Chapter 3: Transport Layer

Our goals:

O understand principles
behind transport
layer services:

o multiplexing/
demultiplexing

O reliable data transfer

o flow control

O congestion control

10/17/2017

O learn about transport

layer protocols in the
Internet:

o UDP: connectionless
transport, unreliable
delivery of segments

O TCP: connection-oriented

transport, reliable delivery

of byte stream

Transport Layer (SSL)

3-1

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer

(my slides for Section
3.4 do not follow
Kurose & Ross)

10/17/2017

0 3.5 Connection-oriented

transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer (SSL)

3-2




Transport services and protocols

O provide logical communication
between app processes on
different hosts

O transport protocol runs in
end systems (primarily)
O send side: breaks app
messages intfo segments,
passes to network layer

O rcv side: reassembles "#:féii'ﬁ

segments intfo messages, == o

passes to app layer ol

10/17/2017
Transport Layer (SSL)  3-3

Internet transport-layer protocols

application

3 unreliable, unordered
datagram delivery by UDP dara i

—{ physical

a2l

o ho-frills extension of “best- b, 4, — 1
effort" IP SR, el =

O reliable, in-order byte i@ ™ o

delivery by TCP Neab | T

O conhection setup %,

o flow control T

O congestion control  oeia | o et
7 services not available: %%ﬁ et ‘;h;.

o delay guarantees e

O bandwidth guarantees

10/17/2017
Transport Layer (SSL)  3-4




Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer

10/17/2017

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

Transport Layer (SSL)  3-5

Multiplexing/demultiplexing

Demultiplexing at rcv host:

deliver received segments
to correct sockets

[ 1 socket O process/thread

Multiplexing at send host:
gather data from multiple
sockets, encapsulate data wit|
header (later used for
demultiplexing)

— H H H [ ]
transport Msrpﬁ transport
network network network
link link link
physical physicat physical
host 1 host 2 host 3

10/17/2017

Transport Layer (SSL)  3-6




How demultiplexing works

+«— 32 bits

O host receives IP datagrams
source port #| dest port #

O It uses IP addresses in layer-
3 header & port numbers in
layer-4 header to direct
segment to appropriate

socket application
data
(message)

other header fields

TCP/UDP segment format

10/17/2017
Transport Layer (SSL)  3-7

Connectionless demultiplexing

3 UDP socket identified by 0 IP datagrams from

two-tuple: different sources
(dest IP address, dest port number) directed to same UDP
socket

O When host receives UDP
segment:

o directs UDP segment to
socket with destination port
number

10/17/2017
Transport Layer (SSL) 3-8




Connection-oriented demux

O Server has welcome and O Server may support

connection sockets
o welcome socket is
identified by server's IP
address and a port
number
0 TCP connection socket
identified by 4-tuple:
0 source IP address
O source port number
O dest IP address
O dest port number

10/17/2017

many simultaneous TCP
connection sockets with
clients:

O each connection socket
and the welcome socket
have the same port
number in server host

O receiving host uses all
four values to direct
segment to appropriate
connection socket

Transport Layer (SSL)  3-9

Connection-oriented demux

(cont)

SP: 5775
DP: 80
S-IP: B
D-IP:C
N
SP: 9157 SP: 9157
client DP: 80 server OP: 80 Client
A | sIPA . S-IP: B IP:B
IP:C
D-IP:C D-IP:C

10/17/2017

Transport Layer (SSL) 3-10




Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer

10/17/2017

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer (SSL) 3-11

UDP: User Datagram Protocol [RFC 768]

O “"best effort” service, UDP
segments (aka datagrams)
may be:

O lost

0 delivered out of order
to appl

O connectionless:

O no handshaking between
UDP sender, receiver

O each UDP segment
handled independently
of others

10/17/2017

Length, in bytes of UDP
segment including header

+«—— 32 bits
\sQurce port #
length

dest. port #
checksum

Application
data
(message)

UDP segment format
Transport Layer (SSL) 3-12




UDP (more)

O suitable for interactive
streaming multimedia
applications

O loss tolerant
O min rate required

3 other UDP uses, e.g.
o DNS
o SNMP
o DHCP

O reliable transfer over
ubP?
add reliability in
application layer
o application-specific
error recovery
10/17/2017

Advantages of UDP

O no congestion control: UDP
can blast away as fast as
desired

0 small segment header
O ho cohnection

establishment (which can
add delay)

