
1

Chapter 3: Transport Layer
Our goals:
 understand principles

b h d
 learn about transport

l t l i thbehind transport
layer services:
 multiplexing/

demultiplexing
 reliable data transfer
 flow control

ti t l

layer protocols in the
Internet:
 UDP: connectionless

transport, unreliable
delivery of segments

 TCP: connection-oriented
transport, reliable delivery

Transport Layer (SSL) 3-1

 congestion control
p y

of byte stream

10/17/2017

Chapter 3 outline

 3.1 Transport-layer
services

 3.5 Connection-oriented
transport: TCPservices

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

transport TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

Transport Layer (SSL) 3-2

reliable data transfer
(my slides for Section
3.4 do not follow
Kurose & Ross)

congest on control
 3.7 TCP congestion

control

10/17/2017

2

Transport services and protocols
 provide logical communication

between app processes on
different hosts

application
transport
network
data link
physical

different hosts
 transport protocol runs in

end systems (primarily)
 send side: breaks app

messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages

application
transport
network

Transport Layer (SSL) 3-3

segments into messages,
passes to app layer

data link
physical

10/17/2017

Internet transport-layer protocols

 unreliable, unordered
datagram delivery by UDP

f ll f “b

application
transport
network
data link
physical

network
 no-frills extension of “best-

effort” IP
 reliable, in-order byte

delivery by TCP
 connection setup
 flow control
 congestion control

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application

Transport Layer (SSL) 3-4

 congestion control
 services not available:

 delay guarantees
 bandwidth guarantees

network
data link
physical

physical pp
transport
network
data link
physical

10/17/2017

3

Chapter 3 outline

 3.1 Transport-layer
services

 3.5 Connection-oriented
transport: TCPservices

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

transport TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

Transport Layer (SSL) 3-5

reliable data transfer congest on control
 3.7 TCP congestion

control

10/17/2017

Multiplexing/demultiplexing

deliver received segments
to correct sockets

Demultiplexing at rcv host:
gather data from multiple
sockets, encapsulate data with
h d (l d f

Multiplexing at send host:

application

transport

P1 application

transport

t k

application

transport

P2P3 P4P1

process/threadsocket

to correct sockets header (later used for
demultiplexing)

Transport Layer (SSL) 3-6

network

link

physical

network

link

physical

network

link

physical

host 1 host 2 host 3
10/17/2017

4

How demultiplexing works

 host receives IP datagrams
source port # dest port #

32 bits

 It uses IP addresses in layer-
3 header & port numbers in
layer-4 header to direct
segment to appropriate
socket

source port # dest port #

application
data

other header fields

Transport Layer (SSL) 3-7

(message)

TCP/UDP segment format

10/17/2017

Connectionless demultiplexing

 UDP socket identified by
two-tuple:

 IP datagrams from
different sourcestwo tuple:

(dest IP address, dest port number)

 When host receives UDP
segment:
 directs UDP segment to

k t ith d ti ti t

different sources
directed to same UDP
socket

Transport Layer (SSL) 3-8

socket with destination port
number

10/17/2017

5

Connection-oriented demux

 Server has welcome and
connection sockets

 Server may support
many simultaneous TCP

 welcome socket is
identified by server’s IP
address and a port
number

 TCP connection socket
identified by 4-tuple:
 source IP address

y
connection sockets with
clients:
 each connection socket

and the welcome socket
have the same port
number in server host

 receiving host uses all
four values to direct

Transport Layer (SSL) 3-9

 source port number
 dest IP address
 dest port number

four values to direct
segment to appropriate
connection socket

10/17/2017

Connection-oriented demux
(cont)

P1 P1P2

SP: 9157 SP: 9157

P3

SP: 5775
DP: 80

D-IP:C
S-IP: B

P4

Transport Layer (SSL) 3-10

Client
IP:B

client
IP: A

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

D-IP:C
S-IP: A
D-IP:C

S-IP: B

10/17/2017

6

Chapter 3 outline

 3.1 Transport-layer
services

 3.5 Connection-oriented
transport: TCPservices

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

transport TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

Transport Layer (SSL) 3-11

reliable data transfer congest on control
 3.7 TCP congestion

control

10/17/2017

UDP: User Datagram Protocol [RFC 768]
 “best effort” service, UDP

segments (aka datagrams)
may be:

Length, in bytes of UDP
segment including header

32 bits
 lost
 delivered out of order

to appl
 connectionless:

 no handshaking between
UDP sender, receiver

 each UDP segment

source port # dest. port #

32 bits

Application

length checksum

Transport Layer (SSL) 3-12

 each UDP segment
handled independently
of others

Application
data

(message)

