Chapter 3: Transport Layer

Our goals:

O understand principles
behind transport
layer services:

o multiplexing/
demultiplexing

O reliable data transfer

o flow control

O congestion control
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O learn about transport

layer protocols in the
Internet:

o UDP: connectionless
transport, unreliable
delivery of segments

O TCP: connection-oriented

transport, reliable delivery

of byte stream

Transport Layer (SSL)

3-1

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer

(my slides for Section
3.4 do not follow
Kurose & Ross)
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0 3.5 Connection-oriented

transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control
0 3.7 TCP congestion
control
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Transport services and protocols

O provide logical communication
between app processes on
different hosts

O transport protocol runs in
end systems (primarily)
O send side: breaks app
messages intfo segments,
passes to network layer

O rcv side: reassembles "#:féii'ﬁ

segments intfo messages, == o

passes to app layer ol
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Internet transport-layer protocols

application

3 unreliable, unordered
datagram delivery by UDP dara i

—{ physical

a2l

o ho-frills extension of “best- b, 4, — 1
effort" IP SR, el =

O reliable, in-order byte i@ ™ o

delivery by TCP Neab | T

O conhection setup %,

o flow control T

O congestion control  oeia | o et
7 services not available: %%ﬁ et ‘;h;.

o delay guarantees e

O bandwidth guarantees
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Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer
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0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control

0 3.7 TCP congestion
control
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Multiplexing/demultiplexing

Demultiplexing at rcv host:

deliver received segments
to correct sockets

[ 1 socket O process/thread

Multiplexing at send host:
gather data from multiple
sockets, encapsulate data wit|
header (later used for
demultiplexing)

— H H H [ ]
transport Msrpﬁ transport
network network network
link link link
physical physicat physical
host 1 host 2 host 3

10/17/2017
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How demultiplexing works

+«— 32 bits

O host receives IP datagrams
source port #| dest port #

O It uses IP addresses in layer-
3 header & port numbers in
layer-4 header to direct
segment to appropriate

socket application
data
(message)

other header fields

TCP/UDP segment format

10/17/2017
Transport Layer (SSL)  3-7

Connectionless demultiplexing

3 UDP socket identified by 0 IP datagrams from

two-tuple: different sources
(dest IP address, dest port number) directed to same UDP
socket

O When host receives UDP
segment:

o directs UDP segment to
socket with destination port
number

10/17/2017
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Connection-oriented demux

O Server has welcome and O Server may support

connection sockets
o welcome socket is
identified by server's IP
address and a port
number
0 TCP connection socket
identified by 4-tuple:
0 source IP address
O source port number
O dest IP address
O dest port number

10/17/2017

many simultaneous TCP
connection sockets with
clients:

O each connection socket
and the welcome socket
have the same port
number in server host

O receiving host uses all
four values to direct
segment to appropriate
connection socket
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Connection-oriented demux

(cont)

SP: 5775
DP: 80
S-IP: B
D-IP:C
N
SP: 9157 SP: 9157
client DP: 80 server OP: 80 Client
A | sIPA . S-IP: B IP:B
IP:C
D-IP:C D-IP:C

10/17/2017
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Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer
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0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control
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UDP: User Datagram Protocol [RFC 768]

O “"best effort” service, UDP
segments (aka datagrams)
may be:

O lost

0 delivered out of order
to appl

O connectionless:

O no handshaking between
UDP sender, receiver

O each UDP segment
handled independently
of others

10/17/2017

Length, in bytes of UDP
segment including header

+«—— 32 bits
\sQurce port #
length

dest. port #
checksum

Application
data
(message)

UDP segment format
Transport Layer (SSL) 3-12




UDP (more)

O suitable for interactive
streaming multimedia
applications

O loss tolerant
O min rate required

3 other UDP uses, e.g.
o DNS
o SNMP
o DHCP

O reliable transfer over
ubP?
add reliability in
application layer
o application-specific
error recovery
10/17/2017