O simple: no connection state
at sender, receiver

Transport Layer (SSL) 3-13

Internet checksum

Sender:

3 freat segment asa
sequence of 16-bit
intfegers (with checksum field
initialized to zero)

O add integers using 1's
complement arithmetic
and take 1's complement
of the sum

O put result as checksum
value into checksum field

O detail: pseudoheader
consisting of protocol no., IP
addresses, segment length field
(again) included in checksum
calculation

10/17/2017

Receiver:
O compute 1's complement sum

of received segment (checksum
field included)

0O check if computed sum equals

sixteen 1l's:
o NO - error detected

o YES - no error detected
But maybe errors
nonetheless? More later

Transport Layer (SSL) 3-14




Internet Checksum Example

7 Notes

O Inones complement arithmetic, a negative integer -x is
represented as the complement of x, i.e., each bit of x is

inverted

O When adding numbers, a carryout from the most
significant bit needs to be added to the result

0 Example: add two 16-bit integers

11100
11010

11001100110
1010101 101

wraparound @1 0111

01110111011

sum 10111
checksum 01000
10/17/2017

111100
00O0O0T11

Transport Layer (SSL) 3-15

01110
1 0001

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

0 3.4 Principles of
reliable data transfer

(my slides do not
follow Kurose & Ross)

10/17/2017

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
3 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer (SSL) 3-16




Principles of Reliable data transfer

O important in application, fransport, link layers
0 lop-lo list of important networking topics!

layer
Ia %\
o2
23

(reliable channel

transport |applicatio
layer

(a) provided service

10/17/2017
Transport Layer (SSL) 3-17

Principles of Reliable data transfer

O important in app., transport, link layers
0 top-10 list of important networking topics!

layer
Ia %\
o2
23

reliable channel

transport |application
layer

(Junreliable channel J

(a) provided service (b) service implementation

3 characteristics of unreliable channel will determine

complexity of reliable data transfer protocol (rdt)

10/17/2017
Transport Layer (SSL) 3-18




Principles of Reliable data transfer

O important in app., fransport, link layers
O top-10 list of important networking topics!

c
el
o O
Lo 6‘ sending
8_ - rocess
o]
dt_send i
= (Jreliable channel ¥ —_sa o el
8 = reliable data reliable data
& = transfer profocol transfer protocol
g o (sending side) (receiving side)
+— udt__send{)i l rdt_rev()
Junreliable channel b)
(q) provided service (b) service implementation

O characteristics of unreliable channel will determine

complexity of reliable data transfer protocol (rdt)

10/17/2017
Transport Layer (SSL) 3-19

Channel Abstractions

O Lossy FIFO channel
o delivers a subsequence in FIFO order

O example: delivery service provided by a
physical link

0 Lossy, reordering, duplicative (LRD)
channel

O example: delivery service provided by IP or by
UDP protocol

10/17/2017
Transport Layer (SSL) 3-20

10



STOp‘and‘WGiT ARQ (automatic repeat request)

0 Error-free operation

\ \ // \ \

Receiver - .

10/17/2017
Transport Layer (SSL) 3-21

Stop-and-wait ARQ

A Retransmission after timeout
0 Recovery from loss of frame

timeout

i i retransmission
Sendﬂ-
\ \ Time__
Receiver \Jack]

10/17/2017
Transport Layer (SSL) 3-22

11



Stop-and-wait ARQ

0 Retransmission timeout . refransmission
after timeout to Sendg- ‘

recover from

loss of ack o i
O Receiver gets N b

duplicate frame Lo :'ET/

O Sequence number N YR VA
needed in frame Receiver |

Time

10/17/2017
Transport Layer (SSL) 3-23

Stop-and-wait ARQ

0 Sequence number also needed in ack

refransmission Sender thinks this
_timeout; is an ack for frame 1

ey B N

Receiver \E \T
10/17/2017

Transport Layer (SSL) 3-24

12



Stop-and-wait ARQ

0 Operation with 1-bit sequence numbers in
frames and acks bi

card
Sencer 6N - - S

ACK ACK

o L Time

% Error

Receiver ; [l -

10/17/2017
Transport Layer (SSL) 3-25

Alternating-Bit Protocol

Sender P1 (initial state = 1a) Receiver P2 (initial state = la)

accept data

S, <o>
(g
msgs in transﬂ:1
@b @
deliver datdq| deliver data

accept data
0O Sender and Receiver specified by 4 2
communicating finite-state machines
O Notation for edge labels

-m send message m +DO <-AO
+m receive message m if it is

waiting to be received Protocol state space is
10/17/2017 infinite

Transport Layer (SSL) 3-26

13



Alternating-Bit Protocol (cont.)

