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CHAPTER 5

CHANNEL STABILITY

The slotted ALOHA random access method enables a multi-access
channel to be statistically multiplexed in an efficient way by a large
number of users. Such a system was studied in Chapter 3 as an infinite
population model; equilibrium results on the channel throughput-delay
performance weré given. However, simulations have shown that the assump-
tion of channel equilibrium may not always be valid. In fact, the chan-
nel, after some finite time period of quasi-stationary conditions, will
drift into saturation with probability one. Thus, we realize that the
equilibrium throughput-delay results are not sufficient to characterize
the performance of the infinite population model. A more representative
measure of channel performance in this case is the stability-throughput-
delay tradeoff. To do so, we must first define channel stability and a
stability measure.

We consider in this chapter a slotted ALOHA channel supporting
a total of M users. The variable M is assumed to be large, but
finite. We show below that the exact value of M is an important
stability parameter. The purpose of this chapter is to characterize
the instability phenomenon in the following ways:

) We define stable and unstable channels
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L We show that in a stable channel, equilibrium throughput -
delay results presented in Chapter 3 are achievable over
an infinite time horizon. In an unstable channel, such
channel performance is achievable only for some finite
time period before the channel goes into saturation

] For an unstable channel, we define a stability measure
and give an efficient computational procedure for its
calculation

e Using the above stability measure, we examine the
stability-throughput-delay tradeoff for an unstable
channel

5.1 The Model

In the last chapter, we realized that the source of our diffi-
culty in analysis lies in the complexity of the state description.
Below we first define a mathematical model which characterizes the
channel state by a single variable. Practical considerations and
the model approximations to a physical system will then be examined.
This mathematical model will also be adopted in the next chapter.

Our model is similar to the linear feedback model studied by
Metcalfe who gave a steady-state analysis of the system behavior
[METC 73A]. Lu [LU 73] studied the same model and characterized the
time-dependent channel behavior through a set of linear difference
equations. However, his approach (like our results in Section 4.1)
cannot be easily applied to a system with many states (i.e., channel

users).
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5.1.1 The Mathematical Model

We consider a slotted ALOHA channel with a user population
consisting of M small users (see Section 2.3). Each such user can

be in one of two states: blocked or thinking. In the thinking state,

a small user generates and transmits a new packet in a time slot with
probability o . A packet which had a channel collision and is waiting
for retransmission is said to be backlogged. A small user with a
backlogged packet is blocked in the sense that he cannot generate (or
accept from his input source) a new packet for transmission. The re-
transmission delay RD of each backlogged packet is assumed to be
geometrically distributed, i.e., each backlogged packet retransmits*
in the current time slot with probability p .

Let N° be a random variable (called channel backlog) repre-

senting the total number of backlogged packets at time t . Given
that Nt = n , the channel input rate at time t is st = (M - n)o .
Note that St decreases linearly as n increases. Thus, this will

also be referred to as the linear feedback model. The vector (Nt, St)

will be denoted as the channel state vector. In this context, both

M and O may be functions of time. We shall assume M and o to
be time-invariant unless stated otherwise. In this case, Nt is
a Markov process (chain) with stationary transition probabilities
and serves as the state description for the system. The state space

will now consist of the set of integers {0, 1, 2, .... M} . The

one-step state transition probabilities of Nt are, for

*Assuming bursty users, we must have p >> ¢ .
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For the infinite population model in which M+« and o+ 0 such

that Mo = § which is constant and finite, the above equation becomes
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5.1.2 Practical Considerations

The above mathematical model approximates a physical system

in several ways. First, M and o will be assumed to be time-
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invariant. However, if we distinguish active and inactive channel
users such that only active users will generate packets for trans-
mission over the channel (with probability ¢ ), the variable M
in our model actually corresponds to the number of active users.
In a real system, M will most probably vary during the day with
alternate periods of heavy and light "load." Since such time periods
are usually extremely large with respect to our time scale (a packet
transmission fime), M can be regarded as time-invariant during
each period. A good rule of thumb in the system design is to op-
timize the channel performance under the assumption of a heavy load
since the performance of a lightly loaded channel is relatively in-
sensitive to the system design. This will be our philosophy in this
chapter and the next. Most of our numerical examples are based upon
the assumption of a heavily loaded channel. If we consider the average
user think time to be 1-30 seconds in an interactive computer
communications environment [JACK 69]. Our range of interest to be
assumed for the number* of active channel users is between M = 10
to M= 500 .

