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CHAPTER 6

DYNAMIC CHANNEL CONTROL

6.1 Introduction

Before we introduce channel control procedures, let us first
examine the motivation for dynamic channel control.

In Chapter 1, we indicated that our interest in the multi-
access broadcast channel stems from its capability to provide com-
munication among a large population of users. In Chapter 3,
equilibrium throughput-delay tradeoffs were given for the infinite
population model (which approximates a large population of small
users}). The lower envelope of these tradeoffs characterizes the
optimum channel performance. In Chapter 5, we showed that when the
number of channel users M is sufficiently small, the channel is
stable and the optimum channel performance envelope can actually
be achieved over an infinite time horizon., However, for a large
M , the channel is unstable. In this case, the optimum throughput-
delay performance is achievable only for some finite time period
before the channel goes into saturation.

In this chapter, we study dynamic channel control procedures
which will enable an originally unstable slotted ALOHA channel not
only to support a large number of users, but also to achieve a
throughput-delay performance close to the optimum envelope with
guaranteed channel stability.

The linear feedback model described in Section 5.1 is assumed

throughout., In addition to this assumption, each channel user is
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assumed to know the exact current channel state (channel backlog size).
This assumption is necessary in the mathematical model, but will be
relaxed when we consider heuristic (but practical) control procedures
based upon the insights gained from the analysis.

Here we summarize the contents of this chapter. In Section
6.2, we give a brief introduction of Markov decision theory for a
finite-state Markov process (chainj and outline Howard's policy-
iteration method. Several control procedures are considered in
Section 6.3. The first, known as the input control procedure (ICP),
allows the channel to either accept or "reject" new packets from their
sources. The second, known as the retransmission control procedure
(RCP), allows the channel transmitters to impose either large or
small retransmission delays on previously collided packets. The
third, known as the input-retransmission control procedure (IRCP),
is a combination of the first two as its name suggests. Two cost
(performance) measures are defined, namely, the stationary channel

throughput rate Sou and the average packet delay D . It will be

t
shown in Section 6.4 that for each of the above control procedures,

an optimal policy exists (and can be found by the policy-iteration
method) which will maximize SOut and minimize D at the same time.

An efficient computational algorithm is given in Section 6.5, which
enables the use of the policy-iteration method for a large state space
with relatively small computational and storage demands on the computer.

Both numerical and simulation results are then given in Section 6.6

for the throughput-delay performance of the controlled random access
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channel. In all cases considered, the optimal control policies were
found to be of the control limit type. However, a rigorous proof of
this result remains as an open problem.

In Section 6.7, we recognize the fact that the exact current
channel state is not known to the individual channel users. A pro-
cedure is proposed which estimates the channel state and applies
the above optimal control policies using this estimate. Another re-
transmission control procedure which circumvents the state estima-
tion problem is also suggested. These control procedures are then
tested through simulations and found to give not only a stable channel,
but alsoc achieve a throughput-delay performance close to the optimum
performance envelope. Other channel control schemes proposed by
Metcalfe [METC 73A] and Rettberg [RETT 73C] are then examined. Finally,
we briefly discuss some channel design considerations.

6.2 Some Results from Markov Decision Theory

Most of the results in this section are taken from Howard
[HOWA 60, HOWA 71] and Ross [ROSS 70]. Also, see Parzen [PARZ 62]
for a general reference on Markov chains.

6.2.1 Markov Processes with Costs

We consider a finite Markov process (chain) Nt which is ob-
served at time points t =0, 1, 2, ... to be in one of a finite
number of possible states. The set of states S will be labelled
by the nomnegative integers {0, 1, 2, ..., M} . The Markov process
is assumed to have stationary state transition probabilities {pij}

(unless stated otherwise). The process incurs a cost cij when it
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makes a transition from state i to state j . Thus, the Markov
process starting at some initial state generates a sequence of costs
as it makes transitions from state to state. Each cij is assumed

to be bounded (i.e., cij < © ) and independent of time (unless indi-

cated otherwise).

We define Ci to be the expected immediate cost for state i

and vi(T) to be the expected total cost that the process Nt incurs

in the next T + 1 time units starting in state i . Hence,
M
C. = z P:: C:. (6.1)
i =0 ij "ij

v, (1) = E Z c,|N=s (6.2)
{0 N

The expected total costs vi(T) are given by the following recurrence

relation [HOWA 60]

M
Vi(T) ;2; Pij lcij + vj(T - 1) i=0,1,2, ..., M

T=1, 2, 3,

M
= (. + ZZ P.: v, (T - 1)
i §20 ij 7

This set of equations can be solved recursively for the set of expected

total costs {Vi(T)} for any finite T . However, when T {called
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the time horizon of the process Nt ) is very large, a more suitable

cost measure is the cost rate (i.e., expected cost per unit time) of

the process. Thus, we define

_lim 1 zz 0.
8 = o T+ E 2 cNt N = i (6.4)

where the limit always exists since the cij are bounded.
Assuming that Nt is an irreducible Markov chain and since
S 1is finite, Nt possesses a unique stationary probability distribu-

tion {“i}?=o such that [PARZ 62]

M
T, = jg T, P.. j=20,1, , M
J i=0 * 1
T, 2 0 i=0,1, ..., M (6.5)

and

M
22 “i = 1
i=0

From the ergodic theorems in the theory of Markov chains [CHUN 67],

we then have the following important result

M
=g = 25 m. C. ¥i=0,1, ..., M 6.6
£5 8 099 (6.6)

135



where g is defined to be the cost rate or expected average cost of

the process Nt and will be used extensively as the cost (performance)

measure under various definitions of the state transition costs {cij} .
When T is large, the expected total costs of the process,
Vi(T) , are then given [HOWA 60] asymptotically by

V(1) =g T4y, i=0,1,2, ..., M (6.7)

where v, is referred to as the asymptotic intercept of state i .

For a large T , g is the only significant variable. (However, it
will be shown below that in a Markov decision process, relative values
of the 7 will enable us to solve for an optimal control policy.)

6.2.2 Markov Decision Processes

We now introduce decision-making in the Markov process described
above. Let A be a finite set of possible actions such that corres-
ponding to each action a & A , the set of state transition probabili-
ties {pij(a)} and costs {cij(a)} (or equivalently the expected
immediate costs {Ci(a)}) are uniquely specified. We define a policy

f to be any rule for choosing actions and P to be the class of all

pelicies. The action chosen by a policy at time t may, for instance,
depend on the history of the process up to that point or it may be
randomized in the sense that it chooses action a with some proba-
bility Pa, aed.

Suppose the action at is given by the policy f at time t ,

which in turn specifies the state transition probabilities and costs
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at that time. Thus, f determines both the evolution in time of

the Markov process Nt and the sequence of costs it incurs. For

a policy f which generates the following sequence of actions in
2 t

. 0 1 .
time {a”, a7, a“, ..., a~, ...} , we define the expected average

cost per unit time for N~ which was initially in state i as

0

T
_lim 1 Z t .
0 = e T Bp| g @) [N = (6.8)

where the limit always exists, since the costs are assumed to be
bounded; the expectation is taken conditioning on the policy f . We

*
say that the policy f is average cost optimal over all policies

if ¢, (£) = "‘i.gp 6. (F) forall ieS.

An important subclass of all policies is the class of sta-

tionary policies Ps . A stationary policy is defined to be one

which is nonrandomized and the action it chooses at time t depends

only on the state of the process at time t . Thus, a stationary
policy f is a function f£(-) : S+ A ., The Markov decision process
employing a stationary policy f 1is in fact a Markov process with
stationary transition probabilities and costs as described in the

previous section. In this case, from Eq. (6.6)

M
¢, (£) = g(f) = z T, (f)C. () Vi=0,1, ..., M
p 173

J=
(6.9)

We give the following important result concerning stationary policies.
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Theorem 6.1 Given a finite state space, if every stationary
policy gives rise to an irreducible Markov chain, then there exists
*
a stationary policy f which is optimal over the class of all

policies. Thus,
(f) =¢.(£) = min ¢. (£) ¥i=0,1 M
£ i feP i PoTr mrre

Proof See [ROSS 70].

The conditions in Theorem 6.1 will always be satisfied in our
optimization problems below. Thus, by the above theorem, we can and
shall limit our attention only to the class of stationary policies in
our search for an optimal policy.

In the following section, we outline a procedure which solves
for the cost rate g of a Markov decision process given a stationary
policy f . An iteration method is then described, which leads to an
optimal stationary policy within a finite number of iterations.

6,2.3 The Policy-Iteration Method [HOWA 60, HOWA 71]

Given a stationary policy £ , the cost rate g of the re-
sulting Markov process can be determined as follows. Substituting

Eqs. (6.7) into Eqs. (6.3), we obtain
M
g+vi=ci+j§‘;pij v i=0,1, ..., M (6.10)

where the dependence of pij and Ci on the stationary policy f

are suppressed. There are (M + 2) unknown variables, namely, g
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and {vi} in the (M + 1) linear simultaneous equations. We see
that Eqs. (6.10) are also satisfied if the v, are Teplaced by

vio* b , where b is any arbitrary constant. Thus, although g can
be determined uniquely, only relative values of the v, can be ob-
tained by solving Egs. (6.10). Fortunately, g 1is the cost (per-
formaﬂce) measure of the Markov process that we are interested in; a
set of relative values of the vy is sufficient for the purpose of

the following iteration method in solving for an optimal policy.

The Policy-Iteration Method

The basic iteration cycle in the policy-iteration method is

diagrammed below in Fig. 6-1.
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Value-Determination Operation
_9 L] » »
Use pij and Ci for a given stationary policy to solve
M
g+ v, = Ci + 25 pij vj i=0,1, ..., M L
3=0
for g and the relative values of \7 (by setting vy = 0).
Policy-Improvement Routine
For each state i , find the action a in A that min- kﬂ
imizes the following test quantity
M
C.(a) + z p..(a) v,
i ) ij j
using the relative values v, of the previous policy.
Then a becomes the decision in state i for the new
pelicy; Ci(a) becomes C.1 and pij(a) becomes pij .
Figure 6-1 The policy-iteration cycle.
We may enter the iteration cycle in either box with an arbi-
trary initial policy or an arbitrary set of Ve - It is necessary

to require that in the policy-improvement routine, if the decision
f(1) for state i given by the old policy yields as small a value

for the test quantity as any of the other actions in A , the decision
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is left unchanged. The stopping rule is as follows:

The optimal policy has been reached ( g is minimized)
when the policies on two successive iterations are
identical.
The following theorem on the policy-iteration method is due to Howard.
Theorem 6.2 (i) Suppose the policy-improvement routine has
produced a policy f2 that is different from the previous policy f1 ,

then

g(f,) < g(£))

(ii) An optimal policy is obtained within a finite number of iterations.
Proof See [HOWA 60].

6.3 The Controlled Random Access Channel Model

Consider the stable and unstable channels in Figs. 5-6(a) and
(b) . The channel operating point (no, Sd) gives the throughput-

delay performance of a stable channel. However, for an unstable chan-

nel, the throughput-delay performance given by the channel operating
point* (no, So) is what we strive to achieve over an infinite time
horizon through the use of dynamic channel control.