0 Assertion: If Sender and Receiver
communicate via lossy FIFO channels, the
alternating-bit protocol provides reliable
in-order data delivery.

0 Assumption: A frame is retransmitted
infinitely many times if it is lost infinitely
many times.

Note: A real protocol is typically designed to
retransmit a fixed number of times (say k).

10/17/2017
Transport Layer (SSL) 3-27

Stop-and-wait ARQ performance analysis

< Te |
Sender— : 2t+ T, +Tp —

Y // Ting

Receiver | ack

ETAE

e B
T ‘ AL T
10/17/2017
Transport Layer (SSL) 3-28

14



probability transmission is unsuccessful
Prob[success after i transmissions] fori=1,2,...
= P7(1-P)

oo T
[

Average number of transmissions per frame

Nf = ii b =ii P~ (1-P)

= a-pYip-

d S oy 4 o
= (1—P)¥;P =(1 P)dng

d 1 I
= PP (1-P)

= Lsz
1-P

10/17/2017
Transport Layer (SSL) 3-29

Timeout duration T > 2t +T,+T,

Each unsuccessful transmission uses
Tf +T

Each successful transmission uses
T+2t+ T+ Tp

Average time per frame
(N =1) (T +T) + (T + 2T+ Ty + Tp)

Max. utilization (throughput) of stop-and-wait
Tf

U= =
—I_P(Tf +T)+T, +27+T,+T;

10/17/2017
Transport Layer (SSL) 3-30

15



Propagation delay versus transmission time
Assume P=0,T,=0,Tp,=0
Tf

u = ——— (upper bound)
T, + 27
1 1 T
= = where a= —
2t 1+ 2a T,
1+ —
Tf
Note: ;- distance
propagation speed
T - frame length
f transm ission rate

10/17/2017
Transport Layer (SSL)  3-31

Performance of AB protocol

O AB protocol works, but performance degrades for
channels with large delay-bandwidth product

0 example: 1 Gbps link, 15 ms prop. delay, 1KByte packet

8Kbits

T . SBKbits o .
transmit = 10%*9 bits/sec 8 microsec

8 microsec _
U= 30008 microsec O-000%7
o the protocol limits use of available bandwidth

O Note: If the sender and receiver are connected by the
Internet, then T is the end-to-end Internet delay

10/17/2017
Transport Layer (SSL) 3-32

16



Pipelined protocols

Pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged packets
O range of sequence numbers must be increased
o buffering at sender and/or receiver

wﬁf{

(a) a stop-and-wail protocel in operation (b} a pipelined pretocel in operation

O Pipelined protocols: (i) concurrent logical channels
(used in ARPANET), (ii) sliding window protocol (TCP)

data packet—s

10/17/2017
Transport Layer (SSL) 3-33

Sliding Window Protocol

0 Consider an infinite array, Source, at the
sender, and an infinite array, Sink, at the

receiver.
Source: H send window—’f

e OIS o[ [ [ [ [ s [T T[]

Sender
"— acknowledged—”‘f unacknowledgeH

next expected r+RW-1
Sink: received l
/
o, IR - TT T ]
Receiver|‘— delivered I receive window—'|

RW receive window size
SW send window size (s -a<SW)

10/17/2017
Transport Layer (SSL) 3-34

17



Sliding Windows in Action

0 Data unit r has just been received by P2
O Receive window slides forward

0 P2 sends cumulative ack with sequence
number it expects to receive next (r+3)

Source: I‘— send window—-|

sender ORI [ T T T TR T [TT T[]

|‘— acknowledged—’|‘— unacknowledged—’|
3

\\exf expected r+RwW-1

Sink: l l
Recerver 1ONIIE IR [ 1 [T [T TTTTTT]
delivered I I receive window—’|
10/17/2017
Transport Layer (SSL) 3-35

Sliding Windows in Action

0 P1 has just received cumulative ack with
r+3 as next expected sequence number

o Send window slides forward

Source: }v send windOW—-{

sence [SIEIE IR ] [ [ T[T

}-— acknowledged—-{

next expected r+RW-1

Sink: l l
Recerver 1ONEIZA RN [T [ [ T[T TTT]
I*— delivered I receive window—'|
1071772017 Transport Layer (SSL) 3-36

