A Model Checker for Authentication Protocols *

Will Marrero Edmund Clarke Somesh Jha

Abstract

As more resources are added to computer networks, and as more vendors look to the World Wide
Web as a viable marketplace, the importance of being able to restrict access and to insure some kind of
acceptable behavior even in the presence of malicious intruders becomes paramount. People have looked
to cryptography to help solve many of these problems. However, cryptography itself is only a tool.
The security of a system depends not only on the cryptosystem being used, but also on how it is used.
Typically, researchers have proposed the use of security protocols to provide these security guarantees.
These protocols consist of a sequence of messages, many with encrypted parts. In this paper, we develop
a way of verifying these protocols using model checking. Model checking has proven to be a very useful
technique for verifying hardware designs. By modelling circuits as finite-state machines, and examining
all possible execution traces, model checking has found a number of errors in real world designs. Like
hardware designs, security protocols are very subtle, and can also have bugs which are difficult to find.
By examining all possible execution traces of a security protocol in the presence of a malicious intruder
with well defined capabilities, we can determine if a protocol does indeed enforce its security guarantees.
If not, we can provide a sample trace of an attack on the protocol.

1 Introduction

Security for early computers was provided by their physical isolation. Unauthorized access to these machines
was prevented by restricting physical access. The importance of sharing computing resources led to systems
where users had to authenticate themselves, usually by providing a name/password pair. This was sufficient
if the user needed to be physically at the console or was connected to the machine across a secure link.
However, the efficiency to be gained by sharing data and computing resources has led to computer networks,
in which the communication channels cannot always be trusted. In this case, authentication information such
as the name/password pairs could be intercepted and even replayed to gain unauthorized access. When such
networks were local to a certain user community and isolated from the rest of the world, many were willing
take this risk and to place their trust in the community. However, in order to be able to share information
with those outside the community, this isolation would have to be removed. The benefits to be had by such
sharing have been enormous, and the gains are demonstrated by the growth of such entities as the Internet
and the World Wide Web. Now, very few, if any guarantees can be made about the communication links.
Numerous protocols that take advantage of cryptography have been proposed that claim to solve many of
the security issues. The correctness of these protocols is paramount, especially when we consider the size
of the networks involved and the desire of users to place confidential information and to allow for monetary
transactions to take place across these networks.

Typically, these protocols can be thought of as a set of principals which send messages to each other. The
hope is that by requiring agents to produce a sequence of messages, the security goals of the protocol can be
achieved. For example, if a principal A receives a message encrypted with a key known only by principals A
and B, then principal A should be able to conclude that the message originated from principal B. However,
it would be incorrect to conclude that principal A is talking to principal B. An adversary could be replaying
a message overheard during a pervious conversation between A and B. So, depending on the security goal
of this simple example protocol, the protocol may or may not be secure. Because the reasoning behind the
correctness of these protocols can be subtle, a number of researchers have turned to formal methods to prove
protocols correct.

*This research was sponsored in part by the National Science Foundation under grant no. CCR-8722633.

In order to concentrate on the security of the protocol itself as opposed to the the security of the
cryptosystem used, the vast majority of research in this area has made the following “perfect encryption”
assumptions.

e The decryption key must be known in order to extract the plaintext from the cyphertext.

e There is enough redundancy in the cryptosystem that a cyphertext can only be generated using en-
cryption with the appropriate key. This also implies that there are no encryption collisions. If two
cyphertexts are equal, they must have been generated from the same plaintext using the same key.

While the assumptions are obviously not true, they are, in practice, reasonable. They are important because
they allow us to abstract away the cryptosystem and analyze the protocol itself. In particular, if there is an
attack on this abstracted protocol, then the same attack exists when a real cryptosystem is used.

2 Related Work

Because these protocols tended to be short and not terribly complicated, informal arguments were used to
prove their correctness. However, when running in parallel, the behavior of these protocols is more difficult
to analyze. Asynchronous composition is already difficult to reason about, and adding issues of who knows
what and when makes reasoning about security protocols extremely difficult. One recent approach taken
by Bellare and Rogaway and by Shoup and Rubin, is to try to provide a rigorous mathematical proof of
the correctness of a protocol [3, 21]. They use properties of pseudo-random functions and mathematical
arguments to prove that an adversary does not have a statistical advantage when trying to discover a key in
a session key distribution protocol.

One of the earliest successful attempts at formally reasoning about security protocols involved developing
a new logic in which one could express and deduce security properties. The earliest such logic is commonly
referred to as the BAN logic and is due to Burrows, Abadi, and Needham [6]. Their syntax provided
constructs for expressing intuitive properties like “A said X,” “A believes X,” “K is a good key,” and “S is
an authority on X.” They also provide a set of proof rules which can then be used to try to deduce security
properties like “A and B believe K is a good key” from a list of explicit assumptions made about the protocol.
This formalism was successful in uncovering implicit assumptions that had been made and weaknesses in
a number of protocols. However, this logic has been criticized for the “protocol idealization” step required
when using this formalism. Protocols in the literature are typically given as a sequence of messages. Use
of the BAN logic requires that the user transform each message in the protocol into formulas about that
message, so that the inferences can be made within the logic. For example, if the server sends a message
containing the key K,;, then that step might need to be converted into a step where the server sends a

message containing A pEy B, meaning that the key K, is a good key for communication between A and B.
An attempt to give this logic a rigorous semantics was made by Abadi and Tuttle [2] and other attempts to
improve or expand the logic can be found in [22]. The BAN logic remains popular because of its simplicity
and high level of abstraction.

Recent work in the use of modal logics for verifying security protocols includes the development of a
logic that can express accountability [13]. Kailar convincingly argues that in applications such as electronic
commerce, it is accountability and not belief that is important. Like their counterparts in the paper world,
one would like people to be held accountable for their electronic transactions. This means that it is not
enough for the individual participants to believe that a transaction is taking place. They must be able
to prove to a third party that a transaction is taking place. Kailar provides a syntax which allows such
properties to be expressed and a set of proof rules for verifying them. Similar to the BAN logic, Kailar’s
accountability logic is at a very high level of abstraction. Still, Kailar is able to use it to analyze four
protocols and to find a lack of accountability in a variant of one of CMU’s Internet Billing Server Protocols.

An orthogonal line of research revolves around trying to automate the process of verification when using
these logics. Craigen and Saaltink attempt this by embedding the BAN logic in EVES [7]. The automation
resulting from this experiment was not satisfactory. By building a forward-chaining mechanism and changing
some of the rules, they were able to build a system that would try to develop the entire theory of a set of
axioms (find the closure of a set of formulas under the derivation rules). Kindred and Wing went further by

proposing a theory-checker generator [14]. They provide a formal and well defined framework with assurances
about correctness and termination. In addition, their system generates theory checkers for a variety of logics
including BAN, AUTLOG, and Kailar’s accountability logic.

