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APPENDIX A

SIMULATION RESULTS FOR THE POISSON ASSUMPTION

Channel traffic is a random variable representing the total
number of packets transmitted by all users into a channel time slot.
Both zeroth order and first order approximations in Chapter 3 assume that
channel traffic is Poisson distributed (the Poisson assumption). In
this appendix, we examine further the accuracy of the Poisson assumption
through simulations.

Let P, be the fraction of time slots, each of which has exactly
i packet transmissions, over the duration of a simulation run. lPiIV?=0
represents the measured probability distribution for channel traffic.

(M is the number of channel users.} The channel throughput rate SO is

M ut
given by P1 . The channel traffic rate G is given by 25 i Pi .
, i=1
We give below comparisons between Pi and the Poisson probabilities

g;-e"G for the infinite population model, the linear feedback model
and controlled channels.

In Table A.1, P, and the corresponding Poisson probabilities
are shown for various cases of the infinite population model. In all
cases, R = 12 and the simulation duration is 8000 time slots. Each
simulation run satisfies the channel equilibrium criterion in Section
3.2.3. Cases (a), (b) and (c) correspond to K =5, 15 and 40 respec-

tively with SOu =~ 0.25 . Note that the Poisson approximation is better

t
for K =15, 40 than K =5 . (This observation is consistent with the

conclusion of Theorem 4.1.) Cases (b), (d) and (e) correspond to Sout =
0.245, 0.150 and 0.304 respectively with K = 15 . Note that the Pois-

son approximation is better for a smaller Sout‘
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In Table A.2, comparisons are shown for the linear feedback model
with M = 200 and four different retransmission delay probability dis-
tributions (corresponding to those in Fig. 5-1). Each simulation run
has a duration of 8000 time slots and satisfies the channel equilibrium
criterion. 1In all four cases, the Poisson approximation is excellent.

In Table A.3, comparisons are shown for three controlled channels

with M = 200: {a) ICP-CONTEST with W = 40 and fi = 22, (b) RCP-CONTEST

with W = 40 and fi = 18, and (¢) Heuristic RCP with K, =10 and
Km =60 for m= 2. R is assumed to be 12 and each simulation run
has a duration of 30,000 time slots. In all cases the Poisson approxi-
mation is quite good. (Note that performance of the CONTEST algorithms
depends upon the accuracy of PO = e-G within a time history window.)
From comparisons in Tables A.1 - A.3, we also observe the follow-
ing: |
(1) In all cases, P, 2 e
(2) In all cases, P1 < Ge’G; this is expected since finite
retransmission delays are used.
(3) In most cases, Pi (2 <1i 5 6) are larger than the cor-
responding Poisson probabilities., On the other hand,

the Poisson distribution has a much longer tail than the

measured channel traffic probability distribution.
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(a) K=5 i P, Poisson
Sout = 0.253
G = 0.432 0 0.6671 0.6490
1 0.2530 0.2806
2 0.0649 0.0607
3 0.0116 0.0087
4 0.0025 0.0009
5 0.0005 0.0001
6 0.0004 0.0000
(b) K =15 1 Pi Poisson
Soup = 0-245 .
0 0.7011 0.6973
G = 0.3 1 0.2451 0.2514
2 0.0466 0.0453
3 0.0064 0.0054
4 0.0008 0.0005
5 0.0000 0.0000
6 0.0000 0.0000
(e} K =40 i P, Poisson
Sout = 0.252
0 0.6872 0.6814
G = 0.384
1 0.2516 0.2614
2 0.0524 0.0501
3 0.0080 0.0064
4 0.0008 0.0006
5 0.0000 0.0000
6 0.0000 0.0000

Table A.1 Channel traffic probability distribution

(infinite population model).
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(d) K =15
Syyp = 0-150
G =0.184
(e) X =15
Sgye = 0+ 304
G = 0.586

i Pi Poisson
0 0.8335 0.8315
1 0.1500 0.1534
2 0.0153 0.0142
3 0.0011 0.0009
4 0.0000 0.0000
5 0.0001 0.0000
6 0.0000 0.0000
i Pi Poisson
0 0.5722 0.5563
1 0.3045 0.3263
2 0.0946 0.0957
3 0.0229 0.0187
4 0.0048 0.0027
5 0.0009 | 0.0003
6 0.0001 0.0000
Table A.1 (Continued)
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i P. Poisson
i
0 0.6086 0.6021
1 0.2944 0. 3055
2 0.0805 0.0775
3 0.0141 0.0131
4 0.0023 0.0016
S 0.0001 0.0002
6 0.0000 0.000G
(a) R =12 = 10
Sout = 0.294
G = 0.507
i Pi Poisson
0 0.6308 0.6279
1 0.2894 0.2922
2 0.0661 0.0680
3 0.0113 0.0105
4 0.0023 0.0012
5 0.0001 0.0001
6 0.0000 0.0000
() R=12 p=35
Sout = 0,289
G = 0.465

