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CHAPTER 4

CHANNEL DYNAMICS

In the last chapter, analytic models were developed to predict
the equilibrium throughput-delay performance of the slotted ALOHA
channel under various assumptions. Many of these assumptions (e.g.,
the independence assumption, the Poisson assumption and the station-
arity assumption) represent merely approximations to the physical
situation. However, without them the mathematical analysis becomes
very complex and solutions are difficult to come by. The source of
difficulty lies in the dimensionality of the state vector. (The
state vector of a system consists of all the variables of interest
such that knowledge of them at time t and knowledge of all system
inputs in the interval [tl,tz] are sufficient to determine uniquely
the state vector at time t2 > t1 .} For the chénnel model under con-
sideration, we must include in the state vector, channel information
for as many time slots as the maximum value of a retransmission delay.
Furthermore, each component of the state vector may take on a large
number (possibly infinite) of values.

In this chapter, we first formulate a Markov chain model with
none of the assumptions mentioned above and obtain a recursive trans-
form equation which characterizes the time behavior of the channel.
However, no simple solution to the transform equation has been obtained.
Such an exercise in symbol manipulations serves only to illustrate the
difficulty and futility of an exact mathematical analysis. Next, we
adopt a weakened version of the independence assumption for channel

traffic and show, for the infinite population model, that as the uniform
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randomization interval K approaches infinity, the channel traffic
is Poisson distributed. At the same time, the average channel traffic
as a function of time is given by a difference equation. This equa-
tion permits us to investigate the dynamic behavior of the channel
subject to a time varying input. Since only expected values are in-
volved, the difference equation represents a deterministic approxi-
mation or fluid approximation [KLEI 74D, NEWE 68] of the original
stochastic process. Similar dynamic channel behavior was predicted

by Rettberg [RETT 72].

4.1 An Exact Analysis

We shall analyze the slotted ALOHA channel described in Section
2.3 without most of the assumptions made in the last chapter. As
before, v' and X% are random varisbles representing the channel
input and channel traffic in the tth time slot. The only assump-
tion we shall need in this section is that Vt is an independent
process and independent of the channel state. The channel state vec-
tor at time t is given by the set of R + K variables

t t—l t‘R—K+1}

{x-, x5, ... X (Note that R + K is the maximum value

of a retransmission delay.) We define the channel state vector

xlt [t
Lt -1
xt - 2 -
; + xt-R—K+1
R+K

which is a random vector with probability distribution
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PY(x) = Prob [X* = x] xeS

where S is the admissible state space and x is an integer-valued
(R + K)-dimensional vector in S . X' is a discrete state discrete

time Markov chain which will be completely specified by its one-step

state transition probabilities

PEylx) = Prob[x™! = y|x* = xj xyes
such that
Pl = D Plort yes (4.1)
XES
We now define,
vit = Prob[Vt = i] i=20,1,2,...
and
0 m= 1
A(m) =
m m# 1

The one-step state transition probabilities at time t for the Markov

chaini(.t are given below.

[ .
0 if Y; # X5 4
¥i=2,3 ..., R#K
t 3 » H)
Pl = {1 i 2-i
£ Iy /.1 .
LAY e 1-E' otherwise
=0 "1 i
i<t (4.2)
where

77



K
£ = j;. Ach"‘j)

is the total number of packets which collided in the K slots (from the
(t - R)th to the (t - R - K + l)th) such as shown in Fig. 3.1. Note
that each such packet retransmits into the (t + 1)St slot independently
with probability g . Note also that for i =2, 3, ..., R+ K, the
event [yi # xi_l] is impossible and thus has zero probability (since

both y. and x,_ ‘Tepresent the value of channel traffic in the

1

same time slot).
Now given an initial probability distribution for the channel

traffic in R + K consecutive time slots, the stochastic behavior of

the channel as a function of time is predicted by Eqs. (4.1) and (4.2).

A recursive transform equation

We first define the following transforms,

vi(z) = z 2t v,
i=0
and
t _ At
Q (E_) - Q (zll zzl LI ] zR+K)

oo [ +
X.
S ﬁz-’ P'(x)

. Sl
x,=0 Xpek=o \ J=1

g

From Eqs. (4.1) and (4.2), a recursive transform equation relating

1

Qt+l(5) to V™ (z) and Qt(gj can be derived (see Appendix C)} and is
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given below.