The mathematical model assumption that RD is geometrically

distributed permits the use of a single variable for the state

*
The user think time as defined in our model represents quantities

such as the real thinking and typing time of an interactive terminal
user or computer interburst time in the data stream model of Jackson
and Stubbs [JACK 69]. The upper estimate M = 500 is obtained as
follows. From our assumptions in Section 2.3.1 for a 50 KBPS channel,
there are 44,4 time slots in one second. For an average user think
time of 30 seconds, o = 1/(30 x 44.4). From Mo < 0.37 , we get

M < 0.37 x 30 x 44.4 = 500 . Note that our assumption of a 50 KBPS
channel was quite arbitrary. If a higher channel data rate is con-
sidered (say 5 MBPS), we may want to assume different average think
times to reflect a different type of users.
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description. This assumption implies zero deterministic delay
(R=20). In a satellite channel this obviously represents an approxi-
mation. However, it is physically realizable in radio communications
over short distances in which channel propagation delays are negligible
compared to a packet transmission time. In this case, the duration
of each channel time slot can be made longer to include R .

A satellite channel (such as considered in Section 2.3) has a
round trip propagation delay of 0.27 seconds, which necessitates a
state description consisting of the channel history for at least R
consecutive time slots. The difficulty in mathematical analysis using
such a state description was illustrated in the last chapter. More-
over, it was shown that the channel recovery time following an input
pulse depends only upon the channel input rate and the channel back-
log size. This observation provided the motivation for the current
mathematical model. Below we show by simulations that the mathematical
model also gives excellent prediction of the throughput-delay per-
formance of a channel with nonzero R . The conclusion is that in
most cases of interest, the slotted ALOHA channel performance is de-
pendent primarily upon the expected value of the retransmission delay
(RD) and quite insensitive to the exact probability distributions
considered.

In order to use the analytic results of the mathematical model
to predict the throughput-delay performance of a slotted ALCHA
channel with nonzero R , it is necessary to use a value of p in
the mathematical model which gives the same RD . For example, to

approximate a slotted ALOHA channel with uniform retransmission
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randomization, we must let

_ 1
PER+(X+1D/2

(5.3)

such that RD = R + (K + 1)/2 in both cases.

We define the length of time for which a packet is backlogged

to be the backlog time of the packet and denote the average backlog

time by D To obtain the average packet delay as defined in

b
Section 2.3 and illustrated in Fig. 2-2, we must add to L R+ 1
time slots, which represent the delay incurred by each successful

transmission. Thus, we have

D= Db + R+ 1 (5.4)

In the mathematical model Nt = n implies that in the tth

time slot (M - n) wusers are in the thinking state, each of which

may generate and transmit a new packet with probability ¢ . Hence the
channel input rate is St = (M - n)o. However, when R 1is nonzero, the
number of thinking users may be less than (M - n), since some users may
have had a successful transmission, but R time slots must pass by be-
fore they learn that "successful transmission occurred" (see Section

2.3). Suppose the channel throughput rate is Sou By Little's result

t*

[LITT 61], there are on the average S « R such users (approximately

out

equal to 4.5 for R = 12 and § = 1-) which is negligible when M is
out e

large (say a few hundreds). Moreover, the value of M can be adjusted

to reflect this average value. For our purposes, this discrepancy will

be ignored.
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To show that the throughput-delay performance of a slotted
ALOHA channel is dependent primarily upon RD and quite insensitive
to its exact probability distribution, we performed a simulation ex-

periment with the following probability distributions for RD :