Table A.2 Channel traffic probability distribution

M = 200).

i Pj Poisson
0 0.6264 0.6256
1 0.2934 0.2934
2 0.,0670 0.0688
k4 0.0116 0.0108
4 0.0014 0.0013
5 0.0002 0.0001
6 0.0000 0.,0000
(b) R=10 K= 34

Sout = 0.293

G = 0.469
i Pi Poisson
0 0.6373 0.6351
1 0.2831 0.2883
2 0.0691 0.0655
3 0.0095 0.0099
4 0.0009 0.0011
) 0.0001 0.0001
6 0.0000 0.0000

2

(d) R=0 P =

Sout = 0.283

G = 0.454



(a) ICP-CONTEST i P. Poisson

K = 10

Sy = 0.315 0 0.5612 0.5505

1 0.3148 0.3286

G =0.597 2 0.0963 0.0981

3 0.0223 0.0195

4 0.0044 0.0029

5 0.0009 0.0004

6 0.0001 0.0000

(b) RCP-CONTEST i P, Poisson
K =10 K_= 60

0 c 0 0.5340 0.5193

Sout = 0-322 1 0.3218 | 0.3403

G = 0.655 2 0.1084 0.1115

| 3 0.0282 0.0243

| 4 0.0061 0.0040

| 5 0.0014 0.0005

6 0.0000 0.0001

: (c) Heuristic RCP i Pi Poisson
| Ky =10 K, = 60

0 0.5670 0.5605

Sout = 0316 1 0.3163 | 0.3245

G = 0.579 2 0.0922 0.0939

3 0.0205 0.0181

4 0.0034 0.0026

5 0.0005 0.0003

6 0.0001 0. 0000

Table A.3 Channel traffic probability distribution
{Controlled Channels).
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APPENDIX B

ANALYSIS FOR THE LARGE USER MODEL

The set of nonlinear implicit equations involving equilibrium

values of Si, G., 9%n and 9 ¢ (i = 1, 2) in the large user model will

i
be derived. Recall that variables indexed by 1 refer to the small
users and variables indexed by 2 refer to the large user.

Define E1 and E2 to be the average number of channel collisions

for a small user and a large user packet respectively. Similar to the

derivation of Eq. (3.5), we have

Ei = (1 - qin)/qit i=1, 2 (B.1)
G = Si(l + Ei) i=1,2 (B.2)
Thus
Q¢ .
S, = G i=1,2 (B-S)

i g+ 1-a,

which are Eqs. (3.16) and(3.17).

Referring to the model description of a large user in Section
2.3.2, we introduce the following notation for events at the large user:

TS transmission success in a channel slot

it

SS = scheduling success (i.e., capture of the transmitter

as a result of having the highest priority among all
packets scheduled for the current time slot)
Each large user packet may be in one of the following three states de-

pending on their most recent history:
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NP = newly generated packet

SC = scheduling conflict (i.e., failure to capture trans-
mitter)

TC = transmission conflict in a channel slot

Now define the variables,

a_ = Prob [SS/NP]
a, = Prob [SS/TC]
a, = Prob [ss/5C]
r, = Prob [TS/SS, NP]
r, = Prob [TS/SS, TC]
r, = Prob [TS/SS, SC]

Given a large user packet,let En and Et be the average number of SC
events before SS, conditioning on NP and TC respectively. Similar

to the derivation of Eq. (3.5), we have

En = (1 - an)/as
(B.4)
Ep = (1 - a)/a,
Recalling the definitions of q,, and Apys WE have
q2n = (rn * rsEn)/(1 + En)
(B.5)
Apy = (rt + rsEt)/(l + Et)
The average station traffic (defined in Section 3.3.2) is
Gs = 52 {1+ En + Ez(l + Et}] (B.6)
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and the average packet delays are