In this section, channel control procedures are proposed and

formulated under the assumption that all channel users have perfect

*
We assume that the channel operating point has been optimized over

K {such that ng is minimized) and that the optimal K has been

adopted as the operating value of K .
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knowledge of the current channel state (channel backlog size). We

shall refer to this assumption as perfect channel state information.

6.3.1 The Markov Process

Consider the linear feedback model in Section 5.1, which re-
presents a slotted ALOHA channel supporting input from M small in-
dependent users. The channel backlog size Nt at time t 1is taken
to be the state variable with the state space S = {0, 1, 2, ..., M} .
As before, we assume that each channel user in the thinking state
generates and transmits a new packet independently with probability
g 1in a time slot; each channel user in the blocked state independently
retransmits his backlogged packet with probability p in each time
slot.* Thus, with constant M , 0 and p , Nt is a finite-state
Markov process with stationary state transition probabilities given

by Eqs. (5.1) which we rewrite below,

¢

0 jgi-2
ip(t - pila - oM? j=i-1
a-pie- doa - o™it
. i- M-1 . .
p. = 4 vli-wa-ptla-o™t e
i
[1 -a-pt] - poa - gyM-i-1 =i+l
M-13giig - M) j2 i+ 2
j-i
0<i, j <M
(6.11)

*
We again assume p = s (; 1373 in our numerical computations as in

Chapter 5. Our numerical results will be presented in terms of K so
that they can be compared with previous results.
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Cost rates and performance measures

The performance measures of interst to us are the stationary

channel throughput rate SOut and average packet delay D . We show

here how we can define the expected immediate costs Ci such that
either Sout or D can be obtained from the resulting cost rate
g of the Markov process.

Given that the Markov process Nt is in state i at time t ,

the expected channel throughput in the time slot is given by Eq. (5.5),

which we rewrite below as

. . i-1 M-1i i . M-i-1
Soue ) = i - P T -0 T+ (1=t M - D)o@ - o)
(6.12)
Now define the expected immediate (throughput) cost for state 1 as
C. = -8 (1) (6.13)

i out

and define the resulting cost rate of Nt as g, - It can easily be
shown from Eqs. (6.11) that Nt s aperiodic and irreducible for
P, 0>0. Thus, Nt has a stationary probability distribution
{ﬂi} . Using Eq. (6.6), the stationary channel throughput rate is

given by

M
Sou‘t - i;) Sout (1) T T "8 (6.14)

Note that Sou must be equal to the stationary channel input rate

t
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M
S = z (M-i)OTTi (6.15)
i=0

To obtain the average packet delay D , we define the expected

immediate (delay) cost for state i as

This accounts for the waiting cost of i packets incurred in the
current time slot. In Markov decision theory terminology, this is
sometimes referred to as the holding cost., Defining the resulting

cost rate of the Markov process as gq » We have from Eq. (6.6)
M
g, = ES i,
d =0 i

which is just the average channel backlog size N by definition.

Applying Little's result [LITT 61], the average backlog time Db of

a packet is from Eq. (6.14)

Db = N“ = - i
Sout gs

and the average packet delay is from the above equation and Eq. (5.4)

D=-— +R+1 (6.16)
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where R + 1 represent the packet transmission time and propagation
delay incurred by every packet in its successful transmission.

We note that the cost rates g, and gq can be obtained using the
value-determination operation in the previous section given the ap-
propriate definitions of the expected immediate costs C; - The per-
formance measures of interest Sout and D can then be computed

from g and 84 using Eqs. (6.14} and (6.16}.

6.3.2 Channel Control Procedures

By channel control procedure we mean the set of available
actions in the action space A . Given the above Markov process
formulation of the channel, we propose the following control proce-
dures for which there exist policies which convert an unstable channel
into a stable channel:

(1) The input control procedure (ICP)

(2} The retfansmission control procedure (RCP)

(3) The input-retransmission control procedure (IRCP)

In Appendix F, we consider a general dynamic channel control procedure
which includes ICP, RCP and IRCP as special cases.

The input control procedure (ICP)

This control procedure corresponds to the action space of the
- . A .
Markov decision process, A = {accept, reject} = {a,r} . Thus, in

. . . t . .
channel state i (i.e., given that N = i) , the actions are:
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accept (action = a) or reject (action = r) all new packets that

*
arrive in the current time slot.

The retransmission control procedure (RCP)

Under this control procedure, the action space A = {po, pc}
4 {o, ¢} where p, and p_ are said to be the operating and control
values of the retransmission probability p . (Through Eq. (5.3},
P, corresponds to KD which gives the desired operating equilibrium
contour and P corresponds to KC which is large enough to render
the channel stable.) Obviously, we must have P, < P, Thus, in
channel state i , the actions are: every backlogged packet is re-
transmitted in the current time slot with probability P, (action = o)
or with probability P, (action = ¢).

In both control procedures, we see that channel stability is
obtained through additional delays incurred by some or all packets
in. the system. However, they differ in their selection of such packets
when the current channel state calls for "sacrifice" (i.e., choosing
an action = r or ¢). In ICP, new packets are delayed ('rejected");
whereas in RCP, the backlogged packets are delayed for the social good.

The input-retransmission control procedure (IRCP)

This control procedure is a combination of ICP and RCP with

the action space A = {(accept, po), (accept, pc), (reject, po),

*

As discussed in Section 2.3.2, a new packet is said to arrive in the
current time slot only after it has been generated by the channel user
(or its external source), processed and ready for transmission over the
channel in the current time slot. In the mathematical model, the re-
jected arrival is lost and the channel user generates a 'new" packet in
the next time slot with probability o , etc. In a practical system,
this new packet must actually be the previously rejected packet! We
shall elaborate on this interpretation further below.
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(reject, pc)} Q {ao, ac, ro, rc} . Thus, for example, when the action
rc 1is taken, both new and backlogged packets are delayed.
By Theorem 6.2, an optimal stationary policy can always be

found. By virtue of Theorem 6.1, the optimal stationary policy given

by the policy-iteration method is optimal over the class of all

policies P for the given control procedure (action space A ) . How-

ever, we do not claim that the control procedures we consider here give
optimal policies over the class of all possible control procedures
(action spaces). There are two reasons why we do not consider more
multi-action control procedures other than IRCP.* (For example, RCP
may be generalized so that A = {po, Py» Py ps} .) First, we
realize that the channel state is in reality not exactly known but
must be estimated. When A has many actions, the partitioning of
the state space S induced by the control policy f may be too
"fine" compared to estimation errors. Second, as we show below, the
control procedures proposed above will give channel throughput-delay
tradeoffs very close to the optimum envelope of the infinite population
model (for which we ignored stability considerations). Hence, more
elaborate control procedures will only give minute incremental im-
provement in channel performance.

A stationary policy can be defined by a function f : S~ A .,
For ICP, any stationary policy is uniquely specified by the sets Sa
and Sr such that S = Sa u Sr . Sa n Sr = ¢ ({the null set) and

a ieg Sa

f(i) = (6.17)
T ie S8
T

*
A general dynamic control procedure is considered in Appendix F .
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Similarly, a stationary policy of RCP is given by

o) ie SO
f(i) = (6.18)
c ies
c
where S uS =8 and S nS = ¢ .
(o] [ 0 C
Within the class of stationary policies, a subclass of policies

known as control limit policies can be described as follows for a

two-action space A . Either the policy specifies the same action
for all the states in S or there is a critical state n

(=0,1,2, ..., M-1) such that if the policy specifies one action
for states 0 to n , the other action is specified for states

~

n+1 to M. n is said to be the contrel limit.

In Figs. 6-2 and 6-3, we show channel load lines corresponding
to channels under ICP and RCP respectively. We find it easier to
illustrate in both cases with control 1limit policies. In Fig. 6-2,

i is the ICP control limit. When N° < & , the channel input rate
st - M - Nt)c ; when N'> A , st =0, Similarly, suppose @ is
the RCP control 1limit in Fig. 6-3. When Nt =n, K= Ko » but as
soon as N' exceeds A , K= Kc is used. Note that both controlled
channels are stable since the channel saturation point as shown in
Fig. 5-6(b) no longer exists.

6.3.3 The Input Control Procedure (ICP)

Under this control procedure, recall that the action space
A = {accept, reject} = {a, r} . We give below the state transition
probabilities and costs of the Markov process Nt induced by each

action in A ..
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Figure 6-2. An ICP Control Limit Figure 6-3, A RCP Control Limit
Po!_icy Example. Policy Example.

State transition probabilities

Suppose the channel is in state i (=0, 1, ..., M) and the
stationary control policy f(i) = a then pij(a) is exactly as

given in Eqs. (6.11), which we rewrite as

(0 j<i-2
ip(t - p) -t - Mt j=i-1
' i-1
a-pie- oa - oM
. i M- o
Pij£a)=1 +[1-1P(1-p)11 1-0) 3 j=1
[1 -a- p]i] ™ - i)Yo - o)Ml j=ie1
M-i\ .. ot
Tt -y j2i+2
j-1

k 0si, j <M

(6.19)
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Suppose f(i) = r , then pij(r] is given as follows.

. i-1 .
1p(1—p)1 j=1i-1
. i-1 ..
Py (@ = { 1-ip(1 - p) j=1 (6.20)
0 otherwise

Except in the uninteresting cases when ¢ , p =0 or
f(i) = r for all i e § , the Markov process Nt under this control
procedure is aperiodic and irreducible satisfying the conditions of
Theorem 6.1.

Rejection costs

As in the Markov process formulation of an uncontrolled channel
described in Section 6.2.1, expected immediate costs are incurred in

),

every time slot. Depending on the performance measure (D or Sout
there is a holding cost which pertains to packet delays and there is
a negative cost which is the expected channel throughput in that time
slot. With ICP, we also introduce the rejection cost dr which is
the expected cost in units of delay per packet arrival rejected.

For an interpretation of this cost in terms of its effect on
ﬁacket delays, we consider as an example the possible terminal access
communications environment depicted in Fig. 6-4. A person sitting
at a terminal generates a new packet with an average think time of
é— whenever his previous packet has been successfully transmitted.

If, at the time of a packet arrival, the channel is in the reject

state, this packet is lost in the sense that it is not transmitted
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Figure 6-4.  An interpretation of the Rejection Cost.

over the broadcast channel at this time. In a practical situation,
the user may be informed of the event and must enter some command

character to "restart' the packet. Hence, the cost in terms of

1
o

) .

delay is probably in the order of an average think time (

Let

o
d = o (6.21)

We shall assume o = 1 throughout this chapter. This assumption is

actually necessitated by our Markov process model in Section 6.3.1,

where each thinking user is assumed to transmit a new packet (which
may be a previously rejected new packet) with probability ¢ 1in a

time slot.
It is easy to think of situations in which o is not one.

For example, we may want to insert additional delays to rejected
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packets or to account for some terminal processing time by using

o> 1. On the other hand, the human user may be very impatient and
restarts his rejected packets very quickly such that o < 1 . (In this
case, the terminal can always insert additional delays to make a = 1.)
In any case, if o # 1 , our channel state description will become
-more complex since we must distinguish blocked users who transmit in

a time slot with probability p , thinking users with rejected packets
who transmit with probability %- and the other thinking users who
transmit with probability o . Assuming o =1 in ICP (and also IRCP)
simplifies the state description and consequently the amount of compu-
tation required in the policy-iteration method.

