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Chapter 3: Transport Layer
Our goals:
 understand principles 

b h d
 learn about transport 

l t l i thbehind transport 
layer services:
 multiplexing/

demultiplexing
 reliable data transfer
 flow control

ti t l

layer protocols in the 
Internet:
 UDP: connectionless 

transport, unreliable 
delivery of segments

 TCP: connection-oriented 
transport, reliable delivery 

Transport Layer (SSL) 3-1

 congestion control
p y

of byte stream
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Chapter 3 outline

 3.1 Transport-layer 
services

 3.5 Connection-oriented 
transport: TCPservices

 3.2 Multiplexing and 
demultiplexing

 3.3 Connectionless 
transport: UDP

 3.4 Principles of 
reliable data transfer

transport  TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of 
congestion control

Transport Layer (SSL) 3-2

reliable data transfer
(my slides for Section 
3.4 do not follow 
Kurose & Ross)

congest on control
 3.7 TCP congestion 

control

10/17/2017
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Transport services and protocols
 provide logical communication

between app processes on 
different hosts

application
transport
network
data link
physical

different hosts
 transport protocol runs in 

end systems (primarily)
 send side: breaks app 

messages into segments, 
passes to  network layer

 rcv side: reassembles 
segments into messages

application
transport
network

Transport Layer (SSL) 3-3

segments into messages, 
passes to app layer

data link
physical

10/17/2017

Internet transport-layer protocols

 unreliable, unordered 
datagram delivery by UDP

f ll f “b

application
transport
network
data link
physical

network
 no-frills extension of “best-

effort” IP
 reliable, in-order byte 

delivery by TCP
 connection setup
 flow control
 congestion control

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application

Transport Layer (SSL) 3-4

 congestion control 
 services not available: 

 delay guarantees
 bandwidth guarantees

network
data link
physical

physical pp
transport
network
data link
physical

10/17/2017



3

Chapter 3 outline

 3.1 Transport-layer 
services

 3.5 Connection-oriented 
transport: TCPservices

 3.2 Multiplexing and 
demultiplexing

 3.3 Connectionless 
transport: UDP

 3.4 Principles of 
reliable data transfer

transport  TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of 
congestion control

Transport Layer (SSL) 3-5

reliable data transfer congest on control
 3.7 TCP congestion 

control

10/17/2017

Multiplexing/demultiplexing

deliver received segments
to correct sockets

Demultiplexing at rcv host:
gather data from multiple
sockets, encapsulate data with 
h d (l d f

Multiplexing at send host:

application

transport

P1 application

transport

t k

application

transport

P2P3 P4P1

process/threadsocket

to correct sockets header (later used for 
demultiplexing)

Transport Layer (SSL) 3-6

network

link

physical

network

link

physical

network

link

physical

host 1 host 2 host 3
10/17/2017
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How demultiplexing works

 host receives IP datagrams
source port # dest port #

32 bits

 It uses IP addresses in layer-
3 header & port numbers in 
layer-4 header to direct 
segment to appropriate 
socket

source port # dest port #

application
data 

other header fields

Transport Layer (SSL) 3-7

(message)

TCP/UDP segment format

10/17/2017

Connectionless demultiplexing

 UDP socket identified by  
two-tuple:

 IP datagrams from 
different sourcestwo tuple:

(dest IP address, dest port number)

 When host receives UDP 
segment:
 directs UDP segment to 

k t ith d ti ti t

different sources 
directed to same UDP 
socket

Transport Layer (SSL) 3-8

socket with destination port 
number

10/17/2017
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Connection-oriented demux

 Server has welcome and 
connection sockets

 Server may support 
many simultaneous TCP 

 welcome socket is 
identified by server’s IP 
address and a port 
number 

 TCP connection socket 
identified by 4-tuple: 
 source IP address

y
connection sockets with 
clients:
 each connection socket 

and the welcome socket 
have the same port 
number in server host

 receiving host uses all 
four values to direct

Transport Layer (SSL) 3-9

 source port number
 dest IP address
 dest port number

four values to direct 
segment to appropriate 
connection socket

10/17/2017

Connection-oriented demux 
(cont)

P1 P1P2

SP: 9157 SP: 9157

P3

SP: 5775
DP: 80

D-IP:C
S-IP: B

P4

Transport Layer (SSL) 3-10

Client
IP:B

client
IP: A

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

D-IP:C
S-IP: A
D-IP:C

S-IP: B

10/17/2017
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Chapter 3 outline

 3.1 Transport-layer 
services

 3.5 Connection-oriented 
transport: TCPservices

 3.2 Multiplexing and 
demultiplexing

 3.3 Connectionless 
transport: UDP

 3.4 Principles of 
reliable data transfer

transport  TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of 
congestion control

Transport Layer (SSL) 3-11

reliable data transfer congest on control
 3.7 TCP congestion 

control

10/17/2017

UDP: User Datagram Protocol [RFC 768]
 “best effort” service, UDP 

segments (aka datagrams) 
may be:

Length, in bytes of UDP 
segment including header

32 bits
 lost
 delivered out of order 

to appl 
 connectionless:

 no handshaking between 
UDP sender, receiver

 each UDP segment

source port # dest. port #

32 bits

Application

length checksum

Transport Layer (SSL) 3-12

 each UDP segment 
handled independently 
of others

Application
data 

(message)

UDP segment format
10/17/2017
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UDP (more)
 suitable for interactive 

streaming multimedia 
applications
 loss tolerant Advantages of UDP
 min rate required

 other UDP uses, e.g.
 DNS
 SNMP
 DHCP

 reliable transfer over 

 no congestion control: UDP 
can blast away as fast as 
desired

 small segment header
 no connection 

establishment (which can 
add delay)

Transport Layer (SSL) 3-13

UDP?
add reliability in 
application layer
 application-specific 

error recovery

 simple: no connection state 
at sender, receiver

10/17/2017

Internet checksum
Sender:
 treat segment as a 

sequence of 16-bit 
integers (with checksum field 
initialized to zero)

Receiver:
 compute 1’s complement sum 

of received segment (checksum 
fi ld i l d d)initialized to zero)

 add integers using 1’s 
complement arithmetic 
and take 1’s complement 
of the sum

 put result as checksum 
value into checksum field

 detail: s d h d

field included)
 check if computed sum equals 

sixteen 1’s:
 NO - error detected
 YES - no error detected 

But maybe errors 
nonetheless? More later 

Transport Layer (SSL) 3-14

 detail: pseudoheader 
consisting of protocol no., IP 
addresses, segment length field 
(again) included in checksum 
calculation

….

10/17/2017



8

Internet Checksum Example
Notes

 In ones complement arithmetic, a negative integer -x is 
represented as the complement of x, i.e., each bit of x is 
inverted

 When adding numbers, a carryout from the most 
significant bit needs to be added to the result

 Example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Transport Layer (SSL) 3-15

1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum
checksum

10/17/2017

Chapter 3 outline

 3.1 Transport-layer 
services

 3.5 Connection-oriented 
transport: TCPservices

 3.2 Multiplexing and 
demultiplexing

 3.3 Connectionless 
transport: UDP

 3.4 Principles of 
reliable data transfer

transport  TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of 
congestion control

Transport Layer (SSL) 3-16

reliable data transfer
(my slides do not 
follow Kurose & Ross)

congest on control
 3.7 TCP congestion 

control

10/17/2017
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Principles of Reliable data transfer
 important in application, transport, link layers
 top-10 list of important networking topics!

Transport Layer (SSL) 3-17
10/17/2017

Principles of Reliable data transfer
 important in app., transport, link layers
 top-10 list of important networking topics!

Transport Layer (SSL) 3-18

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)

10/17/2017
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Principles of Reliable data transfer
 important in app., transport, link layers
 top-10 list of important networking topics!

Transport Layer (SSL) 3-19

 characteristics of unreliable channel will determine 
complexity of reliable data transfer protocol (rdt)

10/17/2017

Channel Abstractions

 Lossy FIFO channel
 delivers a subsequence in FIFO order delivers a subsequence in FIFO order
 example:  delivery service provided by a 

physical link

 Lossy, reordering, duplicative (LRD) 
channel

Transport Layer (SSL) 3-20

channel
 example: delivery service provided by IP or by 

UDP protocol

10/17/2017
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Stop-and-wait ARQ (automatic repeat request)

 Error-free operation
Sender

Time

Transport Layer (SSL) 3-21

Receiver ack ack

10/17/2017

Stop-and-wait ARQ
 Retransmission after timeout
 Recovery from loss of frame

timeout
retransmission

Sender

Time
Error

Transport Layer (SSL) 3-22

Receiver ack

10/17/2017
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Stop-and-wait ARQ

 Retransmission timeout retransmission

after timeout to 
recover from
loss of ack

 Receiver gets
duplicate frame

Sender

Time

Error

Transport Layer (SSL) 3-23

 Sequence number
needed in frame Receiver

10/17/2017

Stop-and-wait ARQ
 Sequence number also needed in ack

Sender

timeout
retransmission Sender thinks this

is an ack for frame 1

0 0 1 0Sender

Time

0 0 1 0

Transport Layer (SSL) 3-24

Receiver

Error
ack ack

10/17/2017



13

Stop-and-wait ARQ
Operation with 1-bit sequence numbers in 

frames and acks
timeout

Discard
timeout

Sender

Time

0 0 1 1

ACK
0

ACK
0

Transport Layer (SSL) 3-25

Receiver
Error

10/17/2017

Alternating-Bit Protocol
Sender P1 (initial state = 1a)

1b

1a
-A1 +D1

Receiver P2 (initial state = 1a)

1a 1b

-D1
+A1 -D0 timeout

accept data

s s i t sit

 Sender and Receiver specified by 
communicating finite-state machines

 Notation for ed e labels

1a

2a4b

4a 2b

3

deliver data deliver data

-A1 +D0

-A0+D1

4b 4a 2a 2b

3b 3a

+A0

-D1

+A1

+A0
-D0

accept data

timeout

msgs in transit

Transport Layer (SSL) 3-26

 Notation for edge labels
-m send m essage m

+m receive m essage m  if it is
waiting to be received

3a

3b
-A0+D0

10/17/2017

Protocol state space is 
infinite
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Alternating-Bit Protocol (cont.)