18



Sliding Window protocol

O Functions provided
o error control (reliable delivery)

O in-order delivery
o flow and congestion control (by varying send
window size)
0 TCP uses cumulative acks (needed for correctness)

3 Other kinds of acks (to improve performance)

O selective nack

O selective ack (TCP SACK)

O bit-vector representing entire state of receive
window (in addition to first sequence number of

window)
10/17/2017

Transport Layer (SSL) 3-37

Sliding Windows for Lossy FIFO Channels

3 A small number of bits in packet header for

sequence number
7 Necessary and sufficient condition for correct

operation: SW + RW < MaxSeqNum

d Necessity: RW receive window size
SW send window size

Source: |'— send wi ndow—"

sener DN o[ T TTTTTTT I TTTTTTITT]
"— acknowledge‘d—’|‘— unacknowledge‘d—"

next Txpecfed

Sink:
o [ [ T[T TTTT]
| l receive window4'|

P2 ]
Receiver | delivered |

10/17/2017
Transport Layer (SSL) 3-38

19



Sliding Windows for Lossy FIFO

Channels

0 Sufficiency can only
be demonstrated by
using a formal
method to prove that
the protocol provides
reliable in-order
delivery. See
Shankar and Lam,
ACM TOPLAS, Vol.
14, No. 3, July 1992.

10/17/2017

0 Interesting special

cases

OoSW=RW-=1
alternating-bit
protocol

oSW=7,RW=1
out-of-order arrivals
not accepted, e.g.,
HDLC

o SW = RW

Transport Layer (SSL) 3-39

Sliding Windows for LRD Channels

0 Assumption: Packets have bounded lifetime L

0 Be careful how fast sequence numbers are
consumed (i.e., by arrival of data fo be sent

into network)

(send rate)x L < MaxSeqNum

3 TCP

O 32-bit sequence numbers

O counts bytes

O assumes that datagrams will be discarded by IP

if oo old

10/17/2017

Transport Layer (SSL) 3-40

20



Sliding Window Protocol Performance Analysis

0 Assumptions
O ack transmission time is negligible, T, = O
O receiver processing time is negligible, T, =
O send window size is W

Framg
2T

}‘_,‘_’ -
[\e]
a

WT;

timel

(@) WT,>21+ T, (b) WT; <2t + Ty

10/17/2017
Transport Layer (SSL)  3-41

Performance for Error-Free Channels

[ Maximum utilization

1 W, >27r+T,

U=1 wr,
WT, <27+T,
T, +2r

0 Define a=1/T;

1 W>2a+1
U= W W=1 is special case of
1+2a Ws2a+1 alternating-bit protocol

10/17/2017
Transport Layer (SSL) 3-42

21



Performance Analysis for Error-
Prone Channels

0 Define
N; = Average number of transmissions per frame

[ Maximum utilization

1 W 2at
— Nf
W/N,
W< 2a+1
1+ 2a

0 To determine N; for two cases
O Selective repeat (optimistic performance)
O Go-back-N (pessimistic performance)

10/17/2017
Transport Layer (SSL) 3-43

Performance Analysis of Error-Prone Channels

P = probability a transmission is unsuccessful

1 Selective repeat (-> upper bound on U)

N -
1-P
1-P W > 2a+1
U=
1+2a

A Go-back-N (-> lower bound on U)
Each lost frame requires the retransmission of N
frames where 1 <N <W

10/17/2017
Transport Layer (SSL) 3-44

22



Go-back-N (cont.)

7 With probability (1-P)P', a frame requires

1+iN transmissions to succeed, for i=0,1,..

N, = i(1+iN)(1—P)Pi

(1- P)i P+ NP(1- P)ii P!

d <
= 1+NP(1-P)——=> P
=P

i=0

= 1+ NP(l—P)i 1
P 1-P
1
= 1+ NP(1- P)m
NP
= 1+——
1-P
10/17/2017
Transport Layer (SSL) 3-45
Go-back-N (cont.)
What is N ? From previous slide
For VVTf > 27T+ Tf Case (a) _
N, =1+
NT, = T, +2r TCP
N = 1+2a
N B 1+(1+2a)P_1—P+P+2aP_1+2aP
f 1-P 1-P 1-P

For WT, <27+T, Case (b)
N = W

WP [1-P+WP
N, = 1+ =
1-P 1-P

10/17/2017

Transport Layer (SSL) 3-46

23



Go-back-N (cont.)