K+1
D1=R+1+E1[R+——2—] (3.18)
_ Ke1 L+1
D2 =R+ 1+ E2 [R pliaad I (En + EZEt)—j— (3.19)
where R + E;l- is the average retransmission delay and E%l is the

average reschedule delay (see Section 2,3.2).
With the Poisson and independence assumptions in Section 3.3.2
for channel traffic and station traffic, we proceed to solve for the

, a, a_ and a_.

s? “n’ %t g+ (The ap-

success probabilities Qs Qg0 Tpr Tes T
proach is similar to the derivation of q, and 9, in the infinite popu-
lation model.) Consider the transmission of a test packet in the cur-
rent time slot; a conflict may occur as a result of new arrivals, packets
retransmitting from a window of K slots or packets rescheduling from a
window of L slots in the past.
Define
q_ = Prob [no packet retransmitting from one
of the K slots to the current slot]

and

q, = Prob [no packet_rescheduling from one

of the L slots to the current slot]

We then have, nel

m ' m

Y A B e‘Gs(K-l) +e‘G1Z S %,
- e mre ¢ —T
° nm1 ™ n K m=1 "
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n N
-6, N6 -G (1(-1)“ “(Gp+G)  -(6;%G))
e + Gle + e

] s —
T
N2 nl K
-G, /K -G -G, -G,/K -{G,+G )
= e 1 + 1 (lwe S)(e 1-e 1 ) +G.e 1°7s
K 1
m
_ Eg_ e-Gs L-1 '1+ a e_Gs+ e-Gs
G =5 m! L S
-¢,/L -G
s [
= L - -1
-GS .
4 = (Gs+1) ¢ ' L=1

Suppose the test packet is a small user packet. C{onditioning on

a new packet, we have

Lg-S (.7)

K
qln = qo qh ¢
.th

Conditioning on a packet which had a channel collision in the j~ slot,

define
Prob [no other packet retransmitting from

qlc

the jth slot to the current slot]

-G - n+l
U = -(G ) [(1 -e )nZO ‘(%
n
o ls >0 TG\
n>1 nl! € K
[ -G, /K( l_e-Gs) -(Gl+Gs)J/{1 -(G1+Gs)]
e . - e - e -e J

"
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We have,

¢ ©

%

K

-1 Le—S
qlcqh

(B.8)

Suppose the test packet is a large user packet and condition on

the event SS.

Define

q

H

Prob [no small user packet retransmitting

from one of the X slots to the current slot]

Conditioning on the event NP, we have

and

= Prob [TS/SS, NP] = e

Prob [SS, TS/NP] = q_'q,"e

m
-G, G.™ g n (G, +C.)
1 s s fK-1 1 7s
e T e ('ij) *(G+G)) e
-(G,+G_)
+e 1 s
G . - (G *Gy)
X
-3
Ko 1 (B.9)
-8 _S
Ya-e /s, -

where we have made use of the scheduling priority rule in Section 2.3.2

in which new packets have the lowest priority; ties among new packets

are broken by random selection such that

(l1-e

-5

2

)/s, =
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Finally,

o
]

Prob [SS/NP]

Prob [SS, TS/NP]/Prob[TS/SS, NP]

(qo/‘?')K th (1";52)/52 (B. 10)

h

Given that the large user test packet had a channel collision

h

(TC) in the jt slot, define

U

Prob [no small user packet retransmitting from
h

q2c

the jt slot to the current slot]

' n
q . E:l__ e-Gl K_-.!‘.)n [1 e-Gl]
- - -
2c 1 n! K

[e-cl/x_e-cll/ll_e—el]

We then have

H
]

Prob [TS/SS, TC]

=q Q. © (B.11)

and

K
Prob [SS, TS/TC] = Z '}K'qolalqzc q e
i=1

where the scheduling priority rule has been used.
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Finally

Prob [SS/TC)

(]
n

Prob [SS, TS/TC}/Prob[TS/SS, TC]

t

1 -~ K _ -
£ -(3574) ]/[1 -(qo/q)] (B.12)
Given that the large user packet had a scheduling conflict (SC)

in the jth slot, define

Prob [no other packet rescheduling from the jth

fa]
It

sc
slot to the current slot]