Advantages of UDP

O no congestion control: UDP
can blast away as fast as
desired

0 small segment header
O ho cohnection

establishment (which can
add delay)

O simple: no connection state
at sender, receiver
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Internet checksum

Sender:

3 freat segment asa
sequence of 16-bit
intfegers (with checksum field
initialized to zero)

O add integers using 1's
complement arithmetic
and take 1's complement
of the sum

O put result as checksum
value into checksum field

O detail: pseudoheader
consisting of protocol no., IP
addresses, segment length field
(again) included in checksum
calculation

10/17/2017

Receiver:
O compute 1's complement sum

of received segment (checksum
field included)

0O check if computed sum equals

sixteen 1l's:
o NO - error detected

o YES - no error detected
But maybe errors
nonetheless? More later
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Internet Checksum Example

7 Notes

O Inones complement arithmetic, a negative integer -x is
represented as the complement of x, i.e., each bit of x is

inverted

O When adding numbers, a carryout from the most
significant bit needs to be added to the result

0 Example: add two 16-bit integers

11100
11010

11001100110
1010101 101

wraparound @1 0111

01110111011

sum 10111
checksum 01000
10/17/2017

111100
00O0O0T11
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01110
1 0001

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

(my slides do not
follow Kurose & Ross)
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0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control
0 3.7 TCP congestion
control
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Principles of Reliable data transfer

O important in application, fransport, link layers
0 lop-lo list of important networking topics!

layer
Ia %\
o2
23

(reliable channel

transport |applicatio
layer

(a) provided service

10/17/2017
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Principles of Reliable data transfer

O important in app., transport, link layers
0 top-10 list of important networking topics!

layer
Ia %\
o2
23

reliable channel

transport |application
layer

(Junreliable channel J

(a) provided service (b) service implementation

3 characteristics of unreliable channel will determine

complexity of reliable data transfer protocol (rdt)

10/17/2017
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Principles of Reliable data transfer

O important in app., fransport, link layers
O top-10 list of important networking topics!

c
el
o O
Lo 6‘ sending
8_ - rocess
o]
dt_send i
= (Jreliable channel ¥ —_sa o el
8 = reliable data reliable data
& = transfer profocol transfer protocol
g o (sending side) (receiving side)
+— udt__send{)i l rdt_rev()
Junreliable channel b)
(q) provided service (b) service implementation

O characteristics of unreliable channel will determine

complexity of reliable data transfer protocol (rdt)

10/17/2017
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Channel Abstractions

O Lossy FIFO channel
o delivers a subsequence in FIFO order

O example: delivery service provided by a
physical link

0 Lossy, reordering, duplicative (LRD)
channel

O example: delivery service provided by IP or by
UDP protocol

10/17/2017
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STOp‘and‘WGiT ARQ (automatic repeat request)

0 Error-free operation

\ \ // \ \

Receiver - .

10/17/2017
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Stop-and-wait ARQ

A Retransmission after timeout
0 Recovery from loss of frame

timeout

i i retransmission
Sendﬂ-
\ \ Time__
Receiver \Jack]

10/17/2017
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Stop-and-wait ARQ

0 Retransmission timeout . refransmission
after timeout to Sendg- ‘

recover from

loss of ack o i
O Receiver gets N b

duplicate frame Lo :'ET/

O Sequence number N YR VA
needed in frame Receiver |

Time

10/17/2017
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Stop-and-wait ARQ

0 Sequence number also needed in ack

refransmission Sender thinks this
_timeout; is an ack for frame 1

ey B N

Receiver \E \T
10/17/2017
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Stop-and-wait ARQ

0 Operation with 1-bit sequence numbers in
frames and acks bi

card
Sencer 6N - - S

ACK ACK

o L Time

% Error

Receiver ; [l -

10/17/2017
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Alternating-Bit Protocol

Sender P1 (initial state = 1a) Receiver P2 (initial state = la)

accept data

S, <o>
(g
msgs in transﬂ:1
@b @
deliver datdq| deliver data

accept data
0O Sender and Receiver specified by 4 2
communicating finite-state machines
O Notation for edge labels

-m send message m +DO <-AO
+m receive message m if it is

waiting to be received Protocol state space is
10/17/2017 infinite
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Alternating-Bit Protocol (cont.)