Assertion: If Sender and Receiver 
communicate via lossy FIFO channels thecommunicate via lossy FIFO channels, the 
alternating-bit protocol provides reliable 
in-order data delivery.

Assumption: A frame is retransmitted 
infinitely many times if it is lost infinitely 
many times

Transport Layer (SSL) 3-27

many times.

10/17/2017

Note: A real protocol is typically designed to 
retransmit  a fixed number of times (say k).

Stop-and-wait ARQ performance analysis

Sender 2τ + TA + TP

Tf

Time

Transport Layer (SSL) 3-28

Receiver

TP

TA

ττ

ack

10/17/2017
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Average number of transmissions per frame

1

probability transmission is unsuccessful
Prob[success after  transmissions]  for 1, 2,...

(1 )
i

i
i

P
b i i
b P P−

=
= =
= −

1 (1 )i
fN i b i P P

∞ ∞
−= = − 

1 1

1

1

1 0

(1 )

(1 )

(1 ) (1 )

1 1

i
i i

i

i

i i

i i

fN i b i P P

P i P

d dP P P P
dP dP
d

= =

∞
−

=

∞ ∞

= =

= =

= −

= − = −

 



 
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2
1 1(1 ) (1 )

1 (1 )
1

1
f

dP P
dP P P

N
P

= − = −
− −

= =
−

10/17/2017

Timeout duration T > 2τ +TA +TP

Each unsuccessful transmission uses
Tf + T

Each successful transmission uses
Tf + 2τ + TA + TP

Average time per frame
(Nf   – 1) (Tf +T) + (Tf + 2τ + TA + TP)

Max. utilization (throughput) of stop-and-wait

fT

Transport Layer (SSL) 3-30

U
( ) 2

1

f

f f A P

T
P T T T T T

P
τ

=
+ + + + +

−

10/17/2017
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U ≅
T f

T f + 2τ

Propagation delay versus transmission time
Assume P = 0, TA = 0, TP = 0

(upper bound)

    

f

=
1

1 + 2τ
T f

=
1

1 + 2a
 where a =

τ
T f

d i s t a n c e
t i d

τ =
Note:

Transport Layer (SSL) 3-31

p r o p a g a t i o n  s p e e d
f r a m e  l e n g t h

t r a n s m i s s i o n  r a t efT =

10/17/2017

Performance of AB protocol
 AB protocol works, but performance degrades for 

channels with large delay-bandwidth product

 example: 1 Gbps link, 15 ms prop. delay, 1KByte packet

Ttransmit = 8Kbits
10**9 bits/sec= 8 microsec

U = 
8 microsec

30008 microsec= 0.00027

Transport Layer (SSL) 3-32

 Note: If the sender and receiver are connected by the 
Internet, then     is the end-to-end Internet delay

 the protocol limits use of available bandwidth

10/17/2017

τ
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Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-

be-acknowledged packets
 range of sequence numbers must be increased
 buffering at sender and/or receiver buffering at sender and/or receiver

Transport Layer (SSL) 3-33

 Pipelined protocols: (i) concurrent logical channels 
(used in ARPANET), (ii) sliding window protocol (TCP)

10/17/2017

Sliding Window Protocol
 Consider an infinite array, Source, at the 

sender, and an infinite array, Sink, at the 
receiver.

0 1 2 a–1 a s–1 s

send window

acknowledged unacknowledged

Source:

P1
Sender

r + RW – 1next expected

Transport Layer (SSL) 3-34

P2
Receiver

0 1 2 r

received

delivered receive window

Sink:
p

RW  receive window size
SW  send window size    (s - a ≤ SW)

10/17/2017
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Sliding Windows in Action
Data unit r has just been received by P2

 Receive window slides forward
P d l k h P2 sends cumulative ack with sequence 
number it expects to receive next (r+3)

unacknowledged

0 1 2 a–1 a s–1 s

send window

acknowledged

Source:
P1

Sender

Transport Layer (SSL) 3-35

0 1 2 r

delivered receive window

r + RW – 1
Sink:

P2
Receiver

next expected

r+3

10/17/2017

Sliding Windows in Action
 P1 has just received cumulative ack with 

r+3 as next expected sequence number
 Send window slides forward

0 1 2 a–1 a s–1 s

send window

acknowledged

Source:

P1
Sender

Transport Layer (SSL) 3-36

0 1 2 r

delivered receive window

r + RW – 1
Sink:

P2
Receiver

next expected

10/17/2017
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Sliding Window protocol
 Functions provided

 error control (reliable delivery)
 in-order delivery in order delivery
 flow and congestion control (by varying send 

window size)
 TCP uses cumulative acks (needed for correctness) 

Other kinds of acks (to improve performance)

 selective nack

Transport Layer (SSL) 3-37

 selective nack
 selective ack (TCP SACK)
 bit-vector representing entire state of receive 

window (in addition to first sequence number of 
window)

10/17/2017

Sliding Windows for Lossy FIFO Channels
 A small number of bits in packet header for 

sequence number
 Necessary and sufficient condition for correct 

operation: SW + RW ≤ MaxSeqNumoperation: SW + RW ≤ MaxSeqNum
 Necessity:

P1
Sender

0 1 2 a–1 a

send window

acknowledged unacknowledged

Source:

RW  receive window size
SW  send window size

Transport Layer (SSL) 3-38

P2
Receiver

0 1 2

delivered

Sink:
next expected

receive window

10/17/2017
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Sliding Windows for Lossy FIFO 
Channels
 Sufficiency can only 

be demonstrated by
 Interesting special 

casesbe demonstrated by 
using a formal 
method to prove that 
the protocol provides 
reliable in-order 
delivery. See 

cases
 SW = RW = 1

alternating-bit 
protocol

 SW = 7, RW = 1
out-of-order arrivals 

t t d

Transport Layer (SSL) 3-39

y
Shankar and Lam, 
ACM TOPLAS, Vol. 
14, No. 3, July 1992.

not accepted, e.g., 
HDLC

 SW = RW

10/17/2017

Sliding Windows for LRD Channels

Assumption: Packets have bounded lifetime L
 B f l h f t b Be careful how fast sequence numbers are 

consumed (i.e., by arrival of data to be sent  
into network)

(send rate)× L < MaxSeqNum
 TCP

32 bit s b s

Transport Layer (SSL) 3-40

 32-bit sequence numbers
 counts bytes
 assumes that datagrams will be discarded by IP 

if too old
10/17/2017
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Sliding Window Protocol Performance Analysis
Assumptions

 ack transmission time is negligible, TA = 0
 receiver processing time is negligible, TP = 0
 send window size is W

Go to slide 3-46

send w ndow s ze s W

.

.

.

WTf

Tf

2τ
ACKWTf

Tf

2τ

.

.

.
time

Transport Layer (SSL) 3-41

(b) WTf < 2τ + Tf(a) WTf > 2τ + Tf

.

.

10/17/2017

Performance for Error-Free Channels
Maximum utilization

1 WT f > 2τ +Tf
 


Define a = τ/Tf

    

U =

1 WT f > 2τ +Tf

WTf

Tf + 2τ
WT f ≤ 2τ +Tf



 
  

 
 
 

Transport Layer (SSL) 3-42

    

U =

1 W > 2a+ 1

W
1+ 2a

W ≤ 2a+ 1

 

 
  

 
 
 

10/17/2017

W=1 is special case of 
alternating-bit protocol
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Performance Analysis for Error-
Prone Channels
Define

Nf = Average number of transmissions per frame f g p

Maximum utilization

    

U =

1
N f

W > 2a+1

W / N f

1+ 2a
W ≤ 2a+1

 

 
  

 
 
 

Transport Layer (SSL) 3-43

 To determine Nf for two cases
 Selective repeat (optimistic performance)
 Go-back-N (pessimistic performance)

10/17/2017

Performance Analysis of Error-Prone Channels
P = probability a transmission is unsuccessful 

 Selective repeat (-> upper bound on U)
1

    

N f =
1

1− P

U =

1− P W > 2a+ 1

W(1−P)
1+ 2a

W ≤ 2a+ 1

 

 
  

 
 
 

Transport Layer (SSL) 3-44

 Go-back-N (-> lower bound on U)
Each lost frame requires the retransmission of N 
frames where 1 ≤ N ≤ W

10/17/2017
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(1 ) (1 ) i
fN iN P P

∞

= + −

With probability (1–P)Pi, a frame requires 
1+iN transmissions to succeed, for i=0,1,...

Go-back-N (cont.)

0

1

0 0

0

(1 ) (1 )

1 (1 )

11 (1 )
1

i

i i

i i

i

i

P P NP P i P

dNP P P
dP
dNP P

dP P

=

∞ ∞
−

= =

∞

=

= − + −

= + −

= + −

 



Transport Layer (SSL) 3-45

2

1
11 (1 )

(1 )

1
1

dP P

NP P
P

NP
P

−

= + −
−

= +
−
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For 2
2

1 2

f f

f f

WT T
NT T
N a

τ
τ

> +

≅ +
≅ +

1
1f
NPN

P
= +

−

From previous slide

Go-back-N (cont.)
Go to slide 3-41

Case (a)

What is N ?

