5.1 introduction

- 5.2 routing protocols
 - link state
 - distance vector
- 5.3 intra-AS routing in the Internet
- 5.4 inter-AS routing: **BGP**
- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

11/13/2017

Network Layer (SSL) 5-1

Network-layer functions

Recall the two network-layer functions:

□ forwarding: move packets from device inputs to device outputs

data plane

□ *routing*: determine route taken by each packet from its source to destination

control plane

Two approaches to structure network control plane:

- per-router control (routers exchange messages)
- logically centralized control (SDN)

11/13/2017

Per-router control plane

Individual processes in routers interact with each other by message exchange and compute forwarding tables

Graph abstraction

Graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

Remark: Graph abstraction is also useful in other network contexts

Example: P2P,

where N is set of peers and E is set of TCP connections

11/13/2017

Graph abstraction: link costs

- c(x,x') = cost of link (x,x')
- cost could be 1, or inversely proportional to bandwidth, etc.

Cost of path $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

Routing protocol tries to find least-cost paths

- a cost of path computation is ad hoc if the link cost metric is not additive
- □ what if links have asymmetric costs for opposite directions? example - if queueing delays are included, then use a directed graph as model

Network Layer (SSL) 5-5

Routing Algorithm classification

Global or decentralized information?

Global info:

- all routers have complete topology, link costs
- □ link state protocols

Decentralized info:

- router knows physicallyconnected neighbors, link costs to neighbors
- distance vector protocols

Static or dynamic?

- □ Static update only after topology change
- Dynamic
 - periodic update
 - in response to link cost changes
 - may result in route flaps

11/13/2017

- 5.1 introduction
- 5.2 routing protocols
 - link state
 - distance vector
- 5.3 intra-AS routing in the Internet
- 5.4 routing among the ISPs: BGP
- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

11/13/2017

Network Layer (SSL) 5-7

A Link-State Routing protocol

- □ net topology, link costs known to every node
 - accomplished via link state broadcast
 - all nodes have same info

Dijkstra's algorithm (you should have learned it)

- computes least cost paths from one node ("source") to all other nodes in a graph
 - iterative: after k iterations, source knows least-cost paths to k destinations
 - yields forwarding table for source node

11/13/2017

Link State Broadcast

Flooding

- □ Source node of "link state" sends packets to all neighbors
- □ Intermediate node resends to neighbors except where packet arrived
- Many duplicates which must be recognized by nodes

11/13/2017

Network Layer (SSL) 5-9

Distance Vector Algorithm basis

Bellman-Ford Equation (dynamic programming)

Define

 $d_x(y) := cost of least-cost path from x to y$

Then

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

where min is taken over all neighbors v of x

11/13/2017

Bellman-Ford example

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$
B-F equation says:

$$\begin{aligned} d_{u}(z) &= \min \big\{ \ c(u,v) + d_{v}(z), \\ c(u,x) + d_{x}(z), \\ c(u,w) + d_{w}(z) \big\} \\ &= \min \big\{ 2 + 5, \\ 1 + 3, \\ 5 + 3 \big\} = 4 \end{aligned}$$

The node that achieves minimum is next hop in shortest path → put it in forwarding table

11/13/2017

Network Layer (SSL) 5-11

<u>Distance Vectors Protocol (1)</u>

- □ Node x
 - knows cost to each neighbor v: c(x,v)
 - sends its own distance vector (DV) estimate $[D_x(y): y \in N]$ to its neighbors periodically where $D_x(y)$ denotes estimate of least cost from x to y
- □ From each neighbor v, x receives $[D_v(y): y \in N]$

11/13/2017

<u>Distance Vector Protocol (2)</u>

■ When a node x receives a new DV estimate from a neighbor, it updates its own DV estimate using B-F equation:

$$D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$$
 for each node $y \in N$

If the v that achieves least cost to y is **new**, node x updates its forwarding table and DV

□ Eventually, assuming that link costs and topology do not change, the estimate $D_x(y)$ converges to the actual least cost $d_x(y)$ for all x, y

11/13/2017

Network Layer (SSL) 5-13

Distance Vector Protocol - summary

Distributed, iterative, asynchronous

Initially, $D_x(y) = c(x,y)$ if x and y are direct neighbors; otherwise, $D_x(y) = \infty$

Each node:

waits for a change in local link cost or a msg from a neighbor

recomputes estimates

if DV estimate for any dest has changed, updates its own state and *notifies* its neighbors

11/13/2017

Distance Vector: good news travels fast

y detects a lower link cost to x, updates its DV, and sends new DV to node z.

z receives y's updated DV, updates its own DV, and sends new DV to its neighbors.

later, y receives z's updated DV. y's least costs do not change.

A similar interaction between nodes x and z.

The DV protocol converges quickly for good news

11/13/2017

Network Layer (SSL) 5-17

Distance Vector: "count to infinity" problem

Link cost increase:

- Y still has stale information saying that it can go to X via Z in 6
- 44 messages exchanged between y and z before protocol stabilizes

Poisoned reverse:

- If Z routes through Y to get to X:
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- will this completely solve count to infinity problem?

11/13/2017

bad news travels slowly!