The third technique can be placed in the general category of model checking. The common approach
here is to model the protocol by defining a set of states and a set of transitions that takes into account an
intruder, the messages communicated back and forth, and the information known by each of the principals.
This state space can then be traversed to check if some particular state can be reached or if some state
trace can be generated. The first attempt at such a formalism is due to Dolev and Yao [8]. They develop
an algorithm for determining whether or not a protocol is secure in their model. However, their model
is extremely limited. They only consider secrecy issues, and they model only encryption, decryption, and
adding, checking, or deleting a principal name.

Meadows used an extension of the Dolev-Yao model in her PROLOG based model checker [17]. In her
system, the user models a protocol as a set of rules that describe how an intruder generates knowledge.
These rules model both how the intruder can generate knowledge on its own by applying encryption and
decryption, and how the intruder can generate new knowledge by receiving responses to messages it sends
to the principals participating in the protocol. In addition, the user specifies rewrite rules that indicate how
words are reduced. Typically, there are three rules used to capture the notion of equality and the fact that
encryption and decryption are inverse functions. These rules are:

encrypt(X,decrypt (X,Y)) = Y
decrypt(X,encrypt (X,Y)) = Y
id_check(X,X) — yes

To perform the verification, the user supplies a description of an insecure state. The model checker then
searches backwards in an attempt to find an initial state. This is accomplished naturally in PROLOG by
attempting to unify the current state against the right hand side of a rule and thus deducing from the left
hand side what the state description for the previous state must be. If the initial state is found, then the
system is insecure, otherwise an attempt is made to prove that the insecure state is unreachable by showing
that any state that leads to this particular state is also unreachable. This kind of search often leads to an
infinite trace where in order for the intruder to learn word A, it must learn word B, and in order to learn
word B, it must learn word C, and so on. For this reason a facility for formal languages is included which
allows the user to prove that no word in a set of words (or language) can be generated by the intruder. The
technique involves the following steps:

e Show that the word in question is in the language.

e Show that knowledge of any word in the language requires previous knowledge of another word in the
language.

e Show that the initial state does not contain any word in the language.

This initial model checker was still too limited. In particular, it did not allow the modeling of freshly
generated nonces or session keys. The model checker evolved into the NRL Protocol Analyzer [18] which
allowed for these operations. In addition the model changed to include the states of the participants as
well as the state of the intruder while still maintaining the old paradigm of unifying against the right hand
sides of transition rules in order to generate predecessor states. However, if anything, the model has become
more complex, and it still suffers from the most important weaknesses of the original system. There is no
systematic way of converting a protocol description into a set of transition rules for the NRL Analyzer. The
model checker also relies heavily on the user during the verification much in the same way a theorem prover
relies on the user to guide it during the search for a proof. Finally, the algorithms used in the NRL Analyzer
are not guaranteed to terminate, and so a limit is placed on the number of recursive calls allowed for some
of the model checking routines.

Woo and Lam propose a much more intuitive model for authentication protocols [23]. Their model
resembles sequential programming with each participating principal being modelled independently. There
is an easy and obvious translation from the common description of a protocol as a set of messages to their

model. Their models are also more intuitive because they consider all possible execution traces instead of
considering just the set of words obtainable by the intruder. They are concerned with checking for what
they call secrecy and correspondence properties. The secrecy property is expressed as a set of words (usually
keys) that the intruder is not allowed to obtain. The correspondence properties can express things of the
form if principal A finishes a protocol run with principal B, then principal B must have started (participated
in) the protocol run with A. However, they do not provide a general logic in which to formalize security
properties, nor do they provide an automated tool. Instead they present a set of inference rules with which
you can prove correspondence assertions about a model [24]. In addition, the description of their model,
while intuitive, is not very precise or formal.

Bolignano presents a model that is almost a middle point between these last two [4]. Like Meadows,
Bolignano emphasizes the algebraic properties of the intruder when trying to derive words. The state of
the intruder then is the set of words it can generate, while the state of the participants is determined by
the values of the variables that correspond to the protocol and their program counters. A number of rules
to reason about what information is contained in what messages are provided which can then be used to
prove properties about a protocol. In the example given, all properties, including authentication, are given
in terms of an invariant that must be proven. Because the invariant must be proven to hold for all protocol
steps, this can become unwieldy very quickly.

Other recent work in this area has involved trying to use generic verification tools to verify security
protocols. In [16], Lowe uses the FDR model checker for CSP [12] to analyze the Needham-Schroeder
Public-Key Authentication Protocol [19]. Lowe succeeded in finding a previously unpublished error in the
protocol. The fact that he was able to use a generic model checker is promising as well. Unfortunately,
the CSP model for the protocol is far from straightforward. In addition, the model is parameterized by the
nonces used by the participants. This means that it only models a single run of the protocol. In order to
prove the general protocol correct he must prove a theorem that states that the general protocol is insecure
only if this restricted version is insecure.

Leduc and others recently used the LOTOS language [5] and the Eucalyptus tool-box [9] to analyze the
Equicrypt protocol [15]. What makes this an interesting case study is the fact that the Equicrypt protocol
is a real system currently under design for use in controlling access to multimedia services broadcast on a
public channel. They were able to find a couple of security flaws in this proposed system using these generic
tools.

Gray and McLean propose encoding the entire protocol in terms of temporal logic [10]. Much like symbolic
model checking, they describe the model by giving formulas that express the possible relationships between
variable values in the current state and variable values in the next state. This makes their framework more
formal than the others, but much more cumbersome as well. They provide a simple example and prove
a global invariant for this example. The few subcases they consider are very straightforward but their
technique demands very long proofs even for the extremely simple example they present. They argue that
their technique could be automated but provide no tool for their system.

Abadi and Gordon propose the spi calculus, an extension of the pi calculus with cryptographic primitives,
as another model for describing and analyzing cryptographic protocols [1]. The spi calculus models commu-
nicating processes in a way that is very similar to CSP and CCS. The spi calculus provides constructs for
output on a channel, input on a channel, restriction, composition, testing for equality, pairs and projections,
encryption, decryption and for branching on equality to zero. What sets the spi calculus (and the pi calcu-
lus) apart from other calculi is the dynamic nature of the scope of restriction. The restriction operator can
be thought of as creating a new name to which only processes within the scope of the restriction operator
can refer. However, one of these processes could output this new name outside the scope of the restriction
operator allowing another process to refer to it. In the pi calculus, these new names can be thought of as
private channels. In the spi calculus, the restriction operator is used to model nonces and keys. So far,
protocol models have been verified by comparing to a slightly altered model that is “obviously” correct, and
is, therefore, at the same level of abstraction as the protocol model.