(1 2 ) 1 2 1 21
1 1 1f

a P P P aP aPN
P P P

+ − + + += + = =
− − −

For  2f fWT T
N W

τ≤ + Case (b)

Transport Layer (SSL) 3-46

11
1 1f

N W
WP P WPN

P P

=
− += + =

− −

10/17/2017
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 Recall (from slide 3-43)

U =

1
N f

W > 2a+1

W / N

 

 
  


1 2
1f

aPN
P

+=
−

1 P WP+

From previous slide

Go-back-N (cont.)

    
W / N f

1+ 2a
W ≤ 2a+1 

 
 

Maximum utilization

1 2 1
1 2

P W a
P

− > +

1
1f
P WPN

P
− +=

−

Transport Layer (SSL) 3-47

1 2
(1 ) 2 1

(1 2 )(1 )

aPU
W P W a
a P WP

 +=  − ≤ +
+ − +

10/17/2017

Chapter 3 outline

 3.1 Transport-layer 
services

 3.5 Connection-oriented 
transport: TCPservices

 3.2 Multiplexing and 
demultiplexing

 3.3 Connectionless 
transport: UDP

 3.4 Principles of 
reliable data transfer

transport  TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of 
congestion control

Transport Layer (SSL) 3-48

reliable data transfer congest on control
 3.7 TCP congestion 

control

10/17/2017
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TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 reliable, in-order byte 
steam service
 no “message boundaries”

 connection-oriented
 handshaking initializes 

sender, receiver state
before data exchange g

 send and receive 
buffers

 pipelined
 send window size 

determined by TCP 
congestion and flow 
control

before data exchange
 point-to-point

 two sender-receiver pairs
 bi-directional data flows in 

same connection
 MSS: maximum segment 

size

Transport Layer (SSL) 3-49

controlsize
 less than MTU of directly 

connected network
socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

10/17/2017

TCP segment structure

source port # dest port #

32 bits

sequence number

URG: urgent data 
(generally not used)

ACK #
valid

count by bytes 
of data
(not segments)

P1                     P2
Send          Receive
Receive      Send

q m
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab.
(setup, teardown

d )

# bytes 
rcvr willing
to accept

(not segments)count in 
32-bit words
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application
data 

(variable length)

commands)

Internet
checksum

(as in UDP)
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Control info for 
both  forward 

and reverse data 
transfers
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TCP seq. #’s and ACKs
Seq. #

 sequence number of 
first byte in 

Host A Host B

User
t

y
segment’s data

ACK
 seq # of next byte 

expected from other 
side

 cumulative ACK

types
‘C’

host ACKs
receipt 

host ACKs
receipt of
‘C’, echoes

back ‘C’
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Q: how receiver handles 
out-of-order segments?
TCP spec doesn’t say,  up 

to implementor

p
of echoed

‘C’

time
simple telnet scenario
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TCP Round Trip Time and Timeout
Q: how to set TCP 

timeout value?
 longer than RTT

Q: how to estimate RTT?
 SampleRTT: measured time from 

segment transmission until ACK longer than RTT
 but RTT varies, may be 

too short or too long
 too short: premature 

timeout
 unnecessary 

retransmissions

segment transmission until ACK 
receipt
 ignore retransmissions

 SampleRTT will vary, want 
estimated RTT “smoother”
 average several recent 

measurements, not just 
current SampleRTT

Transport Layer (SSL) 3-52

retransmissions
 too long: slow reaction 

to segment loss

current SampleRTT

10/17/2017
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TCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

 E ti ll i ht d i Exponentially weighted moving average
 influence of past sample decreases 

exponentially fast
 typical value: α = 0.125

Transport Layer (SSL) 3-53
10/17/2017

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

200

250

300

R
TT

 (m
ill

is
ec

on
ds

)
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100

150

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

SampleRTT Estimated RTT
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Setting the timeout interval
 EstimtedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety 
marginmargin

 estimate how much SampleRTT deviates from 
EstimatedRTT and update
DevRTT = (1-β)*DevRTT +

β*|SampleRTT-EstimatedRTT|

Transport Layer (SSL) 3-55

TimeoutInterval = EstimatedRTT + 4*DevRTT

(typically, β = 0.25)

Then set timeout interval:

10/17/2017

Chapter 3 outline

 3.1 Transport-layer 
services

 3.5 Connection-oriented 
transport: TCPservices

 3.2 Multiplexing and 
demultiplexing

 3.3 Connectionless 
transport: UDP

 3.4 Principles of 
reliable data transfer

transport  TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of 
congestion control
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reliable data transfer congest on control
 3.7 TCP congestion 

control

10/17/2017
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TCP reliable data transfer