Z 6" Gy L1\ Z S s
s¢c ) m! mll L 1 m! m+1

-G /L -G /L -G
GS (1..—)e S -e s + e

L-1 G -1+e Cs
5

A
£

We have

Prob [TS/SS, SC] {(B.13)

H
H

Prob [SS, TS/SC]

L
R
K z 1 i-1%y
=q. q = q e
0 sci=1 L *h
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where the scheduling priority rule has been used. Finally

Prob [S5/SC]

4]
1]

Prob{SS, TS/SC]}/Prob[TS/SS, SC]

q
- K 'sc
= (qo/q) - I (B.14)
Eqs. (B.3) - {(B.14) constitute a set of nonlinear implicit equa-
tions which may be solved numerically with specified values of K, L, Gl'

and G2 {or 5, and Sz).

1

Limiting results

In the limit as K, L+ =, the following limiting values may be

obtained from the definitions of 450 > q, A1¢0 92¢ and Ao

-(G;+G) -G -G
K —Gl(.l-e 1°s ) -(;—e 1) (l-e 5)

o
'Gs
L -Gs+l-e
qh'_'e
-G ( l-e—(Gl+Gs))

_K 1

G = ¢
q1c = q2c = qsc =1

With the above limiting results, the following proposition may be shown.
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Proposition B.1 In the limit as K, L >,

-G

1
= = - 3.
Q= 9y = & (1-6)) (3.20)
..G1
Sl = Gl e (1—G2) (3.21)
_Gl
Ay, = dp¢ = © (3.22)
-Gl
82 = G2 e (3.23)
'Gs
G, =1-e (3.24)
r = =r = e_G1
n- Tt "% *
- (G,~S,) -5,
a = e [1 -e ] S
n 2

[1 —e-(Gz-Sz)]//(Gz-sz)

-(G,-8,) -(G_.-G,)
a = e 2 2 [1 e ° 2 ]//(GS-GZ)

]
[}

Proof The variables in the above equations are defined by Egs.
(B.3) - (B.14). It suffices to show that limiting values of these vari-
ables given by the proposition satisfy Eqs. (B.3) - (B.14) in the K,
L+ limit, This may be accomplished by assuming the proposition to be
true, evaluating the RHSs of Eqs. (B.3) - (B.14) and showing that they

are equal to the corresponding LHSs in the K, L+ limit.
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APPENDIX C

DERIVATION OF EQS. (4.3) AND (4.4), THEOREM 4.1

AND ITS PROOF

Derivation of Eq. (4.3)

By definition,

o o R+K
£+l 25 . jz IHI Yil 1
e - | 129 »™ ey
¥y=0 YRex™0 N 371

Substituting Eqs. (4.1) and (4.2) for Pt+1(X) , we have

o = R+K
Y. i £-1
CEPIEN( | B 22 st B 0 e
1 R+K 1S£

where Xi T Vi1 fori=1, 2, ..., R+K-1
0 m=1
Afm) =
m m# 1
and

K
= jZl )\(xR+j)

Exchanging the order of the first and last summations, and evaluating

their sum,
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0 ) ) £
Qt+1(i)=z Z UZ.Yj z e [1_%+;_1_} bt ()

— - . ] -
o yR+K'0 j=2 Xpek "0
Letting Y = X5 for i = 2, 3, ..., R+K and rearranging,
- - R+K-1 P
t+1 t+1 I I % 1. % t
Q (z) =V {z.) : z, 1l - =+ =— P (x)
. 1 x,=0 X, =0 j=1 i+l K K -
1 R+X J
o o R . R+K-1 N . A(xj)
el Z Z | I 3 il, 1 A
=V ) = A 1 N\ ey ST s Sl
1 XR+K—0 ] )
1 z1 A(XR+K) t
1-¢+% « P (x} (€C.1)

which is given by Eq. (4.3) and its accompanying algorithm.