0 Assertion: If Sender and Receiver
communicate via lossy FIFO channels, the
alternating-bit protocol provides reliable
in-order data delivery.

0 Assumption: A frame is retransmitted
infinitely many times if it is lost infinitely
many times.

Note: A real protocol is typically designed to
retransmit a fixed number of times (say k).

10/17/2017
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Stop-and-wait ARQ performance analysis

< Te |
Sender— : 2t+ T, +Tp —

Y // Ting

Receiver | ack

ETAE

e B
T ‘ AL T
10/17/2017
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probability transmission is unsuccessful
Prob[success after i transmissions] fori=1,2,...
= P7(1-P)

oo T
[

Average number of transmissions per frame

Nf = ii b =ii P~ (1-P)

= a-pYip-

d S oy 4 o
= (1—P)¥;P =(1 P)dng

d 1 I
= PP (1-P)

= Lsz
1-P

10/17/2017
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Timeout duration T > 2t +T,+T,

Each unsuccessful transmission uses
Tf +T

Each successful transmission uses
T+2t+ T+ Tp

Average time per frame
(N =1) (T +T) + (T + 2T+ Ty + Tp)

Max. utilization (throughput) of stop-and-wait
Tf

U= =
—I_P(Tf +T)+T, +27+T,+T;

10/17/2017
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Propagation delay versus transmission time
Assume P=0,T,=0,Tp,=0
Tf

u = ——— (upper bound)
T, + 27
1 1 T
= = where a= —
2t 1+ 2a T,
1+ —
Tf
Note: ;- distance
propagation speed
T - frame length
f transm ission rate

10/17/2017
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Performance of AB protocol

O AB protocol works, but performance degrades for
channels with large delay-bandwidth product

0 example: 1 Gbps link, 15 ms prop. delay, 1KByte packet

8Kbits

T . SBKbits o .
transmit = 10%*9 bits/sec 8 microsec

8 microsec _
U= 30008 microsec O-000%7
o the protocol limits use of available bandwidth

O Note: If the sender and receiver are connected by the
Internet, then T is the end-to-end Internet delay

10/17/2017
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Pipelined protocols

Pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged packets
O range of sequence numbers must be increased
o buffering at sender and/or receiver

wﬁf{

(a) a stop-and-wail protocel in operation (b} a pipelined pretocel in operation

O Pipelined protocols: (i) concurrent logical channels
(used in ARPANET), (ii) sliding window protocol (TCP)

data packet—s

10/17/2017
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Sliding Window Protocol

0 Consider an infinite array, Source, at the
sender, and an infinite array, Sink, at the

receiver.
Source: H send window—’f

e OIS o[ [ [ [ [ s [T T[]

Sender
"— acknowledged—”‘f unacknowledgeH

next expected r+RW-1
Sink: received l
/
o, IR - TT T ]
Receiver|‘— delivered I receive window—'|

RW receive window size
SW send window size (s -a<SW)

10/17/2017
Transport Layer (SSL) 3-34

17



Sliding Windows in Action

0 Data unit r has just been received by P2
O Receive window slides forward

0 P2 sends cumulative ack with sequence
number it expects to receive next (r+3)

Source: I‘— send window—-|

sender ORI [ T T T TR T [TT T[]

|‘— acknowledged—’|‘— unacknowledged—’|
3

\\exf expected r+RwW-1

Sink: l l
Recerver 1ONIIE IR [ 1 [T [T TTTTTT]
delivered I I receive window—’|
10/17/2017
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Sliding Windows in Action