A more concrete and complete model is presented by Heintze and Tygar [11]. They view protocols as a
set of agents modeled as non-deterministic finite state machines. The actions of a principal who must follow
the protocol depend on the local state of that principal and so are in some sense restricted. The actions of
adversaries are not restricted by the protocol and hence they are allowed to perform any actions consistent

with their current knowledge. (In other words, they cannot send messages that they cannot generate from
their current knowledge). Their model also includes a notion of belief, which along with the sequence of sends
and receives, defines the local state of a principal. Security is then split into secret-security and time-security.
A model is secret-secure if all beliefs are universally valid. In particular if any principal ever believes that
a message M is only shared among the principals in S, then it is always the case that if A knows M then
A € 5. A model is time-secure if all beliefs eventually expire. In other words, if b is a belief held by a
principal A at event e then there is an event e’ such that b is not held at any event following e’. The authors
go on to prove that the questions “Is P secret-secure?” and “Is P time-secure?” are undecidable. While this
model does a good job of capturing what one means by “security,” the model seems too complex to be used
in practice.

3 Intuition

We also propose a model checking scheme for the verification of security protocols and we make use of the
same “perfect encryption” assumptions. We propose a very intuitive model which captures the basic idea
of message generation and communication. Unlike other systems, where the protocol must be encoded in
CSP or in term rewrite rules, in our model, protocol definitions are easily translated into a sequence of
commands like SEND, RECEIVE, and NEWNONCE. In fact, it seems clear that this translation could even
be done automatically from the simple notation used to describe protocols in the literature as sequences of
messages that occur during a run of the protocol.

Once we have a sequence of actions for each of the participants we take their asynchronous composition to
get the full model of the protocol. There is one other unspecified participant which we call the intruder. The
intruder models an untrusted communication medium as well as any malicious principals. When messages
are sent they can always be intercepted by the intruder. The intruder is also allowed to send messages while
impersonating a trusted principal. The intruder may even be selected as a participant in a protocol run.
In addition, the intruder will be allowed to compromise temporary secrets, such as session keys, which are
generated during the run of the protocol and are not meant to be treated as permanent secrets. Care must
be taken, however, because it is unreasonable to allow the intruder to compromise temporary session keys
as soon as they are generated. In some sense, the participants should be allowed to make some use of the
key before it is allowed to be compromised.

A run of the protocol will then consist of some interleaving of actions from the participants and the
intruder. This particular run or trace can then be analyzed to determine if the security of the protocol was
compromised. In particular we can check if the intruder ever learns a secret which is meant to be permanent
or if some principal A believes it has completed a run with principal B, while principal B has not participated
in the run. In general, a set of security requirements can be specified in some kind of logic and then the
trace can be checked to see if any of these requirements are violated. However, to verify that a protocol is
correct, all the possible runs must be checked.

We can think of a trace as an alternating sequence of global states and actions. The global state will
consist of the local state of each participant together with some global information like the set of secret
information, and which principals have participated in which protocol runs. Since each principal has a finite
number of actions it can take at any point in time (typically just one), then the number of possible next
states is finite. If we restrict ourselves to a sufficiently large, but still finite number of runs, then the entire
state space will be finite and we can do depth-first search of the state space simply checking that no reachable
state violates the security specification.

4 The Specification

There are two kinds of properties that we currently are interested in. The first is a kind of secrecy property.
We provide the model checker with a set of terms which the intruder is not allowed to obtain. During the
verification, we simply check that the intruder does not have possession of any of the terms in this set. This
is not as straightforward as it might seem because the information known to the intruder is typically infinite.

For example, if the intruder knows a piece of data and a key, it can repeatedly encrypt this data to produce
an infinite number of new terms.

The second property is a temporal property that Woo and Lam call correspondence [23]. In particular,
we are interested in checking that “if principal A believes it has finished a protocol run with principal B,
then principal B must have begun a protocol run with principal A.” This can be generalized to “if event
X occurs, then event Y must have occurred in the past.” (We will use Woo and Lam’s notation X — Y
to denote this.) However, there is more to this property than a simple temporal relationship. The relation
between Y events and X events must be a one-to-one mapping. More formally, the projection of any trace
onto X events and Y events must be derivable from the following grammar:

S — SzSyle

where the terminal symbols z and y represent the events X and Y. In particular, if principal A believes it
has completed two protocol runs with principal B, then principal B must have at least begun two protocol
runs with principal A. Each end of a protocol run on A’s part must be mapped to a separate beginning of
a protocol run on B’s part.

In order to check for this kind of property, we will augment the global state with counters. For each
correspondence property X — Y we will maintain a separate counter which will keep track of the difference
between the number of YV events and X events. If this counter ever turns negative (i.e. there are more
X events than Y events) then the correspondence property will be violated at that point (there will be no
one-to-one mapping from X events to Y events). Conversely, as long as the counter never goes negative
there is always a one-to-one mapping from X events to Y events.

5 Messages

Typically, the messages exchanged during the run of a protocol are built up using pairing and encryption
from smaller submessages. The smallest such submessages (i.e. they contain no submessages themselves)
are called atomic messages. There are four types of atomic messages.

e Keys are used to encrypt messages. We make the “perfect encryption” assumption, which states
that the only way to obtain the plaintext from an encrypted message is by using the appropriate
decryption key. Keys have the property that every key k has an inverse k! such that for all messages
m, {{m}r}r-1 = m. (Note that for symmetric cryptography the decryption key is the same as the
encryption key, so k = k1)

e Principal names are used to refer to the participants in a protocol.

e Nonces are randomly generated numbers. The intuition is that since they are randomly generated, any
message containing a nonce can be assumed to have been generated after the nonce was generated. (It
is not an “old” message.)

e Data which plays no role in how the protocol works but which is intended to be communicated between
principals.

Let A denote the space of atomic messages. The set of all messages M over some set of atomic messages
A is defined inductively as follows:

o If a € A then a € M. (Any atomic message is a message.)

e If m; € M and my € M then m; - my € M. (Two messages can be paired together to form a new
message.)

e If m € M and key k € A then {m}; € M. (A message M can be encrypted with key k to form a new
message.)

