to handle
concurrent joins and failures.)

Suppose a node in the network, sayy, has failed andy has
been stored in the (i; j)-entry of the table of nodex. We say
that the failure ofy leaves ahole in the (i; j)-entry ofx:table.
To maintainK-consistency,x needs to find a qualified substi-
tute for y, i.e., x needs to find a nodeu such thatu has the
required suffix of the (i; j)-entry inx:table, u has not failed,
andu 62 Nx(i; j). (It is possible thatu fails later andx needs to
find a qualified substitute foru.) To determine whether or not
the network ofn� f remaining nodes satisfiesK-consistency,
we distinguish betweenrecoverable holesand irrecoverable
holes. A hole in the (i; j)-entry ofx:table is irrecoverable af-
ter thef failures if a qualified substitute does not exist among
then� f remaining nodes, i.e., every node in the set ofn� f
nodes that has the required suffix of the (i; j)-entry inx:table
is already inNx(i; j).

Theobjective of a failure recovery protocolis to find a qual-
ified substitute for every recoverable hole in each node’s neigh-
bor table. Irrecoverable holes, on the other hand, cannot possi-
bly be filled and do not have to be filled, according to Defini-
tion 3.3, for neighbor tables to satisfyK-consistency.

A difficulty in failure recovery is that individual nodes do
not have global information and cannot distinguish recoverable
from irrecoverable holes.10 We design our recovery process for
each hole in a node’s table as a sequence of search steps exe-
cuted by the node based on local information (its neighbors
and reverse-neighbors). After the entire sequence of steps has
been executed and no qualified substitute is found, the node
considers the hole to be irrecoverable and the recovery process
terminates. We then evaluate our failure recovery protocol in
a large number of simulation experiments. In a simulation ex-
periment, we can check how fast our failure recovery proto-
col finds a qualified substitute for a recoverable hole. Further-

10If the network is not partitioned, a broadcast protocol can be used to search
all nodes to determine if a hole is recoverable. A broadcast protocol, of course,
is not a scalable approach.
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more, we can check how often our failure recovery protocol
terminates correctly when it considers a hole to be irrecover-
able (since we have global information in simulation).

5.1 Protocol design

Suppose a node,x, detects that a neighbor,y, has failed and
left a hole in the (i; j)-entry,i 2 [d], j 2 [b], in x:table. Let!
denote the required suffix of the (i; j)-entry inx:table. To find
a qualified substitute fory with reasonable cost, we propose a
sequence of four steps, (a)-(d) below, based onx’s local infor-
mation. At the beginning of each step, except step (a),x sets a
timer. If the timer expires and no qualified substitute fory has
been found, thenx proceeds to the next step.

To determine whether some nodeu is a qualified substitute
for y, x needs to know whetheru has failed. In our proto-
col,x makes this decision based upon local information. More
specifically,x maintains a list of failed nodes it has detected so
far.11 x acceptsu as a qualified substitute fory if u is not on
the list,u has the required suffix!, andu 62 Nx(i; j).

Step (a)x deletesy from its table, then searches its neigh-
bors and reverse-neighbors to find a qualified substitute fory.

Step (b)x queries each of the remaining neighbors in the
(i; j)-entry of its table (if any). In each query,x includes a
copy of nodes inNx(i; j). When a node, sayz, receives such a
query fromx, it searches its neighbors and reverse-neighbors
to find a node that has suffix! and is not inNx(i; j). If one is
found,z replies tox with the node’s ID (and IP address).

Step (c)x queries each of its neighbors at level-i (all en-
tries) including neighbors in the (i; j)-entry, using a protocol
same as the one in step (b).

Step (d) x queries every one of its neighbors (all levels)
including neighbors at level-i, using a protocol same as the
one in step (b).

When the timer in step (d) expires and no qualified sub-
stitute has been found,x terminates the recovery process and
considers the hole left byy to be irrecoverable. (For clarity, we
have described just our basic recovery protocol, without vari-
ous optimizations that are possible in a protocol implementa-
tion.) The earlier a hole is recovered, the less is the commu-
nication overhead incurred. If a hole is recovered in step (a),
there is no communication overhead. If a hole is recovered in
step (b), at most2(K � 1) messages are exchanged,K � 1
queries andK � 1 replies. If a hole is recovered in step (c),
there are at most2Kbmessages, plus the messages exchanged
in step (b). If a hole is recovered in step (d), approximately
2Kb logb n messages, plus the messages in steps (b) and (c),
are exchanged.

11In implementation, a failed node only needs to stay in the list long enough
for all its reverse-neighbors to detect its failure. To keep the list from growing
without bound,x can delete nodes that have been in the list for a sufficiently
long time.

5.2 Simulation results

To evaluate the performance and accuracy of our failure recov-
ery protocol, we conducted 2,080 simulation experiments.12

We used the GTITM package [13] to generate network topolo-
gies. For a generated topology with a set of routers,n overlay
nodes (end hosts) were attached randomly to the routers. For
the simulations reported in Table 2, three topologies were used.
The 1000-node and 2000-node simulations used a topology
with 1056 routers. The 4000-node simulations used a topology
with 2112 routers. The 8000-node simulations used a topol-
ogy with 8320 routers. We simulated the sending of a message
and the reception of a message as events, but abstracted away
queueing delays. The end-to-end delay of a message from its
source to destination was modeled as a random variable with
mean value proportional to the shortest path length in the un-
derlying network.13

In each simulation, a network ofn nodes withK-consistent
neighbor tables was first constructed. Then a number,f , of
randomly chosen nodes failed. For 1000-node and 8000-node
simulations, thef nodes failed at the same time. For 2000-
node simulations and each specificK value, thef nodes failed
at the same time for 84 out of the 180 experiments; a Pois-
son process was used to generate failures in the balance of the
experiments, with half of the experiments at the rate of 1 fail-
ure per second and the other half at the rate of 1 failure every
10 seconds. For comparison, the timeout value used to de-
termine whether a neighbor has failed was 5 seconds, and the
timeout value used in each of the protocol steps (b)-(d) was 20
seconds. Therefore, most failure recovery processes ran con-
currently even when the Poisson rate was slowed to one failure
every ten seconds. For 4000-node experiments and each spe-
cific K value, thef nodes failed at the same time in 104 out
of the 116 experiments, with a Poisson process at the rate of 1
failure per second used in the balance of the experiments.

We conducted simulations for different combinations of
b, d, K, n and f values. For each network ofn nodes,
n 2 f1000; 2000; 4000; 8000g, four pairs of (b; d) were used,
namely: (4,16), (4,64), (16,8), and (16,40).14 Then, for each
(b; d) pair,K was varied from 1 to 5. For each (n, b, d,K) com-
bination,f was varied from0:05n to 0:1n, 0:15n, 0:2n, 0:3n,
0:4n, and0:5n (1540 experiments were run forf = 0:05n
to f = 0:2n, with approximately the same number of exper-
iments for each; 540 experiments were run forf = 0:3n to
f = 0:5n, with 180 experiments for each). In constructing
the initial K-consistent networks for simulations, we experi-
mented with four approaches to choose neighbors for each en-
try: (i) chooseK neighbors randomly from qualified nodes, (ii)
chooseK closest neighbors from qualified nodes, (iii) choose
K neighbors randomly from qualified nodes that are within a

12These 2,080 experiments together with the 980 experiments to be pre-
sented in Section 6 required several months of execution time on several work-
stations. A typical experiment took several hours to run on a Linux workstation
with 2.66 GHz CPU and 2 GB memory. Each simulation experiment for 8,000
nodes,b = 16, andK � 3 shown in Table 2 took 40 - 72 hours to run.

13The maximum end-to-end delay in 8000-node simulations was 969 ms.
14In Tapestry,b = 16 andd = 40, while in Pastry,b = 16 andd = 32.
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multiple of the closest neighbor’s distance, (iv) use our join
protocol in Section 4 to initialize table entries.

K;n Number of Number of K; n Number of Number of
simulations perfect simulations perfect

recoveries recoveries
1,1000 100 51 1, 2000 180 96
2,1000 100 100 2, 2000 180 180
3,1000 100 100 3, 2000 180 180
4,1000 100 100 4, 2000 180 180
5,1000 100 100 5, 2000 180 180

1,4000 116 65 1, 8000 20 14
2,4000 116 116 2, 8000 20 20
3,4000 116 116 3, 8000 20 20
4,4000 116 116 4, 8000 20 20
5,4000 116 116 5, 8000 20 20

Table 2. Results from 2,080 simulation experiments (f

was0:05n, 0:1n, 0:15n, 0:2n, 0:3n, 0:4n or 0:5n)

Table 2 shows results of 2,080 simulation experiments. In
a simulation, if all recoverable holes are recovered (thusK-
consistency maintained) at the end of the simulation, it is
recorded as aperfect recoveryin Table 2. In these simulation
experiments, every simulation forK � 2 finished as a perfect
recovery, i.e., every recoverable hole was recovered. Thus in
K-consistent networks, forK � 2, our failure recovery proto-
col is extremely effective.

Table 3 presents results on the cumulative fraction of recov-
erable holes that were recovered by the end of each step in the
recovery protocol. The results are from ten simulations for a
network with 4,000 nodes and 800 failures; the initial neighbor
tables were constructed using approach (iii), described above.
From Table 3, observe that step (d) in our recovery protocol
was seldom used. There was a dramatic improvement in the
recovery protocol’s performance whenK was increased from
1 to 2. Also observe that the fraction of recoverable holes that
were recovered after each step increases withK. ForK � 2,
more than 93% of recoverable holes were recovered within the
first two steps and more than 99.8% within the first three steps.
ForK � 3, more than 98.9% of recoverable holes were recov-
ered within the first two steps.

b; d;K n; f step (a) step (b) step (c) step (d)
4, 64, 1 4000, 800 0.451594 0.451594 0.920969 0.9988833
4, 64, 2 4000, 800 0.668176 0.938131 0.998077 1.000000
4, 64, 3 4000, 800 0.760213 0.98974 0.998774 1.000000
4, 64, 4 4000, 800 0.816133 0.997837 0.999252 1.000000
4, 64, 5 4000, 800 0.851577 0.999126 0.999736 1.000000

16, 40, 1 4000, 800 0.453649 0.453649 0.999093 1.000000
16, 40, 2 4000, 800 0.633784 0.932868 0.9998539 1.000000
16, 40, 3 4000, 800 0.716517 0.989295 0.9999861 1.000000
16, 40, 4 4000, 800 0.77311 0.997785 1.000000 1.000000
16, 40, 5 4000, 800 0.823924 0.999441 1.000000 1.000000

Table 3. Cumulative fraction of recoverable holes recovered

at each step

Table 4 shows the total number of holes, the number of ir-
recoverable holes, as well as the number of recoverable holes
recovered at each step for the same simulation experiments
shown in Table 3. Observe from Table 4 that even though
the total number of holes increased whenK was increased,
the number of recoverable holes recovered at step (a) also in-
creased withK. The number of recoverable holes recovered in

step (b) did not increase much withK; it actually declined in
steps (c) and (d).

b; d;K total irreco- number of recoverable
number verable holes recovered at each step
of holes holes step step step step not rec-

(a) (b) (c) (d) overed

4, 64, 1 13125 1484 5257 0 5464 907 13
4, 64, 2 28616 3660 16675 6737 1496 48 0
4, 64, 3 43323 5798 28527 8613 339 46 0
4, 64, 4 57462 7997 40370 8988 70 37 0
4, 64, 5 70798 10174 51626 8945 37 16 0

16, 40, 1 29803 4442 11505 0 13833 23 0
16, 40, 2 55977 8161 30305 14301 3203 7 0
16, 40, 3 81406 9945 51203 19493 764 1 0
16, 40, 4 107547 10500 75028 21804 215 0 0
16, 40, 5 132257 10696 100157 21336 68 0 0

Table 4. Total number of holes, irrecoverable holes, and re-

coverable holes recovered at each step,n=4000,f=800

5.3 Voluntary leaves

A voluntary leave can be handled as a special case of node
failure if necessary. When a node, sayx, leaves, it can actively
inform its reverse-neighbors and neighbors. To each reverse-
neighbor,x suggests a possible substitute for itself. When a
node receives a leave notification fromx, for each hole left by
x, it checks whether the substitute provided byx is a qualified
substitute. If so, the hole is filled with the substitute; otherwise,
failure recovery is initiated for the hole left byx.

6 Silk Protocols for Concurrent Joins and Fail-
ures

Consider aK-consistent network,hV;N (V )i. Suppose a set
of new nodes,W , join the network while a set of nodes,F ,
fail, F � V [ W andV � F 6= ;. Our goal in this section
is to design extended join and failure recovery protocols such
that eventually the join process of each node inW � F termi-
nates andh(V [W )�F;N ((V [W )�F )i is aK-consistent
network. These extended protocols will be referred to as Silk
protocols. In general, designing a failure recovery protocol to
provide perfect recovery is an impossible task; for example,
consider a scenario in which an arbitrary number of nodes in
V [W fail. On the other hand, we observed in Section 5 that
the basic failure recovery protocol achieved perfect recovery
for K-consistent networks, forK � 2, in which up to 50% of
the nodes failed. This level of performance, we believe, would
be adequate for many applications.

Design of Silk’s join and failure protocols in this section fol-
lows the Lam-Shankar approach [4] on how to compose mod-
ules. The service provided by a composition of the two pro-
tocols herein is construction and maintenance of K-consistent
neighbor tables. The join protocol is designed with the as-
sumption that the failure recovery protocol provides a “perfect
recovery” service, that is, for every hole found in the neighbor
table of a node, the node calls failure recovery and within a
bounded duration, failure recovery returns with a qualified sub-
stitute for the hole or the conclusion that the hole is irrecover-
able at that time. Following the protocol composition approach
in [4], we ensure that progress of the failure recovery protocol
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does not depend upon progress of the join protocol. Thus in the
extensions to be presented, failure recovery actions are always
executed before join actions.

6.1 Protocol extensions

When there are nodes joining a network, the network consists
of both S-nodes and T-nodes. Recall that if a node is in status
in system, it is an S-node; otherwise, it is a T-node. Silk’s
extensions to the basic join protocol in Section 4.3 and failure
recovery protocol in Section 5.1 are stated as a set of rules.

Rule 1 In filling a table entry with a qualified node, do not
choose a T-node unless there is no qualified S-node.

Rule 1 extends the basic failure recovery protocol as fol-
lows: When a node,x, locates a qualified substitute for a hole
in x:table using step (a), (b), (c), or (d) of the failure recov-
ery protocol, if the qualified substitute is an S-node, thenx
fills the hole with it and terminates the recovery process. How-
ever, if the qualified substitute is a T-node,x saves the T-node
in a waiting list for the entry and continues the recovery pro-
cess. Only when the recovery process terminates at the end
of step (d) without locating any S-node as a qualified substi-
tute, will x remove a T-node from the entry’s waiting list to fill
the hole (provided that the list is not empty). Also, because of
Rule 1, when a node searches among its neighbors and reverse-
neighbors to find a qualified substitute for a hole in its table, or
in response to a query from another node, it does not select a
T-node as long as there are S-nodes that are qualified.