0 P1 has just received cumulative ack with
r+3 as next expected sequence number

o Send window slides forward

Source: }v send windOW—-{

sence [SIEIE IR ] [ [ T[T

}-— acknowledged—-{

next expected r+RW-1

Sink: l l
Recerver 1ONEIZA RN [T [ [ T[T TTT]
I*— delivered I receive window—'|
1071772017 Transport Layer (SSL) 3-36
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Sliding Window protocol

O Functions provided
o error control (reliable delivery)

O in-order delivery
o flow and congestion control (by varying send
window size)
0 TCP uses cumulative acks (needed for correctness)

3 Other kinds of acks (to improve performance)

O selective nack

O selective ack (TCP SACK)

O bit-vector representing entire state of receive
window (in addition to first sequence number of

window)
10/17/2017
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Sliding Windows for Lossy FIFO Channels

3 A small number of bits in packet header for

sequence number
7 Necessary and sufficient condition for correct

operation: SW + RW < MaxSeqNum

d Necessity: RW receive window size
SW send window size

Source: |'— send wi ndow—"

sener DN o[ T TTTTTTT I TTTTTTITT]
"— acknowledge‘d—’|‘— unacknowledge‘d—"

next Txpecfed

Sink:
o [ [ T[T TTTT]
| l receive window4'|

P2 ]
Receiver | delivered |

10/17/2017
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Sliding Windows for Lossy FIFO

Channels

0 Sufficiency can only
be demonstrated by
using a formal
method to prove that
the protocol provides
reliable in-order
delivery. See
Shankar and Lam,
ACM TOPLAS, Vol.
14, No. 3, July 1992.

10/17/2017

0 Interesting special

cases

OoSW=RW-=1
alternating-bit
protocol

oSW=7,RW=1
out-of-order arrivals
not accepted, e.g.,
HDLC

o SW = RW

Transport Layer (SSL) 3-39

Sliding Windows for LRD Channels

0 Assumption: Packets have bounded lifetime L

0 Be careful how fast sequence numbers are
consumed (i.e., by arrival of data fo be sent

into network)

(send rate)x L < MaxSeqNum

3 TCP

O 32-bit sequence numbers

O counts bytes

O assumes that datagrams will be discarded by IP

if oo old

10/17/2017
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Sliding Window Protocol Performance Analysis

0 Assumptions
O ack transmission time is negligible, T, = O
O receiver processing time is negligible, T, =
O send window size is W

Framg
2T

}‘_,‘_’ -
[\e]
a

WT;

timel

(@) WT,>21+ T, (b) WT; <2t + Ty

10/17/2017
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Performance for Error-Free Channels

[ Maximum utilization

1 W, >27r+T,

U=1 wr,
WT, <27+T,
T, +2r

0 Define a=1/T;

1 W>2a+1
U= W W=1 is special case of
1+2a Ws2a+1 alternating-bit protocol

10/17/2017
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Performance Analysis for Error-
Prone Channels

0 Define
N; = Average number of transmissions per frame

[ Maximum utilization

1 W 2at
— Nf
W/N,
W< 2a+1
1+ 2a

0 To determine N; for two cases
O Selective repeat (optimistic performance)
O Go-back-N (pessimistic performance)

10/17/2017
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Performance Analysis of Error-Prone Channels

P = probability a transmission is unsuccessful

1 Selective repeat (-> upper bound on U)

N -
1-P
1-P W > 2a+1
U=
1+2a

A Go-back-N (-> lower bound on U)
Each lost frame requires the retransmission of N
frames where 1 <N <W

10/17/2017
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Go-back-N (cont.)

7 With probability (1-P)P', a frame requires

1+iN transmissions to succeed, for i=0,1,..

N, = i(1+iN)(1—P)Pi

(1- P)i P+ NP(1- P)ii P!

d <
= 1+NP(1-P)——=> P
=P

i=0

= 1+ NP(l—P)i 1
P 1-P
1
= 1+ NP(1- P)m
NP
= 1+——
1-P
10/17/2017
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Go-back-N (cont.)
What is N ? From previous slide
For VVTf > 27T+ Tf Case (a) _
N, =1+
NT, = T, +2r TCP
N = 1+2a
N B 1+(1+2a)P_1—P+P+2aP_1+2aP
f 1-P 1-P 1-P

For WT, <27+T, Case (b)
N = W

WP [1-P+WP
N, = 1+ =
1-P 1-P

10/17/2017
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Go-back-N (cont.)