Average packet delay and channel throughput rate

Consider a stationary control policy f : S+ A uniquely
specified by the sets Sa and Sr . The expected immediate (delay)

costs for state 1 are (assuming o = 1)

Ci[a) =1 (6.22)
Ci(r)=i+(M—i)Udr

i+ (M- i)

=M (6.23)

From Eq. (6.9), the cost rate of the process Nt under peolicy f is

given by
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M

g (E) = z T (£) C; ()
i=0
= Z i Tfi(f) + dr Z M - i)o m, (f) (6.24)
i=0 ieS_ 1

where ‘['ITi (f)} are the stationary probabilities of the process Nt
whose state transition probabilities {pij(f)} are given by Eqs. (6.19)

and (6.20). Define

A= z M - iYo 7w, (f) (6.25)
s i
ie$
T
to be the rate of packet rejection for all the channel users. Thus,

Eq. (6.24) can be rewritten as

M

i;) i ‘ﬂ'i(f] + AI_ dr

g4(f)

3 (6.26)
where by Little's result [LITT 61], N is the average channel backlog
size and ﬁ; is the average number of rejected packets in the system.
Considering Fig. 6-5 and applying Little's result once more, the

average packet delay (including rejection delays) is given by

(£)
D = gd

SOUt

+ R +1 (6.27)
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Figure 6-5. Averant_l Numbar of Pnck_ot: in the Systam Under ICP.

where as before R + 1 account for the packet transmission time and
propagation delay for the successful transmission and SOut is the
stationary channel throughput rate to be obtained in the following

nanner.

Given policy f as above, we define the following expected

immediate (throughput) costs

C,(a) = -5_ (i, a)

= -lip-p a0 ¢ apieenea-o™ ity (6.28)
Ci(r) o -Sout(i, T)

= -ip(1 - py*7? (6.29)
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Using the above definitions, the cost rate of the Markov process Nt
is by Eq. (6.9)
M

g, () = - 120 () 5 (1, D

Thus, the stationary channel throughput rate is

Syt = - & (D) (6. 30)

The average packet delay is from Eq. (6.27)
- ————+ R + 1 (6.31)

Given f , gd(f) and gs(f) can be calculated using the value-
determination operation in the policy-iteration method assuming
delay and throughput costs respectively.

6.3.4 The Retransmission Control Procedure (RCP)

Under this control procedure, the action space A = {po, pc} =
{o, ¢} . We give below the state transition probabilities and costs
of the Markov process N'  induced by each action in A .

State transition probabilities

Suppose the channel is in state i (=0, 1, ..., M) and

action P, is selected, then pij(o) is given by
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0

ip,(1-p) 7 ta - oMt

(1-p t -o@-0)™ 1+ p1eip(1-p )t - M

P ; (o) =

[1- @ -p)tiM - Do - M

M- i . .
( ) A1 g - M
j - i
If action pC is selected, then pij(c) is given by

0

. i M-1
ip.-p) A - Mt

.

'3

i

i+1

(6.32)

(1-p )t -0)0(1-0)" 1 4 [1-ip_(1-p )P 10y ™

P, .(c)

- a-pti - Do - )M

M-1i . . .
( It - M
j-i

1

j

[\

i

i+l

(6.33)

Except in the uninteresting cases when o , P, OT p_ = 0 , the

Markov process Nt under this control procedure is aperiodic and

irreducible satisfying the conditions of Theorem 6.1.
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Average packet delay and channel throughput rate

Consider a stationary control policy f : §S > A uniquely
specified by the sets S0 and SC . The expected immediate (delay)

cost in state 1 1is just the holding cost for both actions,
Ci(o] = Ci(c) = i (6.34)

As before, the resulting cost rate of Nt s given by Eq. (6.9)
M

gy(f) = ZE ™. (£)C, (£) = 25 i (£) =N (6.35)
i=0 i=0

Thus, the average packet delay is given by Eq. (6.27)

g4(H)
D = + R+ 1 (6.27)
S
out
where S is the stationary channel throughput rate.

out

The expected immediate (throughput) costs are given by

Ci(o) -5 ut(i’ o)

o]

h

1}

- lipyop) o™t ep ) o 1oy

(6.36)
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Ci(c) - S (1, ¢

out

. i-1 M- 1 i, . M-i-1
= -[ip (1-p) "(1-0)" "+ (1-p ) (M-i)a(1-0) ']
(6.37)
Using the above definitions, the cost rate of the Markov process Nt
is given by
M
gS(f) = - z 'I'Tl(f) Sout(l’ f)
i=0
Thus, the stationary channel throughput rate is again
out = - &) (6.30}
and the average packet delay is
g4(H)
D= - + R+ 1 6.31
g's"f'f_) ( )
6.3.5 The Input-Retransmission Control Procedure (IRCP)
This control procedure is a combination of ICP and RCP. The
action space A = {(accept, po), (accept, pc), (reject, po),
(reject, pc)} = {ao, ac, ro, rc} . We give below the state transition

probabilities and costs of the Markov process N'  induced by each

action in A .
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State transition probabilities

For i=0,1, 2, ..., M

0 jsi-2

. i-1 M-1 . .
ip (1 - po)l (1-o0) * j=4-1

(1-p)* -1)o(1-0)" 1+ pesp (a-p )ty -0y

Pij(aOJ = jo=1i
i . M-i-1 . .
[1-Q-p) 1M - i)o(l - 0) j=1+1
M-1 - . . .
( ) gJ-i (1 - 0)M—_-j jzi+2
j-i
(6.38)
0 jsi-2
. i-1 M-i . .
ip (l-p) (-0 j=i-1

(1-p ) -0)o (-0 peip_(1-p )t (1200

le (ac} = J =1
i ) M-i-1 ..
(1-0-p) M- 1)o(1 - 0) j=is
M-i\ . . .
( ><33'1(1 - M j2ie2
jo- i

(6.39)

159



. i-1 . .
i po(l - po)1 j=1i-1

pys(Fo) = (1 -ip (1 -p)t =i (6.40)
0 otherwise
ip (1-p)t! j=i-1

pyjre) = (1 -ip.-p) j=i (6.41)
0 otherwise

As before, we neglect the uninteresting cases when o , P, or p.= 0.

Average packet delay and channel throughput rate

Consider a stationary control policy f : 8§+ A uniquely

specified by the nonintersecting sets Sao' s . Sro and Src such

ac
that
$=215 v S u S u S
ao ac TO re
and
ao ies
ao
ac ie Sac
f(i) = (6.42)
TO iels
TO
rc iedl
rCe
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Let

n
1
7
Lo
tn

a ao ac ' (6.43)

w
it
tn
c
tn

Define the expected immediate (delay) costs to be

Ci(ao) = Ci(ac) =i (6.44)
and
Ci(ro) = Ci(rc) =i+ (M- i)o-dr {6.45)
= M
The cost rate of the process Nt under policy £ 1is given by Eq.
(6.24)
gd(f) = z i wi(f) + dr Z M- i)o TTi(f) (6.24)

i=0 ieS
T

and the average packet delay (including rejection delay) is given by

Eq. {6.27)

g4(H)
D= + R+ 1 (6.27)
S
out

To obtain S the following expected immediate (throughput) costs

out *

are adopted.
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Ci(ao) = - Sout(i’ ao)
- -1 p,(-p -+ op oo
(6.46)
Ci(ac) = - Sout(i’ ac)
= -[i p‘:(l—pc)i'l(l-o)M“'1 * (1-pc)i(M_i)o(l_O)M—i-1]
(6.47)
Ci(ro] = - Sou‘t[i’ r0)
= -ip(1 - p)*T (6.48)
C;(re) = - 8_ (i, rc)
=-ip( - pc)i-l (6.49)

The cost rate of the Markov process and the stationary channel through-

put Tate are again given by

M
g () = - > T, (£) S, (3,6)
i=0
and
SOut = -gs(f) (6.30)
Thus,
g4(5)
D= - E;T?T + R+ 1 (6.31)
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6.4 A Theorem on the Equivalence of the Performance Measures

The channel throughput rate SOut and average packet delay D
constitute the performance measures of interest for the controlled
channel. Under any one of the previously described channel control
procedures and given a stationary control policy f , either one of
the performance measures can be evaluated by appropriate definitions
of the state transition probabilities and expected immediate costs
of the Markov decision process N' . The value-determination opera-
tion yields the cost rate of Nt , from which the value of the per-
formance measure can be computed. Given a single performance measure,
the policy-iteration method will, in fact, lead to an optimal sta-
tionary policy with respect to the given performance measure in a
finite number of steps.

Under any one of the control procedures, some obvious optimi-

zation problems seem to be:

(1) Min D

feP given some (minimum) constraint on So
s

ut

(2) Max S
feP?P
]

out given some (maximum) constraint on D

} for some B > 0

(3) Min (D-B8S_ .

feb
5

where PS is the class of all stationary policies. Markov decision
theory as introduced in Section 6.2 does not provide for the solution
of the first two optimization problems with constraints. In the third

problem, there is no natural candidate for the positive constant 8
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which determines the relative weights we put on the two performance

measures (D and Sou ) . Luckily, we have been able to establish

t
the following lemma and theorem which enable us to get around this
difficulty.

Lemma 6.3 Under each of the control procedures ICP, RCP or

IRCP

g, (D)
ag

M (6.50)

where f 1is any stationary control policy.

Proof The proof hinges on the observation that under a
stationary control policy, Nt is a finite-state Markov process
with stationary transition probabilities in which case the stationary
channel throughput rate SOut must be equal to the stationary

channel input rate.

We first consider the input control procedure (ICP}. From
Eqs. (6.21) and (6.24)

M
> i T (£) + = Zs M - ) T (£)

i=0 i

gq(f)
r

M
Z im(f) +0l z ™M - i)o 7, ()

i=0 ieS
T

1

+

z M - )o ™ (f) - é- Z M - 1)o7 (£)

ieS i
a 1€Sa
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M

z im(£) + M - Z i (f) - & z (M-i)o . ()
i=0 ! i=0 ! U ieS 1

it

-1 > - ) T () + M

ieS
a

tH

Note that 25 M- 1o wi(f) is just the stationary channel input
ieS
a

rate and is thus equal to the stationary channel throughput rate

SOut = -gs(f) . Hence,

g ()
g (£) = =——+ M

and the proof is complete for ICP.
We next consider the retransmission control procedure (RCP).

From Eq. (6.35),

gq(f) = Z im ()

M
25 (i - M) ﬂi(f) + M
i=0

M -
ji M- Do (£ + M
i=0 1

A
Q=
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M
Again, jg M - i)o ni(f) is just the stationary channel input rate

i=0
and is thus equal to Sout = -gs(f) . Thus,
g (£)
g,(f) = =——+ M

and the proof is complete for RCP,
The proof for IRCP is identical to that for ICP.

Q.E.D.