Derivation of Eq. (4.4}

Define

hit_R_J = Prob[exactly i packets retransmitting

from the (t—R-j)th slot to the tth slot]

We then have,
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m=2

) 2R ) e
S i m-1i

2ENE) ()T e

(C.2)

Now define
Qt-R—J(Z) - ZS z1hit—R-J
i=0

Substituting Eqs. (C.2) into the above equation and summing, we get

m

~t-R- 1 .z t-R-j
(1-%*%) Pa

i _p t-R-j7 (1-z
"""y = p, —Kl+ga

L BRI QD) ek (g 1,2
=P - *Q L-¢* %)

(C.3)

Finally, by the weak independence assumption for channel traffic and
the assumption that the channel input vt is independent of the

channel state,

K

Q*(z) = Vi(2) I—! " (@) (C.4)
J:

which is the same as Eq. (4.4).
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Theorem 4.1 and its proof

Theorem 4.1 If the channel input is an independent Poisson
process, then the channel traffic is Poisson distributed in the limit

as K> =@ under the weak independence assumption, such that

t
Qt(z) - e—G (1-z)
and
t
t _ .t -G
Pl =G e
where
X .
CnLi no4 L t-R-j
Gt____l_zGtRj_GtRjeG . st
K S

Proof Since V’t has a Poisson distribution,

t
Vt(z) - e-S (1-2)

Substituting it into Eq. (4.4), we have

K
(o) = oS 12 I_I [Qt“"j (1-1+2)+p R
j=1
Consider
QR (1L ) -t 121 P57 [1 - R1n)] vo(3)
1. ¢TI L off) co
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where

X
x>0

Substituting Eq. (C.6) into Eq. (C.5) and letting K+ 0

K+ j:l

lim Qt(z) _ e_st(1-z) ]K] [1 _(Gt-R-j _ P1 t-R-j) (1;(_2_) +

K
i
K5
t
- e—G (1-z)

where

t__1_2 t-R-j _ o t-R-j t
6t =%, (G P, >+s

j=1

From Eq. (C.7), we get
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Q.E.D.
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(

=l
L
et

(c.7)

(C.8)

(C.9)



APPENDIX b
ALGORITHM 5.1, ITS DERIVATION AND

SOME MONQTONE PROPERTIES

Algorithm 5.1

This algorithm solves for the variables {ti}§=0 in the fol-

lowing set of (I + 1) 1linear simultaneous equations,

I
tO = ho + JZO pOJ tj (D.1)
I
t, = h, + 25 P:: t. i=1,2, o, I (D.2)
i i 4 ij 7j
j=i-1
(1} Define
e = 1
fI =0
. o1
I-1pr g
£ = - e
I-1 P1,1-1

() For i=1-1,1-2, ..., 1 solve recursively

270



I
PPN S P S
i-17 . . i M T & Pig hy

(3) Let

- j=0
tr i
ZE Pn: €: - €
=0 6 3 0
t1 = ey t;+ fi i=0,1, 2,

Derivation of A{ggpithm 5.1

Define
tl = e tI + fi i=0,1, 2,
and
eI = 1
fI =0

The last equation in Eqs. (D.2) is
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tp=hy P Yo P Yy

Substituting try %8yt fI_1 into the above equation, we get

f

tp by *Prrag a1 trtPrro frop Pt

I

Equating the coefficients of tI and the constant terms, we have

t - Py
e T rereerete———
-1 pp 1
(D.5)
£ = - P
1-1 P1,1-1
Egqs. (D.2) can be rewritten as follows,
I
1
t- = t. - h. - z P-. t. (D-6)
i-1 pi,i-l i i i i} 73

In each of the above equations, use Egqs. (D.3) to substitute for ti .

We then have

I
e. t. + f. - h, - jg p.. €.
pi,i—l il i i = ij 73
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Equating the coefficients of t_ and the constant terms, we get

I

1

&1 = 1 e, - EE P.. €.

Pi,i-1 =1 1 ]

(0.7}
I
1

f = f. - h, - ZE p.. f
i-1 p1,1—1 1 1 i=i ij 3

From Eqs. (D.4), (D.5) and (D.7), e, and f.1 (i=1I-2, 1-3, ..., 1, O)

can then be determined recursively.

We next solve for tI . Eqs. (D.3) are used to substitute for
ti in Eq. (D.1)}, which then becomes
I I
e, t. + f. =h + zz Ppn: © t, + EE Pn: £
071 0 0 = 0 7j I i 0 73

Solving for t

I
1
fO - h0 ~£§; pOJ fJ
tI = i (D.S)
Z pOJ eJ - eg

Finally, ti(i =0,1, 2, ..., I -1} can be obtained from Eqs. (D.3),
since €. fi and t. are all known. The derivation of Algorithm

5.1 is complete.
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Some monoteone properties

We show below monotone properties of the sequences e and
fi in Algorithm 5.1. The transition probabilities Pij are assumed

to be nonnegative and for each i =1, 2, ...

jg p:: =1

jei-1 M

Also, the probabilities P; i1 B2Te assumed to be nonzero., (This
. 3

last is a necessary condition for the Markov process in Section 5.1.1

to be irreducible.)

