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CHAPTER 3

THROUGHPUT-DELAY PERFORMANCE

3.1 Introduction

In this chapter, analytic models are developed to predict the
throughput-delay performance of the slotted ALOHA channel described in
the last chapter. A gamut of throughput-delay tradeoffs will be pre-
sented corresponding to

o the infinite population model in which the channel

supports input from a large number of small users
modeled as a Poisson channel input source

L the large user model in which the channel user population

consists of a large user (with buffering and scheduling
capabilities) in addition to the population of small
users above

¢ the finite population model in which the channel user

population consists of a small number of large users

Small and large users may correspond to any physical devices which
satisfy their abstract model descriptions given in Section 2.3.,2. For
example, a small user may represent a teletype console in a ground
radio environment or an earth station in satellite communications as
long as such a "small" user generates (independently) a new packet for
transmission over the multi-access broadcast channel only after its
previous packet has been successfully transmitted.

We show below that the slotted ALOHA channel capacity for the in-
finite population model is less than 37 percent. However, when a major

fraction of the channel input is from a single large user which can buffer
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and schedule its own conflicting demands, both the channel capacity and
throughput-delay performance can be significantly improved. Such im-
provements are also possible with a channel user population consisting
of a small number of large users. However, when the number of large
users is ten or more, we show that the channel throughput-delay results
already approximate those of an infinite population model.

Throughput-delay results in this chapter are obtained under the
assumption of equilibrium conditions. Monte Carlo simulations indicate
that often this assumption is valid only for some finite time period
beyond which the channel goes into '"saturation." This phenomenon will
be characterized in Chapter 5. The possibility of unstable channel be-
havior was first brought up in a private conversation with Martin Graham

(University of California, Berkeley).

3.2 The Infinite Population Model

3.2.1 Assumptions

An abstract model for the slotted ALOHA channel is given in Sec-
tion 2.3.1. We assume here that the user population consists of a very
large number of small users such that Vt , the channel input in the
tth slot, is an independent process and has a stationary Poisson

distribution with an average of S packets/slot.

Suppose X' is the chamnnel traffic in the tth time slot. We

shall assume that during the time period of interest Xt
{1 is an independent process,
(2) is Poisson distributed, and
(3) has a stationary probability distribution,

These assumptions will be referred to as the independence assumption,

the Poisson assumption, and the stationarity assumption, respectively.

38



We define equilibrium solutions (equilibrium points, equilibrium

contour) to be those values of the channel input rate S and the chan-
nel traffic rate G such that the condition, channel throughput rate
equal to the channel input rate, is satisifed. In this chapter, we shall

be concerned only with equilibrium solutions. The channel is said to be

in equilibrium at an equilibrium point during a period of time if the

channel traffic Xt 'is a stationary process and the average channel
traffic and throughput given by the stationary distribution of X' sat-
isfy the equilibrium point,

We show in Chapter 5, that slotted ALOHA channels supporting input
from a large but finite number of small users are either "stable" or
"unstable." For stable channels, the equilibrium throughput-delay trade-
offs given in this chapter are achievable over an infinite time horizon.
On the other hand, an unstable channel will go into "'saturation" after
some finite time period.

Both the independence and Poisson assumptions represent approxi-
mations in our analytic model. Their accuracy will be examined by com-
paring analytic results with results from Monte Carlo simulations. Fur-
ther tests to examine the Poisson assumption are given in Appendix A,

It will also be shown in Chapter 4 that the Poisson assumption is actu-
ally implied by the independence assumption when the uniform randomiza-
tion interval K is large.