Qt+1(3) = Vt*l(zl) Qt(E;EJ (4.3)
{(el,...,sK)lej=0,1}

where € is a K-dimensional vector and Qt(i;_g_) for a given £ can be

obtained from Qt(i) by the following algorithm:
(1) Initialize Q" (z;e) « Q(z z ) and § « 1
St ot 2)"" R+1’y1""’yx J
{2) Ifj =K, go to (5)
(3) If Ej =0,
z
replace by z 1i- 1,1 in Qt(Z‘E)
P yj Y ZRejel K K =t

1-z))
t 1 g .t
else Q'(Z) * Zp,5 k7, Qe
J

(4) j+ j+ 1 and go to (2)

(5) If e, =0,

14 t
Teplace Yx by ( 1l - T in Q (z;g),

1-z
t 1 d .t
else Q (z;€) « . Q (z;:e)
Sk B K 5}1(

Yk = 0

The notation A + F(A) means: evaluate F{A) which then becomes
the new expression for A. As an example, for the case when R =2 and

K =2, we get the following transform equation.
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t+1 _ ytl t 1.4 ) 1 z1)
Q (zl,zz,z3,z4) =V (zl) [Q (ZZ’ZS’Z4 (1 "X X , (1 -zt T)
z,(1-z,) z
4 1,3t 1 1
* X 3y (zz’zs’yl’ (r-g~ "TE))
Yy =0
1-z z
1, 9 t ( 1 _1)
T, 8 (22’23’24 -x*x/ y2)
y, = 0
2
+ 24(1;z1) 3 32 Qt(zz,zs,yl,yz)
K }’1 y2 yl,y2=0

The above equation demonstrates the complexity of the transform equa-
tion even for small values of R and K . No solution to Eq. (4.3)
has been found. The above analysis serves to illustrate the difficulty
and futility of an exact mathematical analysis and motivates our use

of approximations.

4.2 An Approximate Solution

In this section, we shall analyze the same model above with
an additional assumption. We shall assume that the channel traffic
*
within any K consecutive time slots are independent of each other

so that it suffices to solve for the probabilities,
P.% = Prob[x" = i] i=0,1,2, ...

and the transform,

00

Qt(z) = Z zipit

i=0

“This is a weakened version of the independence assumption for channel
traffic used in Chapter 3 and will be referred to as the weak indepen-
dence assumption for channel traffic. Recall that the (strong)
independence assumption gave very accurate results as verified by
simulations in Chapter 3.
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instead of Qt(g) . We define the expected values of the random

variables Xt and Vt as

6t = B[xt]
and
st = E[v*]

Another transform equation

A transform equation similar to Eq. (4.3) can be derived under

the weak independence assumption (see Appendix C) and is given below.

K
Q" (2) = v (2) l—! Qt~R-J (1 - %,, §.>+ plt'R'J' 1% (4.4)
J:

Eq. (4.4) can be solved recursively for Qt(z) given initial proba-
bility distributions of the channel traffic in R + K consecutive
time slots. Alternatively, Qt(z) can be approximated arbitrarily

well by solving for Plt and a finite number of the moments of the

t
1

time slot.) By differentiating Eq. (4.4) with

channel traffic Xt . (Note that P

throughput in the tth

represents the expected channel

respect to z and setting =z equal to zero, we obtained the fol-

lowing difference equation for Gt under our assumptions.

K
¢t -1 2 Gt R _p tRI |, gt (4.5)
K 4 1
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Theorem 4.1 If the chamnel input is an independent Poisson
process, then the channel traffic is Poisson distributed in the limit

as K~ « under the weak independence assumption, such that

Qt(z) = e_Gt(l-z) (4.6)
and
plt - Gte'Gt 4.7
where
gt = %-KI (Gt'R'j - gt R e'Gt-_R—j) + st (4.8)
iz

Proof See Appendix C.