Rule 1 extends the basic join protocol as follows: Consider
a node,x, that discovers a new neighbor,y, for one of its table
entries after receiving a message from another node.x can
storey in the table entry, if the table entry is not full withK
neighbors yet andy is an S-node, according to the following
steps. First,x checks if there exists any vacancy among theK
“slots” of the entry that is not a hole for which failure recovery
is in progress. If there exists such a vacancy,y is filled into it;
otherwise,y (an S-node) is filled into a hole in the entry and
the recovery process for the hole is terminated. On the other
hand, if the new neighbory is still a T-node, theny can be
stored in the entry if the total number of neighbors and holes
in the entry is less thanK. Otherwise,y (a T-node) is saved
in the entry’s waiting list and may be stored into the entry later
when the recovery process of a hole in the entry terminates.

Next, we present more extensions to the join protocol, pre-
sented as Rules 2-7. Rule 2 applies to both S-nodes and T-
nodes, while Rules 3-7 apply to T-nodes only.

Rule 2 A node cannot reply toCpRstMsg, JoinWaitMsgor
JoinNotiMsg, if the node has any ongoing recovery process at
the time it receives such a message.

When a node,x, receives aCpRstMsg, JoinWaitMsgor
JoinNotiMsg, if x has at least one recovery process that has not
terminated,x needs to save the message and process it later.
Each time a recovery process terminates,x checks whether
there is any more recovery process still running. If not,x can
process the above three types of messages it has saved so far.

Rule 3When a T-node detects failure of a neighbor in its ta-

ble, it starts a failure recovery process for each hole left by the
failed neighbor with the following exception, which requires
backtracking by the T-node.

Consider a T-node, sayx. In order to backtrack,x keeps
a list of nodes, (g0, ..., gi) to which it has sent aCpRstMsg
or aJoinWaitMsg, in order of sending times. Backtracking is
required if failure of the last node on the list,gi, is detected
under one of the following conditions: (i) whenx is in status
copyingand waiting for aCpRlyMsgfrom gi, (ii) when x is
in statuswaitingand waiting for aJoinWaitRlyMsgfrom gi, or
(iii) when x is in statusnotifyingand nodegi is currently the
only reverse-neighbor ofx (gi must be a node that has replied
positively to aJoinWaitMsgfrom x).

Note that under conditions (i) and (ii),x has not been at-
tached to the network. Under condition (iii), failure ofgi may
causex to be detached from the network. In each case,x back-
tracks by deletinggi (which has failed) from its table, setting
its status towaiting, and sending aJoinWaitMsgto gi�1, with
gi included in the message, to informgi�1 about the failure of
gi and requestgi�1 to storex into gi�1:table. If gi�1 has also
failed, thenx contactsgi�2, and so on. Ifx backtracks tog0
andg0 has also failed, thenx has to obtain another node from
the network to start joining from the beginning again.

Rule 4A T-node must wait until its status isnotifyingbefore
it can inform its neighbors, which will store it as a reverse-
neighbor. (This is to prevent a T-node from being selected as a
substitute for a hole before it is attached to the network.)

Rule 5When a T-node receives a reply with a substitute for
a hole in its table, if the T-node is in statusnotifying and the
substitute node should be notified (see condition for sending
out aJoinNotiMsgin Figure 15), then the T-node sends aJoin-
NotiMsg to the substitute node, even if the substitute node is
not qualified to be filled into the hole.

Rule 6 A T-node cannot change status toin systemif it has
any ongoing failure recovery process.

Rule 7 When a T-node changes status toin system, it must
inform all its neighbors, in addition to its reverse-neighbors,
that it has become an S-node.

6.2 Simulation results

We implemented the extended join and failure recovery pro-
tocols and conducted 980 simulation experiments to evaluate
them. Each simulation began with aK-consistent network,
hV;N (V )i, of n nodes (n = jV j). Then a setW of nodes
joined and a setF of nodes failed during the simulation. Each
simulation was identified by a combination ofb, d, K, n, and
jW j+ jF j values, wherejW j+ jF j is the total number of join
and failure events.K was varied from 1 to 5, (b; d) values
were chosen from (4,16),(4,64), (16,8) and (16,40), and three
values, 1600, 3200 and 3600, were used for the initial network
size (n). For 3200-node and 3600-node simulations, all joins
and failures occurred at the same time. For 1600-node simu-
lations, join and failure events were generated according to a
Poisson process at the rate of 1 event per second in 220 exper-
iments, 1 event every 10 seconds in 180 experiments, 1 event
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every 20 seconds in 60 experiments, and 1 event every 100
seconds in 60 experiments. K-consistent neighbor tables for
the initial network were constructed using the four approaches
described in Section 5.

At the end of every simulation, we checked whether the join
processes of all joining nodes that did not fail (nodes inW�F )
terminated. We then checked whether the neighbor tables of all
remaining nodes (nodes inV [W �F ) satisfyK-consistency.
Table 5 presents a summary of results of the 980 simulation ex-
periments. We observed that, forK � 2, in everysimulation,
the join processes of all nodes inW � F terminated and the
neighbor tables of all remaining nodes satisfiedK-consistency.
Each such experiment is referred to in Table 5 as a simulation
with perfect outcome.

K = 1 K = 2; 3; 4; 5
n Num. of Num. Num. of sim. Num. Num. of sim.

events of sim. w/ perfect of sim. w/ perfect
(jW j + jF j) outcome outcome

1600 200 (38+162) 16 16 64 64
1600 200 (110+90) 16 16 64 64
1600 200 (160+40) 12 12 48 48
1600 400 (85+315) 12 10 48 48
1600 400 (204+196) 12 11 48 48
1600 400 (323+77) 12 12 48 48
1600 800 (386+414) 24 22 96 96
3600 400 (81+319) 16 13 64 64
3600 400 (210+190) 16 15 64 64
3600 400 (324+76) 12 12 48 48
3600 800 (169+631) 12 9 48 48
3600 800 (387+413) 12 11 48 48
3600 548 (400+148) 12 10 48 48
3200 1600 (780+820) 12 9 48 48

Table 5. Results for concurrent joins and failures

In the protocol extensions, the recovery process for a hole in
a table has priority over a joining node in filling the hole. This
tends to prevent a joining node from getting a low attach-level
in the network, and thus from sending too manyJoinNotiMsg.
We conjecture that when joins and failures occur concurrently,
the number ofJoinNotiMsgsent by a joining node is compara-
ble to that in a failure-free scenario. To validate the conjecture,
we counted the number ofJoinNotiMsgsent by each joining
node in the simulation experiments. For each simulation, we
calculated the average number ofJoinNotiMsgsent by nodes
in W � F , and then compared the average number with the
upper bound on the expected number ofJoinNotiMsgsent by
a joining node in the absence of failures (for initial network
sizen andm joining nodes, such thatm = jW � F j and
n = jV � F j). The upper bound is calculated according to
Theorem 6. Table 6 presents results from 10 simulations for
jV j = 3600, which demonstrates that the average numbers
from simulations (for concurrent joins and failures) are com-
parable to the upper bounds from Theorem 6 (for concurrent
joins in absence of failures).

7 K vs. Maintenance Cost

As shown in previous sections, the larger theK value in a
K-consistent network, the more resilient is the network when
nodes fail and the easier it is for the network to recover from
failures and maintainK-consistency. However, these benefits

jV j = 3600, jW j = 387, jF j = 413 n = 3208, m = 366, no failures
K; b; d Average number K; b; d Upper bound
1, 4, 64 2.519125 1, 4, 64 2.399764
2, 4, 64 4.800546 2, 4, 64 5.501709
3, 4, 64 6.808743 3, 4, 64 8.952706
4, 4, 64 9.696721 4, 4, 64 12.253937
5, 4, 64 12.193989 5, 4, 64 14.925359
1, 16, 40 7.390710 1, 16, 40 6.814094
2, 16, 40 11.740437 2, 16, 40 11.842158
3, 16, 40 14.404371 3, 16, 40 13.861656
4, 16, 40 15.382513 4, 16, 40 14.633307
5, 16, 40 15.128415 5, 16, 40 15.553342

Table 6. Average number of JoinNotiMsg with failures vs.

without failures (upper bound)

come with a price. First, with a largerK, more neighbors are
stored in each table. As a result, each node has to send more
messages when it probes neighbors and exchanges information
with neighbors. Also, with more neighbors in a table, the big-
ger a message would be if it includes a copy of the table.15

Second, with a largerK, the overhead of a join to maintain
K-consistency is higher. For example, a joining node needs to
send moreJoinNotiMsg.

We first study the storage cost for maintainingK-
consistency. The number of neighbors stored in a node’s ta-
ble is used as a measure of storage cost. We ran simulations
for different combinations ofK, b, d, andn values to calcu-
late the average number of neighbors per node. In each sim-
ulation, neighbor tables were constructed according to Defi-
nition 3.3. Then the number of neighbors in each node’s ta-
ble was counted.16 For each combination of parameter val-
ues, we ran five simulations to obtain the average number of
neighbors per node. The results are shown in Figure 9, which
shows that the average number of neighbors in a node’s ta-
ble depends on the values ofb, K andn, but not on the value
of d. In Figure 9, in decreasing order of the average num-
ber of neighbors, the curves are forb = 16 andn = 5000,
b = 16 andn = 1000, b = 4 andn = 5000, andb = 4
andn = 1000. Note that the average number of neighbors
per node is approximatelybK logb n, given that node IDs are
uniformly distributed over the ID space. Similarly, the average
number of reverse-neighbors maintained by each node is also
approximatelybK logb n.

Next, we study the communication overhead of maintaining
K-consistency. Simulation results in Section 5 show that for
K � 2, most of recoverable holes can be recovered within the
first two steps, where the first step imposes no overhead and the
second step imposes at most2(K � 1) messages. Therefore,
maintenance overhead tends to be dominated by the overhead
of joins. Next, we evaluate the communication overhead of
a join for differentK values in the absence of failures, since
from simulation results in Section 6, we observed that the num-
ber of messages sent by a joining node in the presence of fail-

15In [7], we discussed how to reduce the size of messages that include a
copy of a table.

16The node itself is not included in the number, but a neighbor stored in
different entries of the table is counted multiple times. As a result, the total
number of neighbors per node does not depend on how the neighbors in each
entry are chosen from the set of qualified nodes in the network.
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Figure 10. Cumulative distribution of the number of JoinNotiMsg sent by a joining node

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5

A
ve

ra
ge

 n
um

be
r o

f n
ei

gh
bo

rs
 s

to
re

d 
pe

r t
ab

le

K

b=16, d=8, n=5000
b=16, d=40, n=5000
b=16, d=8, n=1000

b=16, d=40, n=1000
b=4, d=16, n=5000
b=4, d=64, n=5000
b=4, d=16, n=1000
b=4, d=64, n=1000

Figure 9. Average number of neighbors per node

ures is comparable to that in the absence of failures.

From Theorem 4, the combined number of messages sent
by a joining node in statuscopyingand statuswaiting is at
mostd + 1, which does not depend onK. However, the size
of the reply to each of these messages becomes larger asK
becomes larger, because each reply includes a neighbor ta-
ble. In Section 4.4, we presented an upper bound of the ex-
pected number ofJoinNotiMsg, and found that the larger the
K, the higher the upper bound. We next study the distribu-
tion of the number ofJoinNotiMsgsent by a joining node from
simulation results. In each simulation, initially the network
consisted ofn nodes withK-consistent neighbor tables, where
n 2 f1600; 6400g andK 2 f1; :::; 5g. Thenm nodes joined
the network,m = n=8 or m = n=4. The number ofJoinNo-
tiMsgsent by each node during the simulation was counted and
logged. For each combination of parameter values, we ran five
simulations, each time with a different seed for random num-
ber generation. The distribution of the number ofJoinNotiMsg
sent by a joining node was computed from results of the five
runs. Figure 10 presents distributions of the number ofJoinNo-
tiMsg for different values ofK,17 which shows that the larger
theK value, the smaller is the percentage of nodes that sent
a given number ofJoinNotiMsg. For the other types of join
protocol messages, the number of them sent by a joining node
may also increase withK but these are small messages (which
do not contain a neighbor table). Results of analysis of these
small messages are presented in Appendix B. In general, the
larger theK value, the more of each type of small messages
are sent.

17We observed from the results that the distributions are insensitive to the
value ofm whenn � m. Therefore we only present distributions form =
n=4.

8 Conclusions

We generalized the concept of consistency toK-consistency
(K � 1) to improve the robustness of a hypercube routing
scheme that is used in several proposed peer-to-peer networks.
We showed that aK-consistent network provides at leastK
disjoint paths to every source-destination pair with probability
close to 1. We then presented a generalized definition of C-set
trees for protocol design and reasoning aboutK-consistency.
We designed and specified a new join protocol together with
a proof that it generatesK-consistent neighbor tables for an
arbitrary number of concurrent joins under the assumption that
there is no concurrent leave or failure.

We next designed and evaluated a failure recovery proto-
col based upon local information. Extensions to the basic join
and failure recovery protocols to handle concurrent joins and
failures were then presented. For an initiallyK-consistent net-
work, the impact of concurrent joins and failures was studied
in a large number of simulation experiments. We found that
in every experiment, forK � 2, our protocols constructed
and maintainedK-consistent tables after the joins and failures.
These extended protocols are being implemented in our proto-
type system named Silk.

An observation from our study is that networks in which
each node maintains a large number of consistent neighbor
pointers are not only more resilient, but they alsorecover more
quickly and completelyfrom node failures than networks in
which each node maintains a small number of consistent neigh-
bor pointers. From our analytic and simulation results in Sec-
tions 3 to 6, we found that the improvement in network re-
silience fromK = 1 to K � 2 is dramatic. We conclude
that hypercube routing networks should beK-consistent with
K � 2. Figure 10 shows that forK � 4, most joining nodes
send a fairly small number ofJoinNotiMsg. Therefore, we rec-
ommend choosing a value ofK in the range of [2,4].
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A Pseudocode for Join Protocol in Section 4
We have presented the state variables of a joining node in Fig-
ure 6 and protocol messages in Figure 7. Variables in the top
part in Figure 6 are also used by nodes inV , the nodes in the
initial network, where for each nodeu, u 2 V , u:status =
in system, u:table is populated in a way that satisfies condi-
tions in Definition 3.3, andu:state(v) = S for every neighbor
v that is stored inu:table. Figures 11 to 16 present a pseu-
docode specification of the protocol, in whichx, y, u andv
denote nodes, andh, i, j andk denote integers.

When any node,x, storesy intoNx(i; j), y 6= x, x needs to
sends aRvNghNotiMsg(y; x:state(y)) to y, andy should reply
to x if x:state(y) is not consistent withy:status. For clarity
of presentation, we have omitted the sending and reception of
these messages in the pseudocode. We also omit the sending
of a CpRstMsgfrom x to g, and the reception of aCpRlyMsg
from g to x, in Figure 11.

Action ofx on joininghV;N (V )i, given nodeg0, g0 2 V :

i: initially 0. p, g: a node, initiallyg0. s 2 fT , Sg, initially S.

x:status = copying;
for (i = 0; i < d; i++) fNx(i; x[i]):�rst = x; x:state(x) = T ;g
while (g 6= null ands == S) f // copy level-i neighbors ofg
h =�1; k = jcsuf(x:ID;g:ID)j;
while (i � k ^ h ==�1)f
for (j = 0; j < b; j++)
for (eachv, v 2 Ng(i; j)) f
k0 = jcsuf(x:ID; v:ID)j;
for (l = i, l � k0, l ++) f Set Neighbor(l; v[l]; v; g:state(v)); g
g

if ((for eachl, i � l � k, Ng(l; x[l]):size < K) ^ h ==�1)
f p = g; g = null; h = i; g
i++;
g
if (h ==�1)f p = g; g = Np(k; x[k]):�rst; s = p:state(g);g
g
x:status = waiting;
if (g == null)fSendJoinWaitMsgto p;Qn = Qn [ fpg;Qr = Qr [ fpg;g
elsef SendJoinWaitMsgto g; Qn = Qn [ fgg; Qr = Qr [ fgg; g

Figure 11. Action in status copying

B Proofs of Theorems
In this section, we present our proofs for Lemmas 3.1 and 3.2,
and the proofs for Theorem 2 to 6.

