Chapter 6 The Data Link layer

6.1 introduction, services
6.2 error detection, correction
6.3 multiple access protocols
6.4 LANs
 - addressing, ARP
 - Ethernet
 - layer-2 switches
 - VLANs

6.5 link virtualization: MPLS
6.6 data center networks
6.7 a day in the life of a web request
 (play animation in .ppt slide on your own)

12/5/2017
A link connects two adjacent IP nodes (layer 3) along a path
- An Ethernet switch (layer 2) is considered to be part of a link

IP datagram transferred by different link protocols over different links which may provide different services
Link Layer: context

- Unit of data: *frame*, which encapsulates an IP datagram
- IP expects no service guarantee from links

- Link can be
 - wire
 - wireless
 - LAN (layer 2)
 - WAN (virtual link)

Diagram showing the link layer with layers of protocol.

12/5/2017

Data Link Layer (SSL) 6-3
Link Layer Services

- Framing
 - Encapsulate datagram with header and trailer

- Error Detection
 - errors caused by signal attenuation, noise.
 - receiver detects presence of errors

- Error Correction
 - receiver identifies and corrects bit error(s) without resorting to retransmission

- Link access
 - access protocol for shared channel access
 - "MAC" addresses used in frame headers to identify source, destination
 - different from IP addresses
 - why both MAC and IP addresses?
Link Layer Services (more)

- **Half-duplex and full-duplex**
 - with half duplex (shared channel), nodes at both ends of link can transmit, but not at same time

- **Flow Control**
 - pacing between sender and receiver(s)

- **Reliable delivery between two physically connected devices**
 - we learned how to do this already (chapter 3)
 - seldom used on low error-rate links (fiber, some twisted pair)
 - wireless links: high error rates

Q: why both link-level and end-end reliability?
Chapter 6 The Data Link layer

6.1 introduction, services
6.2 error detection, correction
6.3 multiple access protocols
6.4 LANs
 ▪ addressing, ARP
 ▪ Ethernet
 ▪ layer-2 switches
 ▪ VLANS
6.5 link virtualization: MPLS
6.6 data center networks
6.7 a day in the life of a web request
 (play animation in .ppt slide on your own)
Cyclic Redundancy Check (CRC) - sender

- **Goal**: choose \(r \) CRC bits, \(R \), such that \(<D, R>\) is exactly divisible by \(G \) using modulo 2 arithmetic

- View data bits, \(D \), as a binary number

- **Modulo 2 arithmetic**
 - there is no carry in addition, and no borrow in subtraction
 - addition and subtraction same as bitwise exclusive OR (XOR)

- Choose \(r+1 \) bit pattern (generator), \(G \)

\[D \times 2^r \] \text{ XOR } R

mathematical formula

\[D: \text{data bits to be sent} \quad R: \text{CRC bits} \]

\[\text{bit pattern} \]

12/5/2017
Cyclic Redundancy Check (CRC) - receiver

- Bit string <D,R> sent is exactly divisible by G

- Receiver knows G, performs division. If non-zero remainder, error detected!
 - can detect all burst errors less than r+1 bits;
 - longer burst errors are detectable with probability 1-(0.5)^r
CRC Theory and Example

Want:

\[(D * 2^r) \text{ XOR } R = nG\]

add \(R\) to both sides:

\[D * 2^r \text{ XOR } R \text{ XOR } R = (nG) \text{ XOR } R\]

Equivalently:

the remainder from dividing \(D * 2^r\) by \(G\) is equal to \(R\); the desired CRC bit string is

\[R = \text{remainder}[\frac{D * 2^r}{G}]\]
Chapter 6 The Data Link layer

6.1 introduction, services
6.2 error detection, correction
6.3 multiple access protocols
6.4 LANs
 - addressing, ARP
 - Ethernet
 - layer-2 switches
 - VLANS

6.5 link virtualization: MPLS
6.6 data center networks
6.7 a day in the life of a web request (play animation in .ppt slide on your own)

12/5/2017
Links and Multiple Access Protocols

Two types of “links“:

- **point-to-point**
 - fiber optic link
 - link between Ethernet switch and host