Property D.1 The sequence e, is positive and monotonically
decreases to one as 1 increases to I .

Proof From Eqs. (D.4) and (D.5),

ey = 1
1-p
€1-1 ° > 1
P 1-1

The proof is by induction. Assume that ep decreases as £ increases

for i ££ < I . FromEqgs. (D.7)

: ji
e._ = erwr————— e. - P.. e.
-1y 5 | 2 gt H )

Q.E.D.
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Property D.2 (i) If hi > 0 , then the sequence fi is nega-

tive and monotonically increases to zero as i increases to I
(ii) 1f hi < 0 , the sequence fi is positive and monotonically de-
creases to zero as 1 increases to I .

Proof (i) From Eqs. (D.4) and (D.5),

The proof is by induction. Assume that f£ increases as £ increases

for i s2£ =< I . FromEqgqs. (D.7)

I
fl_ : fl—hl_zplf
=Py j=i 43
fi[l—ZPIJ
< =2 <f1
Pj,i-1

(ii) The proof is similar to that of (i)

Q.E.D.
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APPENDIX E
ALGORITHM 6.5, ITS DERIVATION AND

SOME MONOTONE PROPERTIES

Algorithm 6.5

This algorithm solves for g and {\f:.L}ﬂiﬂ=1 in the

of (M + 1) linear simultaneous equations,

following set

(E.1)
i=1
M
grv, = C1 + Z pl] \arJ (E.2)
j=1
g+v, = C1 + ﬁi pij vJ i=2,3 ..., M (E.3)
j=1-1
where
>y 2
EE Pr: = p:. =1 i=1,2, ..., M (E.4)
0707 i Y
(1) Define
1
b =
M-1" Py M-3
PR |
M-1 Py, M-1
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(2) For i=M-1, M- 2, ..., 2 solve recursively

i M-1
1
b. , = b, + 1 - EE p.. b.
1.1 Py, |t =003
B M-~
d = 1 d. - C, - :Ef p.. d
i-1 pi,i-l i i 1 4 ij 73
|
} (3) Define
|
| [ M-1
5 1
; % - —— b, + 1 - p,. b
M7 R 1 =171
i
[ M-1
Wy = - |4y - € - zpl.d
Pio | j=1 3]
U = e+ b1 i=1, 2,
; wo o=y + d1
(4) Let
M
€ * ; Poj ¥
g = J
1 - ii . ou,
j=1 pOJ J
vi =u; gty i=1, 2,
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Derivation of Algorithm 6.5

Define

V. u, g+ w, i=1,2, ..., M (E.5)
The above equations are substituted into Egqs. (E.2?) and (E.3) for the
variables Voo Equating the coefficients of g and the constant
terms in the resulting equations, we obtain two sets of M linear

simultaneous equations in terms of {ui}?=1 and {wi}?=1 :

M
u, = -1 + 25 P.. U
1 a1 I7 75

(E.6)
M
u, = -1 + 2 p.. u, i=2,3 ..., M
: j=i-1 Y
and
w, = (C, + P W,
1 1 =1 15 75
(E.7}
w=C+§p..w i=2,3, ..., M
i i jeiol 1] 3
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Applying Algorithm 5.1 to Eqs. (E.6), we have

ug = e u, 4 bi i=1;, 2, ..., M-1 (E. 8)
and
M
bl*l';pljbj
Uy = .k (E.9)

where we define

eM =]
(E.10)
bM = 0
1 - Pr
°M-1 ©
Py, M-1
(E.11)
1
b =
M1 Py,m-1
and for i =M~ 1, M- 2, ..., 2 we solve recursively
[ M
e = L e, -~ zz p.. €
S TR S A I A
(E.12)
[ M
b, | = 1 b, + 1 - zi_pi. b
-2 Pii-1 j=1 11 ]
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Similarly, applying Algorithm 5.1 to Eqs. (E.7), we have

x
n

and

where we define

and for i =M-1

fi Wy * di i=1,2, ..., M-1 (E.13)
M
dl - C1 --EE; p1J dJ
i (E.14)
25 p,. £. - £
i 17 7j ]
1
(E.15)
0
- 1 -PMM
PM,M-1
(E.16)
- - CM
Py, M-1
s M - 2, , 2 we solve recursively
M
-1 £, - ZS p.. £
ST B B I =2 St
(E.17)
M
S S D
Pyq | & 17 &P
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We note from Eqs. (E.10)-(E.12) and Eqs. (E.15)-(E.17) that