B.1 Proofs of Lemmas 3.1, 3.2

Proof of Lemma 3.1: We prove the lemma by constructingK
disjoint paths fromx to y. ConsiderNx(0; y[0]). y 62 x:table
implies y 62 Nx(0; y[0]). Hence, there must existK neigh-
bors inNx(0; y[0]); otherwise,Nx(0; y[0]):size < K implies
jVy[0]j < K and all nodes inVy[0], includingy, would be stored
in Nx(0; y[0]).

We denote theK paths to be constructed asP0 to PK�1.
Also, we useuji to denote thejth node in pathPi. According
to Definition 3.2, we need to establish paths as follows:Pi =
fu0i ; :::; u

k
i g, i 2 [K], 1 � k � d, whereu0i = x, uki = y, and

uji 2 Nuj�1
i

(j � 1; y[j � 1]), 1 � j � k. First, letu0i = x

for each pathPi, i 2 [K]. Next, starting withP0, for each path
Pi, let u1i = v, such thatv 2 Nx(0; y[0]) andv 62 Pl for all l,
0 � l � i�1, that is,v is not included in pathsP0 toPi�1 (this
is easy to achieve since there areK nodes inNx(0; y[0])). Let
j = 1, f = min(K; jVy[j]:::y[0]j), and execute the following
steps (referred to as roundj).

1. For each pathPi, i 2 [K], if uji = y, then markPi as
“done”. Let P 0 = fPi, Pi is not marked “done”g and
jP 0j = I . NoteI � K. In the next three steps, we will
assign a node touj+1

i for each pathPi in P 0.
2. For eachPi, Pi 2 P 0, if uji [j] = y[j] then letuj+1

i = uji .
Suppose there areh such paths. Then, re-number these
paths asP0 to Ph�1, and the other paths inP 0 asPh to
PI�1. Then, for any pathPi, h � i � I � 1, we have
uji [j] 6= y[j]. In the next two steps, we will assign a node
to uj+1

i for each pathPi in fPh; Ph+1; :::; PI�1g.
3. If f � I , then starting withPh, for each pathPi, h �

i � I � 1, let uj+1
i = v, such thatv 2 Nuj

i

(j; y[j]) and
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Action ofy on receiving JoinWaitMsg fromx:

k = jcsuf(x:ID;y:ID)j; h =�1; j = 0;
if (y:status == in system) f
while (j � k ^ h ==�1) f
if (for eachl, j � l � k, Ny(l; x[l]):size < K) f
h = j; for (l = j; l � k; l++) f Set Neighbor(l; x[l]; x; T ); g
gelsej++;
g
if (h ==�1) SendJoinWaitRlyMsg(negative,h, y:table) to x;
elseSendJoinWaitRlyMsg(positive,h, y:table) to x;
gelseQj = Qj [ fxg;

Action ofx on receiving JoinWaitRlyMsg(r; i; y:table) fromy:

Qr = Qr � fyg; k = jcsuf(x:ID;y:ID)j; x:state(y) = S;
if (r == positive) f
x:status = notifying; x:att level = i;
for (j = i; j � k; j++) f Rx(j; x[j]) = Rx(j; x[j]) [ fyg; g
gelsef // a negative reply, needs to send anotherJoinWaitMsg
v = Ny(k; x[k]):�rst;
SendJoinWaitMsgto v; Qn = Qn [fvg; Qr = Qr [ fvg;
g
CheckNgh Table(y:table);
if (x:status == notifying^ Qr == � ^Qsr == �) Switch To S Node();

Figure 12. Action on receiving JoinWaitMsg and JoinWaitRlyMsg

v 6= uj+1
l for all l, 0 � l � i � 1. Such a nodev must

exist, since there aref different nodes inNuj
i
(j; y[j]), and

at mostI � 1 of them are already assigned to other paths
in P 0 (where there areI � 1 paths other thanPi) for the
(j + 1)th position.

4. If f < I , then (i) starting withPh, for pathPi, h �
i � f � 1, let uj+1

i = v, such thatv 2 Nuj
i
(j; y[j]) and

v 6= uj+1
l for all l, 0 � l � i � 1, and (ii) for each path

Pi, f � i � I � 1, letuj+1
i = y, becausef < I indicates

f < K, i.e.,jVy[j]:::y[0]j < K, so every node inVy[j]:::y[0],
includingy, is inNuj

i
(j; y[j]).

Next, increasej by 1 and execute the above four steps for an-
other round if there still exist paths that are not marked “done”
yet. Eventually, each path will be marked “done”, since the
network is aK-consistent network, and a path exists from any
node toy (see Lemma 3.1 in [7]).

So far we have establishedK paths fromx to y. We then
prove that they are disjoint. We need to prove the following
claim first:

Claim B.1 For any two pathsPi andPl, if uji 6= y andujl 6= y,
j � 1, thenuji 6= ujl .

Proof: Prove by induction. Base step: by the way we assign
nodes tou1i0 for each pathPi0 , we know thatu1i 6= u1l .

Inductive step: Supposeuji 6= ujl , j � 1, whereuji 6= y and
ujl 6= y. We next prove thatuj+1

i 6= uj+1
l if neitheruj+1

i nor
uj+1
l is y.

� If uji [j] = y[j] andujl [j] = y[j], then according to step
2 in each round of path construction,uj+1

i = uji and
uj+1
l = ujl , thusuj+1

i 6= uj+1
l .

� If uji [j] 6= y[j] orujl [j] 6= y[j], then without loss of gener-
ality, supposeujl [j] 6= y[j]. Also, suppose in this round of

Action ofy on receiving JoinNotiMsg(i; x:table) fromx:

Q: a set of integers, initially empty

k = jcsuf(x:ID;y:ID)j; f = false;
for (j = i; j � k, j++)f Set Neighbor(j; x[j]; x; T );g
for (j = i; j � k, j++) fif (x 2 Ny(j; x[j])) fQ = Q [ fjg;gg
if (y 62 Nx(k; y[k]) ^ y:status == in system) f = true;
if (Q 6= ;) SendJoinNotiRlyMsg(positive,Q, y:table, f ) to x;
elseSendJoinNotiRlyMsg(negative,;, y:table, f ) to x;
CheckNgh Table(x:table);

Action ofx on receiving JoinNotiRlyMsg(r; Q; y:table; f ) fromy:

if (r==positive) ffor (eachi in Q) Rx(i; x[i]) = Rx(i; x[i]) [ fyg;g
Qr = Qr � fyg; k = jcsuf(x:ID;y:ID)j;
if (f == true^ k > x:att level ^ y 62 Nx(k; y[k]) ^ y 62 Qsn)f
SendSpeNotiMsg(x,y) toNx(k; y[k]):�rst;
Qsn = Qsn [ fyg; Qsr = Qsr [ fyg;
g
CheckNgh Table(y:table);
if (Qr == � ^Qsr == �) Switch To S Node();

Figure 13. Action on receiving JoinNotiMsg and JoinNotiRlyMsg

Action ofu on receiving SpeNotiMsg(x; y) fromv:

k = jcsuf(y:ID;u:ID)j; Set Neighbor(k; y[k]; y; S);
if (y 62 Nu(k; y[k])) SendSpeNotiMsg(x; y) toNu(k; y[k]):�rst;
elseSendSpeNotiRlyMsg(x, y) to x;

Action ofx on receiving SpeNotiRlyMsg(x, y) fromu:

Qsr = Qsr� fyg; if (Qr==� andQsr==�) Switch To S Node();

Figure 14. Action on receiving SpeNotiMsg and SpeNotiRlyMsg

node assignment (roundj+1), pathPi is re-numbered as
Pi0 (see step 2), pathPl is re-numbered asPl0 , andi0 < l0

(if uji [j] = y[j], then according to step 2, we havei0 < l0;
otherwise, we supposei0 < l0). Let v = uj+1

i . According
to step 3 (or 4) in path construction, ifuj+1

l 6= y, then
uj+1
l is chosen in such a way that it is not the same as any

(j+1)th node in the 0th path to thel0th path (the paths that
are re-numbered as the 0th path to thel0th path in round
j + 1). Hence,uj+1

l 6= v, i.e.,uj+1
l 6= uj+1

i .

Second, by Claim B.1, we can show that no path is of the
form (x; :::; z; :::; x; :::; y), wherez 6= x. Suppose there exists
a pathPi of the above form, that is, there exists a pathPi such
that for the nodes inPi, u0i = x, uji = z, anduj+1

i = x, where
j > 0. uj+1

i = x indicates thatx:ID shares the rightmost
j+1 digits withy:ID, hence,x[0] = y[0] andx 2 Nx(0; y[0]).
Hence, there must exist a pathPl such thatu1l = x (by the way
we assign nodes tou1i0 for each pathPi0 ). Thus,Pl is not the
same path withPi. Then, by step 2,u1l = ::: = ujl = uj+1

l =

x. Next, by Claim B.1, for any other pathPh, h 6= l, uj
0

h 6= uj
0

l

for 1 � j0 � j +1. Hence, noj0th node in any path other than
Pl could be nodex for 1 � j0 � j + 1. We conclude with
uj+1
i 6= x, which contradicts with the assumptionuj+1

i = x.
Third, we point out that theK paths are different from each

other, since in each path, at leastu1i is different from each
other.
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CheckNgh Table(y:table) at x:

for (eachNy(i; j), i 2 [d], j 2 [d]) f
for (eachu, u 2 Ny(i; j) ^ u 6= x) f
k = jcsuf(x:ID;u:ID)j; s = y:state(u);
for (h = i; h � k; h++) f Set Neighbor(h; u[h]; u; s); g
if (x:status == notifying^ k � x:att level ^ u 62 Qn) f
SendJoinNotiMsg(x:att level; x:table) to u;
Qn = Qn [ fug; Qr = Qr [ fug;
g
g
g

SetNeighbor(i; j; u; s) at x:

if (u 6= x ^ Nx(i; j):size < K ^ u 62 Nx(i; j))
f Nx(i; j) = Nx(i; j) [ fug; x:state(u) = s;g

SwitchTo S Node() atx:

x:status = in system; x:state(x) = S;
for (eachv of x’s reverse neighbors) SendInSysNotiMsgto v;
for (each nodeu, u 2 Qj ) f
k = jcsuf(x:ID;u:ID)j; h =�1; j = 0;
while (j � k ^ h ==�1)f
if (for eachl, j � l � k, Nx(l; u[l]):size < K)f
h = j; for (l = h; l � k; l++) f Set Neighbor(l; u[l]; u; T ); g
gelsej++;
g
if (h 6= �1) SendJoinWaitRlyMsg(positive,h, x:table) to u;
elseSendJoinWaitRlyMsg(negative,h, x:table) to u;
g

Figure 15. Subroutines

Action ofy on receiving a InSysNotiMsg fromx:

y:state(x) = S;

Figure 16. Action on receiving InSysNotiMsg

Based on the above results, we prove that theK paths are
disjoint. Consider any two pathsPi andPl. By Claim B.1,
uji 6= ujl , that is, thejth node inPi is different from thejth
node inPl. We next show thatuji is different from anyj0th

node inPl, j0 < j, by contradiction. Supposeuji = uj
0

l . Then

sinceuji has suffixy[j]:::y[0], so doesuj
0

l . According to step

2 in path construction,uj
0

l = uj
0+1
l = ::: = ujl . Thus, we get

uji = ujl , a contradiction. Similarly, we can prove thatuji is
different from anyj0th node inPl, for j0 > j. Therefore, any
node inPi that is notx or y does not appear in any other path
Pl. Thus, theK paths are disjoint.

Proof of Lemma 3.2: (Outline) By Lemma 3.1, ify 62 x:table,
then there exist at leastK disjoint paths fromx to y. Also,
as shown in the proof of Lemma 3.1, ify 62 x:table, then
Nx(0; y[0]):size = K and thusmin(K; jVy[0]j) = K. Hence,
the lemma holds wheny 62 x:table. If y 2 x:table, however,
y 62 Nx(0; x[0]), then,Nx(0; x[0]):size = min(K; jVy[0]j).
Similar to the proof for Lemma 3.1, we can constructh dis-
joint paths fromx to y, whereh = min(K; jVy[0]j). If
y 2 x:table andy 2 Nx(0; x[0]), theny[0] = x[0]. Recall
thatx 2 Nx(0; x[0]). Similar to the proof for Lemma 3.1, we
can constructh � 1 paths fromx to y, h = min(K; jVy[0]j),

where in assigning nodes tou1i for each path, we only consider
the nodes in setN 0, N 0 = Nx(0; x[0]) � fxg. (If we also
considerx in assigning nodes tou1i , two of the paths maybe
the same path that goes directly fromx to y: pathPi, where
u1i = x and pathPl whereu1l = y.) Hence, at leasth � 1
disjoint paths exist fromx to y.

B.2 Correctness of join protocol

In this section, we present proofs for Theorems 2 and 3. Recall
that we made the following assumptions in designing the join
protocol: (i) The initial network is aK-consistent network, (ii)
each joining node, by some means, knows a node in the initial
network initially, (iii) messages between nodes are delivered
reliably, and (iv) there is no node deletion (leave or failure)
during the joins. We also assume that the actions specified by
Figures 11, 12, 13, 14, and 16 are atomic.

Theorem 2 Suppose a set of nodes,W =fx1,...,xmg, m �
1, join a K-consistent networkhV;N (V )i. Then, at timete,
hV [W;N (V [W )i is aK-consistent network.

To prove Theorem 2, we first prove some auxilary lemmas
and propositions. We start by presenting some definitions. Re-
call thatV Notify

x , the notification set ofx regardingV , is de-
fined in Definition 4.1.

Definition B.1 Let tbx be the time when nodex begins joining
a network, andtex be the time whenx becomes an S-node. The
period fromtbx to tex, denoted by[tbx; t

e
x], is thejoining period

of x.

Definition B.2 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a network. If the joining period of each node
does not overlap with that of any other, then the joins arese-
quential.

Definition B.3 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a network. Lettb = min(tbx1 ; :::; t

b
xm) and

te = max(tex1 ; :::; t
e
xm). If for each nodex, x 2 W , there

exists a nodey, y 2 W andy 6= x, such that their joining pe-
riods overlap, and there does not exist a sub-interval of[tb,te]
that does not overlap with the joining period of any node in
W , then the joins areconcurrent.

Definition B.4 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a networkhV;N (V )i. The joins areindepen-
dent if for any pair of nodesx andy, x 2 W , y 2 W , x 6= y,
V Notify
x \ V Notify

y = ;.

Definition B.5 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a networkhV;N (V )i. The joins aredependentif
for any pair of nodesx andy, x 2 W , y 2 W , x 6= y, one of
the following is true:

� V Notify
x \ V Notify

y 6= ;.