UDP segment format
10/17/2017

7

UDP (more)
 suitable for interactive

streaming multimedia
applications
 loss tolerant Advantages of UDP
 min rate required

 other UDP uses, e.g.
 DNS
 SNMP
 DHCP

 reliable transfer over

 no congestion control: UDP
can blast away as fast as
desired

 small segment header
 no connection

establishment (which can
add delay)

Transport Layer (SSL) 3-13

UDP?
add reliability in
application layer
 application-specific

error recovery

 simple: no connection state
at sender, receiver

10/17/2017

Internet checksum
Sender:
 treat segment as a

sequence of 16-bit
integers (with checksum field
initialized to zero)

Receiver:
 compute 1’s complement sum

of received segment (checksum
fi ld i l d d)initialized to zero)

 add integers using 1’s
complement arithmetic
and take 1’s complement
of the sum

 put result as checksum
value into checksum field

 detail: s d h d

field included)
 check if computed sum equals

sixteen 1’s:
 NO - error detected
 YES - no error detected

But maybe errors
nonetheless? More later

Transport Layer (SSL) 3-14

 detail: pseudoheader
consisting of protocol no., IP
addresses, segment length field
(again) included in checksum
calculation

….

10/17/2017

8

Internet Checksum Example
Notes

 In ones complement arithmetic, a negative integer -x is
represented as the complement of x, i.e., each bit of x is
inverted

 When adding numbers, a carryout from the most
significant bit needs to be added to the result

 Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Transport Layer (SSL) 3-15

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

10/17/2017

Chapter 3 outline

 3.1 Transport-layer
services

 3.5 Connection-oriented
transport: TCPservices

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

transport TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

Transport Layer (SSL) 3-16

reliable data transfer
(my slides do not
follow Kurose & Ross)

congest on control
 3.7 TCP congestion

control

10/17/2017

9

Principles of Reliable data transfer
 important in application, transport, link layers
 top-10 list of important networking topics!

Transport Layer (SSL) 3-17
10/17/2017

Principles of Reliable data transfer
 important in app., transport, link layers
 top-10 list of important networking topics!

Transport Layer (SSL) 3-18

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

10/17/2017

10

Principles of Reliable data transfer
 important in app., transport, link layers
 top-10 list of important networking topics!

Transport Layer (SSL) 3-19

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

10/17/2017

Channel Abstractions

 Lossy FIFO channel
 delivers a subsequence in FIFO order delivers a subsequence in FIFO order
 example: delivery service provided by a

physical link

 Lossy, reordering, duplicative (LRD)
channel

Transport Layer (SSL) 3-20

channel
 example: delivery service provided by IP or by

UDP protocol

10/17/2017

11

Stop-and-wait ARQ (automatic repeat request)

 Error-free operation
Sender

Time

Transport Layer (SSL) 3-21

Receiver ack ack

10/17/2017

Stop-and-wait ARQ
 Retransmission after timeout
 Recovery from loss of frame

timeout
retransmission

Sender

Time
Error

Transport Layer (SSL) 3-22

Receiver ack

10/17/2017

12

Stop-and-wait ARQ

 Retransmission timeout retransmission

after timeout to
recover from
loss of ack

 Receiver gets
duplicate frame

Sender

Time

Error

Transport Layer (SSL) 3-23

 Sequence number
needed in frame Receiver

10/17/2017

Stop-and-wait ARQ
 Sequence number also needed in ack

Sender

timeout
retransmission Sender thinks this

is an ack for frame 1

0 0 1 0Sender

Time

0 0 1 0

Transport Layer (SSL) 3-24

Receiver

Error
ack ack

10/17/2017

13

Stop-and-wait ARQ
Operation with 1-bit sequence numbers in

frames and acks
timeout

Discard
timeout

Sender

Time

0 0 1 1

ACK
0

ACK
0

Transport Layer (SSL) 3-25

Receiver
Error

10/17/2017

Alternating-Bit Protocol
Sender P1 (initial state = 1a)

1b

1a
-A1 +D1

Receiver P2 (initial state = 1a)

1a 1b

-D1
+A1 -D0 timeout

accept data

s s i t sit

 Sender and Receiver specified by
communicating finite-state machines

 Notation for ed e labels

1a

2a4b

4a 2b

3

deliver data deliver data

-A1 +D0

-A0+D1

4b 4a 2a 2b

3b 3a

+A0

-D1

+A1

+A0
-D0

accept data

timeout

msgs in transit

Transport Layer (SSL) 3-26

 Notation for edge labels
-m send m essage m

+m receive m essage m if it is
waiting to be received

3a

3b
-A0+D0

10/17/2017

Protocol state space is
infinite

14

Alternating-Bit Protocol (cont.)