1 Recall (from siide 3-43) From previous slide
1 1+2aP
b N, =
— N f/ 1-P
W/N —— N _1=P+we
1+2a ! 1-P
3 Maximum utilization
(1-P
S — W >2a+1
1+2aP
Y= W(l - P)
W<2a+1
((1+2a)(1-P+WP)

10/17/2017
Transport Layer (SSL) 3-47

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing O reliable data transfer

3 3.3 Connectionless o flow control
transport: UDP O connection management

0 3.4 Principles of 0 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

10/17/2017
Transport Layer (SSL) 3-48

24



TCP: Overview

O connection-oriented

O handshaking initializes
sender, receiver state
before data exchange

3 point-to-point

O two sender-receiver pairs
O bi-directional data flows in

same conhnection

0 MSS: maximum segment

size

% less than MTU of directl

connected network
socket
door

10/17/2017

RFCs: 793, 1122, 1323, 2018, 2581

0 reliable, in-order byte
steam service
O no "message boundaries”
O send and receive
buffers
O pipelined
o send window size
determined by TCP

congestion and flow
control

__ socket
door

send buffer

receive buffer

Transport Layer (SSL) 3-49

URG: urgent data
(generally not used)

P1 P2
TCP segment structure Send | > [ Receive
Receive | ¢ | Send
32 bits
count by bytes
source port # | dest port # of date

ACK# N

valid

sequence humber

count in ~

\Eckqowledgemen’r number

(not segments)

32-bit word.
PSH: push dmw RIslF| Receive window

(generally not used)—] Mn\

# bytes

Urg data pnter rcvr willing

RST, SYN, FIN:—| OpT/ia(s (variable length)

connection estab.

to accept

(setup, teardown

commands) application Control info for
Tnternet data both forward
checksum (variable length) and reverse data
(as in UDP) transfers
10/17/2017

Transport Layer (SSL) 3-50

25



TCP seq. #'s and ACKs
Seq. # @ Host A Hos‘rB@

O sequence number of
fII"ST byTe |n User Seq:42
] ’AC =
segment’s data frpes W
ACK host ACKs
E— _ receipt of
O seq # of next byte " saa=S— 'C, echoes
expected from other 70, RO back 'C
. sed
side
o cumulative ACK host ACKs
receipt Seqe
. of echoed 9%43, ACk=g
Q: how receiver handles c \
out-of-order segments?

TCP spec doesn't say, up

to implementor fime

simple telnet scenario

10/17/2017
Transport Layer (SSL) 3-51

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

Q: how to estimate RTT?
0 SampleRTT: measured time from

O longer than RTT segment transmission until ACK
o but RTT varies, may be receipt
too short or too long O ignhore retransmissions
O too short: premature O SamplerTT will vary, want
timeout estimated RTT “smoother”

O average several recent

O unnecessary measurements, not just
retransmissions current SampleRTT

0 too long: slow reaction
to segment loss

10/17/2017
Transport Layer (SSL) 3-52

26



TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + O*SampleRTT

0 Exponentially weighted moving average

0 influence of past sample decreases
exponentially fast

O typical value: o = 0.125

10/17/2017
Transport Layer (SSL) 3-53

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 ~

300 -

N
a
S

RTT (milliseconds)

N
=3
1S3

150

1 8 15 22 29 36 43 50 57 64 il 78 85 92 929 106
time (seconnds)

—e— SampleRTT —=— Estimated RTT

10/17/2017
Transport Layer (SSL) 3-54

27



Setting the timeout interval

0 EstimtedRTT plus “safety margin”

O large variation in EstimatedRTT -> larger safety
margin

0 estimate how much SampleRTT deviates from
EstimatedRTT and update

DevRTT = (1-f)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)
Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

10/17/2017
Transport Layer (SSL) 3-55

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing o reliable data transfer

3 3.3 Connectionless o flow control
transport: UDP O connection management

0 3.4 Principles of 0 3.6 Principles of

reliable data transfer congestion control
0 3.7 TCP congestion

control

10/17/2017
Transport Layer (SSL) 3-56




TCP reliable data transfer

O TCP creates reliable O Refransmissions are
service on top of IP's triggered by:
unreliable service o timeout events

o duplicate acks
O Cumulative acks

O Initially consider
O TCP uses single simplified TCP sender:
retransmission timer O ignore duplicate acks