 TCP creates reliable 
service on top of IP’s

 Retransmissions are 
triggered by:service on top of IP s 

unreliable service

 Cumulative acks

 TCP uses single 
i i i

triggered by
 timeout events
 duplicate acks

 Initially consider 
simplified TCP sender:

Transport Layer (SSL) 3-57

retransmission timer  ignore duplicate acks
 ignore flow control, 

congestion control
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Sliding Window Protocol
At the sender, a will be pointed to by SendBase, 
and s by NextSeqNum

0 1 2 a–1 a s–1 s

send window

acknowledged unacknowledged

Source:
P1

Sender

P2 0 1 2 r

received
r + RW – 1

Sink:
next expected

Transport Layer (SSL) 3-58

Receiver
0 1 2 r

delivered receive window

RW  receive window size
SW  send window size (s - a ≤ SW)

10/17/2017
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TCP 
sender
(simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum
loop (forever) {

switch(event)

event: data received from application above 
and send window has enough room

create TCP segment with sequence number NextSeqNum 
if (timer currently not running)

start timer
pass segment to IP 
NextSeqNum = NextSeqNum + length(data) 

event: timer timeout
retransmit not-yet-acknowledged segment with 

smallest sequence number
start timer

event: ACK received with ACK field value = y
Note:

Transport Layer (SSL) 3-59

event: ACK received, with ACK field value = y 
if (y > SendBase) { 

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer;
else stop timer
} 

}  /* end of loop forever */

• y > SendBase 
means new data 
ack’ed

10/17/2017

TCP: retransmission scenario (1)
Host A Host B

SendBase
= 92

loss

ti
m

eo
ut

X lost ACK scenario

restart 
timer for 
seq= 92
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time

SendBase
= 100

Stop timer
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seq= 92
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TCP retransmission scenario (2)
Host A Host B

SendBase
= 92

loss

Se
q 

92
 t

im
eo

ut

X

SendBase
= 120

St ti

Cumulative ACK scenario
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time

Stop timer
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TCP: retransmission scenario (3)
Host A Host B

eo
ut

premature timeout scenario 
SendBase= 92

Se
q=

92
 t

im
e

SendBase
= 120

Sendbase
= 100

restart 
timer for 
seq= 92

st

restart 
timer for 
seq= 100
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time

SendBase
= 120
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stop 
timer

What does Host A 
do here?
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Fast  Retransmit
 Time-out period  often 

relatively long:
 long delay before

 If sender receives 3 
duplicate ACKs for 
h d i long delay before 

resending lost packet
 Detect lost segments 

via duplicate ACKs
 Sender often sends 

many segments back-to-
back

the same data, it 
supposes that 
segment after 
ACKed data was 
lost:
 fast retransmit:

Transport Layer (SSL) 3-63

 If segment is lost, 
there will likely be many 
duplicate ACKs.

 fast retransmit:
resend segment 
before timer expires

10/17/2017

Host A Host B

X

eo
ut

 f
or

 2
nd

se
gm

en
t
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ti
m

e

time
Resending a segment after triple duplicate ACK 
without waiting for timeout
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event: ACK received, with ACK field value = y 
if (y > SendBase) {

Fast retransmit algorithm:

if (y > SendBase) { 
SendBase = y
if (there is a not-yet-acknowledged segment)

start timer 
} 

else { 
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

Transport Layer (SSL) 3-65

( p y ) {
resend segment with sequence number y

reset timer for y
}

a duplicate ACK for 
already ACKed segment

fast retransmit
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Chapter 3 outline

 3.1 Transport-layer 
services

 3.5 Connection-oriented 
transport: TCPservices

 3.2 Multiplexing and 
demultiplexing

 3.3 Connectionless 
transport: UDP

 3.4 Principles of 
reliable data transfer

transport  TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of 
congestion control
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reliable data transfer congest on control
 3.7 TCP congestion 

control

10/17/2017



34

TCP Flow Control
receiver: explicitly informs 

sender of (dynamically 
changing) amount of 

sender won’t overrun
receiver’s buffers by

flow control

free buffer space 
 RcvWindow field in 

TCP segment header

sender: keeps amount of 
transmitted, unACKed 
data less than most 

y
transmitting too much,

too fast
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recently received 
RcvWindow value

buffer at receive side of a TCP connection
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Chapter 3 outline

 3.1 Transport-layer 
services

 3.5 Connection-oriented 
transport: TCPservices

 3.2 Multiplexing and 
demultiplexing

 3.3 Connectionless 
transport: UDP

 3.4 Principles of 
reliable data transfer

transport  TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of 
congestion control
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reliable data transfer congest on control
 3.7 TCP congestion 

control

10/17/2017
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TCP Connection Management

 initialize TCP variables
 seq. #s
 buffers, flow control 

info (e g RcvWindow)

Three way handshake

Step 1: client end system sends 
TCP SYN control segment to 
server - initial seq number 
chosen at randominfo (e.g. RcvWindow) chosen at random