Assertion: If Sender and Receiver
communicate via lossy FIFO channels thecommunicate via lossy FIFO channels, the
alternating-bit protocol provides reliable
in-order data delivery.

Assumption: A frame is retransmitted
infinitely many times if it is lost infinitely
many times

Transport Layer (SSL) 3-27

many times.

10/17/2017

Note: A real protocol is typically designed to
retransmit a fixed number of times (say k).

Stop-and-wait ARQ performance analysis

Sender 2τ + TA + TP

Tf

Time

Transport Layer (SSL) 3-28

Receiver

TP

TA

ττ

ack

10/17/2017

15

Average number of transmissions per frame

1

probability transmission is unsuccessful
Prob[success after transmissions] for 1, 2,...

(1)
i

i
i

P
b i i
b P P−

=
= =
= −

1 (1)i
fN i b i P P

∞ ∞
−= = − 

1 1

1

1

1 0

(1)

(1)

(1) (1)

1 1

i
i i

i

i

i i

i i

fN i b i P P

P i P

d dP P P P
dP dP
d

= =

∞
−

=

∞ ∞

= =

= =

= −

= − = −

 



 

Transport Layer (SSL) 3-29

2
1 1(1) (1)

1 (1)
1

1
f

dP P
dP P P

N
P

= − = −
− −

= =
−

10/17/2017

Timeout duration T > 2τ +TA +TP

Each unsuccessful transmission uses
Tf + T

Each successful transmission uses
Tf + 2τ + TA + TP

Average time per frame
(Nf – 1) (Tf +T) + (Tf + 2τ + TA + TP)

Max. utilization (throughput) of stop-and-wait

fT

Transport Layer (SSL) 3-30

U
() 2

1

f

f f A P

T
P T T T T T

P
τ

=
+ + + + +

−

10/17/2017

16

U ≅
T f

T f + 2τ

Propagation delay versus transmission time
Assume P = 0, TA = 0, TP = 0

(upper bound)

f

=
1

1 + 2τ
T f

=
1

1 + 2a
 where a =

τ
T f

d i s t a n c e
t i d

τ =
Note:

Transport Layer (SSL) 3-31

p r o p a g a t i o n s p e e d
f r a m e l e n g t h

t r a n s m i s s i o n r a t efT =

10/17/2017

Performance of AB protocol
 AB protocol works, but performance degrades for

channels with large delay-bandwidth product

 example: 1 Gbps link, 15 ms prop. delay, 1KByte packet

Ttransmit = 8Kbits
10**9 bits/sec= 8 microsec

U =
8 microsec

30008 microsec= 0.00027

Transport Layer (SSL) 3-32

 Note: If the sender and receiver are connected by the
Internet, then is the end-to-end Internet delay

 the protocol limits use of available bandwidth

10/17/2017

τ

17

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged packets
 range of sequence numbers must be increased
 buffering at sender and/or receiver buffering at sender and/or receiver

Transport Layer (SSL) 3-33

 Pipelined protocols: (i) concurrent logical channels
(used in ARPANET), (ii) sliding window protocol (TCP)

10/17/2017

Sliding Window Protocol
 Consider an infinite array, Source, at the

sender, and an infinite array, Sink, at the
receiver.

0 1 2 a–1 a s–1 s

send window

acknowledged unacknowledged

Source:

P1
Sender

r + RW – 1next expected

Transport Layer (SSL) 3-34

P2
Receiver

0 1 2 r

received

delivered receive window

Sink:
p

RW receive window size
SW send window size (s - a ≤ SW)

10/17/2017

18

Sliding Windows in Action
Data unit r has just been received by P2

 Receive window slides forward
P d l k h P2 sends cumulative ack with sequence
number it expects to receive next (r+3)

unacknowledged

0 1 2 a–1 a s–1 s

send window

acknowledged

Source:
P1

Sender

Transport Layer (SSL) 3-35

0 1 2 r

delivered receive window

r + RW – 1
Sink:

P2
Receiver

next expected

r+3

10/17/2017

Sliding Windows in Action
 P1 has just received cumulative ack with

r+3 as next expected sequence number
 Send window slides forward

0 1 2 a–1 a s–1 s

send window

acknowledged

Source:

P1
Sender

Transport Layer (SSL) 3-36

0 1 2 r

delivered receive window

r + RW – 1
Sink:

P2
Receiver

next expected

10/17/2017

19

Sliding Window protocol
 Functions provided

 error control (reliable delivery)
 in-order delivery in order delivery
 flow and congestion control (by varying send

window size)
 TCP uses cumulative acks (needed for correctness)

Other kinds of acks (to improve performance)

 selective nack

Transport Layer (SSL) 3-37

 selective nack
 selective ack (TCP SACK)
 bit-vector representing entire state of receive

window (in addition to first sequence number of
window)

10/17/2017

Sliding Windows for Lossy FIFO Channels
 A small number of bits in packet header for

sequence number
 Necessary and sufficient condition for correct

operation: SW + RW ≤ MaxSeqNumoperation: SW + RW ≤ MaxSeqNum
 Necessity:

P1
Sender

0 1 2 a–1 a

send window

acknowledged unacknowledged

Source:

RW receive window size
SW send window size

Transport Layer (SSL) 3-38

P2
Receiver

0 1 2

delivered

Sink:
next expected

receive window

10/17/2017

20

Sliding Windows for Lossy FIFO
Channels
 Sufficiency can only

be demonstrated by
 Interesting special

casesbe demonstrated by
using a formal
method to prove that
the protocol provides
reliable in-order
delivery. See

cases
 SW = RW = 1

alternating-bit
protocol

 SW = 7, RW = 1
out-of-order arrivals

t t d

Transport Layer (SSL) 3-39

y
Shankar and Lam,
ACM TOPLAS, Vol.
14, No. 3, July 1992.

not accepted, e.g.,
HDLC

 SW = RW

10/17/2017

Sliding Windows for LRD Channels

Assumption: Packets have bounded lifetime L
 B f l h f t b Be careful how fast sequence numbers are

consumed (i.e., by arrival of data to be sent
into network)

(send rate)× L < MaxSeqNum
 TCP

32 bit s b s

Transport Layer (SSL) 3-40

 32-bit sequence numbers
 counts bytes
 assumes that datagrams will be discarded by IP

if too old
10/17/2017

21

Sliding Window Protocol Performance Analysis
Assumptions

 ack transmission time is negligible, TA = 0
 receiver processing time is negligible, TP = 0
 send window size is W

Go to slide 3-46

send w ndow s ze s W

.

.

.

WTf

Tf

2τ
ACKWTf

Tf

2τ

.

.

.
time

Transport Layer (SSL) 3-41

(b) WTf < 2τ + Tf(a) WTf > 2τ + Tf

.

.

10/17/2017

Performance for Error-Free Channels
Maximum utilization

1 WT f > 2τ +Tf



Define a = τ/Tf

U =

1 WT f > 2τ +Tf

WTf

Tf + 2τ
WT f ≤ 2τ +Tf




 





Transport Layer (SSL) 3-42

U =

1 W > 2a+ 1

W
1+ 2a

W ≤ 2a+ 1




 





10/17/2017

W=1 is special case of
alternating-bit protocol

22

Performance Analysis for Error-
Prone Channels
Define

Nf = Average number of transmissions per frame f g p

Maximum utilization

U =

1
N f

W > 2a+1

W / N f

1+ 2a
W ≤ 2a+1




 





Transport Layer (SSL) 3-43

 To determine Nf for two cases
 Selective repeat (optimistic performance)
 Go-back-N (pessimistic performance)

10/17/2017

Performance Analysis of Error-Prone Channels
P = probability a transmission is unsuccessful

 Selective repeat (-> upper bound on U)
1

N f =
1

1− P

U =

1− P W > 2a+ 1

W(1−P)
1+ 2a

W ≤ 2a+ 1




 





Transport Layer (SSL) 3-44

 Go-back-N (-> lower bound on U)
Each lost frame requires the retransmission of N
frames where 1 ≤ N ≤ W

10/17/2017

23

(1) (1) i
fN iN P P

∞

= + −

With probability (1–P)Pi, a frame requires
1+iN transmissions to succeed, for i=0,1,...

Go-back-N (cont.)

0

1

0 0

0

(1) (1)

1 (1)

11 (1)
1

i

i i

i i

i

i

P P NP P i P

dNP P P
dP
dNP P

dP P

=

∞ ∞
−

= =

∞

=

= − + −

= + −

= + −

 



Transport Layer (SSL) 3-45

2

1
11 (1)

(1)

1
1

dP P

NP P
P

NP
P

−

= + −
−

= +
−

10/17/2017

For 2
2

1 2

f f

f f

WT T
NT T
N a

τ
τ

> +

≅ +
≅ +

1
1f
NPN

P
= +

−

From previous slide

Go-back-N (cont.)
Go to slide 3-41

Case (a)

What is N ?