� 9u, u 2W , u 6= x^ u 6= y, such thatV Notify
x � V Notify

u

andV Notify
y � V Notify

u .
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Notation Definition
hx! yik x can reachy within k hops

x
j
! y the action thatx sends aJN or aJW to y

x
jn
! y the action thatx sends aJN to y

x
jw
! y the action thatx sends aJW to y

x
c
! y the action thatx sends aCP to y

A(x) theattaching-nodeof x, which is the node that
sends a positiveJWRlyto x

tex the timex changes status toin system, i.e., the end
of x’s join process,

te max(tex1 ; :::; t
e
xm

)

Table 7. Notation in proofs

Protocol Message Abbreviation
CpRlyMsg CPRly
JoinWaitMsg JW
JoinWaitRlyMsg JWRly
JoinNotiMsg JN
JoinNotiRlyMsg JNRly
SpeNotiMsg SN
SpeNotiRlyMsg SNRly
RvNghNotiMsg RN
RvNghNotiRlyMsg RNRly

Table 8. Abbreviations for protocol messages

Table 7 presents the notation used in the following proofs,
while Table 8 shows the abbreviations we will use for protocol
messages in the proofs.

The following facts, which are easily oberved from the join
protocol, are used frequently in the proofs.

Fact B.1 Messages of typeCP, JW, andJN are only sent by
T-nodes.

Fact B.2 If nodex sends out aJWRly at timet, thenx is al-
ready an S-node at timet.

Fact B.3 If A(x) = u, thenx:att level � h, whereh =
jcsuf(x:ID; u:ID)j, and for eachj, x:att level � j � h,
x 2 Nu(h; x[h]) afteru receives aJW fromx. Also,x changes
status from waiting to notifying immediately after it receives a
JWRly fromu.

Fact B.4 If A(x) = u and x:att level = k, 0 � k �
jcsuf(x:ID; u:ID)j, then beforeu receives aJW from x,
Nu(j; x[j]):size < K for all j, k � j � jcsuf(x:ID; u:ID)j.

Fact B.5 A joining node,x, only sends aJN to y if x is in
status notifying andjcsuf(x:ID; y:ID)j � x:att level.

Fact B.6 If x
jn
! y happens,y will send a reply that includes

y:table tox immediately. Moreover, eachJNsent byx includes
x:table.

Fact B.7 x sends a message of typeJW or JN to y at most
once (x does not send both types of messages toy).

Fact B.8 By timetex, x has received all of the replies for mes-
sages of typeCP, JW, JN, andSN it has sent out.

Proposition B.1 Suppose a set of nodes,W = fx1; :::; xmg,
m � 1, join a consistent networkhV;N (V )i. Consider node
x, x 2 W . Let u = A(x) and let t be the timeu sends its
positive reply,JWRly, to x. Suppose one of the following is
true, wherey 2 V [W andy 6= x:

� x
jn
! y happens;

� y = u.
Then, if at time t, hy ! zid, z 2 V [ W , and

jcsuf(x:ID; z:ID)j � x:att level, thenx
j
! z happens be-

fore timetex.

Proof: See the proof ofProposition A.1 in [6]. (Note that
in this report, we rename the variablex:noti level in [6] as
x:att level.)

Lemma B.1 Suppose nodex joins a K-consistent network
hV;N (V )i. Then, at timetex, hV [ fxg;N (V [ fxg)i is a
K-consistent network.

Proof: SupposeV Notify
x = Vx[k�1]:::x[0], k 2 [d], that is,

jVx[k]:::x[0]j < K andjVx[k�1]:::x[0]j � K. LetV 0 = V [ fxg.
ThenV 0

j�x[i�1]:::x[0] = Vj�x[i�1]:::x[0] if j 6= x[i], i 2 [d], and
V 0
x[i]:::x[0] = Vx[i]:::x[0] [ fxg.

Let g be the last node thatx sends aCP to in statuscopy-
ing. Then it must be thatg 2 Vx[k�1]:::x[0]: Because that
the condition forx to change status is thatx finds there ex-
ists a level-h in the table ofg, such thatNg(i; x[i]):size < K,
h � i � jcsuf(x:ID; g:ID)j. And sinceVx[k�1]:::x[0] � K,
Vx[k]:::x[0] � K, andhV;N (V )i is K-consistent, then before
x is stored in any other node’s table,Ng(i; x[i]):size � K
for 0 � i � k � 1, andNg(k; x[k]):size < K. There-
fore, by copying neighbor information from nodes inV ,
by the timex changes status towaiting, Nx(i; j):size =
min(K; jVj�x[i�1]:::x[0]j) = min(K; jV 0

j�x[i�1]:::x[0]j) if j 6=

x[i]; if j = x[i] and0 � i < k, thenNx(i; j):size = K since
jVj�x[i�1]:::x[0]j � K; for (i; x[i])-entry,k � i � d � 1, for
any nodey, if y 2 Vx[i]:::x[0], theny 2 Nx(i; x[i]). Moreover,
sincex 2 Nx(i; x[i]), i 2 [d], it follows that fork � i � d�1,
Nx(i; x[i]) = Vx[i]:::x[0][fxg = V 0

x[i]:::x[0]. Therefore, entries
in x:tabe satisfy the conditions in Definition 3.3.

After x changes status fromcopying to waiting, it sends
a JW to nodeg, which will then storex in Nx(k; x[k]) (and
levels higher thank if x and g share a suffix that is longer
thanx[k � 1]:::x[0]) and sends back a positiveJWRly. Thus,
x:att level = k. Next, x needs to notify any nodez, z 2
Vx[k�1]:::x[0] about its join. Since the initial network isK-
consistent, thushg ! zid at the timeg sends the positive

JWRly to x. By Proposition B.1,x
j
! z eventually hap-

pens. Therefore, eventually,Nz(i; x[i]) = Vx[i]:::x[0] [ fxg,
i.e.,Nz(i; x[i]) = V 0

x[i]:::x[0], k � i � jcsuf(x:ID; z:ID)j.
The other entries remain unchanged. It is trivial to check that
the unchanged entries satisfy conditions in Definition 3.3 for
the new network.

Corollary B.1 Suppose a set of nodes,W =fx1,...,xmg,m �
1, join aK-consistent networkhV;N (V )i. Then for any node
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x, x 2 W , by timetex, Nx(i; j):size = K if jVj�x[i�1]:::x[0]j �
K; andNx(i; j) � Vj�x[i�1]:::x[0] if jVj�x[i�1]:::x[0]j < K.

Corollary B.2 Suppose a set of nodes,W =fx1,...,xmg,m �
1, join aK-consistent networkhV;N (V )i. Then for any node
x, x 2 W , and any nodey, y 2 V , hx! yid by timetex.

Lemma B.2 Suppose a set of nodes,W =fx1,...,xmg,m � 2,
join aK-consistent networkhV;N (V )i sequentially. Then, at
timete, hV [W;N (V [W )i is aK-consistent network.

Proof: Prove by induction ontexi , 1 � i � m. By
Lemma B.1, Lemma B.2 holds wheni = 1. Assume when
1 � i < m, Lemma B.2 holds. Then at timetexi , hV [
W 0;N (V [ W 0)i is a K-consistent network, whereW 0 =
fx1; :::; xig. Since the nodes join sequentially,tbxi+1 � texi .
Thus, whenxi+1 joins, the network, which is composed of
nodes inV [W 0, is K-consistent and there is no other joins
in the period of [tbxi+1 ; t

e
xi+1 ]. By Lemma B.1, at timetexi+1 ,

hV [ fx1; :::; xi+1g;N (V [ fx1; :::; xi+1g)i is K-consistent.
Hence, Lemma B.2 holds fori+ 1.

Lemma B.3 Suppose a set of nodes,W = fx1; :::; xmg,m �
2, join aK-consistent networkhV;N (V )i independently. For
any nodex, x 2 W , if jVj�x[i�1]:::x[0]j < K, 0 � i < d � 1,
j 2 [b], then(V [ W 0)j�x[i�1]:::x[0] = Vj�x[i�1]:::x[0], where
W 0 �W � fxg.

Proof: Similar to the proof ofLemma A.3 in [6].

Corollary B.3 Suppose a set of nodes,W = fx1; :::; xmg,
join a K-consistent networkhV;N (V )i. Let G(V!1 ) =
fx; x 2 W;V Notify

x = V!1g,G(V!2 ) = fy; y 2 W;V Notify
y =

V!2g. If V!1\V!2 = ;, then for any nodex, x 2 G(V!1 ), (V [
G(V!2))j�x[i�1]:::x[0] = Vj�x[i�1]:::x[0] if jVj�x[i�1]:::x[0]j < K.

Lemma B.4 Suppose a set of nodes,W =fx1,...,xmg,m � 2,
join a K-consistent networkhV;N (V )i concurrently. If the
joins are independent, then at timete, hV [W;N (V [W )i is
aK-consistent network.

Proof: Consider any nodex, x 2 W . If jVj�x[i�1]:::x[0]j �
K, then by Corollary B.1, by timete, Nx(i; j):size =
K. If jVj�x[i�1]:::x[0]j < K, then by Lemma B.3, we
have (V [ W )j�x[i�1]:::x[0] = Vj�x[i�1]:::x[0] for j 6=
x[i], and (V [ W )j�x[i�1]:::x[0] = Vj�x[i�1]:::x[0] [ fxg for
j = x[i], i 2 [d] and j 2 [b]. Then, by Corol-
lary B.1, Nx(i; j):size = jVj�x[i�1]:::x[0]j for j 6= x[i]; and
Nx(i; j):size = jVj�x[i�1]:::x[0]j + 1 for j = x[i], where
Nx(i; j) = Vj�x[i�1]:::x[0][fxg. Therefore, entries in the table
of x satisfy conditions in Definition 3.3.

Next, consider any nodey, y 2 V , and the(i; j)-entry in
y:table, i 2 [d] and j 2 [b]. If jVj�y[i�1]:::y[0]j � K, then
Ny(i; j):size = K since the initial network isK-consistent. If
jVj�y[i�1]:::y[0]j < K andWj�y[i�1]:::y[0] = ;, thenNy(i; j) =
Vj�y[i�1]:::y[0] = (V [W )j�y[i�1]:::y[0]. If jVj�y[i�1]:::y[0]j < K
andWj�y[i�1]:::y[0] 6= ;, then there exists a nodex, x 2 W ,

such thatj � y[i� 1]:::y[0] is a suffix ofx. By Lemma B.3,x is
the only node inW has the suffixj � y[i� 1]:::y[0]. Similar to

the argument in proving Lemma B.1, we can prove thatx
j
! y

happens before timetex. Hence,Ny(i; j) = Vj�y[i�1]:::y[0] [
fxg = (V [W )j�y[i�1]:::y[0].

The above results are true for every node inW . Hence, by
time te, hV [W;N (V [W )i is aK-consistent network.

Lemma B.5 Suppose a set of nodes,W =fx1,...,xmg,m � 2,
join a K-consistent networkhV;N (V )i concurrently. If the
joins are dependent, then at timete, hV [W;N (V [W )i is
K-consistent.

We prove Lemma B.5 by induction upon the C-set trees re-
alized by the end of all joins (see Definition 4.3). We first
consider the case where all joining nodes inW belong to the
same C-set tree and prove that eventually, neighbor tables of
these joining nodes as well as the nodes that are initially in
the network satisfyK-consistency conditions (stated in Propo-
sition B.12). Then, we prove Proposition B.13, which states
when joining nodes belong to different C-set trees, their neigh-
bor tables eventually satisfyK-consistency conditions. Based
on Proposition B.12 and Proposition B.13, we present our
proof of Lemma B.5.

In the following proofs, we definelj :::l1 to be the empty
string if j = 0. Also, we definethe first C-set x belongs to
for a nodex, x 2W , to be (i)Cl1�! if x 2 Cl1�!; (ii) Clj :::l1�!

for j > 1, if x 2 Clj :::l1�! andx 62 Clj�1:::l1�!.

Proposition B.2 Suppose a set of nodes,W = fx1; :::; xmg,
m � 1, join aK-consistent networkhV;N (V )i. For any two

nodesx andy, x 2 W andy 2 V [W , if x
j
! y happens,

then by timetex, hy ! xid.

Proof: Similar to the proof ofProposition A.2 in [6], by
replacing “Nui(hi; x[hi]) = null” by “Nui(hi; x[hi]):size <
K” in case (1), and replacing “Nui(hi; x[hi]) = v, v 6= x”
by “Nui(hi; x[hi]):size = K, y 62 Nui(hi; x[hi])”, and “let
ui+1 = v” by “let ui+1 = Nui(hi; x[hi]):first” in case (2).

Proposition B.3 Suppose a set of nodes,W = fx1; :::; xmg,
m � 2, join a K-consistent networkhV;N (V )i. Let x
and y be two nodes inW . Suppose there exists a nodeu,

u 2 V [W , such that by timete, x
j
! u has happened, and

y
j
! u or y

c
! u has happened. Ifjcsuf(x:ID; y:ID)j = h

and x:att level � h, then by timetxy, txy = max(tex; t
e
y),

at least one of the following is true:x 2 Ny(h; x[h]) or
Ny(h; x[h]):size = K.

Proof: Case 1: jcsuf(u:ID; x:ID)j � h. Let the timeu
replies tox betx, and the timeu replies toy bety.

If tx < ty, then after receiving the notification fromx (i.e.,
time tx), u will store x in Nu(h; x[h]) if Nu(h; x[h]):size <
K beforetx (x:att level � h, henceu can storex at level
h). Sincetx < ty, at time ty, eitherx 2 Nu(h; x[h]) or
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Nu(h; x[h]):size = K is true. Next, fromu’s reply that
includesu:table, y copies nodes inNu(h; x[h]) (after time
ty but before timetxy). Thus, eitherx 2 Ny(h; x[h]) or
Ny(h; x[h]):size = K by timetxy.

If tx > ty, then consider the nodesy contacts after it sends
the CP message tou, i.e., contact-chain(y,u) [6].18 Suppose
contact-chain(y,u) is (u0, u1, ..., uf , uf+1), whereu0 = u
and uf+1 = y. Then, for each node in the chain,ui, ei-

ther y
c
! ui or y

j
! ui happens,0 � i � f . Observe

that jcsuf(x:ID; ui:ID)j � h (because eachui:ID has suf-
fix x[h � 1]:::x[0] since bothu0:ID andy:ID have this suf-
fix), therefore,jcsuf(x:ID; ui:ID)j � x:att level for eachi,
0 � i � f . We then prove the following claim:

Claim B.2 (Property of contact-chain(y; u)) If after y has re-
ceived all replies fromu0 to ui and copied nodes from neigh-
bor tables included in the replies,Ny(h; x[h]):size < K

and x 62 Ny(h; x[h]), thenx
j
! ui+1 happens eventually,

0 � i � f .