Because keys have inverses, we take this space modulo the equivalence {{m};}r-1 = m. It is also
important to note that we make the following perfect encryption assumption. The only way to generate
{m} is from m and k. In other words, there do not exist messages m,my, and mo and key k such that
{m}r =my -mo, and {m}, = {m'}y implies m =m' and k = k'.

Let B C M be a subset of messages. The closure of B (denoted B), representing the set of everything
that can be derived from B, is defined by the following rules:

1. If m € B then m € B.
2. If m; € B and my € B then m; - my € B. (pairing)

If my -msy € B then m; € B and m» € B. (projection)

=W

If m € B and key k € B then {m}; € B. (encryption)

5. If {m}; € B and key k~' € B then m € B. (decryption)

6 The Model

We now define the model formally by describing how the overall global state and the individual principal
local states are defined as well as by describing how actions update the state. The model consists of the
asynchronous composition of a set of named, communicating processes, each augmented with a local store
in which to keep track of the current information it “knows”, and with a set of bindings for the variables
appearing in the process. Each principal involved in the protocol is modelled as one of these processes and
is described by a sequence of actions it is to perform and by the initial state of its local store. The initial
state of the bindings is assumed to be empty. One process, the intruder, is not completely specified. Only
the initial state of its local store is given and it is allowed to perform any “realistic” actions. For example,
the intruder is not allowed to decrypt messages with a key it does not possess and it is not allowed to send
messages that it cannot create with the information in its local store. But it is allowed to receive and send
messages arbitrarily, possibly intercepting messages intended for other principals or possibly impersonating
a trusted principal.
More formally, each principal is modelled as a 4-tuple (N, p, I, B), where:

e N € names is the name of the principal.
e p is a process (similar in style to CSP) given as a sequence of actions to be performed.

e I C M is a set of all messages known (which can be produced) by the principal. M is the set of
all possible messages. Typically I will be infinite and in particular, it is closed under encryption,
decryption, pairing (concatenation), and projection. For example, if m,k € I then {m}, € I. For
some set of messages .J, we will use .J to denote the closure of J under these operations.

e B: wars(p) — I, where vars(p) is the set of variables appearing in the process p, is a set of bindings.

The global state is then maintained as the composition of the participating principals, along with the
intruder process, a list of permanent secrets, a list of temporary secrets, and a set of counters indexed
by the pairs of principals participating in protocol runs. More formally, the global state is a 5-tuple
(I1, C;, Cy, S, St), where:

e Il is the product of the the individual principals and the intruder process. This product is asynchronous,
yielding an interleaving semantics, with the restriction that processes synchronize on messages.

e (;: names x names — N gives the difference between the number of times some principal with name
A has begun initiating a protocol with some other principal with name B and the number of times B
has finished responding to principal A. If a counter ever gets a negative value this means that B has
finished responding in a protocol with A (i.e. believes A has participated in the protocol) without A
having taken part in the protocol.

e (). : names x names — N gives the difference between the number of times some principal named
A has begun responding to some other principal named B and the number of times B has finished
initiating a protocol with A. If a counter ever gets a negative value this means that B has finished
initiating a protocol with A (i.e. believes A has participated in the protocol) without A having taken
part in the protocol.

e S; C M is a set of messages that are are considered safe secrets. These are the set of words that
the intruder is never allowed to know. This set remains constant and usually includes things like the
private keys that principals use to communicate with a server.

e S; C M is a set of messages that are are considered temporary secrets. This is the set of new secrets
generated during the run of the protocol. These are secrets which we assume the intruder may be able
to discover by some outside means, but which the protocol should not reveal, such as session keys.

The specific actions that a principal may perform can be divided into internal actions and communication
actions. The internal actions are performed asynchronously. Any principal is allowed to perform an internal
action and interleaving is used to model all possible behaviors when multiple principals can make a transition.
We define a transition relation — between principals such that A — B if and only if principal A can take
an action and become a principal that behaves like B.

Communication actions consist of send and receive actions. Each receive action can potentially change
the principal’s local store, reflecting any new information it has “learned.” Communication actions can only
occur in pairs and both principals make a transition simultaneously. These communication actions are also
interleaved with the possible actions of other automata.

In order for a communication action to take place, the message being sent must unify with the message
being received. A message s-msg from principal A = (A,p,[4, B4) unifies with a message r-msg from
principal B = (B, q, I, Bp), if there exist a substitution op : vars(q) — I4 extending Bg (Bg C op), such
that Ba(s-msg) = op(r-msg). If the messages unify, then the following transitions can be taken:

<A>p17IA>BA>
(Bvq,)IIB)UB>

(A, SEND(s-msg).p', 14, Ba) —
(B, RECEIVE(r-msg).q',Ip, Bg) —
where Iy = Igp Uopg(r-msg). Because we require that s-msg unify with r-msg, if there is already a pair (var,
val) in B for some var appearing in r-msg, then the corresponding value in s-msg must be val. Thus the
updates to B only add new bindings and never change previous bindings.

For the most part internal actions are used to create or discover new information. For example,
NEWNONCE is used to create a nonce. Nonces are globally distinct, and each NEWNONCE action creates
a nonce that has not appeared up to that point in the protocol. The new nonce is added to the principal’s

local store. NEWSECRET works similarly, except that this is supposed to model generating a new session key
which can then be used to encrypt messages. More formally:

(A,NEWNONCE(var).p’, I, BY — (A,p',I' B
(A, NEWSECRET(var).p',I,BY — (A, p,I',B’)

where in both cases, if val is the new value generated by the action, then I' = I U val and B' = Blvar < val].
If the action was a NEWSECRET action, then S; is updated in the global state as well to S} = S; U val.
Additionally, the intruder is allowed to perform a GETSECRET action which it can use to acquire a secret
previously generated by a principal using NEWSECRET. This models the possibility of session keys being
compromised. It allows us to have two classes of secrets, those which we assume to be “permanent” like a
private key between a server and a trusted principal, and those secrets which are “temporary” such as session
keys. We need to allow the intruder to obtain session keys in order to allow for the possibility of replay

attacks which would allow the intruder to establish an old compromised key as a session key. However, we
also need to restrict the the usage of GETSECRET or else the intruder would be allowed to compromise a
session key immediately after it is generated and before it is ever used. For this reason, we only allow the
intruder to perform a GETSECRET action to compromise a key which has already been established or used
in a protocol. Formally,

(Z,GETSECRET.p, [,B) — (Z,p',I', B)

where for some val € S¢, I' = I U val and in the global state S; is updated to S; = S;—{wval}.