(1 2) 1 2 1 21
1 1 1f

a P P P aP aPN
P P P

+ − + + += + = =
− − −

For 2f fWT T
N W

τ≤ + Case (b)

Transport Layer (SSL) 3-46

11
1 1f

N W
WP P WPN

P P

=
− += + =

− −

10/17/2017

24

 Recall (from slide 3-43)

U =

1
N f

W > 2a+1

W / N




 


1 2
1f

aPN
P

+=
−

1 P WP+

From previous slide

Go-back-N (cont.)

W / N f

1+ 2a
W ≤ 2a+1




Maximum utilization

1 2 1
1 2

P W a
P

− > +

1
1f
P WPN

P
− +=

−

Transport Layer (SSL) 3-47

1 2
(1) 2 1

(1 2)(1)

aPU
W P W a
a P WP

 +=  − ≤ +
+ − +

10/17/2017

Chapter 3 outline

 3.1 Transport-layer
services

 3.5 Connection-oriented
transport: TCPservices

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

transport TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

Transport Layer (SSL) 3-48

reliable data transfer congest on control
 3.7 TCP congestion

control

10/17/2017

25

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 reliable, in-order byte
steam service
 no “message boundaries”

 connection-oriented
 handshaking initializes

sender, receiver state
before data exchange g

 send and receive
buffers

 pipelined
 send window size

determined by TCP
congestion and flow
control

before data exchange
 point-to-point

 two sender-receiver pairs
 bi-directional data flows in

same connection
 MSS: maximum segment

size

Transport Layer (SSL) 3-49

controlsize
 less than MTU of directly

connected network
socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

10/17/2017

TCP segment structure

source port # dest port #

32 bits

sequence number

URG: urgent data
(generally not used)

ACK #
valid

count by bytes
of data
(not segments)

P1 P2
Send  Receive
Receive  Send

q m
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab.
(setup, teardown

d)

bytes
rcvr willing
to accept

(not segments)count in
32-bit words

Transport Layer (SSL) 3-50

application
data

(variable length)

commands)

Internet
checksum

(as in UDP)

10/17/2017

Control info for
both forward

and reverse data
transfers

26

TCP seq. #’s and ACKs
Seq. #

 sequence number of
first byte in

Host A Host B

User
t

y
segment’s data

ACK
 seq # of next byte

expected from other
side

 cumulative ACK

types
‘C’

host ACKs
receipt

host ACKs
receipt of
‘C’, echoes

back ‘C’

Transport Layer (SSL) 3-51

Q: how receiver handles
out-of-order segments?
TCP spec doesn’t say, up

to implementor

p
of echoed

‘C’

time
simple telnet scenario

10/17/2017

TCP Round Trip Time and Timeout
Q: how to set TCP

timeout value?
 longer than RTT

Q: how to estimate RTT?
 SampleRTT: measured time from

segment transmission until ACK longer than RTT
 but RTT varies, may be

too short or too long
 too short: premature

timeout
 unnecessary

retransmissions

segment transmission until ACK
receipt
 ignore retransmissions

 SampleRTT will vary, want
estimated RTT “smoother”
 average several recent

measurements, not just
current SampleRTT

Transport Layer (SSL) 3-52

retransmissions
 too long: slow reaction

to segment loss

current SampleRTT

10/17/2017

27

TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

 E ti ll i ht d i Exponentially weighted moving average
 influence of past sample decreases

exponentially fast
 typical value: α = 0.125

Transport Layer (SSL) 3-53
10/17/2017

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

200

250

300

R
TT

 (m
ill

is
ec

on
ds

)

Transport Layer (SSL) 3-54

100

150

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

SampleRTT Estimated RTT

10/17/2017

28

Setting the timeout interval
 EstimtedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety
marginmargin

 estimate how much SampleRTT deviates from
EstimatedRTT and update
DevRTT = (1-β)*DevRTT +

β*|SampleRTT-EstimatedRTT|

Transport Layer (SSL) 3-55

TimeoutInterval = EstimatedRTT + 4*DevRTT

(typically, β = 0.25)

Then set timeout interval:

10/17/2017

Chapter 3 outline

 3.1 Transport-layer
services

 3.5 Connection-oriented
transport: TCPservices

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

transport TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

Transport Layer (SSL) 3-56

reliable data transfer congest on control
 3.7 TCP congestion

control

10/17/2017

29

TCP reliable data transfer

 TCP creates reliable
service on top of IP’s

 Retransmissions are
triggered by:service on top of IP s

unreliable service

 Cumulative acks

 TCP uses single
i i i

triggered by
 timeout events
 duplicate acks

 Initially consider
simplified TCP sender:

Transport Layer (SSL) 3-57

retransmission timer  ignore duplicate acks
 ignore flow control,

congestion control

10/17/2017

Sliding Window Protocol
At the sender, a will be pointed to by SendBase,
and s by NextSeqNum

0 1 2 a–1 a s–1 s

send window

acknowledged unacknowledged

Source:
P1

Sender

P2 0 1 2 r

received
r + RW – 1

Sink:
next expected

Transport Layer (SSL) 3-58

Receiver
0 1 2 r

delivered receive window

RW receive window size
SW send window size (s - a ≤ SW)

10/17/2017

30

TCP
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum
loop (forever) {

switch(event)

event: data received from application above
and send window has enough room

create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received with ACK field value = y
Note:

Transport Layer (SSL) 3-59

event: ACK received, with ACK field value = y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer;
else stop timer
}

} /* end of loop forever */

• y > SendBase
means new data
ack’ed

10/17/2017

TCP: retransmission scenario (1)
Host A Host B

SendBase
= 92

loss

ti
m

eo
ut

X lost ACK scenario

restart
timer for
seq= 92

Transport Layer (SSL) 3-60

time

SendBase
= 100

Stop timer

10/17/2017

seq= 92

31

TCP retransmission scenario (2)
Host A Host B

SendBase
= 92

loss

Se
q

92
 t

im
eo

ut

X

SendBase
= 120

St ti

Cumulative ACK scenario

Transport Layer (SSL) 3-61

time

Stop timer

10/17/2017

TCP: retransmission scenario (3)
Host A Host B

eo
ut

premature timeout scenario
SendBase= 92

Se
q=

92
 t

im
e

SendBase
= 120

Sendbase
= 100

restart
timer for
seq= 92

st

restart
timer for
seq= 100

Transport Layer (SSL) 3-62

time

SendBase
= 120

10/17/2017

stop
timer

What does Host A
do here?

32

Fast Retransmit
 Time-out period often

relatively long:
 long delay before

 If sender receives 3
duplicate ACKs for
h d i long delay before

resending lost packet
 Detect lost segments

via duplicate ACKs
 Sender often sends

many segments back-to-
back

the same data, it
supposes that
segment after
ACKed data was
lost:
 fast retransmit:

Transport Layer (SSL) 3-63

 If segment is lost,
there will likely be many
duplicate ACKs.

 fast retransmit:
resend segment
before timer expires

10/17/2017

Host A Host B

X

eo
ut

 f
or

 2
nd

se
gm

en
t

Transport Layer (SSL) 3-64

ti
m

e

time
Resending a segment after triple duplicate ACK
without waiting for timeout

10/17/2017

33

event: ACK received, with ACK field value = y
if (y > SendBase) {

Fast retransmit algorithm:

if (y > SendBase) {
SendBase = y
if (there is a not-yet-acknowledged segment)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

Transport Layer (SSL) 3-65

(p y) {
resend segment with sequence number y

reset timer for y
}

a duplicate ACK for
already ACKed segment

fast retransmit

10/17/2017

Chapter 3 outline

 3.1 Transport-layer
services

 3.5 Connection-oriented
transport: TCPservices

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

transport TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

Transport Layer (SSL) 3-66

reliable data transfer congest on control
 3.7 TCP congestion

control

10/17/2017

34

TCP Flow Control
receiver: explicitly informs

sender of (dynamically
changing) amount of

sender won’t overrun
receiver’s buffers by

flow control

free buffer space
 RcvWindow field in

TCP segment header

sender: keeps amount of
transmitted, unACKed
data less than most

y
transmitting too much,

too fast

Transport Layer (SSL) 3-67

recently received
RcvWindow value

buffer at receive side of a TCP connection

10/17/2017

Chapter 3 outline

 3.1 Transport-layer
services

 3.5 Connection-oriented
transport: TCPservices

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

transport TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

Transport Layer (SSL) 3-68

reliable data transfer congest on control
 3.7 TCP congestion

control

10/17/2017

35

TCP Connection Management

 initialize TCP variables
 seq. #s
 buffers, flow control

info (e g RcvWindow)

Three way handshake

Step 1: client end system sends
TCP SYN control segment to
server - initial seq number
chosen at randominfo (e.g. RcvWindow) chosen at random

Step 2: server end system
receives SYN, replies with
SYNACK control segment
 allocates buffers
 specifies server-to-receiver

initial seq. # (chosen at

Active participant
(client)

Passive participant
(server)

Transport Layer (SSL) 3-69

random)