3.2.2 The Analysis

Let E be the average number of retransmissions a packet

incurs. Consider the time interval [tO’tl] during which
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)
x* = total number of packet transmissions
t=t0
in [to,tl]
and
k9!
Ei ¢i(Xt) = total number of successful packet
t=t0
transmissions in [to,tl]
where
1 y=1
A(y) =
0 otherwise

Under the independence and stationarity assumptionms, the average

number of transmissions required for a packet is

t

1
t
z X7/t -ty + 1)
1 0
t=t0 G
1+E-= 1 - =
(t-tgP= & Sout

D, A0h/y -ty + D)
t=t

0

For an equilibrium solution, the channel throughput rate S . is

equal to the channel input rate. Thus,

(3.1)

0o

1+E-=

We next define q to be the probability of success given that

a packet transmission has occurred. By similar arguments to the

above, we have
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q = (3.2}

o
H

s

+

t

The slotted ALOHA channel capacity for the infinite population

model can be obtained by the following zeroth order approximation

approach similar to Abramson's analysis of an unslotted ALOHA channel
[ABRA 70, ROBE 72B]. Consider a test packét transmission in a channel
time slot. Its probability of success is the probability that no
other packet is transmitted in the same channel slot. Applying the

Poisson assumption and Eq. (3.2), we have

q = ™G (3.3)

and

S = Ge © (3.4)

Now if we differentiate Eq. (3.4) with respect to G , it can easily
be shown that the maximum channel throughput rate (channel capacity)
is

s =Lz0.368
max e

The zeroth order approximation above disregard§ both the time
history of the test packet and the uniform randomization interval K
for retransmissions. In order to compute the average packet delay
D , we shall take the following approach (to be referred to as the

first order approximation).

Given a test packet, two states are distinguished depending

upon its immediate history: new or previously collided. We then define
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Prob[success/transmission of a new test packet]

57

q. Prob[success/transmission of a previously

collided test packet]

Hence,
Prob[a packet is retransmitted exactly 1 times
before success]
=1 -q)a -9 g 121
9% t t
E- D50 -a)0 - a
re n t t
i=1
l1-g
- 2 (3.5)
9
and
q
1 t
q = - - (3.6)
I+E q +1-aq
NEW PACKETS
: D -
CHANNEL TIME

K SLOTS —wl= R SLOTS
| i,
CURRENT

] PACKET TRANSMISSION TIME SLOT
5= COLLISION

Figure 3-1.  Channel Traffic Into a Time Siot.
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We now condition on a test packet transmission in the current
time slot. This transmission may be unsuccessful due to interference
by new or previously collided packets transmitting also in the
current slot {see Fig. 3-1). Suppose the test packet had a previous
collision in one of the K slots (say the jth) indicated in the
figure. We define q, to be the conditional probability that no
packet from the jth slot other than the test packet retransmits into
the current slot. Using the Poisson assumption for channel traffic in

each of the K slots,

o

q = 1 K-l)“ -G
1 - e—G n=1 K

—

Gn
n!

Let q, be the probability that no packet which collided in one of
the (K - 1) slots (other than the jth slot} retransmits in the

current slot. We have

.5
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Invoking the independence assumption, we then obtain

qt = qc qO

e - e K 6 -G e (3.7)

Now suppose the test packet is a new packet. By similar arguments

to the above, we can express its probability of success as

K _-S
qy ©

n

K

L]
o
+

e e (3.8)

From Eqs. (3.2) and (3.6), we then have

9

§ =6 ——mmm—m———
qt *1- qn

(3.9)

The average delay D incurred by a packet at the channel

includes the channel propagation time, the packet transmission time
and retransmission delays and is given below (in number of time

slots) by

K + 1)

D=R+1+E (R + 5

(3.10)

where R + (K + 1)/2 1is equal to the average retransmission delay

(see Fig. 2-1).
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Equations (3.7)-(3.9) form a set of nonlinear implicit equations
which must be solved numerically for the equilibrium relationships be-
tween S5 and G . The average packet delay can then be obtained
from Eqs. (3.5) and (3.10). Numerical solutions will be given in
the next section. Below we examine some limiting cases in which ex-
plicit solutions are available and consider their implications.

Limiting results as K+

It can easily be shown from Eqs. (3.7)-(3.9) that in the limit

as K> o |

lim S lim lim -G
Ko T ke 9 T ko d4 T e (3.11)

These limiting results are consistent with the Poisson assumption
we made. In fact, in the next chapter we show, given only the in-
dependence assumption, that in the limit as K > « , the channel
traffic in a time slot must be Poisson distributed.

Observe that Eqs. (3.11) are the same as the zeroth order
approximation results. Thus, the first order approximation reduces
to the zeroth order approximation in the limit as K+ o« (which
corresponds to infinite average packet delayl).