We prove the above claim by induction oni. In what fol-
lows, we say that link(ui; ui+1) exists at timet, if ui+1 2
ui:table by timet.
Proof of Claim B.2: Base stepAt time ty, link (u0; u1) al-
ready exists (otherwise,u1 = y). Therefore, the link also ex-
ists at timetx (we have assumedtx > ty). x then learnsy

from u0’s reply. If the reply is aJNRly, thenx
jn
! u1 eventu-

ally happens becausex:att level � h (by the assumption of
the proposition); if the reply is aJWRly, thenx will send an-

otherJW to u1, that isx
jw
! u1 will happen. Thus,x

j
! u1

eventually happens.
Inductive step Assume the claim holds for allj, 0 � j � i,
0 � i � m � 1. Let t1 be the timeui+1 sends its reply to
y, andt2 be the timeui+1 sends its reply tox. Then it must
be t1 < t2, otherwise, at timet1, eitherx 2 Nui+1(h; x[h])
or Nui+1(h; x[h]):size = K is true, which implies aftery
copies nodes fromui+1’s reply, eitherx 2 Ny(h; x[h]) or
Ny(h; x[h]):size = K is true, which contradicts with the as-
sumption of the claim. Hence, link (ui+1; ui+2) exists at time
t1 as well ast2. Consequently,x knowsui+2 from ui+1’s
reply and will notifyui+1 if it has not done so (similar to the
arguemnt in the base step,x sends either aJWor aJN toui+1).

It can then be shown that if after receiving all replies from
u0 to uf , Ny(h; x[h]):size < K andx 62 Ny(h; x[h]), then

eventuallyx
j
! y happens. Thus, the proposition holds.

Case 2: jcsuf(u:ID; x:ID)j < h. Proof in this case is sim-
ilar to that in Case 3 in the proof ofProposition A.3 in [6],
by replacing notation in the form of “Nu(i; z[i]) = z” by
“z 2 Nu(h

0; x[h0])”, “ vi+1 = Nvi(hi; x[hi])” by “ vi+1 =

18The definition ofcontact-chain(y,u) in a K-consistent network is sim-
ilar to what is presented in the proof ofProposition A.3 in [6], by re-
placing “Nui (hi; y[hi]) = y” by “y 2 Nui(hi; y[hi])”, “ u has set
Nui(hi; y[hi]) = v; v 6= y by “jNui (hi; y[hi])j = K, y 62
Nui(hi; y[hi]), andv = Nui(hi; y[hi]):first”.

Nvi(hi; x[hi]):first”, and “Nu(h
0; x[h0]) = v, wherev 6= x

andv 6= y” by “ y 62 Nu(h
0; x[h0])”.

Proofs of the following propositions and corollaries are
based on induction upon C-set trees. Propositions B.4 to
B.12 assume that all joining nodes belong to the same C-set
tree, which is the same assumption as made in Definition 4.3,
namely:

Assumption B.1 (for Propositions B.4 to B.12)
A set of nodes,W = fx1; :::; xmg,m � 2, join aK-consistent
network hV;N (V )i concurrently and for anyx, x 2 W ,
V Notify
x = V!, j!j = k.

Proposition B.4 For each nodex, x 2W , there exists a C-set
Clj :::l1�!, 1 � j � d � k, such that by timete, x 2 Clj :::l1�!,
wherelj :::l1 � ! is a suffix ofx:ID.

Proof: Considercontact-chain(x,g), whereg is the node that
x is given to start its join process. Supposecontact-chan(x,g)
is (u0; u1; :::uf ; uf+1), whereu0 = g anduf+1 = x. Then
uf is the node that sends a positiveJWRlyto x (see Defini-
tion of acontact-chain [6]). Let the lowest leveluf storesx
in uf :table (the attach-level ofx) be level-h, thenk � h �
jcsuf(u:ID; x:ID)j (recall k = j!j, as defined in Assump-
tion B.1). Create a new sequence (g0; :::; gh) based oncontact-
chain(x,g) as follows:

� Let g0 = g andj = 0.
� For eachi, 0 � i � h � 1, let gi+1 = gi if gi[i] = x[i]

andi < h � 1; if gi[i] 6= x[i] andi < h� 1, let gi = uj
and increasej.

� gh = uf .

Then, gk 2 V!, becausegk 2 V and gk[k � 1]:::gk[0] =
x[k � 1]:::x[0]. Hence,gk+1 2 Cl1�!, where l1 = x[k],
since gk+1 2 Ngk (k; x[k]) (by the definition ofcontact-
chain) andgk+1[k] = x[k]. Consequently,gk+2 2 Cl2l1�!,
..., gh�1 2 Clh�k�1:::l1�!, and gh 2 Clh�k:::l1�!. Hence
x 2 Cx[h]�lh�k:::l1�!.

Corollary B.4 For each nodex, x 2W , there exists a nodeu
such thatu = A(x), andu belongs to a C-set incset(V;W )
or u 2 V! .

Proposition B.5 If jVlj :::l1�!j < K andWlj :::l1�! 6= ;, 1 �
j � d� k, lj ; :::; l1 2 [b], then

(a) Clj :::l1�! � Vlj :::l1�!;
(b) if j(V [ W )lj :::l1�!j < K, then Clj :::l1�! = (V [

W )lj :::l1�!;
(c) if j(V [W )lj :::l1�!j � K, thenjClj :::l1�!j � K.

Proof: Consider setClj :::l1�!. For any nodeu, u 2 V!, if
u:ID has suffixlj :::l1 � !, thenu 2 Clj :::l1�! by the definition
of cset(V;W ). Hence, part (a) holds trivially.

We prove parts (b) and (c) by contradiction. Assume
jClj :::l1�!j < h, whereh = j(V [ W )lj :::l1�!j if j(V [
W )lj :::l1�!j < K, andh = K if j(V [ W )lj :::l1�!j � K.
If jClj :::l1�!j < h, then there exists a nodex, such that
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x 2 Wlj :::l1�! andx 62 Clj :::l1�!. By Corollary B.4, there
exists a nodeu, such thatu = A(x) andu:ID has suffix!.

First, consider the case wherej = 1, thenx 2 Wl1�! and
x 62 Cl1�!. Sinceu = A(x) andu:ID has suffix!, then it
must be thatu 2 V!. However, by Definition 4.3, this implies
x 2 Cl1�!. A contradiction. Second, consider the case where
j > 1. Supposeu 2 Cli:::l1�!, whereli:::l1 � ! is a suffix of
bothu:ID andx:ID. By the definition ofcset(V;W ), x 2
Cli+1:::l1�!, lj+1 = x[i + k], and hence,x 2 Cli0 :::l1�! for all
i0, i + 1 � i0 � d � k, whereli0 :::l1 � ! is a suffix ofx:ID.
Therefore, it must be thati + 1 > j, i.e., i � j (otherwise,
x 2 Clj :::l1�!). However, by Corollary B.5,jClj0 :::l1�!j � K
for 1 � j0 � i, thus,jClj :::l1�!j � K. A contradiction.

Proposition B.6 Consider any nodex, x 2 W , if x 2
Clj+1:::l1�! and x 62 Clj :::l1�!, 1 � j � d � k � 1, (or if
x 2 Cl1�!, respectively), then

(a) there exists a nodev, v 2 Clj :::l1�! (or v 2 V!), such that
x 2 Nv(j + k; lj+1) (or x 2 Nv(k; l1)) andA(x) = v;

(b) x:att level = j + k (or x:att level = k).

Proof: By Corollary B.4, there exists a nodeu, such that
A(x) = u. Supposeu 2 Cli:::l1�! andx 2 Nu(i+k; x[i+k]),
wherei+k is the attach-level ofx in u:table, 0 � i � d�k�1.
Hence,x 2 Cli+1:::l1�!, whereli+1 = x[i + k] and according
to the algorithm,x setsx:att level = i+ k.

Then it must be thati � j. Otherwise, ifi < j, then since
x 2 Cli+1:::l1�!, it follows thatx 2 Cli0 :::l1�!, i0 � i � d � k,
thusx 2 Clj :::l1�!, which contradicts with the assumption in
the proposition.

Next, we show thati � j, proving by contradiction. As-
sumei > j. Thusli:::l1 � ! is a longer suffix thanlj :::l1 � !.
Sincex only sendsJN to nodes with suffixx[i+ k � 1]:::x[0]
(i.e. suffix li:::l1 � !), other nodes can only knowx through
these nodes plus nodeu. (Note thatx would not be a neighbor
at any level lower than level-(i + k) in tables of these nodes,
because when a node,y, copiesx, from z:table, wherez is
one of the nodesx has sentJN to or z = u, if x is stored
at levels no lower than level-i + k in z:table, theny will not
storex at a level lower thani + k. See Figures 13 and 15.)
Given thatx 2 Clj+1:::l1�! andx 62 Clj :::l1�!, by the defini-
tion of cset(V;W ), there must exist one nodey, y 2 Clj :::l1�!

and y 6= x, such thatx 2 Ny(j + k; lj+1) by time te. y
can not storex by receiving aJW from x, since that indicates
A(x) = y and i = j, which contradicts with the assump-
tion thati > j. Also as discussed above, sincei > j, x will
only sendJN to nodes with suffixli:::l1 � ! and thus will not
send aJN to y. Hence,y knowsx through another node,z.
There are three possible cases: (i)y copiesx from z during
c-phase; (ii)y knowsx through a reply (aJWRlyor aJNRly)
from z or aJN from z; (iii) y receives aSNinforming it about
x, which is sent or forwarded byz. Both cases (i) and (ii)
are impossible, becausez can only storex at a level no lower
thani+ k (see Figure 14), thus wheny copiesx from z:table,
it can not fill x into a level lower thani + k (again, see Fig-
ure 15). Now consider case (iii). Ifz sends or forwards aSN

to y, thenjcsuf(x:ID; y:ID)j > jcsuf(x:ID; z:ID)j, since
both x:ID andy:ID have the same desired suffix of an en-
try in z:table. However, we know thatjcsuf(x:ID; y:ID)j <
jcsuf(x:ID; z:ID)j, becausejcsuf(x:ID; y:ID)j = j + k,
jcsuf(x:ID; z:ID)j = i + k andi > j. Therefore, case (iii)
is impossible, either. Thus, we conclude thati � j.

Sincei � j and i � j, we conclude thati = j. Hence,
u 2 Clj :::l1�! andx:att level = j + k, whereu = A(x).

Corollary B.5 If Clj :::l1�! is the first C-setx belongs to,2 �
j � d� k, thenjCli:::l1�!j � K for 1 � i < j.

Proof: Considercontact-chain(x,g) and construct a sequence
of nodes, (g0; :::; gh), whereh = j + k, based oncontact-
chain(x,g), in the same way described in the proof of Proposi-
tion B.4. Thus,gj [i0�1]:::g0[0] = x[i0�1]:::x[0], 0 � i0 � h.
AssumejCli:::l1�!j < K. We know thatgk+i 2 Cli:::l1 . Then,
by the definition ofcontact-chain(x,g), gk+1 is a node thatx
has sent aCP or a JW to. If jCli:::l1�!j < K, then it must
be thatNgk+i(k + i; x[k + i]):size < K (implied by Defini-
tion 4.3), and henceNgk+i(h

0; x[h0]):size < K, wherek+i �
h0 � jcsuf(x:ID; gk+i:ID)j. Thenx would not send aCP to
gk+1, since whenx findsNgk+i(k + i; x[k + i]):size < K, it
will change status towaitingand send aJWto gk+1. However,
if x has sent aJW to gk+i, thengk+i would storex since an
attach-level ofx in gk+i:table exists, whichx 2 Cli:::l1�!. A
contradiction with that theClj :::l1�! is the first C-setx belongs
to, j > i.

Proposition B.7 Consider a nodey, y 2 W , and letuy =
A(y). SupposeClj :::l1�! is the first C-sety belongs to,1 �
j � d � k. Then for a nodex, x 2 W andx:ID has suffix

lj�1:::l1 � !, if x
j
! uy happens, orx 2 Nuy (j + k � 1; lj)

beforeuy receives theJW from y, then by timetxy, txy =
max(tex; t

e
y), hy ! xid.

Proof: Let ty be the timeuy sends its positiveJWRlyto y, and

tx be the timeuy receives the notification fromx if x
j
! uy

happens. Sinceuy = A(y), y 2 Clj :::l1�! andy 62 Clj�1:::l1�!,
by Proposition B.6,uy 2 Clj�1:::l1�! (or uy 2 V! if j = 1)
andy:att level = k + j � 1. Also, we know that before time
ty, Nuy (k + j � 1; lj):size < K (by Fact B.4).

If x
j
! uy happens andtx > ty, thenx knowsy from uy’s

reply andx
j
! y will happen. By Proposition B.2,hy ! xid

by timetex.

If x
j
! uy happens andtx < ty, then at timetx, Nuy (k +

j � 1; lj):size < K, therefore,uy storesx intoNuy (k + j �
1; lj). Then, by timety, x 2 Nuy (k + j � 1; lj). In what
follows, we only consider the case thatx 2 Nuy (k + j �
1; lj) beforeuy receives theJW from y. In this case,y learns
x from uy ’s JWRly. (i) If y also storesx into Ny(k + j �
1; lj), then trivially, hy ! xid by time tey. (ii) Otherwise,

y
j
! x eventually happens (jcsuf(x:ID; y:ID)j � k + j >

y:att level).
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� If by the time x receives the notification fromy, x is

still a T-node, thenx
j
! v must happen eventually,

wherev = Ny(h; x[h]):first, h = jcsuf(x:ID; y:ID)j.
Thus, hv ! xid is by time tex, which implieshy !
xid by time tex, since there exists a neighbor sequence
(y; v; v1; :::; vf ; x), where(v; v1; :::; vf ; x) is the neigh-
bor sequence fromv to x.

� If by the time x receives the notification fromy, x is
already an S-node, thenx will set a flag to betrue
in its reply to y (see Figure 13). Seeing the flag,
y will send a SN(y; x) to v, v = Ny(h; x[h]):first,
h = jcsuf(x:ID; y:ID)j. v will either storex into
Nv(h

0; x[h0]), h0 = jcsuf(v:ID; x:ID)j, or forward
SN(y; x) to Nv(h

0; x[h0]):first), until eventuallyx is or
has been stored by a receiver of the messageSN(y; x) (see
Figure 14) and aSNRlyis sent back toy. Thus, by time
tey, hv ! xid. Therefore,hy ! xid by timetey.

Corollary B.6 If y
j
! x happens, wherex 2 W andy 2 W ,

and jcsuf(x:ID; y:ID)j > y:att level, thenhy ! xid by
timetxy, txy = max(tex; t

e
y).

Proof: See case (ii) in the last part of the proof of Proposi-
tion B.7.

Proposition B.8 Consider any nodex, x 2 V!. For any C-
set,Cl�lj�1:::l1�!, l1,...,lj�1 2 [b] and l 2 [b], if lj�1:::l1 � ! is
a suffix ofx:ID, then,

(a) for any nodey, y 2 Cl�lj�1:::l1�! and y 2 W , y
j
! x

happens before timetey;
(b) Nx(k + j � 1; l):size = min(K; j(V [W )l�lj�1:::l1�!j)

by timete.

Proof: For any nodey, y 2 Cl�lj�1:::l1�!, if y 2 W , then by
Proposition B.6,y:att level � j + k � 1 and there exists a
nodeu, such thatu = A(y). Thenhu ! xid by the timeu
sends itsJWRlyto y. (If u 2 V , thenhu ! xid because the
initial network is consistent; ifu 2 W , then by Corollary B.2,

hu ! xid.) By Proposition B.1,y
j
! x has happened by

tey, sincejcsuf(x:ID; y:ID)j � j � 1 + k � y:att level.
Moreover, by Proposition B.2,hx ! yid by timetey. Also, by
Corollary B.2,hy ! xid by timetey. Therefore, part (a) holds.