O ignore flow control,
congestion control

10/17/2017
Transport Layer (SSL) 3-57

Sliding Window Protocol

At the sender, a will be pointed to by SendBase,
and s by NextSeqNum

Source: |<j send window —-|
sender ORI o[ [T T T s [T T TTTT]
|<7 acknowledged —>|<— unacknowledged —"
next expected r+RW-1
EES 1
el  CEREEEEEEEER [T T T T TT
|<— delivered I receive windowi>|

RW receive window size
SW send window size (s - a < SW)

10/17/2017
Transport Layer (SSL) 3-58

29



NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum
loop (forever) {

switch(event) TC P

event: data received from application above d
and send window has enough room Sen er‘
create TCP segment with sequence number NextSeqNum . .r-
if (timer currently not running) (SImpl|f|ed)
start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number

start timer
ote:!
event: ACK received, with ACK field value =y Note:
. *y > SendBase
if (y > SendBase) {
SendBase = y means new data
if (there are currently not-yet-acknowledged segments) ack'ed
start timer;
else stop timer
} I* end of loop forever */
10/17/2017 Transport Layer (SSL) 3-59

TCP: retransmission scenario (1)
@Hosm Hosw@

SendBase
=92

E——
@
Q
(g
N
oo}
o
X
D
[
&
=3

lost ACK scenario

«—— timeout
X

b4

Q

%

-

\%

loss
p Seg=gy
/ ’8bytes data
restafrt
timer for
seqg= 92 _400
q ’C A0
SendBase
=100
Stop timer L
A,
time
10/17/2017

Transport Layer (SSL) 3-60

30



TCP retransmission scenario (2)
@ Host A Host 8 | b

SendBase
=92

Seg=g
2,8 byteg data

Ve A0

il

3 \
o =

g 3895100, 5, PC Cumulative ACK scenario
+ S datg
~ X
(o)}

S

[Vp}

loss
SendBase ‘P@/
=120
Stop timer

time

10/17/2017
Transport Layer (SSL) 3-61

TCP: retransmission scenario (3)

premature timeout scenario @ Host A Host 8 [Jlb
SendBase= 92

restart
timer for
restart seq= 92
timer for

seq= 100
Sendba

SendBase
=120

92 timeout—

eq=

SendBase
=120

. "\ What does Host A
time do here?

10/17/2017
Transport Layer (SSL) 3-62

31



Fast Retransmit

O Time-out period often
relatively long:
O long delay before
resending lost packet
O Detect lost segments
via duplicate ACKs

O Sender often sends
many segments back-to-
back

O If segment is lost,
there will likely be many
duplicate ACKs.

10/17/2017

O If sender receives 3
duplicate ACKs for
the same data, it
supposes that
segment after
ACKed data was
lost:

o fast retransmit:
resend segment
before timer expires

Transport Layer (SSL) 3-63

Host A

timeout for 2n segment

time

I'esend
2nd g
egment

Host B

|

Resending a segment after triple duplicate ACK

without waiting for timeout
10/17/2017

Transport Layer (SSL) 3-64

32



Fast retransmit algorithm:

event: ACK received, with ACK field value =y
if (y > SendBase) {
SendBase =y
if (there is a not-yet-acknowledged segment)
start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {
resend segment with sequence number y
reset timer for y

a duplicate ACK f}or' fast retransmit
already ACKed segment

10/17/2017
Transport Layer (SSL) 3-65

Chapter 3 outline

0 3.1 Transport-layer 0 3.5 Connection-oriented
services transport: TCP

0 3.2 Multiplexing and O segment structure
demultiplexing o reliable data transfer

7 3.3 Connectionless o flow control
transport: UDP O connection management

0 3.4 Principles of 0 3.6 Principles of

congestion control

0 3.7 TCP congestion
control

reliable data transfer

10/17/2017
Transport Layer (SSL) 3-66

33



TCP Flow Control

flow control
sender won't overrun
receiver’'s buffers by
transmitting foo much,
too fast

+n— RevWindow —4-

data from
P

7
S 7%

0
b——— RevBuffer ———

application

receiver: explicitly informs
sender of (dynamically
changing) amount of
free buffer space
O RcvWindow field in
TCP segment header

sender: keeps amount of
transmitted, unACKed
data less than most
recently received
RcvWindow wvalue

process

buffer at receive side of a TCP connection

10/17/2017

Transport Layer (SSL) 3-67

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer

10/17/2017

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

0 3.7 TCP congestion
control

Transport Layer (SSL) 3-68




TCP Connection Management

Three way handshake

O initialize TCP variables Step 1: client end system sends

O seq. #s TCP SYN control segment to
o buffers, flow control server - initial seq number
info (e.g. ReviWwindow) chosen at random
Active participant Passive participant Step 2: server end system
(client) (server) Y

receives SYN, replies with
SYNACK control segment
o allocates buffers
O specifies server-to-receiver
initial seq. # (chosen at
random)

Step 3: client end system
replies with ack # (likely

piggybacked in segment with app
data)

10/17/2017
Transport Layer (SSL) 3-69

TCP Connection Management (cont.)