Limiting results as S + 0

In the limit as the channel input rate S decreases to zero,

Egqs. (3.7)-(3.10) reduce to

1im S _ 1lim

S0 G- st Iy =1 (3.12)
lim _K-1
sv0 It T TX (3.13)

45



and

MBp=r+1 (3.14)

Define KOpt to be the value of K minimizing the average
packet delay D for a fixed channel input (throughput) rate S .

Proposition 3.1 In the limit as S + 0 , D is convex in K

and KOpt is given by the largest integer K such that

K2 - 3K

2R < 0 (3.15)

Proof With K = 1 , any chamnel collision will propagate
indefinitely. Thus, K = 1 cannot be optimal. We shall consider

K22 . For an arbitrarily small S , Eqs. (3.7) and (3.8) become

K -1
A K

ne

(1-5)

]

q, = @ - 8)

and from Eqs. (3.5) and (3.10),

-9, . s

E = z 2
q T K -1 _ T K-1
t =L a-s) -
- s K -1
D=R+ 1 + KT 1 [R + 1 + 5 ]
K
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Since S > 0 , D is minimized by minimizing the function

K

£(K) = -1

K
(R+1) +>5

Consider

£ - fK- D = - g=hary t7 X2

which is less than or equal to zero if K2 - 3K - 2R <0 . Now

consider
[f(K+2) - £(K+ 1] - [fK=+1)-f (X) ]

2(R + 1)

®TDKK-D " K

v
[

which implies that £(K) is convex in K .
From the above results, D is convex in K and minimized
by the largest integer K such that Kz - 3K -2R=s0.

Q.E.D.

For R =12 , éig Kopt = 6 which, as we show below,
represents a lower bound on the optimum value of K for any channel
input rate S .

3.2.3 Throughput-Delay Results

Numerical results

Equations (3.7)-(3.9) were solved numerically and the results
plotted in Figs. 3-2 and 3-3. In Fig. 3-2, whe show the probability
of success, q , as a function of K at a different channel traffic
rates. For a fixed G , q increases with K and rapidly approaches
its limiting value of e C as predicted by Eq. (3.11). q also

increases as G decreases for a fixed K .
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In Fig. 3-3, the channel throughput rate (same as the channel
input rate S in an equilibrium solution) is shown as a function of
G for fixed values of K . For a fixed G , the channel throughput
rate increases rapidly to its limiting value of Ge_G as K increases
to infinity. (Note that for K= 15 it is almost there.} The maximum
channel throughput rate occurs at G = 1 for each K and the channel
capacity S = el in the K+ = linit.

The average packet delay D is computed using Eq. (3.10)
(and assuming R = 12 ), In Fig. 3-3, we plotted the loci of several
constant delay values in the S,G plane. Note the way these loci
bend over sharply defining a maximum channel throughput rate for a
fixed value of D ; observe the cost in channel throughput if we

want to limit the average packet delay. This effect is clearly seen

in Fig. 3-4, which is the fundamental display of the throughput-delay

tradeoff for the infinite population model. This figure shows the
throughput-delay equilibrium contours for fixed values of K . The

minimum envelope of these contours defines a tight lower bound on

throughput-delay performance for this system and thus, represents

the optimum channel performance for the infinite population model.

Considering this optimum curve, we note how sharply the average packet
delay increases near the maximum channel throughput rate Smax = 0.368;
it is clear that an extreme price in delay must be paid here for an
infinitesimal incremental gain in throughput. Also shown in this
figure are the constant G contours. Thus, Figs. 3-3 and 3-4 are two
alternate displays of the relationship among the four critical system

variables S, G, D and K under equilibrium conditions.
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AVERAGE PACKET DELAY (SLOTS)
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=5 40 I
i |
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Figure 34.  Throughput-Delay Tradeoff.
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Figure 3-5. Average Pack_at Delay Versus K.
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In Fig. 3-5, the average packet delay is plotted as a function
of K for constant values of S . For a fixed § , the curve is

quite flat near KO Thus, a K value much bigger than K0 can

pt
be used without increasing D appreciably. A large K 1is preferable

pt ’

since it increases the maximum channel throughput rate and improves
channel stability (as we shall see in Chapter 5). In Fig. 3-6, we

show Ko as a function of S . Note that Ko is a nondecreasing

pt pt

function in S and is bounded below by 6 as S ¥+ 0 , which is pre-

dicted by Eq. (3.15) for R = 12 .