Theorem 6.4 Under each of the control procedures ICP, RCP
or IRCP,

(i)} there exists a stationary policy £ such that

AORSCI N
s
if and only if
4, _ min
B, (D = p_ 2O

(i1) if f is a stationary policy satisfying the preceding condition,

then f minimizes D over the class P of all policies and at the

Same time, f maximizes Sout over the class P of all policies,

Proof (i) This is a direct consequence of Lemma 6.3 and the

~

existence of f is guaranteed by Theorem 6.2. (ii) By Eqgs. (6.30)

and (6.31), % minimizes D and maximizes Sout over
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the class of all stationary policies. The generalization to the class
P of all policies is a consequence of Theorem 6.1. Q.E.D.
Lemma 6.3 and Theorem 6.4 can be generalized to control pro-
cedures similar to ICP, RCP and IRCP, but with more alternatives in
their action spaces. This is done in Appendix F.
Summarizing the results in Theorems 6.1, 6.2 and 6.4, we state

that under each of the control procedures ICP, RCP and IRCP, a sta-

tionary policy f : S+ A always exists which minimizes the average

packet delay D and maximizes the stationary channel throughput

rate Sout over the class P of all policies. Such an optimal

control policy and its channel performance measures D and Sout

can be obtained by applying the policy-iteration method. 1In the

next section, we shall present an efficient computational algorithm
which utilizes the policy-iteration method.

An interpretation of Theorem 6.4 and the optimization problem

The average packet delay D is given by Eq. (6.31) as

g4(5)

D= - R+ 1
&

S

(6.31)

where f is a stationary control policy in any of the above control
procedures. Applying Eqs. (6.30) and (6.50} to substitute for

gd(f) and gs(f) in the above equation, we have

- M _1
D~R+1+(S —G> {6.51)
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which relates D as a one-to-one function of SOu given fixed

t
values of R , M and o . (Note that the last two variables deter-
mine the channel load line.) Moreover, this function is monotonically
decreasing.

Assuming a fixed R , we show in Fig. 6-6 a family of curves
each of which depicts D as a function of Sout given by Eq. (6.51).
The parameters M and o , which determine the channel load line,
also define a curve in the two-dimensional space of the performance

measures D and Sou . We may consider each one of the control

t
procedures in Section 6.3 as a mathematical operator which maps Ps
{the space of all stationary policies) into the above curve. Each

f in PS is mapped into one point on the curve. The range space

of the operator must be a proper subset of points on the curve,

Otherwise, it is possible that D= R + 1 and Sout =Ms (i.e., no
congestion at all!). The optimization problem thus corresponds to

finding the extreme points (maximum Sou and minimum D ) of the

t
range space. Since the curve under consideration is monotonically
decreasing, these extreme points coincide. Thus, the same control
policy f nmust maximize Sout and minimize D at the same time.

Given a family of channel load lines {e.g., M varying from
0 to © at fixed o or g varying from O to 1 at fixed M) each channel
control procedure gives rise to an infeasible region such as shown
in Fig. 6-6. The boundary of this region represents the optimum

throughpui-delay tradeoff under the above constraints. The optimi-

zation problem here is to find the optimal control policies which
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achieve this optimum channel performance. Below we give a computa-
tional algorithm to do so.

6.5 An Efficient Computational Algorithm (POLITE}

In any optimization problem, the optimum solution is readily
available if we can enumerate all possible solutions. Thus, an
optimization problem is sclvable in the sense that the task of
enumerating the set of possible solutions is within the limits of the
computing capability of our machine(s). Even when a problem is
solvable, we must look for ways to reduce the computational cost in
terms of the time and space allocation of our machine(s) to the

probiem,

For the problem at hand, we have seen the tremendous savings
in computational cost by reducing the set of possible solutions from
the class of all policies to the class of stationary policies. Still,
we have not altogether escaped from the 'curse of dimensionality™
since, for example, if $ has 300 states and A has two actions,
there are still 2300 (an astronomical number) stationary policies
to consider. Howard's policy-iteration method described in Section
6.2.3 enables us to find an optimal policy usually in a small number
of iterations. The method is composed of two parts as shown in Fig.
6-1, the value-determination operation and the policy-improvement
routine. The difficulty now arises in the solution of the (M + 1)
linear simultaneous equations in Eqs. (6.10) for g and the relative
values of vy (setting ' 0) when M 1is large (say, a few

hundred, which is our range of interest),
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M
g+vi=Ci+jZOpij vi  1=0,1,2, ... M (6.10)

For example, if M = 400 , the task to solve Eqs. (6.10) is somewhat
equivalent to inverting a 401 x 401 matrix with 160,801 entries!
The fact that the state transition probabilities Pij = 0 for

i - 2 in all our models enables us to decompose the (M + 1)

1A

j
linear simultaneous equations in Egs. (6.10) into two sets of M
linear simultaneous equations, each of which can then be solved by
applying Algorithm 5.1. We summarize the procedure in the following
algorithm, which plays a crucial role in making possible the use of
the policy-iteration method to solve optimization problems involving
hundreds of channel users. Its derivation is given in Appendix E.

Algorithm 6.5

This algorithm solves for g and {Vi}?=1 in the following

set of (M + 1) linear simultaneous equations,

(6.52)

=]
+
<
1l
]
.
+
=
o
)
<
=
[
28]
(52 ]
=

where
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(1)  Define

1
b =
M-1 " Py,M-1
CM
dyp = -
PM,M-1
(2) For i=M-1, M -2, ..., 2 solve recursively
-1
b. 1= 1 b, + 1 - 22 p.. b,
o Piia |t j=ioot )
M-1
d. ;= —2—|d. -c.- D p.. 4
i-1 pi,i—l i i =i ij 7j

(3) Define

P10 j=1
M-1
M T T o dp - G - zg Pyj 4
P10 j=1 4
u, =yt b1 i=1, 2,
wl = wM * d1

172



{4 Let

£ Po;
E= JM
1 - ZE Ph: U
gz 9
vi = U, g+ v, i=1, 2, ..., M

Algorithm 6.5 has the same advantages as Algorithm 5.1 (which
it utilizes) discussed in Section 5.3.1. Briefly, they are:
(1) The crucial variables bi and di in the algorithm are com-
puted recursively such that the state transition probabilities pij

can be computed as needed. This eliminates the need for storing

M+ 1)(M+ 2)
2

virtually eliminates any machine storage constraint on the dimension-

the + M elements in the state transition matrix and

ality of the optimization problem.
(2) The number of arithmetic operations required is also
smaller than that of a standard solution method such as Gauss
elimination [CRAI 64].

These considerations render the policy-iteration method a very
efficient tool in the solution of our optimization problem.

We give below an algorithm (called POLITE) which combines
the POLicy-ITEration method, Algorithm 6.5 and Theorem 6.4. Given
a Markov decision process model of the channel, POLITE finds the op-
timal control policy and evaluates the optimum channel performance

measures.
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Algorithm 6.6 (POLITE)

Given

the Markov decision process N* with

state space S = {0, 1, 2, ..., M},

finite action space A (ICP, RCP or IRCP),

throughput or delay costs {Ci(a) | ieS,acAl,

state transition probabilities {pij(a) | i, je8,achA,
pij(a) =0 if j =i - 2},

and stationary policies f : S +» A .

*
To determine a stationary policy f  such that the cost rate g of

t .
N is minimized.

Start at either step (1) or step (2).

(1)

(2}

(3}
(4)
(5)
(6)

Given a policy f , apply Algorithm 6.5 to obtain g and

M
{Vi}i=1 ; pij(f) and Ci(f) are computed when need in

Algorithm 6.5.

M

Given a set of {Vi}l for state i=10,1, ..., M define

=17
the test quantity

M
Cost(i, a) = Ci(a) + ;z; pij(a)vj (6.53)

Find 4 such that Cost(i, &) = Zii Cost(i, a).
If Cost(i, £(i)) = Cost(i, &) , then let f£(i) = £(i) ; other-
wise, let %(i) = 3 .

1f f and f are identical, go to step (5).

Replace f by % and go to step (1).

f* = f 1is an optimal control policy.

g = gs(f*) or gd(f*) depending on the expected immediate

costs Ci(a).
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g ()

Apply g, (f) = —/— + M
(7) The optimum performance measures are,

* *

Sout = 7 8(f)
*
* g4(f )

D:--——*—'i-Ri'l

g (£ )

6.6 Evaluation of Control Procedures by POLITE

6.6.1 Computational Costs and Convergence

The POLITE algorithm is our tool for computing optimal control
policies and evaluating performance measures of the controlied channel
using ICP, RCP or IRCP. The algorithm has been coded in Fortran and
runs on the IBM 360/81 of the UCLA Campus Computing Network (CCN). For
the numerical examples we considered, which will be given in the fol-
lowing sections, the core memory requirement is less than 90K bytes
and the job CPU time for each run is between 1 to 6 seconds. (Double
precision is used, M 1is up to 508 and the number of algorithm
iterations* is in all cases less than 5.) These numbers translate to
less than one dollar per run on the average at the current CCN charge
rate and are very reasonable considering the size of the problems
involved. For comparison, consider the following example. If M = 400,

(401)(80) , 400 - g1001

the state transition matrix [pij] alone has
nonzero entries and requires 649K bytes of memory to store it in

double precision.

*
By an iteration of the algorithm POLITE, we mean a complete cycle of
steps (1) to (4) in the algorithm.
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No conscious effort has been made to optimize the program code
except for the following options. First, in step (2) of POLITE, when
Cost (i, f(i)) and Cost(i, &) are compared, they are assumed to be
equal if Cost(i, a) 1is within 1 * € of Cost(i, £(i)) . In.all
our numerical computations, € 1is taken to be 10"'5 . Second, to pre-
vent the occurrence of "underflows' during program execution, some
threshold must be specified in the program so that whenever a number
is less than the threshold it is put equal to zerc. For our purposes,
the threshold value is taken to be 10—30 finstead of the possible
10_75 in the IBM 360/91) to save some computations. Smaller threshold
values have been used to recompute several cases. No discrepancy
in the program output values is observed.

In applying POLITE to solve the ICP and RCP optimization
problems, we adopt the following strategy. A control limit policy is
always used as the initial control policy to start the algorithm at
step {1). This control limit is chosen somewhere between the operating
point n, on the channel load line and the unstable equilibrium
peint n, (see Fig. 5-6(b)). Under such an initial control policy,
the algorithm requires in most cases between 2 to 4 iterations to
arrive at the optimal control policy (algorithm termination).

Although our optimization problem can now be solved by POLITE

with relatively small time-space demands on the computer, there exists

another constraint which bounds the dimensionality of our problem--the

precision of numbers in the computer. When M is large and/or A has

many elements, we need to distinguish numbers which are so close
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together that they are no longer distinguishable given the precision
of the computer. Furthermore, increases in the number of recursive
steps within the algorithm produce bigger round-off errors, the effect
of which is becoming more pronounced. We found that for a value of

M larger than 500, the program may not converge* if the initial
control policy is not close to the optimal policy. This is (probably)
caused by the accumulation of round-off errors as the algorithm re-
quires more iterations for an initial policy which is farther away
from the optimal policy.