- **broadcast** (shared wire or medium)
 - old-fashioned Ethernet
 - shared coax cable in HFC (hybrid fiber cable), e.g., Spectrum
 - wireless (802.11 LAN and others), etc.
Multiple Access protocols

single shared broadcast channel

- two or more simultaneous transmissions by nodes may interfere with each other
 - *collision* if a node receives two or more signals at the same time

- Need a protocol to determine when nodes can transmit
 - no out-of-band channel for coordination
MA Protocols: a taxonomy

Three broad classes:

- **Channel Partitioning** (e.g., cell phones)
 - divide channel into smaller “pieces” (frequency bands, time slots, codes)
 - allocate a piece to each node for exclusive use

- **Random Access** (e.g., early Ethernet, 802.11 wifi)
 - shared channel, collisions allowed
 - “recover” from collisions
 - does not provide QoS

- **“Taking turns”** (e.g., token-ring LAN, FDDI)
 - nodes take turns
 - a node with more to send can take a longer turn
Channel Partitioning protocols

FDMA: frequency division *multiple access*

- each station assigned a fixed frequency band (note: MIMO antenna can use multiple frequencies)
- unused transmission time in frequency bands go idle

multiple transmitters
Channel Partitioning protocols

TDMA: time division *multiple access*

- each station gets fixed length slot (length = pkt trans time) in each frame
 - requires time synchronization
- unused slots go idle

* multiple transmitters

12/5/2017

Data Link Layer (SSL) 6-15
Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate
 - no a priori coordination among nodes
- two or more transmitting nodes → “collision”
- random access MA protocol specifies:
 - how to detect collision
 - how to recover from collision (e.g., via delayed retransmissions)
- examples (chronological):
 - ALOHA
 - slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

12/5/2017
Slotted Aloha

- time is divided into equal size slots (pkt trans. times)
 - requires time synchronization
- node with new arriving pkt: transmit at beginning of next slot
- if collision: retransmit pkt in a future slot with probability p (or one of K slots at random), until successful.

Success (S), Collision (C), Empty (E) slots
Slotted Aloha efficiency

Long-term fraction of time slots that are successful?

Suppose N nodes have packets to send
- each transmits in slot with probability p
- prob. successful transmission S is
 by a particular node: $S = p(1-p)^{(N-1)}$
by any of N nodes:
 $S = \text{Prob} \{\text{one of N nodes transmits}\}$

$$= N \cdot p \cdot (1-p)^{(N-1)}$$

... choosing optimum p, let $N \to \infty$

$$= \frac{1}{e} = .37 \text{ as } N \to \infty$$

Channel occupied by useful transmissions < 37% of time

12/5/2017
\[
\frac{\partial S}{\partial P} = \frac{\partial}{\partial P} [NP (1-P)^{N-1}]
\]
\[
= NP \frac{\partial}{\partial P} (1-P)^{N-1} + (1-P)^{N-1}N
\]
\[
= -NP (N-1) (1-P)^{N-2} + N(1-P)^{N-1}
\]
\[
= N(1-P)^{N-2} \{-P(N-1)+1-P\}
\]
\[
= N(1-P)^{N-2} \{-NP+P+1-P\}
\]

\[
\frac{\partial S}{\partial P} = 0 \text{ when } P = \frac{1}{N}
\]

My terminology: "Probability Division Multiplex"
Division of probability does not have to be fair, i.e.,
P_1 + P_2 + \ldots + P_N = 1 \text{ is condition for maximum}
\[S_{\text{max}} = N P (1 - P)^{N-1} \]

\[= N \left(\frac{1}{N} \right) \left(1 - \frac{1}{N} \right)^{N-1} \]

\[= \left(1 - \frac{1}{N} \right)^{N-1} \rightarrow e^{-1} \quad \text{as } N \rightarrow \infty \]

\[\frac{1}{e} \approx 0.368 \]

which is maximum throughput (efficiency) of the slotted ALOHA protocol
Pure (unslotted) ALOHA

- unslotted Aloha: no time synchronization
- when frame arrives
 - send immediately (without waiting for beginning of slot)
- collision probability increases:
 - frame sent at t_0 can collide with another frame sent within $[t_0-1, t_0+1]$

Vulnerable period is twice that of slotted ALOHA
Pure Aloha (cont.)