£f. =1

e, = fi for i=1,2, ..., M. We proceed to show that e, i

i
for all i . From Eqs. (E.10) and (E.11)

This last is true by virtue of Eqs. (E.4). We now use induction and

assume that

ey = 1 =M, M-1, ..., i
From Eqs. (E.12},
M
e = 1 e, - ES P:: €
AL PR T T E T = SRS A

Thus, by induction we have shown that e; = f. =1 for all 1i.
Using the preceding result, the solution to the set of M

linear simultaneous equations in Egqs. (E.6) now becomes,

u; =y 4 bi i=1,2, ..., M-1 (E.18)
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and

M-1
1
= - == | b +1- P,: b. {E.
Mg \ 2 j=1 01
where we define
1
b = (E.
M-1 0 Py M1
and for i=M-1, M- 2, ..., 2 we obtain recursively
M-1
1
b. = b, +1 - ES p:: b, (E.
=1 Py 4.1 \ 1 =783

Similarly, the solution to the set of M 1linear simultaneous

equations in Eqs. (E.7) becomes

Wo S Wyt di i=1,2, ..., M-1 (E.
and
M-1
Wy % T L d, - Cl - Py d (E
Pyo j=1 3 3

where we define

(E

and for i =M-1, M- 2, ..., 2 we obtain recursively
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1

M-1
d, d, - C., = 25 p:. d, (E.25)
i-1 pi,i—l i i = ij i

Using Eqs. (E.5) to substitute for v, in Eq. (E.1), we obtain
M M
g=0C,+ ZE Pn: U; J &+ zz Pn: W
0 {51703 3 §=1 703 3

from which we get

(E.26)

Finally, v; are obtained using Eqs. (E.5). The derivation of

Algorithm 6.5 is complete,

Some monotone properties

We show below monotone properties of the sequences bi’ di’ uy

and W, in Algorithm 6.5. The transition probabilities pij are

assumed to satisfy Eqs. (E.4). The probabilities P; ;. are assumed
»

to be strictly positive. {This last is a necessary condition for the

Markof process in Section 6.3 to be irreducible.)
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Property E.1 The sequence bi is positive and monotonically

decreases to 0 as i1 increases to M.

Proof From Eqs. (E.10} and (E.11),

' 1
bM—l

= ——— > b
PM, M-1

M

The proof is by induction. Assume that b£ decreases as £ increases

for i < £ <M. From Egs. (E.12) and (E.4)

M
b, =5—— [b; +1- EE p:: b
O Piia j=i ]
1+Db, p. .
N i *Yi,i-1 > b,
Pj,i-1 .

Q.E.D.

Property E.2 (i) If C.1 are positive, the sequence di is

negative and monotonically increases to 0 as 1 increases to M.
(ii) 1I1f C.1 are negative, the sequence di is positive and mono-
tonically decreases to 0 as 1 increases to M.

Proof The proof uses Eqs. (E.4), (E.15), (E.16) and {(E.17), and

is similar to that of Property E.l.
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Property E.3 The sequence u, is negative and monotonically

decreases as i increases.

Proof From Eq. (E.19)

M-1
1
=« —{b +1 - p,. b
LN P j1 1)
M-1
Uy = . 1+ b1 - Py; b.
P10 =1 ]
1+b,p
>.____*1__19. > b1
P10

where b1 is positive from Property E.1. From Eq. (E.18}

uj = uy * by

Applying Property E.1, the proof is complete.

Q.E.D.

Property E.4 (i) If Ci are positive, the sequence W, is

positive and monotonically increases as 1 increases. (ii) If Ci
are negative, the sequence Wy is negative and monctonically decreases
as 1 increases.