6.6.2 "Optimality" of the Control Limit Policy

Consider ICP and RCP. The action space A of both control
procedures consists of two actions {ao, ac} .oa, is the operating
action, designed to give good channel throughput-delay performance
conditioning on equilibrium conditions. a corresponds to "accept"

in ICP and P, (or Ko ) in RCP. a, is the control action, designed

to prevent the channel from going into saturation. a, corresponds
to "reject" in ICP and P. (or Kc ) in RCP.

Our intuition suggests that a good control policy (for either
ICP or RCP) must be such that the control action should be applied
whenever the channel backlog size Nt exceeds some threshold value
to prevent it from drifting toward saturation. But as soon as Nt

decreases below this threshold value, the control action should be

*
In our computations, each application of POLITE is allowed a maximum

of 5 iterations, after which the program stops. Remember that the
algorithm is guaranteed to terminate by Theorem 5.2, The difficulty
here stems from machine limitations rather than the algorithm itself.
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replaced by the operating action, since its use costs the system much
more in terms of both channel throughput and packet delay. This in-
tuition has been confirmed in all our numerical computations for ICP
and RCP. In each case, the optimal control policy given by POLITE is

a control limit policy of the following form.

a i<h .
£ Q) = (6.54)
a, i>f

where fi is said to be the control limit (CL) of the control limit
policy f .

A rigorous mathematical proof of the optimality of the control

limit policy remains an open problem. In many problems characterized

by optimal policies of the CL type, the usual method of attack in
their proof is to demonstrate monotonicity for the sequences {vi}
and {Cost(i, a ) - Cost (i, aC)} .  The lack of monotonicy in

most such sequences is clearly seen in Figs. 6-7 to 6-10. These
figures also serve to illustrate some of the steps of the algorithm
POLITE.

An ICP example is shown in Figs. 6-7 and 6-8 where the sequences
{Cost(i, a) - Cost(i, r)} and {vi} have been plotted as functions
of i . Delay costs corresponding to Eqs. (6.22) and (6.23) are
assumed. Each curve in these figures is obtained using the control
policy generated during the previous iteration of the algorithm. Con-
sider Fig. 6-7. The initial control policy is a control limit policy

with fi = 40 (which interestingly corresponds to the joining point of
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the two humps of the first iteration curve). The first iteration
curve crosses zero exactly once between i = 14 and i = 15 . Thus,
fi = 14 becomes the control policy for the second iteration. (Recall
step (2) in POLITE.) The second iteration curve yields the control
policy fi = 23. Finally, the optimal control policy (A = 22) is
obtained in both the third and fourth iterations and the algorithm
terminates. In Fig. 6-8, the relative values v, in each iteration
are shown. We see that ] is monotonically increasing in i . This
implies that the expected total cost in delay{over a finite time
horizon) increases as a function of the channel state 1 at time
zero (see Eq. (6.7)}.

A RCP example is shown in Figs. 6-9 and 6-10. Throughput costs
corresponding to Eqs. (6.36) and (6.37) are assumed (which explains
the negative values in Fig. 6-10). Note that the algorithm terminates
in only three iterations.

Observe in Figs. 6-7 and 6-9 that when the initial control
policy for POLITE is a CL policy, not only is the final optimal
policy a CL policy, but all intermediate control policies generated
by POLITE are of the control limit type. To test if POLITE generates
CL policies only when a CL policy is fed into the algorithm as the
initial policy, we tried the following. Let 0 = m, < m, < e Smy = M.

Define the control policy

a i=0o0rm <is<m, i is odd
g1y = | © j je1

<i<m. . .

a_ mj i mJ+1 , ] 1is even
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Such a control policy was used as the initial policy to drive the
algorithm POLITE in several casecs. In cach case, the same CL policy
as before was generated by POLITE to be the optimal policy.

6.6.3 Channel Performance

We show in this section throughput-delay performances of the
controlled channel using ICP, RCP or IRCP.

Given an unstable channel load line, the throughput-delay per-
formance at the operating point (no, So) is what we strive to achieve
through dynamic channel control. Thus, it is essential that the opera-
ting value of K gives an operating point (no, So) close to the
optimum. In Figs. 3-4 to 3-5, we see that K = 10 is an excellent
choice and will be used throughout this chapter as the operating
value of" K . The channel load line is a straight line uniquely
specifieé by its intercept on the vertical axis, M , and its slope - é-.
However, often we would prefer to specify the load line by specifying
M and the operating point (no, So) on the equilibrium contour
(instead of ¢ ). Thus, different load lines specified by the same
channel operating point can be compared by showing how well they
approach the throughput-delay performance at the operating point,

The equilibrium contour corresponding to K = 10 is shown in
Fig. 5-3. Each channel load line to be used in our computations
will be specified by M and one other point on the (n,$) plane.

The points shown in Table 6.1 will be used.
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S = 0.2 10.250.3 {0.32 ]0.34 ]0.36 }0.374

Table 6,1 Points on the X = 10 contour.

(Note that these points only approkimate points on the K = 10 contour.
For example, given So = 0,32, n, given by the K = 10 contour is ac-
tually between 3 and 4, but has been rounded off to 4 for convenience.)
In particular, the points (no, SO) = (4, 0.32) and (7, 0.36) will be
used in most of our examples. Assuming a large M , these points cor-
respond to a channel which is moderately to very heavily "loaded' when
the problems of channel instability and channel control become
significant.

From our discussion in the last section, all control policies
considered below for ICP and RCP are of the CL type.

In ICP the control action is to reject all new packet arrivals.
In RCP the control action is to use a large enough value of K = Kc
which renders the channel load line stable. We illustrate this last
statement in Fig., 6-11. The average packet delay D given by an op-
timal RCP control policy is shown as a function of Kc . Note that K.
somewhat less than the necessary value of K to render the channel load
line stable can be used. However, if KC is too small, the channel per-
formance '"blows up" since now the controlled channel is still unstable.
Observe that for a sufficiently large Kc » D 1is quite insensitive to
its exact value except when So = 0.36, in which case D increases

slowly with KC . Note that for the same S, » @ much larger Kc is
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ul
required for a larger M . 1In the limit as M- , RCP becomes in-

effective since no sufficiently large value of K can be used for KC
Knowing that the optimal control policy is a CL policy, we
show in Figs. 6-12 to 6-15, the channel performance measures SOut
and D (given by ICP and RCP for M = 200,400 and So = 0.32, 0.36)
over a range of control limits. Observe that the same control limit
minimizes D and maximizes SOut at the same time as predicted by
Theorem 6.4. Note the amazing flatness of Sout and D near the
optimum point, especially when S0 = 0.32 and M = 200 in Figs.
6-12 and 6-13. The consequence is that even if a nonoptimal control
policy is used (due to, for example, not knowing the exact current
backlog size such as in most practical systems), it is still possible
to achieve a throughput-delay performance close to the optimum,
However, such flatness of SOut and D is not as pronounced when
SO is 0.36. Comparing the four figures, we see that the optimum

values of Sou and D given by ICP and RCP are approximately the

t
same, but RCP gives less severe degradation in channel performance
with control limits much smaller and much larger than the optimal.
However, recall from Fig. 6~11 the potential disastrous channel
behavior if KC is not sufficiently large. This must be taken into
consideration in any system design using RCP since in a practical
system both the parameters M and © may change with time. To
provide the necessary design safety margin, a much bigger value of
KC than deemed necessary may have to be adopted. In Fig., 6-13, we
show the degradation in channel performance when Kc = 200 is used

instead of Kc = 60 . (The use of KC = 200 allows the channel to

support more than 400 users instead of 200.) On the other hand, M
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has relatively little effect on the optimal ICP control limit as
shown in Fig. 6-16(a). Thus, even if M fluctuates in time in a

real system, the same ICP control limit policy is still optimal. Of
course, the optimum channel performance must deteriorate as M in-
creases as shown in Fig. 6-16(b). We see also in Fig, 6-16(a) that
in the case of RCP, as M (and hence, Kc)* increases, the optimal
RCP control limit increases. In Fig. 6-16(b), the optimum D given
by ICP and RCP are compared. RCP is found to be slightly better than
ICP. However, as M becomes large, Kc must also be large, in which
case the trend indicates that ICP is superior to RCP.

We menticned earlier that for a value of M larger than 500,
we run into difficulties with round-off errors such that using POLITE,
the optimal control policy can be found only when it is close to
the initial control policy. We see here that for a very large M,

ICP is superior to RCP. The ICP optimal control limit is also insens-
itive to M and thus, the same control limit may be used even when M
becomes very large.

In Figs. 6-12 to 6-15, we have also indicated simulation
results for throughput and delay. Throughput results are shown in
Fig. 6-12 only and omitted in the other three figures (but they
agree as well with the analytic results as shown in Fig. 6-12). In
these simulations, channel control policies are applied assuming

that the exact channel backlog size Nt is known to all channel

*
For both SO = 0.32, 0.36 and corresponding to M = 100, 150, 200,
250, 300 and 400, we let KC = 20, 40, 60, 80, 100, 150 respectively.
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users., However, contrary to the mathematical model, each collided
packet is assumed to suffer a fixed delay R and its retransmission
to be randomized uniformly over the next K slots. The mathematical
model is idealized since R is assumed to be zero while each back-

logged packet retransmits in a time slot with probability

1
P= R+ /2 °

the same.) This approximation was examined in Section 5.1 for an un-

(In both cases, the average retransmission delay is

controlled channel and found to be very good under the assumption of
channel equilibrium. The excellent agreement between the simulation
and analytic results presented here demonstrates that this approxima-
tion is good even for a dynamically controlled channel. The duration
of each simulation run was taken to be 30,000 time slots. The reason
for using such a long duration is that in those cases when the control
limit fi is large or when S° is relatively small, such as 0,32,

Nt may exceed fi only once in a long time. If such time periods
are large compared to the duration of a run, the simulation results
will not be accurate since we are trying to determine the average
value of a random quantity using only a small number of samples.

Optimum throughput-delay tradeoffs

Given a channel control procedure, we consider here the
optimum throughput-delay tradeoff corresponding to the boundary of
the infeasible region in Fig. 6-6. In Fig, 6-17, given M = 400
and a fixed ¢ , we see that Sout is maximized and D minimized
by the optimal control limit fi = 22 . With a fixed M , the op-

timum throughput-delay tradeoff curve is obtained by increasing o
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from zero and for each value of ¢ , finding the optimal CL and eval-
uating the optimum channel performance through application of POLITE.
Such optimum throughput-delay tradeoffs at fixed values of M are
shown in Figs. 6-17 and 6-18 for ICP and RCP respectively. Also shown
in these figures is the optimum performance envelope of the infinite
population model given in Chapter 3. Note how close the ICP and RCP
throughput-delay tradeoff curves are to the optimum envelope. In
fact, the M = 50 tradeoff curve lies a little below the optimum
envelope. This is to be expected since M = 50 actually gives rise
to a stable channel, in which case the channel performance at the
operating point is achieved. Note that these two curves are ob-
tained from two different analytic models based upon different
approximations, namely, the first order approximation model in
Chapter 3 and the linear feedback model in Chapter 5. It is com-
forting to see that the two different approximations lead to such
close results. |

In Figs. 6-19 and 6-20, we show optimum throughput-delay
tradeoffs at fixed values of o for ICP and RCP respectively.
{ %-is the average think time of a channel user.) In this case,

increasing Sou corresponds to increasing M , that is, admitting

t
more channel users. We see that the channel performance improves

as the packet generation probability o increases, since this implies
that for the same Sout , the number of channel users M is smaller.
We considered average think times of 10-30 seconds (see Section 5.1.2).