1 Recall (from siide 3-43) From previous slide
1 1+2aP
b N, =
— N f/ 1-P
W/N —— N _1=P+we
1+2a ! 1-P
3 Maximum utilization
(1-P
S — W >2a+1
1+2aP
Y= W(l - P)
W<2a+1
((1+2a)(1-P+WP)

10/17/2017
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Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

3 3.3 Connectionless o flow control
transport: UDP O connection management

0 3.4 Principles of 0 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

10/17/2017
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TCP: Overview

O connection-oriented

O handshaking initializes
sender, receiver state
before data exchange

3 point-to-point

O two sender-receiver pairs
O bi-directional data flows in

same conhnection

0 MSS: maximum segment

size

% less than MTU of directl

connected network
socket
door

10/17/2017

RFCs: 793, 1122, 1323, 2018, 2581

0 reliable, in-order byte
steam service
O no "message boundaries”
O send and receive
buffers
O pipelined
o send window size
determined by TCP

congestion and flow
control

__ socket
door

send buffer

receive buffer

Transport Layer (SSL) 3-49

URG: urgent data
(generally not used)

P1 P2
TCP segment structure Send | > [ Receive
Receive | ¢ | Send
32 bits
count by bytes
source port # | dest port # of date

ACK# N

valid

sequence humber

count in ~

\Eckqowledgemen’r number

(not segments)

32-bit word.
PSH: push dmw RIslF| Receive window

(generally not used)—] Mn\

# bytes

Urg data pnter rcvr willing

RST, SYN, FIN:—| OpT/ia(s (variable length)

connection estab.

to accept

(setup, teardown

commands) application Control info for
Tnternet data both forward
checksum (variable length) and reverse data
(as in UDP) transfers
10/17/2017
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TCP seq. #'s and ACKs
Seq. # @ Host A Hos‘rB@

O sequence number of
fII"ST byTe |n User Seq:42
] ’AC =
segment’s data frpes W
ACK host ACKs
E— _ receipt of
O seq # of next byte " saa=S— 'C, echoes
expected from other 70, RO back 'C
. sed
side
o cumulative ACK host ACKs
receipt Seqe
. of echoed 9%43, ACk=g
Q: how receiver handles c \
out-of-order segments?

TCP spec doesn't say, up

to implementor fime

simple telnet scenario

10/17/2017
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TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

Q: how to estimate RTT?
0 SampleRTT: measured time from

O longer than RTT segment transmission until ACK
o but RTT varies, may be receipt
too short or too long O ignhore retransmissions
O too short: premature O SamplerTT will vary, want
timeout estimated RTT “smoother”

O average several recent

O unnecessary measurements, not just
retransmissions current SampleRTT

0 too long: slow reaction
to segment loss

10/17/2017
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TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + O*SampleRTT

0 Exponentially weighted moving average

0 influence of past sample decreases
exponentially fast

O typical value: o = 0.125

10/17/2017
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Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 ~

300 -

N
a
S

RTT (milliseconds)

N
=3
1S3

150

1 8 15 22 29 36 43 50 57 64 il 78 85 92 929 106
time (seconnds)

—e— SampleRTT —=— Estimated RTT

10/17/2017
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Setting the timeout interval

0 EstimtedRTT plus “safety margin”

O large variation in EstimatedRTT -> larger safety
margin

0 estimate how much SampleRTT deviates from
EstimatedRTT and update

DevRTT = (1-f)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)
Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

10/17/2017
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Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing o reliable data transfer

3 3.3 Connectionless o flow control
transport: UDP O connection management

0 3.4 Principles of 0 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

10/17/2017
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TCP reliable data transfer