Finally, we have four special actions BEGINIT, ENDINIT, BEGRESPOND, and ENDRESPOND. These are used
to mark the beginning and the end of a principal’s participation in a protocol. We use them to guarantee
that if the principal named A finishes the protocol (performs ENDINIT(B)) then the principal named B has
participated in the protocol (performed BEGRESPOND(A)). We do this by maintaining counters for each pair
of principals participating in a protocol. More formally,

(A,BECINIT(B).p/,1a,Ba) — (A,p',Ia,B4)

and we update the global state by setting the new value of C;(A4, B):

i, By = { CilA,B)+1 if Ci(4, B) is defined
Y 1 otherwise

Similarly,

(B,ENDRESPOND(A).p', I, Bg) — (B,p',Ip,Bg)

and we update the global state by setting the new value of C;(A4, B):

error otherwise

cita,5) = {

The definitions for BEGRESPOND and ENDINIT are identical except that C,. is updated in the global state
instead of C;.

The GETSECRET action may only be performed by the intruder, while the rest of the actions may be
performed by any principal. The actions a particular honest principal may make are restricted to the sequence
of actions p that represent its role in the protocol. The intruder has no such restriction and is allowed to
make any action at any time, provided that if it performs a SEND action with message m, it must be the
case that m € I,.

Recall that a trace is an alternating sequence of global states and actions and that we are interested in
checking all possible traces. Clearly, there are a finite number of next states for each of the participants. In
addition, while the intruder can generate an infinite number of messages, it is only allowed to send a finite
number because each SEND much match with a RECEIVE. Since the there are a finite number of possible
next states, we only consider a finite number of runs, we can perform a depth first search of the state space
to generate all possible traces. We then check that no reachable state violates the security specification.
Pseudocode for this algorithm can be found in figure 1.

The remaining detail is how to maintain the local stores for the principals. The local store is accessed in
three places. First, if principal (A, p, 14, Ba) sends a message m, then we must insure that m € I4. Second,
if the principal receives message m, then we must update I4 to I'y = I4 Um. Finally, we check every global
state to see if s € I, for some s € S; U Sy, where Iz is the intruder’s local store. It turns that these local
stores are infinite because of the closure operation. However, we never really need to compute the entire
closure; we need only determine if a particular message is in the closure. So it suffices to represent the
infinite set with a finite set of “generators.” This is the topic of the next section.

proc DF'S (global-state)
push(global-state,S)
while (not empty(S)) do
(H: C;,Cr, S, St> = pOP(S)
if Ci(z,y) < 0 for some z and y or
C,(z,y) < 0 for some z and y or
s € I for some s € S, U S,
/* where I is the intruder’s information in II. */
then report-error
L = next-states((II, C;, C;, Ss, St))
for each I € L push(S,1)

Figure 1: Model-checking algorithm

7 Normalized Derivations

Intuitively speaking, if B represents some set of information that is known by a principal, then the principal
also knows (can generate) all the information in B. In general B is an infinite set; however, we usually are
not interested in the set of everything that a principal knows, but instead whether or not a specific message
x € M can be generated by a principal. This leads us to the following definition.

Let © € B be a message. A derivation of from B is an alternating sequence of sets of messages and
rule instances written as follows:

Ry_
BB B B.. B 5 B,
where:
[] B:BO
e r € By

e Each rule instance R; is written as (I;, N;, O;) where:

- I; C B;

— Bit1 = B; UO0;

— N; is one of the closure rules for B such that I; satisfies the premise of the rule and O; is the
corresponding conclusion.

For example, let B = {{a}s - b,k=}. We derive z = a - b as follows:
1. Bo = B = {{a};, - b,k~1}
2. Ry = ({{a}x - b}, 3, {{a}r, b})

By = {{a}x b, k™", {a}x, b}

Ry = ({{a}x,k7"},5,{a})

5. By = {{a}, - b, k™, {a}s,b,a}

6. Ry = ({a,b},2,{a-b})

7. By = {{a}, - b, k!, {a}s, b, a,a - b} which contains =

-

10

We would now like to introduce the notion of a normalized derivation, but first we must introduce the
notion of shrinking rules and expanding rules by defining a metric p: M — N. We then define a shrinking
rule to be a rule such that for every instance of the rule (I, N, O) we have:

>
) > D)

Analogously, an expanding rule is a rule for which every instance (I, N, O) we have:

) < i o)

We can now define a normalized derivation as follows:
Ri_
BB B 8. B, 55 B,

is a normalized derivation if and only if for all 0 < ¢ < k, N; is an expanding rule implies N; is an expanding
rule for all # < j < k. In other words, all shrinking rules appear to the left of all expanding rules. Recall
that in our notation, R; is the rule instance (I;, N;, O;),

For example, in our model, we will define our metric u inductively as follows:

e pla)y=1forallae A
o p(mi - ma) = p(mi) + p(ms)
o p({m}x) = p(m) +1

Note that p(m) is well defined when m = {mj }i, = {ma},, because the perfect encryption assumption
implies that m; = my and k; = k. In the case m = my - mo = m) - m), either m; is a substring of m{ or
m} is a substring of m;. Without loss of generality, assume m; = m/} - b. Then it must be the case that
mb = b - mo because we have m = my - my = m/ - b-mo = m] - mb. Therefore

(m) = p(ms - m2) = p(mf - b-ms) = p(m, - mb).

The message derivation rules from section 5 can now be categorized. With these definitions, rules 3 and 5
are shrinking rules and rules 2 and 4 are expanding rules.

We now show that in our model, there is a derivation of z from B if and only if there is a normalized
derivation of x from B. First we need the following lemma.
Lemma 1: Let By By B By B; be a derivation of length 2 such that Ny is an expanding rule and N; is a

Ry ., R] Rj,_
shrinking rule. Then there exists a derivation By = B} = ---B},_, -+ B}, such that

1. N{,...,N;_, are expanding rules.
2. By = B},
3. B, C By,

Proof:

Case Npg =2 and N; = 3:
Let Ro = ({m1,m2},2,{m1 - ma}) and Ry = ({m} - m5}, 3, {m},m5})

Case I: m) -mb # my -ma or m} - mi € By
In either case, m{ - mb € By, and the new derivation is

R, = Ry
R, = R

It is clear that Bj = B.