Since the initial network isK-consistent, we know that
before any join happens,Nx(k + j � 1; l) = Vl�lj�1:::l1�!
since jVl�lj�1:::l1�!j < K. Part (a) shows that for any

y, y 2 Cl�lj�1:::l1�! and y 2 W , y
j
! x eventually

happens. It then follows thatNx(k + j � 1; l):size =
min(K; j(V [ W )l�lj�1:::l1�!j) by time te, since by Propo-
sition B.5, Cl�lj�1:::l1�! = (V [ W )l�lj�1 :::l1�! if j(V [
W )l�lj�1:::l1�!j < K, and jCl�lj�1:::l1�!j � K if j(V [
W )l�lj�1:::l1�!j � K.

Proposition B.9 For any C-set,Clj :::l1�!, 1 � j � d � k,
l1,...,lj 2 [b], the following assertions hold:

(a) If jWlj :::l1�!j � 2, then for any two nodes,x andy, where
x 2 Clj :::l1�!, y 2 Clj :::l1�!, x 6= y, andx andy are both

in W , by timetxy, at least one ofx
j
! y andy

j
! x has

happened, wheretxy = max(tex; t
e
y). Moreover, at time

txy, hx! yid andhy ! xid.
(b) For eachx, x 2 Clj :::l1�! and x 2 W , Nx(k + j �

1; l):size = min(K; j(V [ W )l�lj�1:::l1�!j) by timete.

Proof: We prove the proposition by induction onj. The struc-
ture of the proof is very similar to that ofProposition A.6
in [6].
Base step:j = 1. Consider nodesx andy, x 2 W andx 2
Cl1�!, y 2 W andy 2 Cl�!, wherel1 2 [b], l 2 [b] (l may or
may not be the same withl1), andx 6= y. By Proposition B.6,
there exists a nodeux, ux 2 V! , such thatux = A(x) (thus,
x 2 Nux(k; l)). Likewise there exists a nodeuy, uy 2 V! ,
such thaty 2 Nuy (k; l) anduy = A(y). By Proposition B.6,

x:att level = y:att level = k. Therefore, bothx
j
! ux and

y
j
! uy happens. Also, by part(a) of Proposition B.8,x

j
! uy

happens. Likewise,y
j
! ux happens. By Proposition B.7,

hy ! xid andhx! yid by timetxy.
Let t1 be the timeux sends its reply tox, t2 be the time

ux sends its reply toy, t3 be the timeuy sends its reply toy,
andt4 be the timeuy sends its reply tox. Clearly,t4 > t1,
because att1, x is in statuswaiting, while att4, x is in status
notifying. Likewise,t2 > t3. Note that at timet1, ux storesx
in Nux(k; l), and at timet3, uy storesy in Nuy (k; l).

t 3

t 2

t 4

t 1 t 1 t 2

t 3t 4

x

y

uy

xu

(b)

t 1 t 2

t 3 t 4

x

y
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xu
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x

y

uy

xu

(c)

Figure 17. Message sequence chart for base case

If t1 > t2, then it must bet4 > t3, as shown in Figure 17(a).
By Fact B.4,Nux(k; l):size < K before timet1. Thus, at time
t2, Nux(k; l):size < K. Sincey:ID also has suffixl � !, ux
storesy inNux(k; l) at timet2. Consequently, fromux’s reply,
x knowsy and storesy in Nx(k; l). (In the copy ofux:table
included inux’s reply, Sincejcsuf(x:ID; y:ID)j � k+1 and

x:att level = k, x
j
! y will happen.

If t1 < t2, then consider the following cases.
� If t3 > t4, as shown in Figure 17(b), then this case is

symmetric to the case wheret1 > t2, by reversing the
role ofx andy.

� If t3 < t4, as shown in Figure 17(c), then fromuy’s reply,
x knowsy and will notify y if it has not done so. Simi-
larly, y knowsx fromux’s reply and will notifyx if it has
not done so.

Then, if l = l1, that is, bothx andy belong toCl1�!, part
(a) of the proposition holds, since we have shown above that

at least one ofx
j
! y andy

j
! x will happen before timetxy,

andhx! yid andhy ! xid by timetxy.
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Part (b) of the proposition also holds, since we have shown

above that for anyl, l 2 [b], x
j
! y or y

j
! x will happen.

Thus, eventuallyx knowsy, for eachy, y 2 Cl�! andy 2
W . By Corollary B.1,Nx(k; l) � Vl�!. Then, eventually,
Nx(k; l):size = min(K; (V [W )l�!).

Inductive step: Next, we prove that if the proposition holds at
j, then it also holds atj + 1, 1 � j � d� k � 1.

Consider nodex, x 2 Clj+1:::l1�! and the following cases:
� Case 1:x 2 Clj+1:::l1�! andx 62 Clj :::l1�!.

– 1.aIn this case, we prove part(a) of the proposition
holds. If jClj+1:::l1�!j > 1, then consider any node
y, y 2 Clj+1:::l1�!, y 6= x andy 2W :

� 1.a.1y 62 Clj :::l1�!.
� 1.a.2y 2 Clj :::l1�!.

– 1.b In this case, we prove part(b) of the proposition
holds. Consider any nodey, y 2 Cl�lj :::l1�!, where
l 6= li andCl�lj :::l1�! 6= ;:

� 1.b.1y 62 Clj :::l1�!.
� 1.b.2y 2 Clj :::l1�!.

� Case 2:x 2 Clj+1:::l1�! andx 2 Clj :::l1�!.
– 2.aTo prove part(a) of the proposition holds, con-

sider any nodey, y 2 Clj+1:::l1�!, y 6= x and
y 2 W :

� 2.a.1y 62 Clj :::l1�!.
� 2.a.2y 2 Clj :::l1�!.

– 2.b To prove part(b) of the proposition holds, con-
sider any nodey, y 2 Cl�lj :::l1�!, wherel 6= li and
Cl�lj :::l1�! 6= ;:

� 2.b.1y 62 Clj :::l1�!.
� 2.b.2y 2 Clj :::l1�!.

We will use the following Claim in our proof:

Claim B.3 Suppose Proposition B.9 holds atj, 1 � j � d �
k � 1. If x 2 Clj+1:::l1�!, y 2 Cl�lj :::l1�!, wherel may or may
not be equal tolj+1, however,x 62 Clj :::l1�! andy 62 Clj :::l1�!,

then eitherx
j
! y or y

j
! x eventually happens.

The proof of Claim B.3 is similar to that ofClaim A.2 in [6]
and is omitted here. (Note that bothx andy are inW .)

We next prove the proposition case by case.
Case 1.a.1. By Proposition B.6, there exists a nodeux,
ux 2 Clj :::l1�!, such thatux = A(x) andx:att level = j + k.
Likewise, there exists a nodeuy, uy 2 Clj :::l1�!, such that
uy = A(y) andy:att level = j+ k. Let the timeux sends the
positiveJWRlyto x be tx, and the timeuy sends the positive
JWRlyto y bety. Without loss of generality, supposetx < ty.

By Claim B.3,y
j
! x happens. By Proposition B.2,hx! yid

by timetey.
Next, we need to showhy ! xid by timetxy. Consider the

following cases:
(i) ux 2 V anduy 2 V , or ux 2 W anduy 2 V . In these

two cases,hux ! uyid by time tx. By Proposition B.1,x
j
!

uy happens beforetex. Then by Proposition B.7,hy ! xid.

(ii) ux 2 V anduy 2 W . By Proposition B.8,uy
j
! ux

happens. Letta be the time thatux receives the notification
from uy.
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Figure 18. Message sequence chart for case 1.a.1

(1) Supposetx < ta, as shown in Figure 18(a). By Fact B.3,
x 2 Nux(l + k; lj+1) after timetx. Therefore, when
ux replies touy, x 2 ux:table. By Facts B.1 and B.2,
ta < ty. By Fact B.4,Nuy (l + k; lj+1):size < K before
ty. Hence,Nuy (l + k; lj+1):size < K at time ta and
therefore,uy storesx in Nuy (l + k; lj+1) at timeta. By
Proposition B.7,hy ! xid.

(2) Supposetx > ta, as shown in Figure 18(b). then first con-
sider the case that afterux receives the notification from
uy, uy 2 ux:table. Then fromux’s reply,x knowsuy and
will notify uy, becausejcsuf(uy:ID; x:ID)j � l + k =

x:att level (see Fact B.5). Hence,x
j
! uy happens. By

Proposition B.7,hy ! xidby txy. Second, consider the
case that afterux receives the notification fromuy, uy 62
ux:table, thenNux(h; uy[h]):size = K at timeta, h =
jcsuf(ux:ID; uy:ID)j. Let v = Nux(h; uy[h]):first.
Then,uy knowsv from ux’s reply Ṡinceuy:att level �
l � 1 + k and jcsuf(v:ID; uy:ID)j > h � l + k,

uy
j
! v eventually happens. Likewise,x knowsv from

ux’s reply after timetx andx
j
! v eventually happens,

sincex:att level = l + k and jcsuf(v:ID; uy:ID)j �
l + k. Then, by Proposition B.3, by timetxuy , txuy =
max(tex; t

e
uy ), either thatx 2 Nuy (l+k; lj+1) orNuy (l+

k; lj+1) = K. Nuy (l + k; lj+1) = K is impossible, be-
causeNuy (l+k; lj+1) < K before timety, andty > txuy
(we have assumedty > tx, andty � teuy by Fact B.2).
Thus,x 2 Nuy (l + k; lj+1) at time txuy . By Proposi-
tion B.7,hy ! xid by txy.

(iii) ux 2W anduy 2 W . Then, by assuming the proposi-

tion holds atj, eitheruy
j
! ux or ux

j
! uy happens.

(1) If uy
j
! ux happens andtx < ta, then following the same

arguments in part (1) of the above case (ii) (ux 2 V and
uy 2W ), hy ! xid by txy.

(2) If uy
j
! ux happens andtx > ta, then following the same

arguments in part (2) of the above case (ii) (ux 2 V and
uy 2W ), hy ! xid by txy.

(3) If ux
j
! uy happens, letta be the timeux sends its no-

tification to uy, then by Facts B.1 and B.2, it must be
tx > ta, as shown in Figure 18(c). At timeta, ux al-
ready knowsuy. Then, there are two cases to consider:
uy 2 ux:table or uy 62 ux:table at timetx. Following the
same argument as in part (2) of case (ii), it can be proved
thathy ! xid.
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Case 1.a.2 First, obeserve that in this case,y:att level �
j + k � 1 < jcsuf(y:ID; x:ID)j. Letux = A(x), thenux 2
Clj :::l1�!. Thus bothux andy belong toClj :::l1�!, as shown

in Figure 19(a). Ifux 2 V , then by Proposition B.8,y
j
! ux

happens bytey. If ux 2 W , by assuming the proposition holds
at j, we know that by the time bothux andy are S-nodes, they

can reach each other; moreover, at least one ofy
j
! ux and

ux
j
! y happens.
Let t1 be the timeux sends itsJWRlyto x. Also, let t2 be

the timeux receives the notification fromy if y
j
! ux happens;

otherwise, lett2 be the timeux sends a notification toy.

ux y

x y

t 2

(b)(a)

x

xu

y

1t

t 3

Figure 19. Message sequence chart for case 1.a.2

(i) If t1 < t2, then att2, x 2 Nux(k+ j; lj+1). Thent2 must
be the time thatux receives the notification fromy (by
Fact B.2, at timet2 ux is already an S-node and will not
send out notifications), as shown in Figure 19(b) . Thus
y knowsx from ux’s reply that includesux:table, and

will notify x if it has not done so. Thus,y
j
! x happens

by time tey. By Proposition B.2,hx ! yid. Also, since

y
j
! x happens, andjcsuf(x:ID; y:ID)j � k + j + 1 >

y:att level, by Corollary B.6,hy ! xid by txy.

(ii) If t1 > t2 and y
j
! ux happens, then it must be

that y 2 Nux(l + k; lj+1) after timet2. By Fact B.4,
Nux(l + k; lj+1):size < K before t1, thusNux(l +
k; lj+1):size < K beforet2. Then, by Proposition B.7,

hx ! yid. Moreover, x
j
! y happens, because

x:att level = j + k andjcsuf(x:ID; y:ID)j � j + k.
By Proposition B.2,hy ! xid.

(iii) If t1 > t2 andux
j
! y happens, then following the same

argument above in case (ii), it must be thaty 2 Nux(l +
k; lj+1) after timet2, and therefore,hx ! yid andhy !

xid. Moreover,x
j
! y happens.

Case 2.a.1 This case is symmetric to case 1.a.2.

Case 2.a.2 In this case, bothx andy also belong toClj :::l1�!.

By assuming Proposition B.9 holds atj, part(a) holds in case
2.a.2 trivially.

So far, we have proved that part (a) of Proposition B.9 holds.
Next, we prove part (b).

Case 1.b Consider nodey, y 2 Cl�lj :::l1�!. If y 2 V , then by
Corollary B.1,y 2 Nx(j + k; l) by time te. Hence, in what
follows, we only consider the case wherey 2 Cl�lj :::l1�! and
y 2 W . If y 62 Clj :::l1�! (Case 1.b.1), then by Claim B.3,

eitherx
j
! y or y

j
! x eventually happens. In either case,

x eventually knowsy. Therefore, eithery 2 Nx(j + k; l) or

Nx(j + k; l):size = K at the timex knowsy. If y 2 Clj :::l1�!

(Case 1.b.2), then by assuming the proposition holds atj, we

havey
j
! ux or ux

j
! y happens ifux 2 W ; andy

j
! ux

happens ifux 2 V , by Proposition B.8. Lettx be the timeux
sends its positiveJWRlyto x. Let ta be the timeux receives

the notification fromy if y
j
! ux happens; otherwise, letta be

the timeux sends a notification toy.

� If y
j
! ux happens andtx < ta (thenta is the timeux

receives the notification fromy), theny knowsx from

ux’s reply andy
j
! x happens.

� If y
j
! ux happens andtx > ta, then eithery 2 Nux(j +

k; l) orNux(j+k; l) = K at timetx, and therefore, either
y 2 Nx(j+k; l) orNx(j+k; l):size = K afterx receives
ux’s reply (JWRly) and copies nodes fromux:table.

� If ux
j
! y happens, thentx > ta. Similar to the above ar-

gument, eithery 2 Nx(j+k; l) orNx(j+k; l) = K after
x receivesux’s reply and copies nodes fromux:table.

The above analysis shows that for each nodey, y 2
Cl�lj :::l1�!, either that after timetx, y 2 Nx(j + k; l),Nx(j +
k; l) = K, or x eventually is notified byy. By Proposi-
tion B.5, jCl�lj :::l1�!j = min(K; j(V [W )l�lj :::l1�!j). Hence,
Nx(j + k; l):size = min(K; j(V [W )l�lj :::l1�!j).