O TCP creates reliable O Refransmissions are
service on top of IP's triggered by:
unreliable service o timeout events

o duplicate acks
O Cumulative acks

O Initially consider
O TCP uses single simplified TCP sender:
retransmission timer O ignore duplicate acks

O ignore flow control,
congestion control

10/17/2017
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Sliding Window Protocol

At the sender, a will be pointed to by SendBase,
and s by NextSeqNum

Source: |<j send window —-|
sender ORI o[ [T T T s [T T TTTT]
|<7 acknowledged —>|<— unacknowledged —"
next expected r+RW-1
EES 1
el  CEREEEEEEEER [T T T T TT
|<— delivered I receive windowi>|

RW receive window size
SW send window size (s - a < SW)

10/17/2017
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NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum
loop (forever) {

switch(event) TC P

event: data received from application above d
and send window has enough room Sen er‘
create TCP segment with sequence number NextSeqNum . .r-
if (timer currently not running) (SImpl|f|ed)
start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number

start timer
ote:!
event: ACK received, with ACK field value =y Note:
. *y > SendBase
if (y > SendBase) {
SendBase = y means new data
if (there are currently not-yet-acknowledged segments) ack'ed
start timer;
else stop timer
} I* end of loop forever */
10/17/2017 Transport Layer (SSL) 3-59

TCP: retransmission scenario (1)
@Hosm Hosw@

SendBase
=92

E——
@
Q
(g
N
oo}
o
X
D
[
&
=3

lost ACK scenario

«—— timeout
X

b4

Q

%

-

\%

loss
p Seg=gy
/ ’8bytes data
restafrt
timer for
seqg= 92 _400
q ’C A0
SendBase
=100
Stop timer L
A,
time
10/17/2017
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TCP retransmission scenario (2)
@ Host A Host 8 | b

SendBase
=92

Seg=g
2,8 byteg data

Ve A0

il

3 \
o =

g 3895100, 5, PC Cumulative ACK scenario
+ S datg
~ X
(o)}

S

[Vp}

loss
SendBase ‘P@/
=120
Stop timer

time

10/17/2017
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TCP: retransmission scenario (3)

premature timeout scenario @ Host A Host 8 [Jlb
SendBase= 92

restart
timer for
restart seq= 92
timer for

seq= 100
Sendba

SendBase
=120

92 timeout—

eq=

SendBase
=120

. "\ What does Host A
time do here?

10/17/2017
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Fast Retransmit

O Time-out period often
relatively long:
O long delay before
resending lost packet
O Detect lost segments
via duplicate ACKs

O Sender often sends
many segments back-to-
back

O If segment is lost,
there will likely be many
duplicate ACKs.

10/17/2017

O If sender receives 3
duplicate ACKs for
the same data, it
supposes that
segment after
ACKed data was
lost:

o fast retransmit:
resend segment
before timer expires
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Host A

timeout for 2n segment

time

I'esend
2nd g
egment

Host B

|

Resending a segment after triple duplicate ACK

without waiting for timeout
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Fast retransmit algorithm:

event: ACK received, with ACK field value =y
if (y > SendBase) {
SendBase =y
if (there is a not-yet-acknowledged segment)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {
resend segment with sequence number y
reset timer for y

a duplicate ACK f}or' fast retransmit
already ACKed segment
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Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing o reliable data transfer

7 3.3 Connectionless o flow control
transport: UDP O connection management

0 3.4 Principles of 0 3.6 Principles of

congestion control

0 3.7 TCP congestion
control

reliable data transfer
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TCP Flow Control

flow control
sender won't overrun
receiver’'s buffers by
transmitting foo much,
too fast

+n— RevWindow —4-

data from
P

7
S 7%

0
b——— RevBuffer ———

application

receiver: explicitly informs
sender of (dynamically
changing) amount of
free buffer space
O RcvWindow field in
TCP segment header

sender: keeps amount of
transmitted, unACKed
data less than most
recently received
RcvWindow wvalue

process

buffer at receive side of a TCP connection
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Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer
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3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