11

Case IT: m} - mb = my - my and m} - mb € By
If we also have m{| = m; and m), = may, then m/,m), € By C B;. Therefore B» = B; and we let the
new derivation consist only of

R, = R

Otherwise, we must have that either m; is a substring of m} or m] is a substring of m;. Without
loss of generality, assume m; = m/ - b. Then it must be the case that m}, = b- ms because we have
m =my -mg =mf -b-me =m} -mb. Then the new derivation becomes:

Ré) = <{m1}737{mll’b}>
Rll = <{b7 m2}>27{m,2}>
Ry = ({m1,m2},2,{mi-mo})

And we have that
Case Ng =2 and Ny = 5:
Let Ry = ({m1,m2},2,{m; -my}) and Ry = ({{m}r, bk 1},5,{m})

One of our assumptions about encryption is that given m, the only way to generate {m} is by knowing m
and k and using the encryption algorithm. Therefore there are no m; and my such that my - me = {m}y.
So, in this case, {m}, € By and the new derivation becomes

Ry = R
Rl = R
It is clear that B, = Bj.

Case Ng =4 and N; = 3:
Let Ry = ({m, k},4,{{m}r}) and Ry = ({my - m2},3,{m1,m2})

Again, since we can’t have my -mo = {m},, we must have that m, -m2 € By and the new derivation becomes
R, = R
R, = Rp

Again, B, = Bj.

Case Ng =4 and Ny = 5:

Let Ry = ({m, k},4,{{m}+}) and Ry = ({{m'}s, k" '},5,{m'})

Case I: {m/} = {m}p
In this case, we also have m’ = m and k' = k, therefore B; = B> and so the new derivation is:

R, = R

Clearly, B] = By = Bs.

Case IL: {m'}p # {m}s
It must be the case that {m'};s € By so the following is a valid derivation:

R, = R
R, = R

It is clear that B = B.

12

Theorem 2: Let B C M be a set of messages. Then z € B if and only if has a normalized derivation
from B.

Proof: If z has a normalized derivation from B then clearly this is a derivation and by definition = € B.

For the other direction, let € B. Then there exists some derivation

r=B,% B %...B._, ™" B,

such that « € By. Let S = {i|R; is a shrinking rule and 3j < ¢ such that R; is an expanding rule }. If S is
empty, then T' is a normalized derivation and we are done. Otherwise, we can induct on the size of S. Let
r = min S. By repetitively using Lemma 1, we can move R, to the left, until either it is the leftmost rule, or
it is immediately to the right of another shrinking rule. Since the original derivation is finite and since each
time we apply Lemma 1, rule R, moves one slot to the left, we need apply Lemma 1 only a finite number of
times. If R, becomes the leftmost rule, then clearly there are no expanding rules to the left of R,.. If R, is
now immediately to the right of another shrinking rule Ry, then there are still no expanding rules to the left
of R, because then there would be an expanding rule to the left of R, in the original derivation and so s € S
and s < r contradicting the minimality of r. Now we have a new derivation of x, IV, which is still finite.
Since the application of Lemma 1 does not add any new shrinking rules, S’, the new S, satisfies S’ = S—{r}.
Furthermore |S’| = |S| — 1, so by the inductive hypothesis we can transform I" into a normalized derivation
of z.

Corollary 3: Given 2 € M and B C M, determining if x € B is decidable.

Proof: By Theorem 2, x € B if and only if z has a normalized derivation from B. We therefore try to
find a normalized derivation or show that none exists. First we repeatedly apply shrinking rules to B = By
creating new sets B;. Since there are a finite number of rules, each rule creates a finite number of new words,
each smaller (by the metric) than each of the words used as an input to the rule, and By is finite to begin,
there are only a finite number of B;’s and hence we only apply shrinking rules a finite number of times. Let
us call this final set Bs. Since B is the result of repeatedly applying all possible shrinking rules to B, x has
a normalized derivation from B if and only if it has a derivation from B, which uses only expanding rules.
Furthermore, the length of a minimal derivation of x from By is bounded by u(z) since each expanding rule
creates a words that are longer than the words used as inputs to the rule. Since there are a finite number of
expanding rules and B; is itself finite, we can simply try all possible sequences of expanding rules of length
less than or equal to p(z) in a finite number of steps. Therefore, this whole algorithm is guaranteed to
terminate.

In the proof of Lemma 1, the majority of cases displayed a kind of independence of rules. Intuitively,
independence means that applying one rule does not increase the set of things that can be derived using
the other rule. More formally, a shrinking rule s is independent of an expanding rule e if for each pair of
instances (I, s,0;) and (I, e, O.) we have one of the following:

1. O, NIy = ¢: The output of the expanding rule cannot be used as input to the shrinking rule. This is
the case for pairing and decryption and for encryption and projection.

2. O4 C I,: The information gained by applying the shrinking rule was already present when applying
the expanding rule. This could be the case when for encryption and decryption using the same key.

Note that this property applied to almost all cases of Lemma 1 and that the only real work in proving
Lemma 1 came from the case of the pairing rule and projection rule because these are not independent.
The other pairs of rules were independent because of the “perfect encryption assumption.” In general, this
exchanging property (Lemma 1) need only be shown for pairs of rules that are not independent.

8 Information Algorithms

While Corollary 3 proves the decidability of determining if € B, it is an extremely inefficient algorithm.
In particular, enumerating all sequences of expanding rules of length u(z) will yield exponential complexity.
In practice however, we can search for a derivation of x from B; by using the structure of z. Specifically, we
have the following theorems:

13

Theorem 4: m; - my € By if and only if m; - my € B, or m; € B, and msy € B;.

Proof: Assume mq - my € By and mq - mo ¢ Bs, then m; - my must be in B, because of an expanding
rule. By assumption, m - my € By. To show that m; - ms € B, can be derived from B without using a
shrinking rule we take a derivation of m; - ms € B,, I, and use theorem 2 to get a normalized derivation
I". Now either the shrinking rules appearing in I are redundant (i.e. they don’t add any new words and so
can be removed from the derivation) or we contradict the fact that By was created by applying all possible
shrinking rules to B. In either case the remainder of the derivation (and there must be some remainder
since we assume that my - ms ¢ Bs) must consist of expanding rules. In particular the last rule used in the
derivation must be an expanding rule and the only way that could be the case is if it is rule 2 which would
require as its premise m; € B, and my € B;.

Now assume that m, - ms € B, or m; € B, and my € B,. Then it is clear by either rule 1 or rule 2 that
my -Mo € E

Theorem 5: {m}, € B, if and only if {m}, € B, or m € B, and k € B,.

Proof: Analogous to the previous theorem.