Case 2.b Consider nodey, y 2 Cl�lj :::l1�!. Again, we only
consider the case wherey 2 W (if y 2 V , by Corollary B.1,
y 2 Nx(j + k; l) by timete). (i) If y 2 Clj :::l1�!, then bothx
andy belong toClj :::l1�!. By assuming the proposition holds

atj, at least one ofx
j
! y ory

j
! x happens. Hence,x eventu-

ally knowsy. (ii) If y 62 Clj :::l1�!, thenA(y) 2 Clj :::l1�!. Let
uy = A(y), andty be the timeuy sends its positiveJWRlyto
y. Recall that in this case, bothx anduy belong toClj :::l1�!. If
uy 2 W , then by assuming the proposition holds atj, at least

one ofx
j
! uy or uy

j
! x happens; ifuy 2 V , then by Propo-

sition B.8,x
j
! uy happens. Letta be the timeuy sends its no-

tification tox if uy
j
! x happens; otherwise, letta be the time

uy receives the notification fromx. If ta < ty, then by timeta,
uy already knowsx. Then by timety,Nuy (j+k; l):size < K,
and thus at timeta, Nuy (j + k; l):size < K. Hence,uy
will store x into Nuy (j + k; l) at timeta. Hence, at timety,
x 2 Nuy (j + k; l). Then, fromuy ’s reply,y knowsx and will

send aJN tox (y
j
! x), which enablesx to know the existence

of y. If ta > ty, then at timeta, y 2 Nuy (j + k; l). Hence,
from uy’reply (or uy ’s notification),x knows the existence of
y. So far, we have shown that whethery 2 Clj :::l1�! or not,
x eventually knowsy. This is true for anyy, y 2 Cl�lj :::l1�!.
By Proposition B.5 and Corollary B.1,Nx(j + k; l):size =
min(K; j(V [W )l�lj :::l1�!j). Therefore, part (b) of the propo-
sition holds in Case 2.b.

Corollary B.7 If x 2 Clj :::l1�! andCl�lj�1:::l1�! 6= ;, l 2 [b],
then for any nodey, y 2 Cl�lj�1:::l1�! andy 6= x, at least one
of the following assertions is true:

1. y
j
! x has happened by timete;
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2. By timetex, y 2 Nx(j�1+k; l) orNx(j�1+k; l):size=
K.

Proof: Proof of the corollary is implied by the proof of Propo-
sition B.9. If x 2 V , then by Proposition B.8, the corol-
lary holds. If x 2 W and y 2 V , then by Corollary B.1,
y 2 Nx(j � 1 + k; l), hence, the corollary also holds. In what
follows, we consider the case wherex 2W andy 2 W .

First, supposej = 1. Consider a nodex, x 2 Cl1�!, l1 =
x[k]. In the proof of base case in Proposition B.9, we have
shown that for any nodey, andy 2 Cl�! 6= ;, l 2 [b], at

least one ofy
j
! x or x

j
! y happens eventually. Ify

j
! x

happens, the the proposition holds. Otherwise, if onlyx
j
! y

happens, thenx knowsy beforetex. Hence, eithery 2 Nx(k; l)
orNx(k; l):size = K.

Second, suppose1 < j � d � k. Consider a nodex, x 2
Clj :::l1�!, there are following cases:

� x 62 Clj�1:::l1�!. Consider any nodey, y 2 Cl�lj�1 :::l1�!.
First, supposey 62 Clj�1:::l1�!. By Claim B.3, at least

one ofy
j
! x andx

j
! y happens eventually. Ify

j
! x

happens, then the proposition holds. Otherwise, if only

x
j
! y happens, thenx knowsy beforetex. Hence, either

y 2 Nx(j�1+k; l) orNx(j�1+k; l):size= K by tex.

Second, supposey 2 Clj�1:::l1�!. By the proof of Case

1.b in proving Proposition B.9, eithery
j
! x eventually

happens, or thaty 2 Nx(j + k; l) or Nx(j + k; l) = K
afterx receivesux’s reply (JWRly) and copies nodes from
ux:table, whereux = A(x).

� x 2 Clj�1:::l1�!. Again, consider any nodey, y 2
Cl�lj�1:::l1�!. First, supposey 2 Clj�1:::l1�!, then both
x and y belong toClj�1:::l1�!. By part(a) of Proposi-

tion B.9, at least one ofx
j
! y or y

j
! x happens

eventually. Similar to the argument above, at least one

of the following is true:y
j
! x, y 2 Nx(j � 1 + k; l) or

Nx(j � 1 + k; l):size = K.

Second, supposey 62 Cl�lj�1 :::l1�!. By the proof of Case

2.b in proving Proposition B.9, eithery
j
! x eventually

happens, or thaty 2 Nx(j + k; l) or Nx(j + k; l) =
K afterx receivesuy’s reply (or notification) and copies
nodes fromux:table, whereuy = A(y).

Proposition B.10 For anyx, x 2 W , supposeClj :::l1�! is the
first C-setx belongs to,1 � j � d � k, l1,...,lj 2 [b]. Then
Nx(k+ i; l):size = min(K; j(V [W )l�li:::l1�!j) for 0 � i � j
andl 2 [b].

Proof: Considercontact-chain(x,g), whereg is the node that
x is given to start its join process. Supposecontact-chain(x,g)
is (u0; u1; :::uf ; uf+1), whereu0 = g, uf is the node that
sends an positiveJWRly to x (see Definition of acontact-
chain, in [6]) anduf+1 = x. T the lowest leveluf storesx in
uf :table (the attach-level ofx) is level-j (by Proposition B.6),

thenk � j � jcsuf(u:ID; x:ID)j (recallk is defined in As-
sumption B.1). Create a new sequence (g0; :::; gj) as described
in the proof of Proposition B.4, such thatg0 = g, gj = uf , and
gi0 :ID shares suffixx[i0 � 1]:::x[0] with x:ID, 0 � i0 � j.
Then, it is easy to check thatgk 2 V! , andgi0+k 2 Cli0 :::l1�!,
1 � i0 � j. Thus,gi+k 2 Cli:::l1�!. Sincegi+k is a node in

contact-chain(x,g), eitherx
c
! gi+k or x

j
! gi+k happens.

No matter which happens, let the timegi+k sends the reply to
x bet1.

If j(V [ W )l�li:::l1�!j < K, then by Proposition B.5,
Cl�li:::l1�! = (V [W )l�li:::l1�!, i.e., for eachy, y 2 Wl�li:::l1�!,
y 2 Cl�li:::l1�!. Next, consider any nodey, y 2 Wl�li:::l1�!.
Then, if gi+k 2 W , by Corollary B.7, at least one of the fol-
lowing is true:y 2 Ngi+k(i�1+k; l) by timet1 (t1 > tegi+k ),

or that y
j
! gi+k happens by timetey; if gi+k 2 V , then

y
j
! gi+k eventually happens by Proposition B.8. (i) If

y 2 Ngi+k(i�1+k; l) by timet1, thenx knowsy fromgi+k ’s
reply, hencey 2 Nx(i�1+k; l) orNx(i�1+k; l):size afterx

receives the reply fromgi+k. (ii) If y
j
! gi+k happens, then by

Proposition B.3, at least one of the following is true: by time
tex, y 2 Nx(i � 1 + k; l), or thatNx(i � 1 + k; l):size = K.
Since this conclusion is true for eachy, y 2 Cl�li:::l1�!, plus
thatVl�li:::l1�! � Nx(i�1+k; l) by timete (by Corollary B.1),
we conclude thatNx(i � 1 + k; l):size = min(K; j(V [
W )l�li:::l1�!j) by timete.

If j(V [ W )l�li:::l1�!j � K, then by Proposition B.5,
jCl�li:::l1�!j � K. Next, consider any nodey, y 2 Cl�li:::l1�!

and y 2 W . Let the timegi+k receives the message ( ei-
ther aCP or a JW) from x be t1. Then, by Corollary B.7,
at least one of the following is true:y 2 Ngi+k(i � 1 + k; l)
by timet1, orNgi+k (i� 1+ k; l):size= K by timet1, or that

y
j
! gi+k happens. (i) If at timet1,Ngi+k(i�1+k; l):size=

K, thenNx(i � 1 + k; l):size = K. (ii) If at time t1,
Ngi+k (i � 1 + k; l):size < K andy 2 Ngi+k(i � 1 + k; l),
then y 2 Nx(i � 1 + k; l) or Nx(i � 1 + k; l):size = K

after x receives the reply fromgi+k. (iii) If y
j
! gi+k

happens, then by Proposition B.3, by timetex, either y 2
Nx(i � 1 + k; l) or Nx(i � 1 + k; l):size = K. Therefore,
for anyy, y 2 Cl�li:::l1�!, either thaty 2 Nx(i � 1 + k; l) by
time tex, or Nx(i � 1 + k; l):size = K by time tex. Hence,
Nx(i� 1 + k; l):size = K by timete.

Proposition B.11 For any node x, x 2 W , if (V [
W )l�li:::l1�! 6= ;, where l 2 [b] and li:::l1 � ! is a suf-
fix of x:ID, 0 � i � d � k, thenNx(i + k; l):size =
min(K; j(V [W )l�li:::l1�!j) by timete.

Proof: If (V [W )l�li:::l1�! = Vl�li:::l1�!, by Corollary B.1,
the proposition holds. If(V [W )l�li:::l1�! � Vl�li:::l1�!, then
consider C-setClj :::l1�!. SupposeClj :::l1�! is the first C-setx
belongs to,0 � j � d � k. If j > i, by Proposition B.10, the
proposition holds. Ifj � i, then by part(b) of Proposition B.9,
the proposition holds.
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Proposition B.12 For each nodex, x 2 V [ W , if (V [
W )j�x[i�1]:::x[0] 6= ;, i 2 [d], j 2 [b], thenNx(i+ k; l):size =
min(K; j(V [W )j�x[i�1]:::x[0]j) by timete.

Proof: First, pick any nodex, x 2 W .

� If 0 � i < k, then by Corollary B.1, the proposition
holds.

� If i = k andjVj�x[i�1]:::x[0]j � K, then again by Corol-
lary B.1, the proposition holds.

� If i = k, jVj�x[i�1]:::x[0]j < K, however,
Wj�x[i�1]:::x[0] 6= ;, or k < i � d � 1, then by Propo-
sition B.11, the proposition holds.

Second, consider nodes inV . Picky, y 2 V .

� If (V [ W )j�y[i�1]:::y[0] = Vj�y[i�1]:::y[0], then given
that hV;N (V )i is a K-consistent network,Ny(i +
k; l):size = min(K; jVj�y[i�1]:::y[0]j) = min(K; j(V [
W )j�y[i�1]:::y[0]j). The proposition holds.

� If Vj�y[i�1]:::y[0] � (V [W )j�y[i�1]:::y[0], then! must be a
suffix of j �y[i�1]:::y[0], which can be deduced from As-
sumption B.1 (V Notify

x = V! for anyx, x 2W ), thusy 2
V!. If ! = j �y[i�1]:::y[0], thenV! = Vj�y[i�1]:::y[0], and
jV!j � K by Assumption B.1. ThusNy(i+ k; l):size =
K. If ! 6= j � y[i � 1]:::y[0], then! must be shorter
than j � y[i � 1]:::y[0]. By part (b) of Proposition B.8,
Ny(i + k; l):size = min(K; j(V [W )j�y[i�1]:::y[0]j) by
time te. The proposition holds.

Propositions B.4 to B.12 are based on the assumption that
all joining nodes belong to the same C-set tree. Next, we con-
sider the case where the joining nodes belong to different C-set
trees.

Proposition B.13 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join aK-consistent networkhV;N (V )i concurrently.
Let G(V!1) = fx; x 2 W;V Notify

x = V!1g, G(V!2 ) =
fy; y 2 W;V Notify

y = V!2g, where!1 6= !2 and !2 is a
suffix of!1. Letk2 = j!2j. Then, by timete,Nx(k2; l):size =
min(K; j(V [W )l�!2 j) for anyx, x 2 V [W , such thatx:ID
has suffix!2, wherel 2 [b].

Proof:
(i) If jVl�!2 j � K, thenNx(k2; l):size = K by Corol-

lary B.1.
(ii) If jVl�!2 j < K andWl�!2 = ; thenNx(k2; l):size =

Vl�!2 by Corollary B.1.
(iii) If jVl�!2 j < K andWl�!2 6= ;, then it must be that

Wl�!2 = G(V!2)l�!2 , that is, the set of nodes inW with suffix
l �!2 are the same set of nodes inG(V!2 ) with suffix l �!2. We
prove the above claim by contradiction. Suppose there exists a
nodez, z 2 Wl�!2 , however,z 2 G(V!3), i.e.,V Notify

z = V!3 ,
where!3 6= !2. Then, by the definition ofV Notify

z , jV!3 j � K
andjVz[k3 ]�!3 j < K, wherek3 = j!3j. SincejVl�!2 j < K, and
bothl � !2 and!3 are suffixes ofz:ID, then!3 must be a suf-
fix of !2 (if l � !2 is a suffix of!3, thenVl�!2 � V!3 , and
thus jVl�!2 j � jV!3 j � K, which contradicts withjVl�!2 j �

jV!2 j < K). And since!2 6= !3, j!2j > j!3j. Hence,z[k3]�!3
is a suffix of!2 since both of them are suffixes ofz:ID. Thus,
Vz[k3 ]�!3 � V!2 , thusjVz[k3 ]�!3 j � jV!2 j � K, which contra-
dicts withjVz[k3 ]�!3 j < K (by assumingV Notify

z = V!3).
Next, consider nodex. If x 2 V and x:ID has suf-

fix !2, then x 2 V!2 . By part (b) of Proposition B.8
Nx(k2; l):size = min(K; j(V [ G(V!2 ))l�!2 j). Thus,
Nx(k2; l):size = min(K; j(V [W )l�!2 j).

If x 2 W , then considercontain-chain(x,g), whereg is
the nodex is given to start joining, and create a sequence of
nodesg0; g1; :::; gh following the same way as discussed in the
proof of Proposition B.4, whereg0 = g, gh = A(u), andgi
shares one more digit withx thangi�1, 1 � i � h. Clearly,
k2 < k1 � h. Then,gk2 has suffix!2 and thusgk2 2 V!2 .

Also, x
c
! gk2 or x

j
! gk2 happens.

Next, we show that there exists a node inV!2 such that it
eventually notifiesgk2 . Consider any nodev, v 2 Cl�!2 and
v 2 W (by Proposition B.5 , such a node must exist). By
Proposition B.6, there exists a nodeuv, such thatuv = A(x)

anduv 2 V!2 . Hence,v
j
! uv happens. By Proposition B.1,

v
j
! gk2 eventually happens for eachu, u 2 V!1 , since by the

timeuv replies tov, huv ! gk2id.
Then, by Proposition B.3, by timete, eitherv 2 Nx(k2; l)

or Nx(k2; l):size = K is true. This conclusion is true for
eachv, v 2 Cl�!2 and v 2 W . Also, by Corollary B.1,
Vl�!2 � Nx(k2; l). Therefore, by timete, Nx(k2; l):size =
min(K; j(V [W )l�!2 j).

With the above propositions, we now can prove Lemma B.5.

Proof of Lemma B.5: First, separate nodes inW into groups
fG(V!i), 1 � i � hg, where!i 6= !j if i 6= j, such that for
any nodex in W , x 2 G(V!i) if and only if V Notify

x = V!i ,
1 � i � h. Let
 = f!i; 1 � i � hg. Then, at timete,

� Consider a nodex, x 2 V . If jVj�x[i�1]:::x[0]j � K,
thenNx(i; j):size = K since initially hV;N (V )i is K-
consistent. IfjVj�x[i�1]:::x[0]j < K andWj�x[i�1]:::x[0] =
;, then Nx(i; j):size = jVj�x[i�1]:::x[0]j = j(V [
W )j�x[i�1]:::x[0]j.