User populations with smaller average think times will probably give
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rise to a stable channel, since M must be smaller in this case.
Tradeoff curves for larger average think times can be generated by
the algorithm POLITE if necessary.

Comparing ICP and RCP in the last four figures, we see that
they give rise to almost the same throughput-delay tradeoffs. RCP
is slightly better than ICP except when M or %- is large (e.g.,
M > 400 or é-= 30 seconds)}.

IRCP channel performance

Recall that the ICP and RCP action spaces are both subspaces
of the IRCP action space. Therefore, the channel performance given
by IRCP must be better or at least as good as that given by ICP or
RCP. This has been verified in all cases we considered. However,

in each case, the differences in § and D among these three

out
channel control procedures are small as shown in Table 6.2 for the
four cases involving M = 200, 400 and (no, so) = (4, 0.32), (7, 0.36).
Observe that in every instance, IRCP gives the best performance, but

only by a very slim margin. Note also that the optimal policy for

IRCP is of the form

SA
ao 0 si n1
f(i) = ac ﬁl < i g ﬁz (6.55)
rc n2 < 1

which is uniquely specified by (ﬁl, ﬁz). This is similar to a
"concatenation" of RCP and ICP control limits! In fact, 61 is either

equal or very close to the optimal RCP control limit in each case and
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M= 200 M = 200 M = 400 M = 400
S, = 0.32 S =0.36 5, = 0.32 S, = 0.36
(K, = 60) (K, = 60) (X, = 150) | (K_ = 150)
) Icp 22 18 22 18
fi RCP 18 17 23 22
(ﬁl, fi,) | IRCP (18, 56) (17, 43) (23, 116) (23, 91)
icp 0.31778 0.34925 0.31807 0.34846
5 out RCP 0.31817 0.35217 0.31844 0.34715
IRCP 0.31817 0.35219 0.31844 0.34847
1CP 29,857 49,552 33.096 69.237
D RCP 29.085 44,802 31.608 73.588
IRCP 29.085 44,772 31.608 69.215

Table 6.2 Comparison of ICP, RCP and IRCP.

the use of 32 brings about only minor improvement in the channel
performance except in the case of M = 400 and So = 0.36 . We shall
also refer to ﬁl and 32 as control limits.

6.7 Practical Control Schemes

The optimal throughput-delay channel performance given in the
last section is achievable over an infinite time horizon if the channel
users have exact knowledge of the channel state at any time. In a

practical system, the channel users often have no means of communication
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ameng themselves other than the multi-access broadcast channel itself.
Each channel user must individually estimate the channel state by
observing the outcome in each channel slot. Moreover, whatever channel
state information available to the channel users is at least one
round-trip propagation delay old and may introduce additional errors
in the users' estimates if R is large (such as in a satellite chan-
nel). Thus, the control action applied based upon an estimate of
the channel state may not necessarily be the optimal one at that time,
which then will lead to some degradation in channel performance.

Below we first give a procedure for estimating the channel
state assuming that the history (i.e., empty slots, successful trans-
missions or collisions) of the channel is available to all channel
users. The optimal ICP, RCP and IRCP control policies will be applied
based upon the above estimate. A heuristic control procedure is then
proposed which circumvents the state estimation problem. These control
procedures are examined through simulations and compared with the
optimal throughput-delay results in the previous section. The ability
of these control procedures to handle time-varying inputs (with pulses)
is also examined. Two other control procedures will then be dis-
cussed and some channel design considerations given.

6.7.1 Channel Control-Estimation Algorithms (CONTEST)

Our heuristic procedure for estimating the channel state is
based upon the observation that the channel traffic in a time slot is
approximately Poisson distributed (see Chapter 4 and Appendix A).

Below we present algorithms which implement channel control procedures
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studied in the previous sections using the estimated channel state,
These channel CONTrol-ESTimation algorithms will be referred to as
CONTEST algorithms.

CONTEST algorithms

We give here a procedure for implementing RCP. As before, we
let Ko be the operating value and Kc be the control value of K .
Suppose fi is the RCP control limit such that the channel users
switch their retransmission K wvalue from Ko to Kc when the
channel backlog size exceeds fi and from K, to K_ as soon as

o]

the channel backlog size drops below fi . We let

GO =fip + (M- f)o (6.56)

where from Eq. (5.3)

_ 1
Po "R+ X, + D)7z

We also define

cy
n
=33
e

RENCIER T (6.57)

where

1
Pe "R+ K+ 1)/2

60 and ﬁc are thus the average channel traffic rates given that

the channel backlog size is fi packets with X equal to kK, and K
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respectively. Assuming that the channel traffic is approximately
Poisson distributed, we define the following critical values (cor-

responding to the probability of zero channel traffic in a time slot),

-8
f =e ° (6.58)

and

¢ (6.59)

e
H
[a:}

Since Kc > Ko we must have

H>
Fal
>

Suppose each channel user keeps track of the channel history

(one round-trip propagation delay ago) within a window frame of W

slots as shown in Fig. 6-21. Let T be the fraction of empty slots
in the W slots within the history window for the tth time siot.

Frowill closely approximate the probability of zero channel traffic

HISTORY WINDOW

FOR THE tth sLOT tthsLoT
W SLOTS
!::1:5:::51%‘.!:55#2!
b > _—
R SLOTS CHANNEL
TIME

Figure 6-21. The Channel History Window at Time t.
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in the tth time slot provided that the channel traffic probability
distribution does not change appreciably in (W + R) time slots and
the Poisson traffic assumption holds. We give the following CONTEST

t be the control

algorithm to be adopted by each channel user. Let d
decision at time t .

Algorithm 6.7 (RCP-CONTEST)

This algorithm generates the decision dt = R KC at each

K
0
time point based upon the channel state estimate Fa and the RCP

a3

control limit A . Start at step (1) or step (4).

(1) t+t+1

(2) If f < %o , 80 to (4)
(3) Go to (1)
4 tet+ ]
(5)  1f > f , goto (1)
(6) Go to (4)

Next we consider a similar implementation for ICP. 1In ICP,
the control actions are {accept, reject} . Suppose fi is the ICP
control limit such that the channel always rejects new packet arrivals
when the current backlog size exceeds fi and always accepts new
packets when the current backlog size is less than or equal to 1 .

We let

G,=np+ (M-no (6.60)
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and
G_=np (6.61)

where

1
PER+ K+ /2

~

63 and Gr are the average channel traffic rates given that
the channel backlog size is fi packets with the current decision =
accept, reject respectively. Again assuming a Poisson channel traffic,

we define the following critical values (corresponding to the proba-

bility of zero chamnnel traffic in a time slot),

%a =e 2 (6.62)

f =e T (6.63)

~ ~
Since Ga > G_ , we must have

Algorithm 6.8 (ICP-CONTEST)

This algorithm generates the decision dt = accept, reject at
time t , based upon the channel state estimate T and ICP control
limit fi . Start at step (1) or step (4).

{1) t«t+1

at - accept
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(2) If F' < %a go to (4)

(3) Go to (1)
(4) t+t+1
dt = reject

(5) 1f T

>
fr go to (1)
(6) Go to (4)
To implement IRCP, we assume that the control policy is of the
form given in Eq. (6.55) such that it is uniquely specified by the

control limits f, and f To be consistent with this assumption,

1 2
we shall distinguish only three decision states: ao, ac and rc. We
define f0 and fc by using fn, in Egs. (6.56)-(6.59), fac and

frc by using n, and p. in Egqs. (6.60)-(6.63), and fao by using

ﬁ2 and p_ in Eqs. (6.60) and (6.62). Since P, > P, > ¢ and
i, > i, we have fao < fo and fac < fc .

Algorithm 6.9 (IRCP-CONTEST)

This algorithm generates the decision dt = ao, ac, r¢ at
time t based upon the channel state estimate T and IRCP control
policy (ﬁl, ﬁz). Start at step (1), (4), or (7).

(1) t+t +1

dt = ao

_{ ~
{2) If £ < fao go to (7)

~

otherwise, if o< f0 go to (4}

(3) go to (1)
(4) t+t+1

dt = ac
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~

(5) If f°> £ goto (1)
otherwise, if FU < %ac go to (7)

(6) go to (4)

(7)  tet+1

T

(8 If > frc go to (4)

(9 go to (7)

The channel history window

The size W of the channel history window kept by each channel
user is very important for successful channel state estimation. If
W is too large, we may lose information on the dynamic behavior of
the channel such that the necessary actions are taken belatedly. If
W is too small, we may get large errors in approximating the proba-
bility of zero channel traffic by the fraction of empty slots in the
history window. A good initial estimate is that W should be
bigger than R and of the same order of magnitude. Below we compare
simulation results on channel performance for different values of W .

To implement the channel state estimation procedure, each
channel user needs to maintain the channel history for W slots.
Since it is only necessary to record whether or not a slot is empty,
W bits of information suffice. A possible implementation is de-
picted schematically in Fig. 6-22. The bit string stored in the
shift register represents the channel history in a window of W

slots. An empty channel slot is represented by 'l' while a nonempty
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channel slot is represented by '0'. In the figure, the circle re-
presents a summer, the triangle an attenuator and the square a unit

delay of one slot.

of1]1]o[1]o]ofo]1

CHANNEL : \
OBSERVATION (SV:""BTI'_SF\;EGISTER
OOR 1 _
UNIT
DELAY

Figure 6-22. Determination of f *.

Simuiation results on the channel performance given by the
CONTEST algorithms will be examined below in Section 6.7.3.

6.7.2 Another Retransmission Control Procedure

We describe in this section a simple heuristic control pro-
cedure which has the property that when the channel traffic increases
the retransmission délays of backlogged packets will also increase.
Hence, it will be referred to as the heuristic retransmission control
procedure (Heuristic RCP). The advantage of such a control procedure
is that it is simple and can be implemented easily without any need
for monitoring the channel history and estimating the channel state.
In the next section, this and the above CONTEST algorithms will be

compared through simulations.
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The Control Scheme

For a backlogged packet with m previous channel
collisions, the uniform retransmission randomization* in-
terval is taken to be K = Km where Km is a monotone
nondecreasing function in m .

When the channel traffic increases, the probability of channel
collision increases. As a result, the '"effective" value of K in-
creases. If Km is a steep enough function in m , we see that
channel saturation will be prevented. An effective value of K can
be defined only with respect to a specific performance measure (e.g.,
average packet delay)., To illustrate the effect of the function Km .

we derive below the average value of K as a function of q (the

probability of successful transmission). Let

r, = Prob[a packet retransmits i times before
success |
=(1-9 q iz1
Case 1 K =K, for m22 and K, > K
_— m 2 2 1
K = average value of K

*

Note that the same control scheme can be extended to geometric re-
transmission randomization by letting p = P where P is a monotone
nonincreasing function.
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1-4q {3 1 n=1
_ K L
=3 L+ g (6.66)

which is equal to K at q =1 and increases to infinity as q
decreases to zero.