P(success by any of N nodes)

... choosing optimum P, let N → infinity ...

\[P = \frac{1}{2e} = 0.18 \]

\[G = \text{offered load} = NP \]

S = throughput (success rate)

12/5/2017

Data Link Layer (SSL) 6-22
CSMA: Carrier Sense Multiple Access

CSMA: *listen* before transmit (for a channel with short propagation delay)
- If channel sensed idle: transmit entire packet
- If channel sensed busy, *defer* transmission;
 - *retry after some random interval*
- Human analogy: don’t interrupt when someone else is speaking
CSMA collisions

collisions can occur:

It takes time for two nodes to hear each other’s transmission due to propagation delay.

collision:

Entire packet transmission time wasted.

Spatial layout of nodes along cable:

- **Nodes:** A, B, C, D
- **Time:** t_0, t_1

Data Link Layer (SSL) 6-24

12/5/2017
Vulnerable period of a transmission

Let τ be the maximum one-way propagation delay between two nodes in a subnet.

If sender A detects no collision after 2τ seconds, then it knows that its transmission will be successful.

Vulnerable period is 2τ.

<- node D will not transmit after sensing A's transmission.
CSMA/CD collision detection

(& abort)

Diagram:
- Time axis labeled as t_0 and t_1.
- Spatial axis labeled as A, B, C, and D.
- Diagram illustrating the collision detection process.
CSMA/CD

- carrier sensing, deferral as in CSMA
 - CD useful for channels where collisions are detectable within a short time
 - colliding transmissions aborted, reducing channel wastage
- collision detection is
 - easy in wired LANs: measure signal strength, compare transmitted and received signals
 - difficult in wireless LANs: received signal overwhelmed by local transmission signal
- high channel utilization possible by sending very long packets (relative to propagation delay)

12/5/2017
CSMA/CD channel efficiency

Channel efficiency = \(t_{trans} / (\text{contention period} + t_{trans}) \)

where \(t_{trans} \) is average transmission time of a frame

Let \(t_{prop} \) denote the maximum propagation delay between any two nodes. Then a good estimate of the average contention period is \(2t_{prop} \). (Why?)

CSMA/CD channel efficiency = \(t_{trans} / (2t_{prop} + t_{trans}) \)
“Taking Turns” MA protocols

Polling:
- master node “invites” slave nodes to transmit in turn
- concerns:
 - polling overhead
 - latency (for large N)
 - single point of failure (master)

12/5/2017
“Taking Turns” MA protocols

Token passing:
- control token (short msg) passed from one node to next sequentially.
- Data removed from ring by its sender
 => broadcast
- concerns:
 - latency (for large N)
 - single point of failure
 - ring interface is an active repeater
 - token loss

12/5/2017
Solution: Star-shaped Ring Topology

Example:
Token ring (IEEE 802.5) with wiring closet

Star–Shaped Ring

Today's Ethernet uses a star topology

Generalization: A hierarchical ring (with multiple wiring centers to reduce cable length).

12/5/2017
Chapter 6 The Data Link layer

6.1 introduction, services
6.2 error detection, correction
6.3 multiple access protocols
6.4 LANs
 - addressing, ARP
 - Ethernet
 - layer-2 switches
 - VLANS

6.5 link virtualization: MPLS
6.6 data center networks
6.7 a day in the life of a web request
 (play animation in .ppt slide on your own)

12/5/2017

Data Link Layer (SSL) 6-32
MAC and IP Addresses

- 32-bit IP address:
 - network-layer address
 - used to get datagram to destination IP subnet

- 48 bit MAC address (or LAN or Ethernet or link-layer address):
 - e.g.: 1A-2F-BB-76-09-AD (hexadecimal notation)
 - burned in NIC ROM (sometimes software settable)
 - used to get frame from one interface to another interface in same subnet

- MAC address necessary?

12/5/2017
MAC Addresses

Each adapter on LAN has unique MAC address

Broadcast address = FF-FF-FF-FF-FF-FF

LAN (wired or wireless)

1A-2F-BB-76-09-AD

12/5/2017
MAC Address vs. IP address

- MAC addresses are flat
 - MAC address allocation administered by IEEE
 - manufacturers buy blocks of MAC address space for a nominal fee
 - MAC addresses are portable
 - LAN card can be moved from one LAN to another, e.g., laptop

- IP’s hierarchical address NOT portable
 - address depends on IP subnet to which node is attached

- analogy:
 - (a) MAC address: like Social Security Number
 - (b) IP address: like postal address
ARP: Address Resolution Protocol

Question: how to determine MAC address of interface B knowing B’s IP address?