If jVj�x[i�1]:::x[0]j < K andWj�x[i�1]:::x[0] 6= ;, thenj �
x[i � 1]:::x[0] 62 
, because we know that for any!,
! 2 
, jV! j � K by Definition 4.1. Also, we know that
there must exist a!l, !l 2 
, such that!l is a suffix of
j � x[i � 1]:::x[0], sinceW = [hl=1G(V!l) and any node
in G(V!l) has suffix!l, !l 2 
.

Claim B.4 Suppose jVj�x[i�1]:::x[0]j < K and
Wj�x[i�1]:::x[0] 6= ;. Also suppose there ex-
ists a !l, such that !l 2 
, !l is a suffix of
j � x[i � 1]:::x[0], and j!lj � j!hj for any !h,
!h 2 
 and!h is a suffix ofj � x[i � 1]:::x[0]. Then,
Wj�x[i�1]:::x[0] = G(V!l)j�x[i�1]:::x[0].

Proof of Claim B.4: Clearly, G(V!l)j�x[i�1]:::x[0] �
Wj�x[i�1]:::x[0]. We only need to showWj�x[i�1]:::x[0] �
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G(V!l)j�x[i�1]:::x[0]. In other words, we need to show that
for any nodey, y 2 Wj�x[i�1]:::x[0], V Notify

y = V!l (thus
y 2 G(V!l)j�x[i�1]:::x[0]).

For any nodey, y 2 Wj�x[i�1]:::x[0], j � x[i � 1]:::x[0] is
a suffix ofy:ID. Since!l is a suffix ofj � x[i� 1]:::x[0]
and!l 6= j � x[i � 1]:::x[0], !l is also a suffix ofy:ID.
By the definition ofG(V!l), we know thatjV!l j � K.
In order to proveV Notify

y = V!l , we need to show that
jVy[kl]�!l j < K, wherekl = j!lj. We prove it by contra-
diction. AssumejVy[kl]�!l j � K, thenV Notify

y = V!y ,
wherey[kl] � !l is a suffix of!y. Hence,!l is a suffix of
!y and!l 6= !y. Sincey 2 W , !y 2 
. On the other
hand,!y must be a suffix ofj � x[i � 1]:::x[0], since it is
givenjVj�x[i�1]:::x[0]j < K. However,!l is picked in such
a way that for any!h, such that!h 2 
 and!h is also
a suffix of j � x[i � 1]:::x[0], j!lj � j!hj. Therefore,!y
must be a suffix of!l, which contradicts with the above
conclusion:!l is a suffix of!y and!l 6= !y.

By part (b) of Proposition B.8Nx(i; j):size =
min(K; j(V [G(V!l ))j�x[i�1]:::x[0]). Then, by Claim B.4,
Nx(i; j):size = min(K; j(V [W )j�x[i�1]:::x[0]j) by time
te.

� Consider a nodex, x 2 W . Then there exists af , 1 �
f � h, such thatx 2 G(V!f ). (i) If jVj�x[i�1]:::x[0]j �
K, then Nx(i; j):size = K by Corollary B.1. (ii)
If jVj�x[i�1]:::x[0]j < K and Wj�x[i�1]:::x[0] = ;,
then Nx(i; j):size = jVj�x[i�1]:::x[0]j = j(V [
W )j�x[i�1]:::x[0]j, again, by Corollary B.1.

(iii) If jVj�x[i�1]:::x[0]j < K andWj�x[i�1]:::x[0] 6= ;, then
j � x[i � 1]:::x[0] 62 
. Since both!f andx[i � 1]:::x[0]
are suffixes ofx:ID, we next consider two cases:!f
is a suffix of x[i � 1]:::x[0] or vice versa. If!f is
a suffix of x[i � 1]:::x[0], then for any nodey, y 2
Wj�x[i�1]:::x[0], y 2 G(V!f ) (that is,x andy are in the
same C-set tree). By Proposition B.11,Nx(i; j):size =
min(K; (V [G(V!f ))j�x[i�1]:::x[0]), thusNx(i; j):size =
min(K; (V [W )j�x[i�1]:::x[0]).

If x[i � 1]:::x[0] is a suffix of!f , then there must ex-
ist a !l, !l 2 
 and !l 6= !f , such that!l is the
longest suffix ofj � x[i � 1]:::x[0] among
. Then, by
Claim B.4, for any nodey, y 2 Wj�x[i�1]:::x[0], y 2
G(V!l) (x andy are in different C-set trees). Note that
since jVj�x[i�1]:::x[0]j < K and jV!l j � K, it is im-
possible thatj � x[i � 1]:::x[0] = !l. Hence,!l is a
suffix of x[i � 1]:::x[0], which is a suffix!f . There-
fore, !l is a suffix of !f , then by Proposition B.13,
Nx(i; j):size = min(K; (V [G(V!l ))j�x[i�1]:::x[0]), thus
Nx(i; j):size = min(K; (V [W )j�x[i�1]:::x[0]).

Lemma B.6 Suppose a set of nodes,W = fx1,...,xmg, m �
2, join aK-consistent networkhV;N (V )i concurrently. Then
at timete, hV [W;N (V [W )i is aK-consistent network.

Proof: First, separate nodes inW into groups, such that joins
of nodes in the same group are dependent and joins of nodes in
different groups are mutually independent, as follows (initially,
let i = 1):
� For each nodey, y 2 W�

Si
j=1Gj , if there exists a

nodex, x 2 Gi, such that(V Notify
y \ V Notify

x 6= ;)

or (9u; u 2 W�
Si�1
j=1Gj , (V Notify

y � V Notify
u ) ^

(V Notify
x � V Notify

u )), puty in Gi;
� Pick any nodex0, x0 2 W�

Si
j=1Gj , put x0 in Gi+1,

incrementi and repeat these two steps until there is no
node left.19

Then, we get groupsfGi, 1 � i � lg. It can be checked that
V Notify
x \ V Notify

y = ; for any nodex, x 2 Gi, 1 � i � l, and
any nodey, y 2 Gj , 1 � j � l andi 6= j. That is, nodes in the
same group join dependently, while nodes in different groups
join independently.

Then, for any suffix!, if (Gi)! 6= ; andjV!j < K, 1 �
i � l, then by Corollary B.3,(V [W )! = (V [Gi)!.

Consider any nodex. If jVj�x[i�1]:::x[0]j � K, then
Nx(i; j):size = K since initiallyhV;N (V )i is K-consistent.
If jVj�x[i�1]:::x[0]j < K and Wj�x[i�1]:::x[0] = ;, then
Nx(i; j):size = jVj�x[i�1]:::x[0]j = j(V [W )j�x[i�1]:::x[0]j.

If jVj�x[i�1]:::x[0]j < K and Wj�x[i�1]:::x[0] 6= ;, then
j(V [ W )j�x[i�1]:::x[0]j = j(V [ Gf )j�x[i�1]:::x[0]j, where
(Gf )j�x[i�1]:::x[0] 6= ;. By Lemma B.5,Nx(i; j):size =
min(K; j(V [ Gf )j�x[i�1]:::x[0]j), hence,Nx(i; j):size =
min(K; j(V [W )j�x[i�1]:::x[0]j).

Proof of Theorem 2: If m = 1, then by Lemma B.1, the
theorem holds.

If m � 2, then according to their joining periods, nodes
in W can be separated into several groups,fGi, 1 � i � lg,
such that nodes in the same group join concurrently and nodes
in different groups join sequentially. Let the joining period of
Gi be [tbGi

; teGi
], 1 � i � l, wheretbGi

= min(tbx; x 2 Gi)
andteGi

= max(tex; x 2 Gi). We number the groups in such
a way thatteGi

� tbGi+1
. Then, if jG1j � 2, by Lemma B.6,

at timeteG1
, hV [G1;N (V [G1)i is aK-consistent network;

if jG1j = 1, then by Lemma B.1,hV [ G1;N (V [ G1)i is
a K-consistent network at timeteG1

. Similarly, by applying
Lemma B.6 (or Lemma B.1) toG2, ...,Gl, we conclude that
evetually, at timete, hV [W;N (V [W )i is aK-consistent
network.

Theorem 3Suppose a set of nodes,W =fx1,...,xmg, m � 1,
join a K-consistent networkhV;N (V )i. Then, each nodex,
x 2W , eventually becomes an S-node.

Proof: Similar to the proof ofTheorem 2 in [6].
s

B.3 Communication cost of join protocol

Theorem 4Suppose a set of nodes,W = fx1,...,xmg,m � 1,
join aK-consistent networkhV;N (V )i. Then, for anyx, x 2

19[6] presents an example of how to group nodes following the steps for
K = 1. SeeFootnote 16in [6].
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W , the total number of CpRstMsg and JoinWaitMsg sent byx
is at mostd+ 1.

Proof: Suppose in statuscopying, whenx receives aCPRly
from nodeg, it finds that there exists an attach-level, level-
l, 0 � l � k, wherek = jcsuf(x:ID; g:ID)j for itself in
g:table. (There must exist such a nodeg and level-l, since
x:ID is unique and at leastjVx[d�1]:::x[0]j < K.) Thenx
changes status towaiting. So far,x has sent out at mostl+1CP
(one for requesting a level of neighbor, from level-0 to level-
l). In statuswaiting, x sendsJW to u1, u2, and so on until a
nodeuj sends a positive reply tox. For eachuj0 , 2 � j0 � j,
d � 1 � jcsuf(x:ID; uj0 :ID)j � jcsuf(x:ID; uj0�1:ID) �
l. Hence,x can at most sendd� i JWin statuswaiting. There-
fore, the total number ofCPandJWsent byx is at mostd+1.

Theorem 5 Suppose nodex joins a K-consistent network
hV;N (V )i, jV j = n. Then, the expected number of Join-
NotiMsg sent byx is

Pd�1
i=0

n
biPi(n) � 1, whereP0(n) is

PK�1
j=0

C(bd�1�1;j)C(bd�bd�1;n�j)
C(bd�1;n) ; Pi(n), for 1 � i < d� 1,

is
PK�1

j=0 C(bd�1�i�1; j)
Pmin(n�j;B)

k=K�j
C(B;k)C(bd�bd�i;n�k�j)

C(bd�1;n)
,

whereB = (b�1)bd�i�1; andPd�1(n) is 1�
Pd�2

j=0 Pj(n).

Proof: SupposeV Notify
x = V! . Thenx needs to notify all

the nodes inV!. By Proposition B.6, there exists a nodeux,
ux = A(x). Then,x sends aJW to ux, however,x sendsJN
to any other node inV! (by Proposition B.1, for any node in
V! other thanux, x will send aJN). Hence, the number of
JN x sends isjV! j � 1. Let Y = j!j andZ = jV!j. We
denote the probability thatY equalsj givenjV j = n asPj(n),
j 2 [d]. Then,Pj(n) = P (jV!j � K ^ jVx[j]�!j < K), i.e.,
Pj(n) = P (jVx[j�1]:::x[0]j � K ^ jVx[j]:::x[0]j < K). Hence,
we have

E(Z) = E(E(ZjY )) =

d�1X

i=0

(E(ZjY = i))Pi(n) (1)

We deriveE(ZjY = i)) first, given Y = i, V! =
Vx[i�1]:::x[0]. Since in a hypercube network, the node IDs are
distributed randomly in the ID space[bd], the expect number of
nodes inV whose IDs have suffixx[i� 1]:::x[0] is n

bi . Hence,
E(ZjY = i) = n

bi .
Next, we computePi(n), i 2 [d � 1]. In general, IDs of

nodes inV can be drawn frombd � 1 possible values. That is,
for anyy, y 2 V , y:ID could be any value from 0 tobd � 1
exceptx:ID.

If i = 0, thenjVx[0]j < K, i.e., there is less thanK nodes
in V with suffix x[0]. Suppose there areh nodes inV with
suffix x[0], 0 � h < K. Then, IDs of theseh nodes are drawn
from bd�1 � 1 possible values (all possible IDs with suffix
x[0] exceptx:ID); while IDs of the othern � h nodes are
drawn frombd � bd�1 values,n = jV j. Therefore,P0(n) =PK�1

j=0
C(bd�1�1;j)C(bd�bd�1;n�j)

C(bd�1;n)

If 1 � i < d � 1, then jVx[i�1]:::x[0] � Kj and
jVx[i]:::x[0]j < K. That is, there are onlyh nodes inV with
suffix x[i]:::x[0], where0 � h < K, however, there are

H nodes inV with suffix x[i � 1]:::x[0], K � H � n.
Then, IDs of theh nodes with suffixx[i]:::x[0] are drawn from
bd�i�1 � 1 possible values (any ID with suffixx[i]:::x[0] ex-
ceptx:ID), H � h IDs are drawn from(b � 1)bd�i�1 pos-
sible values (any ID that has suffixx[i � 1]:::x[0] but does
not have suffixx[i]:::x[0]), andn � H IDs are drawn from
bd � bd�i possible values (any ID that does not have suf-
fix x[i � 1]:::x[0]). Hence, for1 � i < d � 1, Pi(n) =
PK�1

j=0 C(bd�1�i � 1; j)
Pmin(n;B)

k=K�j
C(B;k)C(bd�bd�i;n�k�j)

C(bd�1;n) ,

whereB = (b� 1)bd�i�1.
Finally, for i = d � 1, since each ID is unique,x:ID

is different than the ID of any node inV . Therefore,
jVx[d�1]:::x[0]j = 0 is always true, independent of whether
jVx[d�2]:::x[0]j � K is empty or not.

Pd�1(n) = P (jVx[d�1]:::x[0]j < K ^ jVx[d�2]:::x[0]j � K)

= P (jVx[d�2]:::x[0]j � K)

= 1� P (jVx[d�2]:::x[0]j < K)

= 1� P (jVx[0]j < K

_(jVx[0]j � K ^ jVx[1]x[0]j < K) _ :::

_(jVx[d�3]:::x[0]j � K ^ jVx[d�2]:::x[0]j < K))

= 1�
d�2X

i=0

Pi(n)

PlugPi(n) into Equation 1, we getE(Z). The expected num-
ber ofJNx sends during its join isE(Z)� 1.

Theorem 6Suppose a set of nodes,W = fx1,...,xmg,m � 2,
join a K-consistent networkhV;N (V )i, jV j = n. Then for
any nodex, x 2 W , an upper bound of the expected number
of JoinNotiMsg sent byx is

Pd�1
i=0 (

n+m
bi )Pi(n), wherePi(n)

is defined in Theorem 5.

Proof: See the proof ofTheorem 5 in [6].

Corollary B.8 Suppose a set of nodes,W = fx1,...,xmg,
m � 2, join a K-consistent networkhV;N (V )i. Then for
any nodex, x 2 W , an upper bound of the expected number
of messages in the form of SN(x; y) or SNRly(x; y) sent byx,
y 6= x, is

Pd�1
i=0 (

m
bi+1 (d � i � 1))Pi(n), wheren = jV j and

Pi(n) is defined in Theorem 5.

Proof: See the proof ofCorollary A.6 in [6].

The upper bound defined in Theorem 6 is also an upper
bound for the expected number of messages in the form ofIn-
SysNotiMsg. See Section A.2 in [6] for arguments. Lastly, The
number of messages in the form ofRNandRNRlyisO(Kdb),
becausex needs to inform each neighbor thatx becomes a
reverse-neighbor of it, by sending aRN. SomeRN may be
replied (when the status of the receiver kept byx is not con-
sistent with the status of the receiver). Actually, someRNare
piggyback’ed with some other messages, such asJWRlyand
JNRly. Hence, the number of messages in the form ofRNand
RNRlythat is related to a joining node is at most2Kdb.
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