Closing a connection:
client server
client closes socket @ @

close .
Step 1: client end system N

sends TCP FIN control
message to server

"8
% close
Step 2: server receives /
FIN, replies with ACK.
&

*
Later no more data to g
send. It closes connection, 3
sends FIN. £

£
closed+
10/17/2017

Transport Layer (SSL) 3-70




TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK and
enters “timed wait"

o will respond with ACK

to a retransmitted FIN
(due to loss of previous ACK)

Step 4: server receives
ACK. TIts connectionis
closed.

i;b client server@

los
clo em
1S
/CIOSQ
/
w‘

closing,
Step B: client closes S
cohnection at the end of =
timed wait 9 closed
£
Note: protocol spec allows +
simultaneous FINs closed—

10/17/2017

Transport Layer (SSL) 3-71

Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer

10/17/2017

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer (SSL) 3-72

36



Principles of Congestion Control

Congestion:
0 informally: “too many sources sending too much
data too fast for network to handle"”
0 different from flow control
0 manifestations:
0 long delays (queueing in router buffers)
O lost packets (buffer overflow at routers)
O a top-10 problem!

10/17/2017
Transport Layer (SSL) 3-73

Causes/costs of congestion: scenario

O four senders
O multi-hop paths
O Timeout & retransmit

Q: what happens as /1in and 7,
increase at every

sender? positive feedback
= instability

Host A

- 1. . original data
| Te4rA,: original data plus |[
retransmitted data

finite shared output

A{Quﬁers
: > “drvrm|

LT

Host B ﬂout

l %

jé' T

10/17/2017

Transport Layer (SSL) 3-74

37



Causes/costs of congestion: scenario
cro4d

)\‘ouT

KI
in
Cost of congestion

< when a packet is dropped, any upstream transmission
capacity used for that packet was wasted

« behavior on right side of above graph called
congestion collapse

10/17/2017
Transport Layer (SSL) 3-75

Approaches towards congestion control

Network-assisted
congestion control:
O routers provide feedback
to end systems
O single bit indicating
congestion, e.g., SNA,
DECbit, ATM
o TCP/IP explicit
congestion notification
(ECN)
o explicit sending rate
for sender

End-to-end congestion
control:

O no explicit feedback
from network

O congestion inferred
from end-system's
observed loss (or delay)

O approach taken by TCP

10/17/2017
Transport Layer (SSL) 3-76

38



Chapter 3 outline

0 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

O 3.4 Principles of
reliable data transfer

10/17/2017

0 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management
0 3.6 Principles of
congestion control
0 3.7 TCP congestion
control

Transport Layer (SSL) 3-77

TCP Congestion Control

0 end-to-end control (no network ~ How does sender

assistance)

0 sender limits fransmission:
LastByteSent-LastByteAcked
< CongWin

0 Roughly, the send buffer's

determine CongWin?
O loss event = timeout
or 3 duplicate acks
O TCP sender reduces
CongWin after a loss
event

CongWin

throughput <= oot

bytes/sec

three mechanisms:
o slow start

where CongWin is in bytes

and throughput is A, in slide 3-74

O reduce to 1 segment
after timeout event

o AIMD (additive increase
multiplicative decrease)

Note: For now consider RcvWindow to be very large such that the send window size is
equal to CongWin. They are referred to as rwnd and cwnd, respectively, in the textbook.

10/17/2017

Transport Layer (SSL) 3-78

39



TCP Slow Start

O Probing for usable bandwidth

0 When connection begins, CongWin = 1 MSS
O Example: MSS = 500 bytes & RTT = 200 msec
Q initial rate = 2500 bytes/sec = 20 kbps

O available bandwidth may be >> MSS/RTT
o desirable to quickly ramp up to a higher rate

10/17/2017
Transport Layer (SSL) 3-79

TCP Slow Start (more)

0 When connection @Hosf A Host B@
begins, increase rate

exponentially until Lt seament |
first loss event or o
“threshold" ' ﬁ
O double CongWin every \
RTT
O done by incrementin four se,
CongWin by 1 MSS for ents

every ACK received
0 Summary: initial rate
is slow but ramps up
exponentially fast Tiine

10/17/2017
Transport Layer (SSL) 3-80

40



Congestion avoidance state &

responses to loss events

Q: If no loss, when should
the exponential increase
switch to linear?