opt

25 —

-
3]
|

s sssesven

10

l'l'l

l i ] A ] L J
A 2 3 4 8
THROUGHPUT (PACKETS/SLOT)

(=]

Figure 3-6. K_._ . VarsusS.

opt
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Simulaticns
A simulation program was developed to test the accuracy of
the approximations introduced by assumptions in the above analysis.
In the simulation program, new packets are generated from a Poisson
distribution at a constant rate S which, together with the uniform
randomization interval K , constitute the simulation input parameters.
Packet delays are obtained by time-stamping each packet at the time
of its creation. The exact delay a packet incurs can then be computed
when it is successfully transmitted. Both long-term statistics for the
duration of the simulation run and short-term statistics for consecutive
time intervals (of, say, 400 slots each) are available. Short-term sta-
tistics serve to protray approximately the dynamic channel behavior.
Recall that the analytic results we have obtained so far are
all based upon the assumption that the channel is in equilibrium.
Referring to Fig. 3-4, we see that given S and K , there are two
possible equilibrium solutions for D corresponding to a small delay
value (say DA ) and a much larger delay value (say DB ). We shall
refer to the equilibrium point given by S, K and D, as the

A

channel operating point, since this is the desired channel performance

given S and K .

Each simulation run was observed to behave in the following
manner. Starting from an initially empty system, the channel stays
in equilibrium at the channel operating point for a finite period of
time until stochastic fluctuations give rise to some high traffic
rate which reduces the channel throughput rate which in turn further

increases the channel traffic rate. As this vicious cycle continues,
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the channel becomes "flooded" with collisions and retransmissions.
The channel throughput rate vanishes rapidly to zero. This phenomenon

will be referred to as channel saturation. (For the equilibrium

peint corresponding to Dy , no channel equilibrium for any length of

time has been observed.) Thus, simulations indicate that we can

assume channel equilibrium at the channel operating point, but only

for some finite time period. Such time period is a random quantity

and will be characterized in Chapter 5 as a measure of channel
stability. The expected value of this random time period increases
as K increases or S decreases. For a sufficiently small value of
S or large value of K , the assumption of channel equilibrium was
always valid for the simulation duration we considered. 1In Fig. 3-7,
we show a simulation run for S = 0.35 and K = 15 , which give rise
to a relatively short duration of channel equilibrium. As we see
in the figure, after 3000 time slots, the channel traffic rate in-
creases very rapidly as the channel throughput rate decreases to zero.
In Fig. 3-5, simulation points are indicated. We show only
those simulation runs in which the channel stays in equilibrium for
the duration of the run (assumed to be 8000 slots). The (heuristic)
criterion we used for channel equilibrium is that the average channel
traffic in each of the short-term statistics intervals (400 slots
each) must be less than one. Observe that the largest channel input
rate used for these simulations is 0.3. For a larger input rate,
our criterion of channel equilibrium is often not satisfied unless

a very large K (say, K = 60 ) is used, which gives rise to a
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large average delay. Note that the simulation and analytic results
agree very well, thus lending validity to approximations in our analysis
(the independence assumption and the Poisson assumption for the channel
traffic X' ). Further simulation results on the Poisson approximation
are examined in Appendix A.

3.3 The Large User Model

3.3.1 The Large User Effect

The 1/e limitation on the capacity of a slotted ALOHA channel
supporting input from a large number of small users (i.e., the infinite
population model above) is due to the loss of all packets whenever
simultaneous transmissions are made by two or more users. On the
other hand, when the channel is dedicated to a single large user with
buffering and scheduling capabilities, simultaneous demands from the
large user's input sources can be queued up and served according to
some priority rule.* In this case, a channel throughput rate arbi-
trarily close to unity can be achieved at the expense of a very large
average packet delay. In fact, the absolute optimum throughput-delay
tradeoff performance of the communication channel can be obtained by
modeling it as a single server queue., Intermediate throughput-delay

tradeoff performances are possible which lie between the two extremes

of the infinite population model and the single server queueing model.