The above results indicate that the average value of K be-
haves in the desired manner, namely, K increases as q decreases
due to an increasing channel traffic. This behavior is similar to
that of the retransmission control procedure. That is why the above
procedure is called Heuristic RCP. Below we examine the CONTEST

algorithms and Heuristic RCP through simulations.

6.7.3 Simulation Results

We summarize in Tables 6.3-6.6, throughput-delay results for

the following channel load lines,

(1)  M=200, (ng, ) = (4, 0.32)
(2)  M=400, (n_, S) = (4, 0.32)
(3  M=200, (n, S) = (7, 0.36)
(4) M =400, (n_, S)) = (7, 0.36)

In all cases, Ko is equal to 10. Kc is taken to be 60 and 150 for
M equal to 200 and 400 respectively. Included in these tables are
{a) optimum POLITE results for ICP, RCP and IRCP, (b) simulation
results for ICP and RCP using optimal control policies and under the

assumption of perfect channel state information, (c¢) simulation results
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for the CONTEST algorithms using ICP and RCP optimal control policies,
and (d) simulation results for Heuristic RCP. Each simulation 1un is
identified by the seed supplied to the random number generator. The
duration of each simulation run was taken to be 30,000 time slots.
IRCP was not tested by simulation since the optimal value of ﬁ2 is
in all cases so large that within the simulation duration, the channel
state Nt falmost surely) will not exceed it; the control procedure
becomes effectively RCP specified by ﬁl .

The ICP-CONTEST algorithm was tested with channel history
window sizes of 20, 40, 60 and 80 time slots. We see from Tables
6.3-6.6 that W = 40 appears to give the best throughput-delay
results. Note that for R = 12 and K = Ko = 10 , W= 40 1is
approximately twice R + K ,

The RCP-CONTEST algorithm was also tested with various values
of W . In this case, K takes on two values, K_ and KC where

0

K. = 60 or 150 depending on M . There is no clear-cut optimal W .
It appears that W = 60 is a good choice for Kc = 60 and M= 200
while W = 80 is a good choice for KC = 150 and M = 400 .

Results for S0 = (.32 and M = 200, 400 are shown in
Tables 6.3 and 6.4. We see that there is no significant degradation
in channel performance (from the optimum) given by the CONTEST algo-
rithms and Heuristic RCP. The CONTEST algorithms, however, seem to
have an edge over Heuristic RCP. The excellent performance of the

CONTEST algorithms can be attributed to the flatness of Sout and

D near the optimum as a function of the control limit (see Figs.
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RANDOM NUM-

BER GENERA-
CONTROL SCHEME TOR SEED IN out D
SIMULATION u

e e .31778 29.857
Yo .31817 29.085
IRCP - .31817 29.085
ICP 39474 .315 33,427
RCP 78453 .318 28.824
ICP-CONTEST W = 20 73645 .314 40.893
" " W = 40 39587 . 315 30.514
" " W= 60 59478 317 32.355
" T W= 80 54857 .318 35,809
RCP-CONTEST W = 20 49784 .318 33.052
" " W = 40 58474 .322 33,335
" " W= 60 20494 .319 32,138
" " W= 80 10398 317 32.501
L= 10 18867 .316 33.720

Heuristic RCP m=2
L= 60 61111 .315 34,554

y
K = 10 63037 .310 35.425
Heuristic Rep |¥2 = ©° 07275 316 34.635
= 120 m>3 ’ )

\

m

Table 6.3 Throughput- delay results of a controlled channel

M=

200, S =

0.32)
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RANDOM NUM-
BER GENERA-
CONTROL SCHEME TOR SEED IN ¢ D
SIMULATION od
e L 0.31807 33.096
rRcp ] oo 0.31844 31.608
rRep & 0.31844 31.608
ICP 84023 0.315 31.427
RCP 40393 0.317 31.023
ICP-CONTEST W = 20 94875 0.315 43.262
" " W = 40 356848 0.314 34,723
" tr W = 60 74945 0.312 53.240
" 1 W = 80 94875 0.316 39.112
RCP-CONTEST W = 20 49784 0.313 41,087
" " W= 40 58474 0.319 43,379
" i W = 60 20494 0.318 38.821
" H W= 80 10398 0.317 40.068
T " W = 100 64945 0.314 35.689
" A W= 120 18494 0.319 47.149
(K. = 10 57298 0.316 45,150
Heuristic RCP m22
K = 150 16489 0.316 44,750
(K = 10
- 38687 0.312 42,040
Heuristic RCP /K, = 100
K = 200 me3 46534 0.311 43,136

Table 6.4 Throughput-delay results of a controlled channel
(M = 400, S0 = 0.32)
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RANDOM NUM-
BER GENERA- S D
CONTROL SCHEME TOR SEED IN out
SIMULATION
0 0,34925 49,552
rRce o aeee- 0.35217 44, 802
IrRce o} eean- 0.3521%9 44,772
ICP 18654 0.346 59.111
RCP 95646 0,348 48,655
ICP-CONTEST W = 20 18947 0.331 83.664
" " W= 40 53857 0.339 77.357
" " W =60 89574 0.330 87.614
" " W= 80 10394 0.332 73.310
RCP-CONTEST W = 20 03847 0.347 67.900
" " W = 40 39575 0.345 50.853
" " W= 60 60389 0.345 50.534
" " W= 80 10489 0.347 51.787
Kl = 10 94854 0.349 48.535
Heuristic RCP mz2
Km = 60 37776 0.344 46,116
.
Kl = 10 94854 0. 350 50.267
Heuristic RCP 4K2 = 60
Km = 120 m23 18495 0.347 54,583

Table 6.5 Throughput-delay results of a controlled channel
M = 200, Sy = 0.36)
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RANDOM NUM-
BER GENERA-
CONTROL SCHEME TOR SEED IN S ut D
S TMULATION
e = 0.34846 69.237
RCP o meees 0.34715 73.588
42012 (R —— 0.34847 69.215
ICP 28879 0.343 73.524
RCP 44217 0.350 79.270
ICP-CONTEST W = 20 38457 0.334 128.460
" " W = 40 06348 0.330 98.994
" " W = 60 74948 0.336 126.143
" " W = 80 74394 0.332 119.628
RCP-CONTEST W = 20 38457 0.341 99.701
" " W = 40 06348 0.335 97.676
" " W= 60 74948 0.343 97.048
" " W = 80 74394 0.340 91.833
" " W = 100 38373 0.343 107.722
" " W= 120 93875 0.337 99.192
'Kl = 10 99581 0. 344 66.327
Heuristic RCP mz2
K= 150 54857 0.352 70.590
r
K) = 10 38378 0. 345 81,324
Heuristic RCP ¢ K2 = 100
=200 w3 36949 0.348 62.662

Table 6.6 Throughput-delay results of a controlled channel
(M =400, S, = 0.36)
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6-12 to 6-15). This property is typical of channel load lines speci-
fied by small to moderate values of SO . We see in the same figures

that the flatness in Sou and D near the optimum is not as pro-

t
nounced when S0 = 0.36 . This explains the more significant degrada-
tion in channel performance given by the CONTEST algorithms shown in
Tables 6.5-6.6. Note that for So = (.36 , Heuristic RCP gives much
better throughput-delay results than the CONTEST algorithms.

In Figs. 4-2 and 4-4, it was shown that in an uncontrolled
channel, a channel input rate of 0.8 packet/slot sustained for 100
time slots was enough to cripple the channel. In Figs. 6-23 and 6-24,
we show by simulations that under similar but more severe circumstances
both the IRCP-CONTEST algorithm and Heuristic RCP prevented the
channel from going into saturation. In these simulations, the normal
channel load line was given by M = 400 and (no, So) = (4, 0.32)
both before and after the pulse. During a period of 200 slots
(namely, the time period 1000-1200), the packet generation probability
O was increased such that Mo = 1.0 packet/slot. Observe that both
algorithms handled the sudden influx of new packets with ease. 1In
both cases, the channel throughput, instead of vanishing to zero as
in an uncontrolled channel, maintained at a high rate and within less

than 3000 slots, the channel returned to almost normal operation.

6.7.4 Other Proposed Schemes

Other channel control procedures have been proposed by Metcalfe
[METC 73A] and Rettberg [RETT 73C].
In Metcalfe's proposal, Q 1is defined to be the current number

of channel users who have a packet ready to transmit over the channel.

218



laialslalaEolaloRale ool cRn N U oRale]

LAY

l
i
I OONMOY Y ms
d:—q
1
!
b

G220 Je
S159¥2vc

'osind jndup [Luueyd B 03 %9lyns ISIINOD-dIE] 40§ UNX UOTIR[NUIS ¢£7-9 °*3F14

ToLvZ T Spgeg - gregge Syy*0 T TTERZID 30097 =
y*e 399G 9512 0160 G120 0085 -
ers 0EG*0 1y*82 0%0 0 SEE*0 0095 -~
Lo 20540 Ly*ce 0cge 0 CEE*0 0)¥S —
£y eCLe o Ty 08T T 0LE®ST T 0YE0 0028 -
£25 085 *0 402y GES° 0 Se2* 0 000G =~
Lef G29°¢ 68°GE 0E%°0 CEZ*0 008y -
9ve CEI®0 Tt *he 35%°0 _ cog*0 _009% —
Sy SYG*C T IS*ye oegen CEE*o 00% % =
1*6 C9S e H7 V62 S519°0 S1E£°C 002 -
L1 S69 0 SE*61 06E*O COE*O 000V ~
are 06250 5Q%0f SS9+ 0 _CE£E£°0  0Q0Bf -
i 520 T 062 orTe* 0 CEE®D BOGE -
R SLGG dvtul S1GeC LEe 0 ooveE -
neE creee gs21 GG * 0 COE"O 002Z€ -
22 SEveC BEeGE St 40 CHE* O 000€ -
Fez rgen of *0Z OEV*D 7 €620 D08e -
1°¢ 5000 vo*2e SRY* O <0£*0 0092 -
Zeal CGEeQ gE L1 S06°0 CHE *0 00vZ -
fege S190 L1*0ES S00* 1 G2E*0 _ ogzge -

VAR CREYD” SETIECTT T gee"y T ggTelm Tooe =
e CSb 0 L5641 GEL*C SLE*0 0081 -
G*15 SEY *0 T1°661 088 *0 €5E 0 0091 -
zrey 280 BG*6HE ofE*1 SYE®O0 00wl -
0°*CS To61°T ZE*YEs SY¥E*Z SOZ O T O LY =
TeE $SH 0 Ls°2y 0S8 °*0 ceero 0001 -
6°¢ SSGe 0 9L 1g Gee* 0 Ceg*0 008 -
¢ GEG*0 L9z 0S¥ *0 SEZ*0 009 -
60 SoS*o T TNe OTé*0 " " GZEU L
GG 5650 6Z*0E G290 c62°0 002 -

SCANIVER ALk ¢ —-AvI3g O —HLVY S  =3ivy

FOVAAAY MO 1OV 13%0vd 313s5v¥l INgHONUNAL aaIryId

-

- To00TY T

1085
1095
10vS
1025
180¢
1084
1094
109%
ToZ%F -
100%
108€
109§
TO%E
102¢
100€
1082
109
10%2
1022