(n R = 12 and uniform randomization
(2) R =0 and uniform randomization
(3) R =12 and geometric randomization
4 R=0 and geometric randomization

The number of channel users M was assumed to be 200. The duration
of each simulation run was 8000 slots. As in Chapter 3, only those
simulation runs which satisfied our channel equilibrium criterion

were considered. Two values of RD were used for each of the four
cases: a large RD corresponding to K = 60 in case (1) and a small
RD corresponding to K = 10 in case (1). Equivalent values of K
and p giving the same RD were used for the other three cases.

In cases (2) and (4), Eq. (5.4) was used to compute the average packet
delay. The throughput-delay tradeoffs for all four cases at each of
the two values of RD are shown in Fig. 5-1. Within the accuracy

of the simulation experiment, all four cases give practically the

same throughput-delay performance, lending validity to our claim that
the channel throughput-delay performance is dependent upon the ex-
pected value rather than the exact probability distribution of RD .
(Of course, in certain uninteresting situations such as K =1 or 2
in case (1) or p very close to one in case (3), our claim is ob-

viously invalid.)
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In this chapter and the next, the mathematical model as de-
fined in the previous section will be studied. Use of Egqs. (5.3)
and (5.4) enables the numerical results_to be expressed in terms of
K and compared with previous results on the slotted ALOHA channel
performance for nonzero R and uniform retransmission randomization.

5.1.3 Channel Throughput

Conditioning on N = n , the expected channel throughput
Sout[n,c) 1s the probability of exactly one packet transmission

in the tth time slot. Thus,

Seut @9 = (1 - B - Mo - " npa - P la - gMn

(5.5)

For the infinite population model, i.e., in the limit as M 4 «
and 0 ¥ 0 such that Mo = S is finite and the channel input is
Poisson distributed at the constant rate S , the above equation

reduces to

-5

0,8 =1-p's ¢S . np(l - p)n”1 e (5.6)

Sout

This expression is very accurate even for finite M if o << 1 and
if we replace S =Mo by S = (M- n)o. We assume that the condi-

tion ¢ << 1 is always satisfied in problems of interest to us,
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5.1.4 Equilibrium Contours

In Fig. 5-2, for a fixed K we show Sout(n,S) as a 3-
dimensional surface on the (n,S) plane given by Eq. (5.6). Note

that there is an equilibrium contour in the (n,S) plane on which

the channel input rate S is equal to the expected channel through-
put Sout(n,S). In the crosshatched region enclosed by the equilib-
rium contour, Sout(n,S) exceeds S ; elsewhere, S 1is greater than
Sout(n’s) (the system capacity is exceeded!). In Fig. 5-3, a family
of equilibrium contours for various K are displayed. We see that
if we increase the average retransmission delay (by increasing X

or equivalently decreasing p ), these equilibrium contours move up-

wards, We show below that these equilibrium contours play a crucial

role in determining the stability behavior of the channel.
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Given M and ¢ and suppose a stationary probability distri-
M

bution {Pn}:io exists for Nt . Let N = zonpn . The stationary
n=

channel throughput rate Syt Must be equal to the stationary channel

t

input rate. That is,

M M
Sout = Z Sout(n,o) Pn = Z (M - n)o Pn = (M - N)o
n=0 n=0

5.7)

For the equilibrium values of channel backlog size and throughput
rate given by the condition Sout (n,0) = (M - n)o to correctly
predict the stationary average values N and Sout , 4 necessary

condition is

M :
sout(ﬁ,o) = n§=:0 Syt M0) P = (M - Mo (5.8)

For p << 1 and © << 1 , the above approximation is very accurate.
For example, consider K= 60 and M = 200 in Fig. 5-8 below. The
stationary channel throughput rate (computed by the value-determination
operation in the next chapter) is found to be 0.344. The equilibrium
value S0 = 0. 346.