A continuum of such intermediate tradeoff performances will be given
below for the large user model in which the random access channel is

shared by a large user and the small users of an infinite user

*

We are only interested in the average packet delay which is independ-
ent of the exact priority rule as a result of the conservation law
[KLEI 64].
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population. Further intermediate tradeoff performances will be given

in Section 3.4 below for a finite number of large users. In Fig. 3-8,
we show a picture of the large user model in a possible satellite
communications system. The large user model also represents a terminal
access network in which a single radio channel is used for both terminal-

to-computer and computer-to-terminal communications.

SATELLITE

LARGE USER

SMALL USER

Figure 3-8.  The Large User Model.

3.3.2 Throughput-Delay Results

We consider a channel user population consisting of a single
large user with buffering and scheduling capabilities as described
in Section 2.3.2, and a population of small users as in the infinite
population model. Hence, we distinguish corresponding to the large
user and the smaller users two channel input sources, both of which
are assumed to be independent processes with stationary Poisson

distributions. The (combined) input source to the small users
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is at a rate of S1 packets/slot. The input source to the large
user is at a rate of 82 packets/slot. The channel input rate is

then given by

The channel traffic in a time slot consists of packet trans-
missions by both the small users and large user. The large user re-
solves any conflict among its own packets competing for transmission
in a time slot. The highest priority packet is transmitted and the
rest of the competing packets are rescheduled for a later time. We

define station traffic to be a random variable representing the

number of packets in a time slot vying for transmission (i.e., for

the transmitter) at the large user. The average station traffic is
.defined to be G5 packets/slot. Uniform randomization is assumed

for both retransmitting packets which had a channel collision and
rescheduling packets at fhe large user. Both station traffic and

the portion of channel traffic due to the small users are assumed to

be independent processes, Poisson distributed and have stationary
distributions (within the time period of interest). As in the infinite
population model, these assumptions represent approximations in our
analytic model and will be examined by simulations.

We let G be the channel traffic rate such that

where G1 is the traffic rate due to the small users and G2 is the

traffic rate due to the large user. Since we assume that the large
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user attempts no transmission in a time slot if no packet is scheduled
for then (although there may be packets scheduled for a later time)
and always transmits if one or more packets are scheduled for the

time slot, G2 can be interpreted as the probability that station
traffic is greater than or equal to one. We must have 0 < G2 1.

We shall solve for equilibrim solutions such that the throughput
rates for the small users and the large user are equal to their re-
spective input rates S1 and 82 . The analysis is similar to the
first order approximation analysis for the infinite population model
such that the effects of the uniform randomization intervals K and
L are included in our model. The analytic results are summarized
below. Details of the analysis are presented in Appendix B.

Similar to Eq. (3.9), equilibrium channel input rates and

traffic rates are related by the following equations:

q
1t
5. =G (3.16)
1 Laye +1-a

and

q

2t

5, =606 3.17
2 2 a4y * 1 -9y, ( :

where S P and (i =1, 2) are the probability of success for

9t
the transmission of a new packet or a previously collided packet
respectively. Note that variables indexed by 1 refer to the small

users and variables indexed by 2 refer to the large user. The complete

set of nonlinear implicit equations involving Si’ G.

i* 94 24 Q4

are derived and presented in Appendix B. These equations have been

solved numerically and the results are given below.
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The average packet delay for the two classes of users are given

by
~ K + 1]
D =R+ 1+E R+ : (3.18)
_ K+ 1 ] L+ 1
D2 =R+ 1+ 52 [R = + (En + EZEt) —5 (3.19)

where Ei and 52 are the average number of retransmissions per

packet for the small users and large user respectively; En and Et

are the number of reschedules per packet transmission at the large
user conditioning on a new packet and a previously collided packet
respectively. Recall that the average retransmission delay is