Equation (4.8) characterizes (approximately) the time behavior
of the channel traffic subject to a time varying input when K is
large. However, since only expected values are considered, this equa-
tion represents a fluid approximation of the stochastic process x*

To incorporate statistical effects into the time behavior of the system,

other techniques which account for some of the higher moments of x*

such as diffusion approximation [KLEI 74D, NEWE 68] may be employed.
Channel saturation described in the last chapter may arise as

a result of either (a) statistical fluctuaions, or (b) time variations

in the channel input. The effect of statistical fluctations will be

studied in the next chapter. The effect of time varying inputs is

examined below using Eq. (4.8).
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4.3 Some Fluid Approximation Results

Given the Poisson channel input rate as a function of time,
the expected channel traffic as a function of time can be obtained
from the fluid approximation given by Eq. (4.8). In Figs. 4-1 and
4-2, we show the channel response to two input pulses. In both cases
the channel input rate is initially equal to 0.3 packet/slot with the
channel in equilibrium. The input rate is then increased to 0.8
packet/slot (well above the channel capacity of 0.368 packet/slot for
an infinite population model)} for 100 time slots. As a result, the
channel traffic rate increases rapidly as the channel throughput rate
decreases. The expected channel backlog (defined to be the net area
between the channel input and throughput curves and corresponds to
the expected total number of packets awaiting retransmission in all
channel users) builds up. At the end of the 100 time'slots,
the channel input rate is reduced to 0.15 packet/slot in the first
case. We see that the channel slowly returns to an equilibrium
state (see Fig. 4-1). In the second case, the channel input rate is
reduced at the end of the pulse to 0.25 packet/slot which, as we see
in Fig. 4-2, is not small enough to prevent the channel from saturation.
Simulations were performed for both cases using the simulation pro-
gram developed for the infinite population model. The results are
shown in Figs. 4-3 and 4-4. Note that each simulation point indicated
actually represents an average value over a period of 50 time slots.
Four simulations are shown for each of the two cases. We see that

the fluid approximation results in Figs. 4-1 and 4-2 predict the

83



1.0
(PRCKETS/SLUJI

1

o.a
"y

(Pg%KETS/SLUTl

/— INPUT

E — THROUGHPUT

120.0
6.0

100.0
[PHCK%J?/SLUT)

80.0
4.0

A

60.0
3.0

TRRFFIC RATE

2.0

BRCKLOG (PRCKETS)

240 320 Yoo 480 560 U0
TIME (51L.07S)

TRAFFIC

g0 160 24 00 uap 580 BUO

o 320 y
TIME (SLOTS)

Figure 4-1.  Channel Response to an input Pulse (R = 12, K = 20).
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Simulations Corresponding to Figure 4-1.

Figure 4-3.
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general trend of the simulations. However, since the fluid approxi-
mation does not account for statistical fluctuations, there exist
large variations among the simulation results.

In Fig. 4-5, we show, using Eq. (4.8), the channel response
to a ramp pulse ("imﬁulse") in the channel input rate. At the end
of the pulse, the channel input rate is reduced to a small enough
value so that the channel is able to return to an equilibrium state.
Note that the channel has a natural frequency equal to the inverse
of the expected retransmission delay (which is R + (K + 1)/2). (In
Figs. 4-1 and 4-2 the channel oscillations are less pronounced as a
result of a smaller input pulse and a larger K .)

In Fig. 4-6, we present results from the following experiment
using Eq. {4.8). Starting with an equilibrium channel, an input pulse
is applied until the expected channel backlog reaches some specified
value B . The channel input rate is then reduced to some fixed
value S° . The time the channel takes to return to an equilibrium
state (the recovery time) is measured. (The criterion we adopt here
for channel equilibrium is that the channel traffic rate must be less
than one for R + K consecutive time slots.} The experiment was
carried out numerically using Eq. {4.8) for both rectangular and ramp
pulses with different amplitudes. The initial equilibrium channel

input rate Se = 0.2 or 0.3 packet/slot. The channel recovery
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time for the cases* considered is shown in Fig. 4-6 as a function of
B for constant values of S° . Note that given S~ there is a maxi-
mum value of B above which the channel recovery time is infinite,

in which case a smaller S° must be used. It is interesting to note
that the channel recovery time is insensitive to both the shape of
the input pulse and Se . The relevant variables are just B and

-

S Recall that the expected channel backlog is the net area between
the input and throughput curves. Thus, our results seem to indicate
that the channel impulse response depends only upon the area under
the impulse but not its shape, which reminds us of the response of
linear systems [SCHW 65]! These results also suggest that instead

of defining a complex state description such as in the previous

sections, the channel behavior may be characterized quite adequately

using the channel backlog size alone as a state variable.

* .
Four cases are considered:

(1) rectangular pulse, peak value = 2,35, Se =0.3
{(2) rectangular pulse, peak value = 2.35, Se = 0,2
(3) rectangular pulse, peak value = 1.35, Se = 0.3

(4) ramp pulse, S(t) = 0.35 + 0.05t , S = 0.3
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