Both the above equilibrium contours and the equilibrium con-
tours shown in Figs. 3-3 and 3-4 in Chapter 3 are obtained under the
condition that the channel input rate is equal to the channel through-
put rate. Thus, a point specified by K and S in Fig. 5-3 must give
rise to the same values of G and D in Figs. 3-3 and 3-4. Any dis-

crepancy is due to the different approximations made in the two models

(the first order approximation model and the linear feedback model).
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The above claim can be verified by checking corresponding
points on the contours. As an example, consider the point K = 40 ,
$=10.275 and n = 54.5 in Fig., 5-3. By Little's result [LITT 61],

the average backlog time is

N

Sout

Applying Eq. (5.4), we get D = %ﬂé;§-+ 13 = 211 slots. Now if we

check the corresponding point in Fig. 3-4 for K = 40 and § = 0.275 ,
we find that D = 212 slots. In general, D values given by the
linear feedback model are slightly less than those given by the

first order approximation in Chapter 3. This is especially true

when K is small such that the approximatibn in Eq. (5.8) becomes

less accurate.

Channel state trajectories on the (n,S) plane

Given an equilibrium contour on the ({(n,S) phase plane, we
consider here qualitatively the dynamic behavior of the channel sub-
ject to time-varying inputs. The following example serves to clarify
similar fluid approximation results in Chapter 4,

Consider the case in which ¢ 1is constant while M = M{t) is
a function of time as shown in Fig. 5-4. We use the fluid approxi-
mation for the trajectory of the channel state vector (Nt, St) on
the (n,S) plane as sketched in Fig. 5-5. Recall that St = (M -~ Nt)c.
The arrows indicate the "fluid" flow direction which depends on the
relative magnitudes of Sout(n,S) and S . Two possible cases are

shown corresponding to different values of M3 in Fig. 5-4. The
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Figure 5-5. Fluid Approximation Trajectories.
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solid line (case 1) represents a trajectory which returns to the
original equilibrium point on contour Cl despite the input pulse.
The dashed line (case 2) represents a less fortunate situation in

which the decrease in the channel input rate at time t. is not

2
sufficient to bring the trajectory back into the "safe" Tegion (in
which 8§ < Sout(n,S)). Eventually, the channel "collapses™ as a
result of an increasing backlog and a vanishing channel throughput
rate. Compare these two cases with similar results in Figs. 4-1
and 4-2.

We have demqnstrated channel saturation caused by a time-
varying input. Next we study the conditions under which the slotted
ALOHA channel with a stationary input {(constant M and ¢ ) can go

into saturation as a result of statistical fluctuations.

5.2 Stability Considerations

We first define what we mean by stable and unstable channels and
characterize their behavior. A stability measure is then given to quan-

tify the relative instability of unstable channels.

5.2.1 Stable and Unstable Channels

Given M and o , we define the channel load line in the

(n,S) plane as the line S = (M - n)o , which intercepts the n-axis
1
at n =M and has a slope equal to -G -

The stability definition

The channel is said to be stable if its load line

intersects (nontangentially) the equilibrium contour in
exactly one place. Otherwise, the channel is said to be

unstable.
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Examples of stable and unstable channels are shown in Figs. 5-6.
Arrows on the channel load lines indicate directions of fluid flow
given by the fluid approximation. In other words, the arrow points in
the direction of increasing backlog size if S > Sout(n,S) and in the
direction of decreasing backlog size if Sout(n,S) > 85,

Each channel load line may have one or more equilibrium

points, A point on the load line is said to be a stable equilibrium

point if it acts as a ''sink" with respect to fluid flow. It is a

globally stable equilibrium point if it is the only stable equilibrium

point on the channel load line. Otherwise, it is a locally stable

equilibrium point. (Each stable equilibrium point is identified by

a dot on channel load lines in Figs. 5-6 except in Fig. 5-6(c),
where one of the stable equilibrium points is at n = = .} An equi-

librium point is said to be an unstable equilibrium point if fluid

flow emanates from it. Thus, the channel state Nt sitting on such
a point will drift away from it given the slightest perturbation.