K+ 1 L+ 1

3 and the average reschedule delay is - >

Limitigg_results

R +

In the limit as K, L + « , it is shown in Appendix B that our
first order approximation results reduce to explicit solutions which
could have been derived by direct arguments using the zeroth order
approximation approach. (These results correspond to infinite average

packet delay.) We have in the limit as K, L + « ,

-G
4, =G =€ | (1 -6y (3.20)
..Gl
s, =6, e ! (1-6) (3.21)
_Gl
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S. =G.e I (3.23)
s
G - 1 - g (3-24)

The limiting channel throughput rate is then
-G]_
S= (G - GIGZ) e (3.25)

where we recall S = S1 + 82 and G = G1 + G2 . From the last
equation, it can easily be shown that given either S1 or 82 y S

is maximized if the condition

is satisfied. This proof was first given by L. Roberts in an unpub-
lished note and was later generalized by Abramson [ABRA 73] to various
other chamnel user populations. Abramson's result will be discussed
in the next section.

In Fig. 3-9, we show a qualitative diagram of the 3-dimensional
“surface for S as a function of G, and G2 (for the limiting case

1

K, L approaching infinity). Consider the following equations:

-G

3S  _ 1
E-z- = @ (1 - Gl)
-G
38 1
BGI = g G - Gle -1+ Gz)
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Figure 3-9.  Throughput Surface.

Figure 3-10. Allowable Throughput Rates for the
Large User Model.
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We see that for constant G, <1 , 8 increases linearly with G

1 27
For constant G1 >1, S decreases linearly as G2 increases.
In addition, for constant G2 < %—, S Hhas a maximum value at
G1 = {1 - 2G2)/(1 - Gz),, and for constant G2 > %—, S decreases
as G1 increases and the maximum throughput occurs at S = G2 in

the G1 = 0 plane.

Numerical results

G1 + G2 =1

is shown in Fig. 3-10 along with throughput contours at constant G

The maximum throughput contour given by letting G
1
We note in these last two figures that a channel throughput rate equal
to 1 is achievable whenever G1 (and hence, the throughput rate S

1

of the small users) drops to zero, in which case S = 82 =G=1;
this then corresponds to the use of a dedicated channel,

We next present numerical results on throughput-delay tradeoffs
for the finite K case; in all of these computations, we let L =K ,
thereby eliminating one parameter. In Fig. 3-11, we show the tradeoff
between channel throughput rate and average packet delay for S1 = 0.1,
where the average packet delay D is defined to be (SlD1 + SZDZ)/S .

We show in this figure the equilibrium contours of D at constant

values of K . The optimum performance envelope is given. Also

shown are optimum performance envelopes for D1 and D2 . We see

that if we are willing to reduce the throughput of the small users

from its maximum of S1 = 0,368 to S1 = 0.1 , then we can drive

the total throughput up to approximately S = 0.52 by introducing

_envelope

additional traffic from the large user. Note that the D1
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is much higher than the D, envelope. Thus, our net gain in channel

2
throughput is also at the expense of long delays for the small users.
Once again, we note the sharp rise in average packet delay when S
approaches the channel capacity.

In Fig. 3-12, we display a family of optimum throughput-delay
performance envelopes for the large user model at fixed values of
S1 bounded by the optimum performance envelope of an infinite
population model and that of a dedicated channel (modeled as a M/D/1
queue [KLEI 74D}). Note that as we reduce the background traffic,
the system capacity inpreases slowly; however, when S1 falls below
0.1, we begin to pick up significant gains. Also observe that each
curve ''peels off" from the infinite population model envelope at a
value of § = S1 . The M/D/llqueue performance curve represents the
absolute optimum performance contour for any method of_using the
channel when the channel input is Poisson; for input sources charac-
terized by other probability distributions, we may use the G/D/1
queueing results to compute this absolute optimum performance contour,
Simulations