- Each IP node (host, router) on LAN has ARP table
- ARP table: IP-MAC address mappings for some LAN nodes
 - IP address; MAC address; TTL
 - TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)
ARP protocol: Same LAN

- A wants to send datagram to B, and B's MAC address not in A's ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - Dest MAC address = FF-FF-FF-FF-FF-FF
 - all machines on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)
- A caches IP-to-MAC address pair in its ARP table
 - soft state
 - information that times out (goes away) unless refreshed
 - enhances performance but not necessary for correctness
- ARP enables "plug-and-play":
 - nodes create their ARP tables without any work by net administrator

12/5/2017
Addressing: routing to another LAN

walkthrough: A sends datagram to B via R.
- focus on addressing - at both IP (datagram) and MAC layer (frame)
- A knows B's IP address
- A knows IP address of first-hop router, R
- A knows MAC address of first hop router's interface (how?)
Addressing: routing to another LAN

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame with R’s MAC address as dest, frame contains A-to-B IP datagram

MAC src: 74-29-9C-E8-FF-55
MAC dest: E6-E9-00-17-BB-4B
IP src: 111.111.111.111
IP dest: 222.222.222.222

12/5/2017
Addressing: routing to another LAN

- frame sent from A to R
- frame received at R, datagram passed up to IP

MAC src: 74-29-9C-E8-FF-55
MAC dest: E6-E9-00-17-BB-4B
IP src: 111.111.111.111
IP dest: 222.222.222.222

12/5/2017
Addressing: routing to another LAN

- R forwards datagram with IP source A, destination B
- R looks up B’s MAC address
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

MAC src: 1A-23-F9-CD-06-9B
MAC dest: 49-BD-D2-C7-56-2A
IP src: 111.111.111.111
IP dest: 222.222.222.222
IP Eth Phy

Data Link Layer (SSL)
Addressing: routing to another LAN

- R sends frame to B
Addressing: routing to another LAN

- R sends frame to B

- B's IP layer receives datagram

MAC src: 1A-23-F9-CD-06-9B
MAC dest: 49-BD-D2-C7-56-2A
IP src: 111.111.111.111
IP dest: 222.222.222.222

Data Link Layer (SSL)
Link layer, LANs

5.1 introduction, services
5.2 error detection, correction
5.3 multiple access protocols
5.4 LANs
 ▪ addressing, ARP
 ▪ Ethernet
 ▪ switches
 ▪ VLANS
5.5 link virtualization: MPLS
5.6 data center networks
5.7 a day in the life of a web request
 (play animation in .ppt slides on your own)
Ethernet

“dominant” wired LAN technology:

- cheap, $20 for NIC
- first widely used LAN technology
- simpler, cheaper than competitors
 - token-ring (16 Mbps), FDDI (100 Mbps), and ATM (155 Mbps)
- kept up with speed race: 10 Mbps - 10 Gbps
Star topology

- bus topology popular through mid 90s, and later star topology with hub at center
 - all nodes in same collision domain (their transmissions can collide with each other)
- today: star topology with **active switch** (layer 2) at center
 - no collision
Ethernet Frame Structure

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Preamble:
- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clocks
 - long preamble used due to “burst” nature of transmissions, unlike a synchronous point to point link
Ethernet Frame Structure (cont.)