Step 3: client end system
replies with ack # (likely
piggybacked in segment with app
data)

10/17/2017

TCP Connection Management (cont.)
Closing a connection:
client closes socket

client server

Step 1: client end system
sends TCP FIN control
message to server

Step 2: server receives
FIN, replies with ACK.

close

close

it

Transport Layer (SSL) 3-70

Later no more data to
send. It closes connection,
sends FIN.

closed

ti
m

ed
 w

ai

10/17/2017

36

TCP Connection Management (cont.)
Step 3: client receives FIN,

replies with ACK and
enters “timed wait”

client server

 will respond with ACK
to a retransmitted FIN
(due to loss of previous ACK)

Step 4: server receives
ACK. Its connection is
closed.

Step 5: client closes

close

close

itclosing

Transport Layer (SSL) 3-71

Step 5: client closes
connection at the end of
timed wait

Note: protocol spec allows
simultaneous FINs

10/17/2017

closed
ti

m
ed

 w
ai

closed

Chapter 3 outline

 3.1 Transport-layer
services

 3.5 Connection-oriented
transport: TCPservices

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

transport TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

Transport Layer (SSL) 3-72

reliable data transfer congest on control
 3.7 TCP congestion

control

10/17/2017

37

Principles of Congestion Control

Congestion:
 informally: “too many sources sending too much informally: too many sources sending too much

data too fast for network to handle”
 different from flow control
 manifestations:

 long delays (queueing in router buffers)
 lost packets (buffer overflow at routers)

Transport Layer (SSL) 3-73

p (ff f)
 a top-10 problem!

10/17/2017

Causes/costs of congestion: scenario
 four senders
 multi-hop paths
 Timeout & retransmit

λ
in

Q: what happens as and
increase at every
sender?

λ'in

i i f db ksender?

finite shared output
link buffers

Host A λin : original data
λ'in : original data plus

retransmitted data

positive feedback
 instability

Transport Layer (SSL) 3-74

Host B λout

10/17/2017

38

Causes/costs of congestion: scenario

Host A λout

Cost of congestion
 when a packet is dropped any upstream transmission

Host B

Transport Layer (SSL) 3-75

 when a packet is dropped, any upstream transmission
capacity used for that packet was wasted

 behavior on right side of above graph called
congestion collapse

10/17/2017

Approaches towards congestion control
End-to-end congestion

control:
li i f db k

Network-assisted
congestion control:

 routers provide feedback no explicit feedback
from network

 congestion inferred
from end-system’s
observed loss (or delay)

 approach taken by TCP

 routers provide feedback
to end systems
 single bit indicating

congestion, e.g., SNA,
DECbit, ATM

 TCP/IP explicit
congestion notification

Transport Layer (SSL) 3-76

congestion notification
(ECN)

 explicit sending rate
for sender

10/17/2017

39

Chapter 3 outline

 3.1 Transport-layer
services

 3.5 Connection-oriented
transport: TCPservices

 3.2 Multiplexing and
demultiplexing

 3.3 Connectionless
transport: UDP

 3.4 Principles of
reliable data transfer

transport TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of
congestion control

Transport Layer (SSL) 3-77

reliable data transfer congest on control
 3.7 TCP congestion

control

10/17/2017

TCP Congestion Control
 end-to-end control (no network

assistance)
 sender limits transmission:
LastByteSent-LastByteAcked

How does sender
determine CongWin?

 loss event = timeout
or 3 duplicate acksLastByteSent-LastByteAcked

≤ CongWin

 Roughly, the send buffer’s

where CongWin is in bytes

or 3 duplicate acks
 TCP sender reduces
CongWin after a loss
event

three mechanisms:
 slow start
 reduce to 1 segment

ft tim t t

throughput ≤ CongWin
RTT bytes/sec

Transport Layer (SSL) 3-78

where CongWin is in bytes
and throughput is λ'in in slide 3-74

after timeout event
 AIMD (additive increase

multiplicative decrease)

Note: For now consider RcvWindow to be very large such that the send window size is
equal to CongWin. They are referred to as rwnd and cwnd, respectively, in the textbook.

10/17/2017

40

TCP Slow Start

 Probing for usable bandwidth

When connection begins, CongWin = 1 MSS
 Example: MSS = 500 bytes & RTT = 200 msec
 initial rate = 2500 bytes/sec = 20 kbps

l bl b d d h b M /R

Transport Layer (SSL) 3-79

 available bandwidth may be >> MSS/RTT
 desirable to quickly ramp up to a higher rate

10/17/2017

TCP Slow Start (more)
 When connection

begins, increase rate
exponentially until
first loss event or

Host A

TT

Host B

first loss event or
“threshold”
 double CongWin every

RTT
 done by incrementing
CongWin by 1 MSS for
every ACK received

 Summary: initial rate

R

Transport Layer (SSL) 3-80

 Summary: initial rate
is slow but ramps up
exponentially fast time

10/17/2017

41

Congestion avoidance state &
responses to loss events

Q: If no loss, when should
the exponential increase
switch to linear?