The stability definition given above is equivalent to de-
fining a stable channel to be one whose channel load line has a
globally stable equilibrium point.

In Fig. 5-6(a), we show the channel load line of a stable
channel. Since N' has a finite state space and is irreducible
(assuming p, 0 > 0), a stationary probability distribution always
exists [PARZ 62]. Since (no, So) is the only equilibrium point
on the load line, it gives the steady-state throughput-delay per-
formance over an infinite time horizon under the approximation in

Eq. (5.8). (no, So) will be referred to as the channel operating

point. If M is finite, a stable channel can always be achieved
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by using a sufficiently large K (see Fig. 5-3). Of course, a

large K implies that the equilibrium backlog size n, is large.

As a result, the average packet delay may be too large to be acceptable.
In Fig. 5-6(b), we show the channel load line of an unstable

channel. The point (no, So) is again the desired channel operating

peint since it yields the larger‘channel throughput and smaller

average packet delay between the two locally stable equilibrium points

on the load line. In fact, the other locally stable equilibrium

point, having a huge backlog and virtually zero throughput, corres-

ponds to channel saturation. It will be referred to as the channel

saturation point. Since M is finite, and assuming p, 0> 0 , a

stationary probability distribution exists for Nt . However, N
will "flip—flop"lbetween the two locally stable equilibrium points
in the following manner. Starting from an empty channel (Nt =0 at
time zero) quasi-stationary conditions will prevail at the operating
point (no, So) . The channel, however, cannot maintain equilibrium
at this point indefinitely since Nt is a random process; that is,
with probability one, the channel backlog Nt crosses the unstable
equilibrium point n, in a finite time and as soon as it does, the
channel input rate S exceeds Sout(n’s) . Under this condition,
Nt will drift toward the saturation point. (Although there is a
positive probability that Nt may return below n_, all our simu-
lations showed that the channel state Nt accelerated up the channel
load line producing an increasing backlog and a vanishing throughput

rate.) Since the saturation point is a locally stable equilibrium

point, quasi-stationary conditions will prevail there for some finite
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(but probably very long) time period. In this state, the communication
channel can be regarded as having failed. (In a practical system, ex-
ternal control should be applied at this point to restore proper
channel operation.) The two locally stable equilibrium points on the
load line of an unstable channel correspond to the channel being tup'"
or "down." An unstable channel may be acceptable if the average chamnel
up time is large and external control is available to bring the chan-
nel up whenever it goes down.

In Figs. 5-7 and 5-8, we see how as the number of channel
users M increases, an originally stable channel becomes unstable al-
though the channel input rate So at the operating point remains
constant (by reducing o ). For So = 0,36 and K= 10 , we see
that as M exceeds 80, the channel throughput decreases and the average
packet delay increases very rapidly. (These results are obtained by
solving for the stationary probability distribution of Nt using
Algorithm 6.5 in the next chapter. No external control is assumed.)
Using the stability definition and Fig. 5-3, the maximum value of M
that is possible without rendering the load line unstable is
M = 79 , which exactly gives the knees of the curves in Fig. 5-7.

max
In Fig. 5-8, by using a larger value of K (= 60) , a larger Mmax
is possible. Note, however, that the average packet delay (= 56 slots)
for K = 60 is much larger than the average packet delay (= 36 slots)

for X

10 . Given K and S0 s Mmax can be obtained graphically
from the equilibrium contours such as shown in Fig. 5-3. In Fig. 5-9,

we show Mmax as a function of K with So fixed at the maxinum
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value given K . Note the linear relationship between Mmax and K
for the values shown. In Fig. 5-10, we show that an originally un-
stable channel can be rendered stable by using a sufficiently large
K .