- **Addresses**: 6 bytes
 - **if** adapter receives frame with matching destination address, or with broadcast address (e.g., ARP packet), it passes data in frame to network-layer protocol
 - **else** adapter discards frame

- **Type**: 2 bytes, indicates the higher layer protocol, ARP or IP (many others are supported such as Novell IPX and AppleTalk)

- **CRC**: 4 bytes, checked at receiver, if error is detected, the frame is simply dropped
Unreliable, connectionless service

- **Connectionless**: No handshaking between sending and receiving adapters
- **Unreliable**: Receiving adapter doesn’t send acks or nacks to sending adapter
 - Stream of datagrams passed to network layer can have gaps
 - Gaps will be filled only if app is using TCP

- Ethernet’s MAC protocol: **CSMA/CD with binary backoff**
 - Interval for random retransmission doubles after every additional collision
many different Ethernet standards
- different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10Gbps
- different physical layer media and technologies: coax cable, twisted pair, fiber
- same frame format and MAC protocol
Chapter 6 The Data Link layer

6.1 introduction, services
6.2 error detection, correction
6.3 multiple access protocols
6.4 LANs
 - addressing, ARP
 - Ethernet
 - layer-2 switches
 - VLANS

6.5 link virtualization: MPLS
6.6 data center networks
6.7 a day in the life of a web request
 (play animation in .ppt slide on your own)
Layer-2 Switches vs. Routers

- both store-and-forward devices
 - routers: network layer devices examine network layer headers
 - layer-2 switches are link layer devices
- routers maintain forwarding tables, implement routing protocols
- layer-2 switches maintain switch tables, perform filtering and learning
Switch (layer 2)

- Link layer device
 - stores and forwards Ethernet frames
 - examines frame header and may selectively forward frame to just one outgoing interface (instead of broadcast)
 - it still uses CSMA/CD (just in case an outgoing interface is connected to a hub)
- plug-and-play, self-learning
 - switches do not need to be configured
- transparent
 - hosts are unaware of presence of switches
Switch: allows multiple simultaneous transmissions

- hosts have dedicated, direct connection (full duplex) to switch
- a switch buffers packets
- switching: A-to-A' and B-to-B' simultaneously, without collisions
 - not possible with dumb hub

switch with six interfaces (1,2,3,4,5,6)
Switch Table

- **Q:** how does switch know that A' reachable via interface 4, B' reachable via interface 5?
- **A:** each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
- looks like a forwarding table for routing
- **Q:** how are entries created, maintained in switch table?
 - no routing protocol is used
Switch: self-learning

- switch learns which hosts can be reached through which interfaces
 - when frame received, switch “learns” location of sender (incoming LAN segment)
 - records sender/location pair in switch table

What is required to make this work for a network of switches?

<table>
<thead>
<tr>
<th>MAC addr</th>
<th>interface</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>60</td>
</tr>
</tbody>
</table>

Switch table (initially empty, soft state)

12/5/2017
Switch: frame filtering/forwarding

When frame received:

1. record interface associated with sending host
2. check switch table for MAC destination address
3. if entry in table found for destination
 then {
 if dest is on interface from which frame arrived
 then drop the frame
 else forward the frame on interface indicated
 }
else flood

forward on all but the interface on which the frame arrived
Self-learning, forwarding: example

- destination A’ unknown: flood
- destination A location known: selective send

Switch table (initially empty)

<table>
<thead>
<tr>
<th>MAC addr</th>
<th>interface</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>A’</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>A’</td>
<td>4</td>
<td>60</td>
</tr>
</tbody>
</table>

12/5/2017
Interconnecting layer-2 switches

- switches can be connected together

(note: some links are idled if physical topology has loops)

- **Q:** sending from A to G - how does S_1 know to forward frame destined to G via S_4 (and S_3)?
- **A:** self learning (works exactly the same as in single-switch case)

12/5/2017
Institutional network

to external network

router

mail server

web server

IP subnet

12/5/2017
Scope of broadcast domain

- **a single broadcast domain**
 - all layer-2 broadcast frames (ARP, DHCP, switch-table cache miss, etc.) cross entire LAN => security/privacy, efficiency issues

- **multiple broadcast domains**
Port-based VLANs

ports grouped by switch management software for a *single* physical switch to operate

... as *multiple* virtual switches
Port-based VLANs (cont.)