Putting all these together yields the basis for our search algorithm. As our set of known messages
increases, we repeatedly apply shrinking rules and removing “redundant messages” until we get a set of
“basic” messages, Bs, to which we cannot apply any shrinking rules. By redundant messages, we mean
messages that can be generated from the other messages in the set using expanding rules. For example,
when we apply rule 3 to get m; and msy from m; - msy, we also remove m, - mo from Bs. However, when
applying rule 5 we must be careful; when we generate m from {m}; and k~! we cannot remove {m} from
B; unless k € B;. Pseudocode for this algorithm is given in figure 2.

1 function add(I,m)

2 foreachiel

3 ifi={z},andy !t =m

4 then I = add(I, z)

5 ifyelthenlI =1-—i

6 ifm=x-y

7 then return add(add(I,z),y)
8 ifm={z},andy el

9 then if y € T
10 then return add(Z, z)
11 else return add(I Um,)
12 return IUm

Figure 2: Augmenting the intruder’s knowledge

We now consider the complexity of inserting a new message m into our current set of information Bj
and generate a new set of information BY. The only time there is any interaction between previously known
messages in By and m is when we try to apply the decryption rule. The message m can have at most
|m| encryptions. For each encryption, we scan B looking for the inverse key for a total of |B||m| time.
Analogously, m could contain at most |m| keys. For each key, we must check each element of By to see if it
can now be decrypted. Again, this takes at most |B||m| time. However, the newly decrypted message could
again be decrypted. The number of iterations is bounded by |B|; therefore, the total time to generate BY,
is bounded by O(|B;|?|m|) and the size of B’ is bounded by O(|B;s]|?).

We know that any words in B can be derived using only expanding rules. When we search to see if
a word w is known, we can use theorems 4 and 5 to break it down into smaller pieces which can then be
searched recursively. For example, if w ¢ Bs and w = {m}, then theorem 5 tells us that w € B; only if
m € By and k € B;. Pseudocode for this algorithm is given in figure 3.

When searching for a derivation of w from B, we first check to see if w € Bs. This costs at most | Bj|

14

1 function in(I,m)

itmel

then return true
ifm=x-y

then return in(I, z) and in(I,y)
it m = {z},

then return in(Z, z) and in(Z,y)
return false

00 ~J O U= W N

Figure 3: Searching the intruder’s knowledge

time. If not, we break down w into two smaller pieces and recursively check those peices. The total number
of recursive calls is bounded by the number of operations making up w, which is in turn bounded by |w.
Thus the total time to check if w € By is bounded by O(|Bs||w]).

9 Verification Example

We now consider an example to illustrate how the model checker works. We consider the simplified Needham-
Schroeder protocol analyzed by Lowe [16] given below:

1. A> B: AB{N,.A}k,
2. B— A:B.A{N,. N}k,
3. A> B: AB{N)}x,

Here A is the initiator and B is the responder. A selects a nonce N, and sends it along with its name
encrypted with B’s public key to B. B uses its private key to decrypt this message and obtain N,. Now
B generates its own nonce N, and sends it along with N, encrypted with A’s public key to A. A uses its
private key to decrypt this message and returns N, to B encrypted with B’s public key. B then uses its
private key to verify that it has just received the nonce sent earlier.

In order to use our model checker, we first isolate which actions are performed by A and which actions
are performed by B. We then write a short sequence of actions which make up each participant’s role in
the protocol. The process description for principal A can be found in figure 4. The description for principal
B is similar. All that remains is to specify the initial state of each principal’s local store. Each principal,
including the intruder, knows the names of all three principals. Each principal also knows the public key
of each of the three principals. Finally, each principal knows it’s own private key. Figure 5 lists the initial
contents of the intruder’s local store which consists of the names of the three principals, all three public keys
and it’s own private key.

The result of the verification attempt can be found in figure 6. In just a few seconds, the model checker
finds a violation of the security specification and generates a counter-example. Figure 7 provides an easier to
read description of the attack. The sequence of messages for two runs of the protocol (a and () are provided.
The notation I(A) is meant to convey either I impersonating A if on the left of the arrow, or I intercepting
a message meant for A if on the right of the arrow.

If we examine the counter-example we can see what has happened. A initiates a protocol run with the
intruder. The intruder initiates a protocol run with B impersonating A and using the same nonce that A
used with the intruder. When B responds, the intruder forwards this message to A. This message has the
format that A is expecting, namely its own nonce and a new nonce encrypted with A’s public key. A then
replies back to the intruder with B’s nonce encrypted with the intruder’s public key. The intruder can use
its private key to decrypt this and it can now return B’s nonce encrypted with B’s public key. When B

15

((beginit (*p-var* b))
(newnonce (*var* na))
(send (*var* b)
(concat a
(*xvar* b)
(encrypt (pubkey (*var* b)) (concat (*var* na) a))))
(receive (*var* b)
(concat (*var* b)
a
(encrypt (pubkey a) (concat (*var* na) (*var* nb)))))
(send (*var* b)
(concat a
(xvar* b)
(encrypt (pubkey (*var* b)) (*var* nb))))
(endinit (*var* b)))

Figure 4: Process description for the initiator

(a b *intruder* (pubkey a) (pubkey b)
(pubkey *intruder*) (privkey *intruderx*))

Figure 5: The intruder’s initial knowledge

receives this message, the protocol run is complete and B believes it has finished a protocol run with A while
A does not have the corresponding belief that it has initiated a protocol run with B.

The above analysis is most easily seen in figure 7 by observing the following relationship between the «a
run and the g run:

e The role of A in « is played by I in 3.
e The role of I in « is played by B in f.

e Each message in § can be obtained from the corresponding message in a by replacing every occurance
of I with B.

Therefore, the 8 run is identical to the a run except that B plays the role of the responder and I impersonating
A has played the role of the initiator.
Lowe suggests fixing the protocol by changing the second message so that the new protocol is as follows:

1. A» B: ABAN,. A}k,

2. B— A: B.A.{NQ.N{,.B}KA

3. A—> B: A-B-{Nb}KB

When we try to verify this protocol, like Lowe, we find no attack in a single run of the protocol. Because
no attack was found, the entire exhaustive search of the state space is performed and so the verification
process takes a bit longer, but it still completed in under a minute.