The channel load line of an infinite population model is de-
picted in Fig. 5-6(c) as a vertical line, This is an unstable channel
according to the stability definition. (Note that n = = is a stable
equilibrium point.) In fact, since Nt has an infinite state space
and S > Sout(n’s) for n > n_,a stationary probability distribu-
tion does not exist for Nt . (See, for example, Cohen [COHE 69]

Pp. 543-546 for such proof.)

The channel load line shown in Fig. 5-6(d) is stable according
to the stability definition. However, the globally stable equilibrium
point in this case is the channel saturation point! Thus, this re-
presents an "overloaded'" channel as a result of bad system design.

To correct this situation, the number of active users M supported
by the channel should be reduced. Note that such an action is dis-
tinct from the dynamic control pfocedures in the next chapter, which
are concerned with controlling temporary statistical fiuctuations
given that the channel is not overloaded in the above sense. From

now on, a stable channel will always refer to the load line depicted

in Fig. 5-6(a) instead of Fig. 5-6(d),

Let us summarize the major conclusions in the above discussions:
] The steady-state throughput-delay performance of a

stable channel is given by its globally stable
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equilibrium point and approximated by the equilibrium
throughput-delay results in Chapter 3.

L In an unstable channel, the throughput-delay performance
given by a locally stable equilibrium point can be
achieved only for some finite time period.

5.2.2 A Stability Measure

From the above discussion and referring to Fig. 5-6(b), the
load line of an unstable channel can be partitioned into two regions:
the safe region consisting of the channel states {0, 1, 2, ..., nc}
and the unsafe region consisting of the channel states {nc + 1, ..., ML
A good stability measure (for these unstable channels!)} is the average
time to exit into the unsafe region‘starting from a safe channel state.

To be exact, we define FET to be the average first exit time into the

unsafe region starting from an initially empty channel (Nt = 0 at time

zero) . Thus, FET gives an approximate measure of the average up

time of an unstable channel. Below we derive the probability distri-

butions and expected values of such first exit times. The derivations

are based upon well-known results on first entrance times in Markov

chains with stationary transition probabilities [HOWA 71, PARZ 62].
Consider the mathematical model in Section 5.1 with constant

M and ¢ , where M may be infinite. N* is a Markov process

(chain) with stationary transition probabilities {pij} given by

Eq. (5.1) or Eq. (5.2). Define the random variable Tij to be the

number of transitions which N goes through until it enters state

j for the first time starting from state i . The probability
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distribution of Tij (called the first entrance probabilities from

state i to state j ) may be defined as

m]

n

fij(nD Prob['l‘ij

]
=
[
=
i
[

ij
ProbN*™ = 5, N 5, n=1, Lo, m- 1 N =]

(5.9)

The state space S for N' consists of the set of non-
negative integers {0, 1, 2, ..., N+ 1, ..., M} which is par-
titioned into the safe region {0, 1, 2, ..., ﬁc} and the unsafe
region {nc +1, ..., M} . Now consider the modified state space
$“={0,1, 2, ..., ns nu} where n ~ is an absorbing state such

that N° is now characterized by the transition probabilities

r

pij i, j=0,1, ..., nc
M
p-f . . +1P1£ i=0,1, ..., nC s nu
~1) c (5.10)
0 is= n, s j=0,1, ..., n,
1 i, j = n,

Define the random variable Ti to be the number of transitions

which N° goes through before it enters the unsafe region for the
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first time starting from state i in the safe region. Ti is called

the first exit time from state i . The probability distribution of

T, is defined to be {fi(m)}:=1 which are called the first exit

probabilities, It is trivial to show that starting from state

i (01 s nc) , the first entrance probabilities into the absorbing
state n, in the modified state space S~ are the same as the first
exit probabilities into the unsafe region of S . Using Eq. (5.9),

such probabilities are given by the following recursive equation

[HOWA 71],
n
c
fin (m) = Pin S(m - 1} + _ pij fjn (m - 1) m=1
u u i=0 u idn
u
where
1 m=1
S(m) =
0 otherwise