1002

[ 4+1: 5 SUNENS
1097
T10v1
1021

219

108
109
10%
10¢
1

JATIL™

500I¥dd LOTS FWIL 00Z NI SANTVA IOVYIAY
YZLI8 = (I9S YOIVYANTD YIIWNN WOINYY

09 = M H7IS MOANIM ¢ 0ST

2
X ¢ o1

o
= A

91T = LIWIT T04INOD INdNI ‘€Z = LIKIT TOYLNOD NOISSIWSNVILTY

OW  JLVd INdNI ‘0009-T0ZT QQI¥dd IWIL JHL ¥04
0°T = OW 3Lvd INANI “00Z1-T00T GOI¥Ad FWIL THL HOA
CECET0 = OW ALV LNANI “000T-T QOINAd FWIL THI ¥Od

¢l =¥ AVIHA NOILVOVAOYd * 00F = W STVNIWIIL 40 HIGNON

P SUALINVEYA LNdNI

282870



*osind jndur jsuueyd ® o3 3o0sfqns dJy STISTINGH I0F unI UOTIBRINWIS $z-9 '8T14

i T 19t SELYBZ T T oRe T CIECL T T TTTDE0G =ToRS
[*v 0s9+*0 Cel*ve G2v*0 06Z°0 008S - 109g
6y 5650 09Hw*gQ 01c*0 STE* D 009G - 10vsg
g o “Z9°0 BIE*E 2 Siv*0 SRZ*0 00%S -~ 102%
>2*6 0Z5*0 GeL*TH SYor'p o CEE*D” "7 O0EE = TDOS
I*11 G3%*0 02s*'cg gciL*C G20 000G - 10BY
H*G1 0SNG0 Che* vy S04*C ¢ez*0 Q08% -~ 109+
VA . 29s°*g 209 RE S2G°'0 CLE* D 009% - 10%v¥
cezr T CeLr - SES*ATTT T TGTovp T SERTD T TTTTOOY Y ST T0ge T T
<G 565 %0 (A=A Y 2Hv* G ceg* ¢ 00y - 100w
Y c1e*C glGer¢p 0SS0 ISP 0C0% - 108€
c*y EEA RV Pletcqg SOp*7 ClE®D 00WE - 109¢
£ret ey 'O LsorLe - 3520 080 009F — [Dwe —
41 ShG Co0*s Yy CEG*( cGg*0 Q3¥ve - 102¢
Fry ERERSE ISFAC R RS SovtL C6HEZC0 00ZE - 100€
Y6 taaep PACEIE 5 & 0ev*0 CBZ*0 coCE - 10BZ
AT 5960 VEZYVA ° L B L89G 0 T cee*o T C 008 - To9Z T
<* Sl (620 ER S A | GEa*0 Suy * o 0092 - 10ve
£ I¢ LOE*0 ELARE WY | 526°*0 560 oGve - 102e
e*ary GO0 teEetLge ove*1 g 0022 - 1002
1*¢s SLE*0 199 %22 = " OTI*"T ™" "CHRZ'D 00D = 1TO08Y
Gt a9 J61°0 £69*8uc ST®*1 GLE*O CORB1 —- 1091
EA X 7 oraee Li1*¢g22 00s*T o1e*0 0091 - 10%7Y
rtell slz*c EEE*TIHI G69°1 SEZ2* 0 OCvT - 10217
Bra3 CZ1*0 6CI*¥E™ ~ "GBEYZ — T grevos T 00T < roo1
45 CLG* 0 KA A XA 0LE5* 0 LZE*O 006T — 10®m
c*y ereee 2L 162 GLy*D tbe* o o008 - 109
e 099 *n Pcbtce Sen* £5£°C 009 - 10%
[ S 59 *D S2E*9T1T 77 ddmﬁQi!;:;ideﬂid‘i.:éifadﬁilﬁiﬁcm -
1*z SQo* LLH"6T SeELC*0 sge*0 00 - 1

O DY Alcws U =AVT4Q 9 —3Jivy S —3ivH

JLYHIAY NIT IDVY S CATNOYg T ITHEVHEL T T INGHSNOSHIT 0D TEIT INITLC

*SUOTY3d 10TS IWIL 00Z NI SAMIVA FOVHIAY

68C.9 = 93S YOLVYANID JIIIWNN WOONVYH
w
(z T w) ST = ¥ Suw_

CETET0 = OW  9IVY INANI ‘0009-10Z1 QOIId AWIL FHL Hod
0°T = oW 3IVY ININI “00Z1-100T QOT¥Ed AWIL FHL qod
C€2€°0 = O dIVd INdNI ‘000T-T QOI¥3d FWIL IHL 204

¢l =¥ AVIHQ NOILYOVAOMd ‘ 00% = W STYNIWYIL 40 YIIWNN
FSEILANVEVd INANI

220



(Q is different from our channel backlog size Nt since Q includes
both backlogged and newly generated packets.} The control scheme

suggested is that each of the Q channel users transmits in the next
time slot with probability é—. This strategy maximizes the expected

channel throughput in the next time slot (provided that Q is known

exactly) and is referred to as throughput maximizing retransmission

control. The channel performance given by this control scheme was
studied through a steady-state analysis by Metcalfe [METC 73A].
However, the channel performance given by this control scheme in a
dynamic environment (either through analysis or simulation) has not
been studied.

Rettherg's proposal is concerned with satellite communication
involving a small number (e.g., M= 2 to 10 ) of stations, each of
which has buffering and scheduling capabilities. In Rettberg's
scheme, newly generated packets attempt transmission over the channel
without any delay. Previously collided packets form a queue at each
station. Each station has a '"gating" probability . x of transmitting
the packet at the head of its (backlog) queue in a time slot. Rettberg
suggested that the gating probability may be chosen such that
Mx + $ £1 where S is the channel input rate of new packets. Since
in this case the channel traffic rate G is forced to be less than
or equal to one,* no channel saturation will occur. Simulations
[RETT 73C] supported this claim.

This scheme may be referred to as probability division multi-

plexing (PDM). Each channel user, instead of getting a fixed fraction

v*
G=Mxp + S, where p 1is the probability that a station's backlog

queue is nonempty.
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of the commmnication channel capacity such as in time division multi-
plexing (TDM) or frequency division multiplexing (FDM), now gets a
random fraction of the channel capacity through the gating probability
x . Thus, similar to TDM and FDM, this scheme will work quite well
when M is small and each station has a relatively "smooth" input
source. However, when M is large and each user has a bursty input
source, PDM will suffer from the same pitfalls of FDM and TDM. That
is, many channel users will often have an empty backlog queue (while
others have very long queues). As a result, the actual channel
traffic rate is very low, which gives rise to a small channel through-
put rate. However, the average packet delay is high, since a small

X (due to a large M ) has been adopted. In this case, some scheme
which allocates gating probabilities x; to channel users dynamically

as a function of their instantaneous transmission requirements may
M

prove useful., (The constraint is now Ei X; + S§<1.)
i=1

6.7.5 Channel Design Considerations

Consider the design of a slotted ALOHA channel characterized
by the linear feedback model. Given M , ¢ and K , the channel load
line and the equilibrium contour may intersect in three different
ways depicted in Figs. 5-6 (a), (b) and (d).

In Fig, 5-6(d), the channel is overloaded in the sense that
the globally stable equilibrium point corresponds to the channel
saturation point. This situation should always be avoided (e.g.,

by reducing the number of channel users).
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In Fig. 5-6(a), the channel operating point (no, So) is also
the globally stable equilibrium point.

In this case, the assumption of channel equilibrium at (no, So)
is valid. Hence, no channel control is necessary.

We have been mostly concerned with the dynamic control of an
unstable channel such as shown in Fig. 5-6(b).

Consider the K = 10 equilibrium contour in Fig. 5-3. Given
an average user think time = é— (where -%- is the slope of the
channel load line), there is a maximum value of M such that the
channel is stable. For example, if é—= 615 slots (= 14 seconds),
the maximum number of channel users is approximately 100 without
rendering the channel unstable. At this value of M , the channel
throughput rate S0 = 0.162 and the average packet delay D = 17.5
slots (0.394 second). If we want to increase the channel utilization
(throughput) by increasing the number of channel users M , one of
several things can be done:

(1) Do nothing,

(2) Increase X .

(3) Dynamic channel control.

Suppose M is 150 giving S_ = 0.244 , The channel is now
unstable, but from results in Chapter 5, has a channel FET of several
days. -If this is an acceptable channel failure rate, no external

control is necessary except to restart the channel whenever it goes

into saturation.
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Increasing K from 10 to 60 allows the channel to support
up to 200 users at S = 0.32 . But now the throughput-delay tradeoff
curve for K = 60 is much above the optimum performance envelope
in Fig. 3-4. 1In Fig. 3-5, we see that for SO = 0.32 , D= 45,5
slots (1.02 second).

Dynamic channel control can give rise to a stable channel as
well as providing a throughput-delay tradeoff close to the optimum
envelope. For example, consider the results in Table 6.3 for M = 200
and S0 = 0.32 , Under the assumption of perfect channel state in-
formation, a channel throughput-delay tradeoff very close to the
optimum envelope is possible as shown in Figs. 6-17 to 6-20 for ICP
and RCP. Without perfect channel state information, we have shown
by simulations that throughput-delay results close to the optimum
envelope can still be achieved using the CONTEST algorithms up to
S0 = 0.32 ., (Recall that this is a consequence of the amazing flat-

ness of §
out

any case, the channel operating point probably should not be designed

and D near the optimum except when S0 is large.) In

with a value of S0 >0.32 . For S0 > 0,32, even if it is possible
to achieve the optimum envelope, the incremental gain in channel
throughput is at the expense of a sizable increase in delay.

In a real system, it is imaginable that the channel input may
vary with time (say M fluctuating between say 100 to 200 in the
above example). We must emphasize the fact that the control algo-
rithms considered have been designed to control statistical channel

fluctuations under the assumption of a stationary channel input.
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| Although we showed that they can temporarily handle very high channel
input rates (see Figs. 6-23 to 6-24), other control mechanisms should
be designed into the system to make sure that an overloaded channel
such as depicted in Fig. 5-6(d) does not prevail for any long period
of time (e.g., by limiting the maximum number of users who can "sign-
on" and become active channel users).

We showed earlier that IRCP gives a channel performance at
least as good as ICP and RCP. Furthermore, with two control limits
i, and ﬁ2 , it acts like RCP {with ﬁl) under normal channel con-

1

ditions, but has a second "defense'" in ﬁz whenever the channel
traffic increases to a very high value. Comparing IRCP-CONTEST and
‘Heuristic RCP, we see that the latter is easier to implement and
exhibited in several simulations better channel performance for a
heavily loaded channel (S0 = 0.36). However, under a normal load
(say S0 s 0.32), IRCP-CONTEST is superior to Heuristic RCP. This

is because Heuristic RCP introduces longer delays to collided packets
even when these packets are just unlucky in light channel traffic.

On the other hand, in IRCP, control actions are not exerted until the

channel traffic exceeds some critical values,
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