Transport Layer (SSL) 3-68




TCP Connection Management

Three way handshake

O initialize TCP variables Step 1: client end system sends

O seq. #s TCP SYN control segment to
o buffers, flow control server - initial seq number
info (e.g. ReviWwindow) chosen at random
Active participant Passive participant Step 2: server end system
(client) (server) Y

receives SYN, replies with
SYNACK control segment
o allocates buffers
O specifies server-to-receiver
initial seq. # (chosen at
random)

Step 3: client end system
replies with ack # (likely

piggybacked in segment with app
data)

10/17/2017
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TCP Connection Management (cont.)

Closing a connection:
client server
client closes socket @ @

close .
Step 1: client end system N

sends TCP FIN control
message to server

"8
% close
Step 2: server receives /
FIN, replies with ACK.
&

*
Later no more data to g
send. It closes connection, 3
sends FIN. £

£
closed+
10/17/2017
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TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK and
enters “timed wait"

o will respond with ACK

to a retransmitted FIN
(due to loss of previous ACK)

Step 4: server receives
ACK. TIts connectionis
closed.

i;b client server@

los
clo em
1S
/CIOSQ
/
w‘

closing,
Step B: client closes S
cohnection at the end of =
timed wait 9 closed
£
Note: protocol spec allows +
simultaneous FINs closed—
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Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer
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0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control
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Principles of Congestion Control

Congestion:
0 informally: “too many sources sending too much
data too fast for network to handle"”
0 different from flow control
0 manifestations:
0 long delays (queueing in router buffers)
O lost packets (buffer overflow at routers)
O a top-10 problem!

10/17/2017
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Causes/costs of congestion: scenario

O four senders
O multi-hop paths
O Timeout & retransmit

Q: what happens as /1in and 7,
increase at every

sender? positive feedback
= instability

Host A

- 1. . original data
| Te4rA,: original data plus |[
retransmitted data

finite shared output

A{Quﬁers
: > “drvrm|

LT

Host B ﬂout

l %

jé' T
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Causes/costs of congestion: scenario
cro4d

)\‘ouT

KI
in
Cost of congestion

< when a packet is dropped, any upstream transmission
capacity used for that packet was wasted

« behavior on right side of above graph called
congestion collapse

10/17/2017
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Approaches towards congestion control

Network-assisted
congestion control:
O routers provide feedback
to end systems
O single bit indicating
congestion, e.g., SNA,
DECbit, ATM
o TCP/IP explicit
congestion notification
(ECN)
o explicit sending rate
for sender

End-to-end congestion
control:

O no explicit feedback
from network

O congestion inferred
from end-system's
observed loss (or delay)

O approach taken by TCP

10/17/2017
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Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer
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0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control
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TCP Congestion Control

0 end-to-end control (no network ~ How does sender

assistance)

0 sender limits fransmission:
LastByteSent-LastByteAcked
< CongWin

0 Roughly, the send buffer's

determine CongWin?
O loss event = timeout
or 3 duplicate acks
O TCP sender reduces
CongWin after a loss
event

CongWin

throughput <= oot

bytes/sec

three mechanisms:
o slow start

where CongWin is in bytes

and throughput is A, in slide 3-74

O reduce to 1 segment
after timeout event

o AIMD (additive increase
multiplicative decrease)

Note: For now consider RcvWindow to be very large such that the send window size is
equal to CongWin. They are referred to as rwnd and cwnd, respectively, in the textbook.
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TCP Slow Start

O Probing for usable bandwidth

0 When connection begins, CongWin = 1 MSS
O Example: MSS = 500 bytes & RTT = 200 msec
Q initial rate = 2500 bytes/sec = 20 kbps

O available bandwidth may be >> MSS/RTT
o desirable to quickly ramp up to a higher rate

10/17/2017
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TCP Slow Start (more)

0 When connection @Hosf A Host B@
begins, increase rate

exponentially until Lt seament |
first loss event or o
“threshold" ' ﬁ
O double CongWin every \
RTT
O done by incrementin four se,
CongWin by 1 MSS for ents

every ACK received
0 Summary: initial rate
is slow but ramps up
exponentially fast Tiine
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Transport Layer (SSL) 3-80

40



Congestion avoidance state &

responses to loss events

Q: If no loss, when should
the exponential increase
switch to linear?