A simulation program was developed for the large user model.
As in the infinite population model simulations, we found that the
assumption of channel equilibrium is valid for the duration of a
simulation run if a sufficiently small value of S or large value of
K (and L ) is used. Simulation points are indicated in Figs. 3-11
and 3-12 for those simulation runs which satisfied our channel equi-

librium criterion (described earlier). The duration of each run was

5000 slots. Note that the analytic and simulation results agree very
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well, thus justifying our analytic approximations. The channel

input rates used in the simulations are much below the channel capacity;
larger input rates can be used only with a very large K resulting

in average delays much above the optimum performance envelopes,

3.4 The Finite Population Model

So far, we have considered the slotted ALOHA channel with a
user population consisting of many small users modeled by a Poisson
channel input. We have seen that by adding a large user with buffering
and scheduling capabilities, the channel performance can be markedly
improved if a significant portion éf the channel input is due to the
large user. In a real system, the identity of this large user may
change as time progresses. Moreover, the channel user population may
include more than one large user. In this case, the first order
approximation approach can still be applied to solve for the throughput-
delay results. However, the large number of nonlinear implicit equa-
tions that must be solved numerically renders this approach computa-
tionally unattractive. In this section, the much simpler zeroth order
approximation approach is adopted and some general results are pre-
sented on the channel capacity of the finite population model.
Throughput-delay tradeoffs will then be examined by simulations.

3.4.1 Channel Capacity

The results in this section were first obtained by Abramson
[ABRA 73].

Given M large users with channel input rates SI’ SZ’ ey SM
and traffic rates Gl' G2’ . GM . Note that Gi corresponds to
the probability of the ith user transmitting in a time slot (i.e.,
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the probability of having one or more packets scheduled for trans-
mission in that time slot as discussed previously in the large user

model). The equilibrium values of Si and G.1 are related by

M
S. = G. I l (1 - 6.) i=1,2, ..., M (3.26)
i i A%, j
j=1,3#i
For any set of M acceptable traffic rates Gl’ G2, ey GM , these
M equations define a set of input (throughput) rates Sl’ SZ’ vy SM

corresponding to a region in the M-dimensional space whose coordinates
are the Si . In order to find the boundary of this region, we cal-

*
culate the Jacobian,

J<Sl’ 52, sy SM)
Gl’ GZ’ cens GM

Since

M
as i=1
i) i
BGk M
i=1
i#j,k
¥ oL . : ., th . 95,
This is the determinant of a M x M matrix whose jk~ element is j .
3
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the Jacobian can be written as

M
where o = I l 1 - Gj) :
j=1

*
Equating the Jacobian to zero, the boundary of the
M-dimensional region of allowable input rates is defined by the

condition

M

z G, = 1
1

i=1

Examples

Consider two groups of users with Ml

S G
users in group 2 and let M = M1 + M2 . Suppose ﬁl and ﬁi a
1 8§ 1 G
input and traffic rates of each user in group 1, and ﬁa and T
1

" See Section 3.2 of [BEVE 70].
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(3.28)

users in group 1 and M,

re the



the input and traffic rates of each user in group 2. In this case,

the M equations in Eqs. (3.26) become the two equations

( 6, )“1'1 ( G, \"2
S, =6 (1 - 1 - =
1 1 Ml M2 )
(3.29)
( G, )"z'l ( G, )Ml
5, =6,\1 - o5 1 - e
2 2 M2 M1
which map the region of acceptable traffic rates in the (Gl’ Gz)
plane into the region of allowable input rates in the (Sl, Sz)
plane, the boundary of which is defined by the condition
G, +G, =1 (3.30)

Substituting Eq. (3.30) into Eqs. (3.29), the resulting equation can
be solved nume;ically for the maximum throughput contour (i.e.,
boundary of the allowable region of input rates) in the (Sl’ 52)
plane. Several examples of such maximum throughput contours are
shown in Fig. 3-13. Note that the special cases ‘(Ml’ Mz) = (=, 1)
and (e , @) correspond to the large user model and the infinite
population model respectively.

3.4.2 Simulation Results

A simulation program was developed for the finite population
model. As in previous simulations for the infinite population model
and the large user model, the assumption of channel equilibrium is

valid for the duration of a simulation run if sufficiently small
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values of Si or large values of K (and L ) are used. We show
in Fig. 3-14 throughput-delay tradeoff performances for the finite
population model consisting of 2, 3, 5 and 10 large users; in each
case, the channel input rate is assumed to be equally divided among
the users. The infinite population model optimum envelope is also
shown for comparison. Note that when the channel user population has
10 large users, the large user effect disappears and the throughput-
delay results already approximate closely those of an infinite user

population.
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