- **traffic isolation:** frames to/from ports of a VLAN can only reach its ports
 - can also define a VLAN based on MAC addresses of endpoints, rather than switch ports
- **dynamic membership:** ports can be dynamically assigned among VLANs
- **forwarding between VLANS:**
 - done via a router (just as with separate switches)
 - in practice the router is built into the switch

12/5/2017
VLANs spanning multiple switches

- **trunk ports**: carry frames between VLANs defined over multiple physical switches
 - frames forwarded within a VLAN between physical switches must carry VLAN ID info
 - 802.1q protocol inserts/removes an additional header field (4 byte VLAN tag) for each frame forwarded between trunk ports

CSRES (VLAN ports 1-8) Computer Science (VLAN ports 9-15) Ports 2,3,5 belong to CSRES VLAN
Ports 4,6,7,8 belong to CS VLAN

12/5/2017
Chapter 6 The Data Link layer

6.1 introduction, services
6.2 error detection, correction
6.3 multiple access protocols
6.4 LANs
 ▪ addressing, ARP
 ▪ Ethernet
 ▪ layer-2 switches
 ▪ VLANs

6.5 link virtualization: MPLS
6.6 data center networks
6.7 a day in the life of a web request
 (play animation in .ppt slide on your own)

12/5/2017
Link Virtualization: A Network as a Link

Virtual circuits provided by

- ATM, frame relay, which are packet-switching networks in their own right (obsolete)
 - with service models, addressing, routing different from Internet

- A subnet of MPLS capable routers

Each is viewed as a link connecting two IP nodes
Multiprotocol label switching (MPLS)

- **initial goal**: speed up IP forwarding by using fixed-length label (instead of variable-length IP prefix) to do forwarding
 - borrowed the idea from earlier Virtual Circuit approaches
 - MPLS routers insert (and remove) a MPLS header in between the link-layer and IP headers of a frame

![Diagram of MPLS header placement]

12/5/2017
MPLS capable routers

- a.k.a. label-switched router
- forward packets to outgoing interface based only on \textit{label value} \textit{(does not inspect IP address)}
 - Much faster than longest prefix match
 - MPLS forwarding table distinct from IP forwarding tables
- \textit{flexibility}: MPLS forwarding decisions can differ from those of IP

\textit{Note: The router that serves as entrance to a MPLS tunnel filters packets - some packets do not enter tunnel and are forwarded using their IP destination addresses}
MPLS forwarding tables

<table>
<thead>
<tr>
<th>in label</th>
<th>out label</th>
<th>dest</th>
<th>out interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>D</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>in label</th>
<th>out label</th>
<th>dest</th>
<th>out interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

There are two predetermined routes from R4 to A

12/5/2017
MPLS applications

- Fast failure recovery - rerouting flows quickly to pre-computed backup paths (useful for VoIP)

- Traffic engineering - network operator can override IP routing and allocate traffic toward the same destination to multiple paths

- Resource provision for virtual links in private networks
Chapter 6 The Data Link layer

6.1 Introduction, services
6.2 Error detection, correction
6.3 Multiple access protocols
6.4 LANs
 - Addressing, ARP
 - Ethernet
 - Layer-2 switches
 - VLANs
6.5 Link virtualization: MPLS
6.6 Data center networks
6.7 A day in the life of a web request (play animation in .ppt slide on your own)

12/5/2017
Data center networks

- 10’s to 100’s of thousands of hosts in close proximity supporting cloud applications
 - e-business (e.g. Amazon)
 - content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
 - search engines, data mining (e.g., Google)

- challenges:
 - multiple applications, each serving massive number of clients
 - balancing load, avoiding bottlenecks in processing and networking

Inside a 40-ft Microsoft container, Chicago data center

12/5/2017
Data center networks

Each LAN partitioned into smaller VLANs to localize ARP broadcast

Load balancer:
- NAT functionality - hiding data center internals from outside
- receives external client requests for service
- directs workload within data center
- returns results to external client

12/5/2017
Link layer below an access router

- Recent advances - rich interconnection among switches as well as duplication of switches:
 - increased reliability via redundancy
 - increased throughput between server racks (how to enable multiple routing paths)

focus of recent research: revisit routing for layer 2, congestion control, etc.

12/5/2017
Chapter 6: Summary

- principles behind data link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing

- instantiation and implementation of various link layer technologies
 - Ethernet
 - switched LANS, VLANs
 - virtualized networks as a link layer: MPLS
 - data center networks

- synthesis: a day in the life of a web request
 (be sure to open Chapter6_A_Day_animation.ppt file in cs356/Slides folder on your own and see the animation)
The end