A: When CongWin gets to
current value of
threshold

Implementation:

O For initial slow start,
threshold is set to a large
value (e.g., 64 Kbytes)

O Subsequently, threshold is
variable

O At aloss event, threshold is
set to 1/2 of CongWin just
before loss event

10/17/2017

congestion window size

3 dup ACKs
14
12
__ 10
[}
€ gr-----—gfoooo-
£
5 6 '\ )
°
4 thresdd
2 TCP
0 Tahoe

123 45 6 7 8 910112131415

Transmission round

—*Tahoe ™ Reno

Notes: 1. For simplicity, CongWin is in number of
segments in the above graph. 2. Reno’s window inflation
and deflation steps (details) omitted
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Rationale for Reno's Fast Recovery

0 3 dup ACKs indicate
network capable of
delivering some segments

O timeout occurring
before 3 dup ACKs is
"more alarming”

0 After 3 dup ACKs:
O CongWin is cut in half
(multiplicative decrease)
o window then grows linearly
(additive increase)
O But after timeout event:
O CongWin is set to 1 MSS
instead;
O window then grows
exponentially to a threshold,
then grows linearly

Additive Increase Multiplicative Decrease (AIMD)

10/17/2017
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TCP Reno (example scenario)

CongWin

3 dupACKs

halved

Timeout

AN "

| Initial slow start |

3 dupACKs during slow start
before reaching initial threshold
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threshold reached
during slow start
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Summary: TCP Congestion Control (Reno)

O When CongWin is below Threshold, sender in

slow-start phase, window grows exponentially (until
loss event or exceeding threshold).

0 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

0 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to

Threshold.

0 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

10/17/2017

Transport Layer (SSL) 3-84

42



AIMD in steady state (when no timeout)

additive increase: multiplicative decrease:
increase CongWin by cut CongWin in half
1 MSS every RTT in after loss event (3 dup
the absence of any acks)
loss event: probing
congestion What limits the average
24 Koytos window size (or throughput)?

16 Kbytes —

8 Kbytes —

time

Long-Tived TCP connection

10/17/2017
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TCP Throughput limited by loss rate

0 TCP average throughput (approximate) of
send buffer under AIMD in terms of loss

rate, L S
throughput = 1.22XMSS bytes/second
RTT/L

where MSS is number of bytes per segment
0 Example: 1500-byte segments, 100ms RTT,
to get 10 Gbps throughput, loss rate needs
to be very low
L = 2:10-10
O New version of TCP needed for high-speed
applications

10/17/2017
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Is TCP fair?

Two competing sessions:
O Additive increase gives slope of 1, as window size increases

O multiplicative decrease reduces window size to half
(proportionally)

w equal window size

N

@

2

o

o

£

I loss: decrease window by factor of 2
s congestion avoidance: additive
5 increase

Q

<

<

(o]

(V]

Connection 1 window size W
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Is TCP fair?

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

connection 2 capacity R

AIMD only provides convergence to same window
size, not necessarily same throughput rate

10/17/2017
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No fairness in practice

ubP Parallel TCP connections
0 Some multimedia apps use A nofhing prevents an app
UDP instead of TCP. They fruom opening par!a”el
O can tolerate packet connections between 2
loss, hosts.
O do not want rate O Web browsers do this

throttled by congestion
control - send at
constant rate
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Chapter 3: Summary

O principles behind transport g instantiation and

layer services: implementation in the

o multiplexing, Internet
demultiplexing o UDP

o reliable data transfer o TCP

O connection management  Next:

o flow control 0 leaving the network

O congestion control “edge"” (application,

transport layers)

0 into the network
“Cor‘e"
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