10 Conclusion

Our model checker provides a number of advantages over other formalisms. The way we model a protocol
is very intuitive. We simply list the sequence of actions that each participant takes in the protocol. Unlike

16

"Lack of correspondence"

(B (BEGRESPOND A))

(A (BEGINIT *INTRUDER*))

(A ((NEWNONCE (*VAR* NA)) (*NONCEx 245)))

(A

(CONCAT A *INTRUDER*

(ENCRYPT (PUBKEY *INTRUDER*) (CONCAT (*NONCE* 245) A)))

INTRUDER)

(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (CONCAT (*NONCE* 245) A))) B)
(B ((NEWNONCE (*VAR* NB)) (*NONCE* 260)))

(B

(CONCAT B A (ENCRYPT (PUBKEY A) (CONCAT (*NONCE* 245) (*NONCE* 260))))
INTRUDER)

(INTRUDER

(CONCAT *INTRUDER* A

(ENCRYPT (PUBKEY A) (CONCAT (*NONCE* 245) (*NONCE* 260))))

A)

(A (CONCAT A *INTRUDER* (ENCRYPT (PUBKEY *INTRUDER*) (*NONCE* 260)))
INTRUDER)

(A (ENDINIT *INTRUDER*))

(INTRUDER (CONCAT A B (ENCRYPT (PUBKEY B) (*NONCE* 260))) B)

Figure 6: Verification Result

al. A o I AT{N,. Ak,
Bl. I(A) —» B A.BAN, A}k,
2. B = I(A) : B.A{N, N}k,
a2. I e d A I-A-{Na-Nb}KA
ad. A — I A-I-{Nb}KI

ﬁ?) I(A) — B A-B-{Nb}KB

Figure 7: Attack on Needham-Schroeder Protocol

systems based on logics, we need not interpret the beliefs that each message is meant to convey, and we can
generate counterexamples when an error is found. Unlike term rewriting approaches, we need not construct
a set of rewrite rules to model how an intruder can manipulate participants to generate new messages. We
simply model the protocol as a set of programs, one for each participant in the protocol. Because we separate
the algorithms that maintain the intruder’s knowledge from the state exploration algorithms, we also never
need to encode the intruder for our models.

The prototype model checker described here has successfully discovered previously published errors in
protocols. When run on correct protocols, the model checker takes a bit longer because it ends up exploring
the entire reachable state space, but for the examples investigated so far, the system still terminates in
about a minute. We are confident that this kind of exhaustive simulation is a feasible and useful technique
for verifying security protocols. However, there are still many extensions that can be investigated and
implemented as well as additional experiments to be carried out.

Despite that fact that there is a simple and straightforward translation from protocol descriptions in the
literature into our modelling language, this process is tedious and prone to error. We are currently developing
a better interface that would allow protocols to be specified exactly the same way they are specified in the
literature. We are also working on defining a logic in which to specify the properties we are interested in
checking. We are investigating how to add other message operations such as XOR and encryption with

17

non-atomic keys. While these extensions should be possible, it is not clear how these additions will affect
the efficiency of our decision procedure for message derivations.

Efficiency is also an important concern. Currently, the model checker runs in an acceptable amount of
time. As we begin to increase the number of concurrent protocol runs, and as we increase the complexity of
the model checker itself, we can expect the execution time to increase dramatically. Techniques that increase
the efficiency of the model checker are necessary to combat this increase in complexity. In particular, it has
become clear that a number of operations can be thought of as independent of each other, in the sense that
they can be swapped in the execution trace without affecting the rest of the trace. This leads us to believe
that partial order techniques [20] can be applied. The increase in efficiency, ease of use, and expressibility
will prove useful in analyzing more complex protocols, including electronic commerce protocols.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic protocols the spi calculus. In Proceedings of the
Fourth ACM Conference on Computer and Communications Security, April 1997. To appear.

[2] M. Abadi and M. Tuttle. A semantics for a logic of authentication. In Proceedings of the 10th ACM
Symposium on Principles of Distributed Computing, pages 201-216, August 1991.

[3] M. Bellare and P. Rogaway. Provably secure session key distribution—the three party case. In Proceedings
of the 27th Annual ACM Symposium on Theory of Computing, pages 5766, 1995.

[4] D. Bolignano. An approach to the formal verification of cryptographic protocols. In Proceedings of the
3rd ACM Conference on Computer and Communication Security, 1996.

[5] T. Bolognesi and E. Brinksma. Introduction to the iso specification language LOTOS. Computer
Networks and ISDN Systems, 14(1):25-59, 1987.

[6] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical Report 39, DEC Systems
Research Center, February 1989.

[7] D. Craigen and M. Saaltink. Using EVES to analyze authentication protocols. Technical Report TR-
96-5508-05, ORA Canada, 1996.

[8] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198-208, March 1989.

[9] H. Garavel. An overview of the Eucalyptus toolbox. In COST247 workshop, June 1996.

[10] J. W. Gray and J. McLean. Using temporal logic to specify and verify cryptographic protocols (progress
report). In Proceedings of the 8th IEEE Computer Security Workshop, 1995.

[11] N. Heintze and J. Tygar. A model for secure protocols and their compositions. IEEE Transactions on
Software Engineering, 22(1):16-30, January 1996.

[12] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[13] R. Kailar. Accountability in electronic commerce protocols. IEEE Transactions on Software Engineer-
ing, 22(5), May 1996.

[14] D. Kindred and J. M. Wing. Fast, automatic checking of security protocols. In USENIX 2nd Workshop
on FElectronic Commerce, 1996.

[15] S. Lacroix, J.-M. Boucqueau, J.-J. Quistater, and B. Macq. Providing equitable conditional access
by use of trusted third parties. In FEuropean Conference on Multimedia Applications, Services, and
Techniques — ECMAST96, pages 763-782, May 1996.

18

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 1055 of Lecture Notes in Computer
Science, pages 147-166. Springer-Verlag, 1996.

C. Meadows. Applying formal methods to the analysis of a key management protocol. Journal of
Computer Security, 1:5-53, 1992.

C. Meadows. The NRL protocol analyzer: An overview. In Proceedings of the Second International
Conference on the Practical Applications of Prolog, 1994.

R. Needham and M. Schroeder. Using encryption for authentication in large networks of computers.
Communications of the ACM, 21(12):993-999, 1978.

D. Peled. All from one, one for all, on model-checking using representatives. In Proceedings of the Fifth
International Conference on Computer Aided Verification, Lecture Notes in Computer Science, pages
409-423. Springer-Verlag, 1993.

V. Shoup and A. Rubin. Session key distribution using smart cards. In Proceedings of Eurocrypt, 1996.

P. Syverson and P. van Qorschot. On unifying some cryptographic protocol logics. In Proceedings of
the 1994 IEEE Computer Society Symposium on Research in Security and Privacy. IEEE Computer
Society Press, May 1994.

T.Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. In Proceedings of the
IEEE Symposium on Research in Security and Privacy, 1993.

T. Y. C. Woo and S. S. Lam. Verifying authentication protocols: Methodology and example. In
Proceedings of the International Conference on Network Protocols, 1993.

19