The above equation can be rewritten in terms of the first exit prob-
abilities as

n

M
£f.(m) = ZP..S(m—1)+Sp..f.(m-1) mz1
i jeh1 ij 1j 7

i= 0<1iz=<sn
c
(5.11)

where fi(m) can be solved recursively for m 2 1 starting with

fi(O) =0 for all i.
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The probability distribution {fi(m)}:=1 for the random
variable Ti typically has a very long tail and cannot be easily
computed. We had defined earlier FET as a stability measure for an
wnstable channel. By our definition, FET is the same as the expected
value of the random variable T, . Let Ti be the expected value and

Ti2 be the second moment of Ti . These moments can be obtained by

solving a set of linear simultaneous equations. It can easily be shown

[HOWA 71] that

1 with probability P{n
T. = u
1+ Tj with probability pij

from which we obtain [HOWA 71, PARZ 62]

C
Tl =1 + i le Tj i=0,1, ove, 'l'lc (5.12)
j=0
2 _— 2 .
T.=2T, -1+ ) p.. T, i=0,1, .o, n_ (5.13)
i i f=6 743 3 c

Eqs. (5.12) form a set of n,+ 1 linear simultaneous equations from
I
which {T;}ifo can be solved and FET (= T0 ) determined. After
n
{szizo have been found, Egs.(5.13) can then be solved in a similar
——

21 ¢
manner for {Ti }i=0 .

5.3 Numerical Results

With the stability measure defined above, we are now in a

position to examine quantitatively the tradeoff among channel stability,
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throughput and delay for unstable channels. Below we first give a
computational procedure to solve for T;' and hence, FET. They are
then computed for various values of K, So and M (corresponding
to different load lines). The stability-throughput-delay tradeoff
is then shown.

5.3.1 An Efficient Computational Algorithm

The solution of the set of simultaneous equations in either
Eq. (5.12) or Eq. (5.13) involves inverting the (nc + 1) by (nc + 1)
matrix in pij for i, =0, 1, ..., n_ . When n_ is large, this
becomes a nontrivial task because of the large number of computational
steps and large computer storage requirement for the [pij] matrix.
The fact that pij =0 for j =<1 -2 in Eqs. (5.1) and (5.2)
enables us to use the following algorithm which is very efficient
in terms of both the computer time and space requirements mentioned
above when n, is large.
Algorithm 5.1

This algorithm solves for the variables £ti}§=0 in the fol-

lowing set of (I + 1) linear simultaneous equations,

I
ty = h0 + % pOj tj
I
ti=hi+j=;1 Pij i=1,2, ..., 1
(1) Define
e; © 1
£.=0
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1 -pyy

-1 Pr 1
hI
3 B
Pr,1-1
(2) For i=1-1,1-2, ...., 1 solve recursively

I
o1 D>
®i-1 7 ' [ei T & Pij ej]

pi,i-l j=1i

(3) Let
1
fb - h0 " L pOj fJ
t. = 4=
I I
ES Pp: €. - €
§=0 0j 73 0
too=e; tp+ f. i=0,1,2, .y I-1

A derivation of the above algorithm is given in Appendix D.
This algorithm is superior to conventional methods such as the Gauss
elimination method [CRAI 64] for solving linear simultaneous equations
in two respects. First, each pij is used exactly once and can be

computed using Eq. (5.1) or Eq. (5.2) only when it is used in the
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algorithm. This eliminates the need for storing the Epij] matrix
and practically eliminates any computer storage constraint on the
dimensionality of the problem. Second, the number of arithmetic
operations {+ - x i) required by the above algorithm is in the
order of 212 which is less than that of conventional methods such

- as Gauss elimination.