Step 2: server end system  
receives SYN, replies with 
SYNACK control segment
 allocates buffers
 specifies server-to-receiver 

initial seq. # (chosen at 

Active participant
(client)

Passive participant
(server)
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random)

Step 3: client end system 
replies with ack # (likely 
piggybacked in segment with app 
data)
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TCP Connection Management (cont.)
Closing a connection:
client closes socket

client server

Step 1: client end system 
sends TCP FIN control 
message to server

Step 2: server receives 
FIN, replies with ACK. 

close

close

it
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Later no more data to 
send.  It closes connection, 
sends FIN. 

closed

ti
m

ed
 w

ai

10/17/2017
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TCP Connection Management (cont.)
Step 3: client receives FIN, 

replies with ACK and 
enters “timed wait”

client server

 will respond with ACK 
to a retransmitted FIN 
(due to loss of previous ACK)

Step 4: server receives 
ACK.  Its connection is 
closed. 

Step 5: client closes

close

close

itclosing
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Step 5: client closes 
connection at the end of 
timed wait

Note: protocol spec allows 
simultaneous FINs
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closed
ti

m
ed

 w
ai

closed

Chapter 3 outline

 3.1 Transport-layer 
services

 3.5 Connection-oriented 
transport: TCPservices

 3.2 Multiplexing and 
demultiplexing

 3.3 Connectionless 
transport: UDP

 3.4 Principles of 
reliable data transfer

transport  TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of 
congestion control
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reliable data transfer congest on control
 3.7 TCP congestion 

control

10/17/2017
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Principles of Congestion Control

Congestion:
 informally: “too many sources sending too much informally: too many sources sending too much 

data too fast for network to handle”
 different from flow control
 manifestations:

 long delays (queueing in router buffers)
 lost packets (buffer overflow at routers)

Transport Layer (SSL) 3-73

p ( ff f )
 a top-10 problem!
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Causes/costs of congestion: scenario
 four senders
 multi-hop paths
 Timeout & retransmit

λ
in

Q: what happens as      and      
increase at every 
sender?

λ'in

i i f db ksender?

finite shared output 
link buffers

Host A λin : original data
λ'in : original data plus 

retransmitted data

positive feedback 
 instability

Transport Layer (SSL) 3-74

Host B λout

10/17/2017
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Causes/costs of congestion: scenario

Host A λout

Cost of congestion
 when a packet is dropped any upstream transmission

Host B

Transport Layer (SSL) 3-75

 when a packet is dropped, any upstream transmission 
capacity used for that packet was wasted

 behavior on right side of above graph called 
congestion collapse
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Approaches towards congestion control
End-to-end congestion 

control:
li i f db k

Network-assisted 
congestion control:

 routers provide feedback no explicit feedback 
from network

 congestion inferred 
from end-system’s 
observed loss (or delay)

 approach taken by TCP

 routers provide feedback 
to end systems
 single bit indicating 

congestion, e.g., SNA, 
DECbit, ATM

 TCP/IP explicit 
congestion notification

Transport Layer (SSL) 3-76

congestion notification 
(ECN)

 explicit sending rate 
for sender

10/17/2017
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Chapter 3 outline

 3.1 Transport-layer 
services

 3.5 Connection-oriented 
transport: TCPservices

 3.2 Multiplexing and 
demultiplexing

 3.3 Connectionless 
transport: UDP

 3.4 Principles of 
reliable data transfer

transport  TCP
 segment structure
 reliable data transfer
 flow control
 connection management

 3.6 Principles of 
congestion control
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reliable data transfer congest on control
 3.7 TCP congestion 

control
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TCP Congestion Control
 end-to-end control (no network 

assistance)
 sender limits transmission:
LastByteSent-LastByteAcked

How does  sender 
determine CongWin?

 loss event = timeout
or 3 duplicate acksLastByteSent-LastByteAcked

≤ CongWin

 Roughly, the send buffer’s

where CongWin is in bytes

or 3 duplicate acks
 TCP sender reduces 
CongWin after a loss 
event

three mechanisms:
 slow start
 reduce to 1 segment 

ft tim t t

throughput  ≤ CongWin
RTT bytes/sec
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where CongWin is in bytes
and throughput is λ'in in slide 3-74

after timeout event
 AIMD (additive increase 

multiplicative decrease)

Note: For now consider RcvWindow to be very large such that the send window size is 
equal to CongWin.   They are referred to as rwnd and cwnd, respectively, in the textbook.