Proof The proof uses Eqs. (E.22) and (E.23) and Property E.Z.

The proof is similar to that of Property E.3.
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APPENDIX F
A GENERAL DYNAMIC CHANNEL CONTROL PROCEDURE

In this appendix, a dynamic channel control procedure is formu-
lated which includes as special cases ICP, RCP and IRCP in Chapter 6.
Lemma 6.3 and Theorem 6.4 on the equivalence of the performance mea-
sures for ICP, RCP and IRCP are then extended to this general case.

Consider the action space Al = {81, Bys voees Bm} where
0 <8 <B,<...<B <1, and the action space A, = {Yl, Yoo cees
Yy} where 0 < Yy <Yy < o<y < L. Let A = Al x A, such that each
element in A 1is a two-dimensional vector (f, ¥). As in Section 6.3,
the Markov decision process Nt has a finite state space S = {0, 1,
2, ..., M}. A stationary control policy f maps S into A. Given a
stationary control policy £, f(i) = (B, y) means that whenever Nt = i,
each (new) packet arrival is accepted with probability 8 (and rejected
with probability 1 - B) while each backlogged packet is retransmitted
with probability vy in the ¢ th time slot. Thus, ICP corresponds to
the special case A = {0, 1} x {p_} ; RCP corresponds to the special

case A = {1} x {PO, Pc} ; IRCP corresponds to the special case A =

{0, 1}><{po,pc}.

State Transition Probabilities

Suppose N® is in state i and the stationary control policy
f£(i) = (B, y), then the one-step state transition probabilities are

given by
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iwa - nita - et jei-d
a-yim- nsoa - sttt
P (D) = 1 -ava -t a - st 5=
1 - anio- neoa - g™t e
M- i - .
) @) ta - gyt §2ie2
-
0<i, j<M
(F.1)

Stationary Channel Throughput Rate

Suppose Nt is in state i and f(i) = (B, v). Define the expected

immediate cost to be

C,(f) = -5, (i, D

M-i

Jiva - nita - e

M-i-1

+ (1 -y)'(M~- 1)Bo(1 - BO) (F.2)
By Eq. (6.9) the cost rate of Nt is
M
gs(f) = - 2;) chf) Sout(i’ f)
1=
Then, the stationary channel throughput rate is given by Eq. (6.30)
which we rewrite below.
S €3 (F.3)
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Average Packet Delay

Suppose NU is in state i and £(i) = (B, Y). Define the expected
immediate cost to be
C;(f) =i+ (M- 1)1 - Bod (F.4)
where dr is the expected cost in units of delay per packet arrival

rejected and is equal to é—(see Section 6.3.3).
m

Let S = LlSE where S 32 vee Sm are nonintersecting sets
£=1

corresponding to a stationary control policy f such that

f(i) = (B£, Y) if and only if i€ S£

where £ =1, 2, ,.., mand y is any action in A2.

By Eq. (6.9) the cost rate of Nt is

gy = Z c; (D), (£)
M
= Z i, (f} + LZ (M - i)(1 - Bﬂ)cdrﬂi(f)
1=0 1 ie 2
=N+ A d
rT
=N + Nr (F.5)
where m
lr = ; z (M- 1)(1 - Bz)c m; () (F.6)
=] 1888

is the stationary packet rejection rate; N 1s the average channel back-

log size and ﬁr is the average number of rejected packets in the system.
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Using Little's result [LITT 61] the average packet delay is given by Eq.

(6.31) which we rewrite below.

g, (f)
D=9 4+R+1
out
g4(f)
=-m+R+1 (F.?)

We give below an extension of Lemma 6.3 to the general dynamic

channel control procedure.

Lemma F.1 Given any stationary control policy f: S+ A

g (D)
ga(f) = =— + M

Proof From Eq. (F.5) and dr zal-

M M
gq(f) = Z iw () + z M- 1) =, (£)
i=0 i=0
m
-1 > - 1) By T, (£)
m
= M - %; Z M - ), o T (£)
=1 1€S£
m
Note that ; z M - i)eﬁ o m (£f) is just the stationary channel
=1 153£

input rate and is thus equal to the stationary channel throughput rate

Sout = - gs(f). Hence,
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g ()

gd(f) = SO. + M

Q.E.D.

With the above lemma, Theorem 6.4 can then be extended to the

general dynamic channel control procedure.
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