A: When CongWin gets to
current value of
threshold

Implementation:

O For initial slow start,
threshold is set to a large
value (e.g., 64 Kbytes)

O Subsequently, threshold is
variable

O At aloss event, threshold is
set to 1/2 of CongWin just
before loss event

10/17/2017

congestion window size

3 dup ACKs
14
12
__ 10
[}
€ gr-----—gfoooo-
£
5 6 '\ )
°
4 thresdd
2 TCP
0 Tahoe

123 45 6 7 8 910112131415

Transmission round

—*Tahoe ™ Reno

Notes: 1. For simplicity, CongWin is in number of
segments in the above graph. 2. Reno’s window inflation
and deflation steps (details) omitted

Transport Layer (SSL) 3-81

Rationale for Reno's Fast Recovery

0 3 dup ACKs indicate
network capable of
delivering some segments

O timeout occurring
before 3 dup ACKs is
"more alarming”

0 After 3 dup ACKs:
O CongWin is cut in half
(multiplicative decrease)
o window then grows linearly
(additive increase)
O But after timeout event:
O CongWin is set to 1 MSS
instead;
O window then grows
exponentially to a threshold,
then grows linearly

Additive Increase Multiplicative Decrease (AIMD)

10/17/2017

Transport Layer (SSL) 3-82

41



TCP Reno (example scenario)

CongWin

3 dupACKs

halved

Timeout

AN "

| Initial slow start |

3 dupACKs during slow start
before reaching initial threshold

10/17/2017

threshold reached
during slow start

Transport Layer (SSL) 3-84

Summary: TCP Congestion Control (Reno)

O When CongWin is below Threshold, sender in

slow-start phase, window grows exponentially (until
loss event or exceeding threshold).

0 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

0 When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to

Threshold.

0 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

10/17/2017

Transport Layer (SSL) 3-84

42



AIMD in steady state (when no timeout)

additive increase: multiplicative decrease:
increase CongWin by cut CongWin in half
1 MSS every RTT in after loss event (3 dup
the absence of any acks)
loss event: probing
congestion What limits the average
24 Koytos window size (or throughput)?

16 Kbytes —

8 Kbytes —

time

Long-Tived TCP connection

10/17/2017
Transport Layer (SSL) 3-85

TCP Throughput limited by loss rate

0 TCP average throughput (approximate) of
send buffer under AIMD in terms of loss

rate, L S
throughput = 1.22XMSS bytes/second
RTT/L

where MSS is number of bytes per segment
0 Example: 1500-byte segments, 100ms RTT,
to get 10 Gbps throughput, loss rate needs
to be very low
L = 2:10-10
O New version of TCP needed for high-speed
applications

10/17/2017
Transport Layer (SSL) 3-86




Is TCP fair?

Two competing sessions:
O Additive increase gives slope of 1, as window size increases

O multiplicative decrease reduces window size to half
(proportionally)

w equal window size

N

@

2

o

o

£

I loss: decrease window by factor of 2
s congestion avoidance: additive
5 increase

Q

<

<

(o]

(V]

Connection 1 window size W

10/17/2017
Transport Layer (SSL) 3-87

Is TCP fair?

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router

connection 2 capacity R

AIMD only provides convergence to same window
size, not necessarily same throughput rate

10/17/2017
Transport Layer (SSL) 3-88

44



No fairness in practice

ubP Parallel TCP connections
0 Some multimedia apps use A nofhing prevents an app
UDP instead of TCP. They fruom opening par!a”el
O can tolerate packet connections between 2
loss, hosts.
O do not want rate O Web browsers do this

throttled by congestion
control - send at
constant rate

10/17/2017
Transport Layer (SSL) 3-89

Chapter 3: Summary

O principles behind transport g instantiation and

layer services: implementation in the

o multiplexing, Internet
demultiplexing o UDP

o reliable data transfer o TCP

O connection management  Next:

o flow control 0 leaving the network

O congestion control “edge"” (application,

transport layers)

0 into the network
“Cor‘e"

10/17/2017
Transport Layer (SSL) 3-90

45