'5.3.2 Average First Exit Times (FET)

In Fig. 5-11, we have shown FET as a function of K for the
infinite population model and for fixed values of the channel through-
put rate S0 (at the channel operating point). We see that FET
can be improved by either decreasing the channel throughput rate SO
or by increasing K (which in turn increases the average packet
delay). The infinite population model results give us the worst
case estimates for channel stability as demonstrated in Fig. 5-12
in which we show FET as a function of M for K = 10 and four
values of So . Note that FET increases as M decreases and there
is a critical value of M below which the channel is always stable
in the sense of Fig. 5-6(a). As M increases to infinity, FET
reaches a limiting value corresponding to the infinite population
model with a Poisson channel input. Fig. 5-13 is similar to Fig.
5-11 except now the number of users M is 150. Recall that if M

is finite, the channel will become stable when K is sufficiently

large.
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As an example, we see that in Fig. 5-13 for M = 150 , 1f the
channel throughput rate S0 is kept at approximately 0.28 and K = 10
is used, the channel is estimated to fail once every two days on the
average. If this is an acceptable level of channel reliability, then
no other channel control procedure is necessary except to restart the
channel whenever it goes into saturation. However, if absolute channel
reliability is required at the same throughput—delay performance, dy-
namic channel control strategies should be adopted. Channel control
schemes will be investigated in the next chapter.

5.3.3 The Stability-Throughput-Delay Tradeoff

In Fig. 5-14, we show as a lower bound the optimum performance
envelope in Fig. 3-4 for the throughput-delay tradeoff of the infinite
population model. This corresponds to the channel perforﬁance at the
channel operating point indicated in Figs. 5-6. From these same

figures, we see that the channel operating point (no, So) provides

no information on the stability behavior of the channel. The equi-

librium performance given by (no, So) is achievable in the long run
if M is small enough such that the channel is stable; else, it is
achievable only for some random time period estimated by our stability
measure FET.

A design example

The designer of a slotted ALOHA channel is thus faced with the
problem of deciding whether he wants a stable channel by using it for
a small number of users and sacrifices channel utilization or uses the

channel to support a large number of users if he is willing to accept
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Figure 5-14, Stability-Throughput-Delay Tradeoff.
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a certain level of channel reliability (some value of FET). For
example, suppose K 1is chosen to be 10. (Note from Figs. 3-4 and
3-5 that K = 10 gives close to optimum equilibrium throughput-delay
performance over a wide range of channel throughput rate.) Also,
suppose that the channel users have an aﬁerage think time of 20 seconds
which, for our usual channel numerical constants, correspond to 888
time slots. Now if we draw channel load lines on Fig. 5-3 with a
slope equal to - 888 , the channel is stable up to approximately 110
channel users. For M = 110 , the channel throughput rate So is
about 0.125 packet/slot. From Fig. 3-4, the average packet delay is
roughly 16.5 time slots (= 0.37 secpnd). The same channel can be
used to support 220 users at a channel throughput rate of S0 = 0.25
packet/slot. The average packet delay is 21 time slots (= 0.47 second).
But now the channel is unstable! From Fig. 5-11, for K = 10 and
S0 = 0.25 , the average up time (FET) of the channel is approximately
two days for an infinite population model. Note that this value re-
presents a lower bound for the FET of M = 220 . Thus, we see that
if a channel failure rate of once every two days on the average is an
acceptable level of reliability, the second channel design is much
more attractive than the first since the number of channel users is
more than doubled at a modest increase in delay.

In addition to the infinite population model optimum envelope,
we also show in Fig. 5-14 two sets of equilibrium throughput-delay
performance curves with guaranteed FET values, The first set consists

of three solid curves corresponding to an infinite population model
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with channel FET 2 1 day, 1 hour and 1 minute. Again, these results
represent worst case estimates when M is finite. The second set
consists of two dashed curves corresponding to M = 150 with channel
FET 2z 1 day and 1 hour. These results were obtained by looking up
the values of K and S0 in Fig. 5-11 or Fig. 5-13 corresponding

to a fixed FET. The average packet delay was then cobtained from

Fig. 3-4. This figure displays the fundamental tradeoff among
channel stability, throughput and delay. In the next chapter, we
devise strategies to dynamically control the channel to achieve truly
stable throughput-delay performance close to the optimum performance

envelope.
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