A: When CongWin gets to 10

12

14

ow
 s

iz
e

)

TCP
Reno

3 dup ACKs

A: When CongWin gets to
current value of
threshold

Implementation:
 For initial slow start,

threshold is set to a large
value (e.g., 64 Kbytes)

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

co
ng

es
tio

n
w

in
do

(s
eg

m
en

ts

threshold
TCP

Tahoe

Transport Layer (SSL) 3-81

 Subsequently, threshold is
variable

 At a loss event, threshold is
set to 1/2 of CongWin just
before loss event

Transmission round

Tahoe Reno

Notes: 1. For simplicity, CongWin is in number of
segments in the above graph. 2. Reno’s window inflation
and deflation steps (details) omitted

10/17/2017

Rationale for Reno’s Fast Recovery
 After 3 dup ACKs:

 CongWin is cut in half
(multiplicative decrease)

 3 dup ACKs indicate
network capable of (p)

 window then grows linearly
(additive increase)

 But after timeout event:
 CongWin is set to 1 MSS

instead;
 window then grows

exponentially to a threshold

network capable of
delivering some segments

 timeout occurring
before 3 dup ACKs is
“more alarming”

Transport Layer (SSL) 3-82

exponentially to a threshold,
then grows linearly

10/17/2017

Additive Increase Multiplicative Decrease (AIMD)

42

TCP Reno (example scenario)

CongWin Timeout

halved

3 dupACKs

3-84

Initial slow start t
threshold reached
during slow start

Transport Layer (SSL)

3 dupACKs during slow start
before reaching initial threshold

10/17/2017

Summary: TCP Congestion Control (Reno)
 When CongWin is below Threshold, sender in

slow-start phase, window grows exponentially (until
loss event or exceeding threshold)loss event or exceeding threshold).

 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold

Transport Layer (SSL) 3-84

Threshold.

 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

10/17/2017

43

AIMD in steady state (when no timeout)

multiplicative decrease:
cut CongWin in half
after loss event (3 dup
acks)

additive increase:
increase CongWin by
1 MSS every RTT in
the absence of any

16 Kbytes

24 Kbytes

congestion
window

acks)the absence of any
loss event: probing

What limits the average
window size (or throughput)?

Transport Layer (SSL) 3-85

8 Kbytes

timeLong-lived TCP connection
10/17/2017

TCP Throughput limited by loss rate
 TCP average throughput (approximate) of

send buffer under AIMD in terms of loss
rate, L 1.22 b t / dMSSth h t ×

where MSS is number of bytes per segment
 Example: 1500-byte segments, 100ms RTT,

to get 10 Gbps throughput, loss rate needs
to be very low

bytes/secondthroughput
RTT L

=

Transport Layer (SSL) 3-86

to be very low
L = 2·10-10

New version of TCP needed for high-speed
applications

10/17/2017

44

Is TCP fair?
Two competing sessions:
 Additive increase gives slope of 1, as window size increases
 multiplicative decrease reduces window size to half

(proportionally)(proportionally)

W equal window size

loss: decrease window by factor of 2

Transport Layer (SSL) 3-87

WConnection 1 window size

congestion avoidance: additive
increase

y

10/17/2017

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

Is TCP fair?

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

Transport Layer (SSL) 3-88

AIMD only provides convergence to same window
size, not necessarily same throughput rate

capacity R

10/17/2017

45

No fairness in practice
UDP
 Some multimedia apps use

UDP instead of TCP. They
 can tolerate packet

Parallel TCP connections
 nothing prevents an app

from opening parallel
connections between 2 can tolerate packet

loss,
 do not want rate

throttled by congestion
control – send at
constant rate

connections between 2
hosts.
 Web browsers do this

Transport Layer (SSL) 3-89
10/17/2017

Chapter 3: Summary
 principles behind transport

layer services:
l i l i

 instantiation and
implementation in the
I t tmultiplexing,

demultiplexing
 reliable data transfer
 connection management
 flow control
 congestion control

Next:
 leaving the network

“edge” (application

Internet
 UDP
 TCP

Transport Layer (SSL) 3-90

 congestion control edge (application,
transport layers)

 into the network
“core”

10/17/2017