10/17/2017
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TCP Slow Start

 Probing for usable bandwidth

When connection begins, CongWin = 1 MSS
 Example: MSS = 500 bytes & RTT = 200 msec
 initial rate = 2500 bytes/sec = 20 kbps

l bl b d d h b M /R
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 available bandwidth may be >> MSS/RTT
 desirable to quickly ramp up to a higher rate
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TCP Slow Start (more)
 When connection 

begins, increase rate 
exponentially until 
first loss event or

Host A

TT

Host B

first loss event or 
“threshold”
 double CongWin every 

RTT
 done by incrementing 
CongWin by 1 MSS for 
every ACK received

 Summary: initial rate

R

Transport Layer (SSL) 3-80

 Summary: initial rate 
is slow but ramps up 
exponentially fast time

10/17/2017
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Congestion avoidance state & 
responses to loss events

Q: If no loss, when should 
the exponential increase 
switch to linear? 

A: When CongWin gets to 10

12

14

ow
 s

iz
e 

)

TCP
Reno

3 dup ACKs

A: When CongWin gets to 
current value of 
threshold

Implementation:
 For initial slow start, 

threshold is set to a large 
value (e.g., 64 Kbytes)

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

co
ng

es
tio

n 
w

in
do

(s
eg

m
en

ts

threshold
TCP

Tahoe
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 Subsequently, threshold is 
variable

 At a loss event, threshold is 
set to 1/2 of CongWin just 
before loss event

Transmission round

Tahoe Reno

Notes: 1. For simplicity, CongWin is in number of 
segments in the above graph. 2. Reno’s window inflation 
and deflation steps (details) omitted
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Rationale for Reno’s Fast Recovery
 After 3 dup ACKs:

 CongWin is cut in half 
(multiplicative decrease)

 3 dup ACKs indicate
network capable of ( p )

 window then grows linearly 
(additive increase)

 But after timeout event:
 CongWin is set to 1 MSS 

instead; 
 window then grows 

exponentially to a threshold

network capable of 
delivering some segments

 timeout occurring 
before 3 dup ACKs is 
“more alarming”

Transport Layer (SSL) 3-82

exponentially to a threshold, 
then grows linearly

10/17/2017

Additive Increase Multiplicative Decrease (AIMD)
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TCP Reno (example scenario) 

CongWin Timeout

halved

3 dupACKs

3-84

Initial slow start t
threshold reached 
during slow start

Transport Layer (SSL)

3 dupACKs during slow start
before reaching initial threshold
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Summary: TCP Congestion Control (Reno)
 When CongWin is below Threshold, sender in 

slow-start phase, window grows exponentially (until 
loss event or exceeding threshold)loss event or exceeding threshold).

 When CongWin is above Threshold, sender is in 
congestion-avoidance phase, window grows linearly.

 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to 
Threshold

Transport Layer (SSL) 3-84

Threshold.

 When timeout occurs, Threshold set to 
CongWin/2 and CongWin is set to 1 MSS.

10/17/2017
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AIMD in steady state (when no timeout)

multiplicative decrease:
cut CongWin in half 
after loss event (3 dup 
acks)

additive increase:
increase  CongWin by 
1 MSS every RTT in 
the absence of any

16 Kbytes

24 Kbytes

congestion
window

acks)the absence of any 
loss event: probing

What limits the average 
window size (or throughput)?

Transport Layer (SSL) 3-85

8 Kbytes

timeLong-lived TCP connection
10/17/2017

TCP Throughput limited by loss rate
 TCP average throughput (approximate) of 

send buffer under AIMD in terms of loss 
rate, L 1.22 b t / dMSSth h t ×

where MSS is number of bytes per segment
 Example: 1500-byte segments, 100ms RTT, 

to get 10 Gbps throughput, loss rate needs 
to be very low

bytes/secondthroughput
RTT L

=
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to be very low
L = 2·10-10    

New version of TCP needed for high-speed 
applications

10/17/2017
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Is TCP fair?
Two competing sessions:
 Additive increase gives slope of 1, as window size increases
 multiplicative decrease reduces window size to half 

(proportionally)(proportionally)

W equal window size 

loss: decrease window by factor of 2

Transport Layer (SSL) 3-87

WConnection 1 window size

congestion avoidance: additive 
increase

y
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Fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K

Is TCP fair?

TCP connection 1

bottleneck
router

capacity R

TCP 
connection 2
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AIMD only provides convergence to same window 
size, not necessarily same throughput rate

capacity R

10/17/2017
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No fairness in practice
UDP
 Some multimedia apps use 

UDP instead of TCP.  They
 can tolerate packet

Parallel TCP connections
 nothing prevents an app 

from opening parallel 
connections between 2 can tolerate packet 

loss,
 do not want rate 

throttled by congestion 
control – send at 
constant rate

connections between 2 
hosts.
 Web browsers do this 

Transport Layer (SSL) 3-89
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Chapter 3: Summary
 principles behind transport 

layer services:
l i l i

 instantiation and 
implementation in the 
I t tmultiplexing, 

demultiplexing
 reliable data transfer
 connection management
 flow control
 congestion control

Next:
 leaving the network 

“edge” (application

Internet
 UDP
 TCP
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 congestion control edge  (application, 
transport layers)

 into the network 
“core”
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