- 5.1 introduction
- 5.2 routing protocols
 - link state
 - distance vector
- 5.3 intra-AS routing in the Internet
- 5.4 5.4 inter-AS routing: BGP
- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

11/13/2017

Network Layer (SSL) 5-19

Intra-AS Routing

- □ also known as Interior Gateway Protocols (IGP)
- most common Intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - EIGRP (Cisco) distance vector with "loopfreedom"

11/13/2017

RIP (Routing Information Protocol)

- □ distance vector algorithm
- □ included in BSD-UNIX Distribution in 1982
- □ distance metric: # of hops (max = 15 hops)

<u>From router A to subnet</u>		
destination	hops	
u	1	
٧	2	
W	2	
×	3	
У	3	
7	2	

11/13/2017

Network Layer (SSL) 5-21

RIP advertisements

- <u>distance vectors</u>: exchanged with neighbors every 30 sec via Response Message (also called advertisement)
- each advertisement: list of up to 25 destination subnets within AS

11/13/2017

RIP Table processing

- □ RIP routing tables managed by application-level process called routed (daemon)
- advertisements sent in UDP packets, periodically sent

11/13/2017

Network Layer (SSL) 5-23

OSPF (Open Shortest Path First)

- □ "open": publicly available
- □ uses Link State algorithm
- OSPF advertisement carries one entry per neighbor router
- advertisements disseminated to entire AS (via flooding)
 - carried in OSPF messages directly over IP (rather than TCP or UDP)
- □ security: all OSPF messages authenticated
- **...**

Note: IS-IS routing protocol: nearly identical to OSPF

11/13/2017

- 5.1 introduction
- 5.2 routing protocols
 - link state
 - distance vector
- 5.3 intra-AS routing in the Internet
- 5.4 inter-AS routing: BGP
- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

11/13/2017

Routing among ISPs

- scale: hundreds of millions destination subnets:
- forwarding tables still too large after aggregation of prefixes
- □ Link State and
 Distance Vector do not scale

administrative autonomy

- internet is a network of networks
- each network admin wants to control routing in its own network

11/13/2017

Network Layer (SSL) 5-27

Hierarchical Routing

- autonomous systems (ASes)
 - stub vs. transit ASes
 - transit AS has an AS number from ICANN
- routers in an AS run the same intra-AS routing protocol
 - different ASes can run different intra-AS routing protocols

Gateway router

- has direct link to a gateway router in another AS
- for inter-AS routing

11/13/2017

<u>Internet inter-AS routing - basic ideas</u>

- ☐ Gateway routers run BGP (Border Gateway Protocol): the de facto standard
- □ an AS advertises its existence using BGP to rest of Internet: "I am here" and
 - gateway routers exchange reachability information with neighboring ASes (using external BGP on TCP connections) and
 - they propagate reachability information to all internal routers of the AS (using internal BGP on TCP connections);
 - "good" routes to other ASes selected based on reachability information and also policy

11/13/2017

Path attributes & BGP routes

- □ advertised prefix includes BGP attributes.
 - □ prefix + attributes = "route"
- two important attributes:
 - * AS-PATH: contains ASes through which prefix advertisement has passed: e.g, AS 67, AS 17
 - NEXT-HOP: the router interface (its subnet IP address) that begins the AS path
 - there may be multiple links from current AS to next-hop AS
- when a gateway router receives route advertisement, it
 - checks for loop
 - * uses the AS's import policy to accept or reject route

11/13/2017

Examples of NEXT-HOP for dest X

- □ For routers in AS1, next-hop is \mathbf{u} , path vector is AS3, \mathbf{x}
- □ For routers in AS2, next-hop is v, path vector is AS1, AS3, x

BGP route selection

- router may learn many routes to the same prefix. Router must select one route
- Criteria
 - 1. local preference value attribute (policy decision)
 - Import rule: customer routes are preferred over peer routes, which are preferred over provider routes
 - 2. shortest AS-PATH

...

6. closest NEXT-HOP router: hot potato routing

••

(additional criteria) ...

11/13/2017

BGP route export policy example (1)

- □ A,B,C are provider networks
- □ X,W,Y are customers (of provider networks)
- X is dual-homed: attached to two networks
 - X does not want to route from B via itself to C
 - .. so X will not advertise to B that it has a route to C

11/13/2017

Network Layer (SSL) 5-37

BGP route export policy example (2)

- □ A advertises path AW to B
- B advertises path BAW to X
- Should B advertise path BAW to C?
 - No! B gets no "revenue" for routing CBAW since neither C nor A nor W is a customer of B
 - B wants to route only to/from its customers

Export rule: peer/provider routes advertised to customers only; customer routes advertised to all neighbor ASes

11/13/2017

Why different Intra- and Inter-AS routing?

Scale:

 hierarchical routing reduces table size, also update traffic

Policy (including financial consideration)

- □ Intra-AS: single admin, so no policy decisions needed
- □ Inter-AS: admin wants control over how its own traffic is routed (by import rule), who routes through its network (by export rule).

Performance:

- □ Intra-AS: can focus on performance
- Inter-AS: policy dominates performance

11/13/2017

Network Layer (SSL) 5-39

Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
 - link state
 - distance vector
- 5.3 intra-AS routing in the Internet
- 5.4 inter-AS routing: BGP
- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

11/13/2017

Software defined networking (SDN)

- □ Internet network layer historically has been implemented via distributed, per-router approach
 - monolithic routers run proprietary implementations of Internet protocol standards (IP, RIP, IS-IS, OSPF, BGP) in proprietary router OS (e.g., Cisco IOS), forwarding packets
- Other devices in data plane
 - different "middle boxes" for other network functions: firewalls, load balancers, NAT boxes, ..
 - switches for layer-2 forwarding
- ~2005: rethinking separation of network control plane from data plane

11/13/2017

Network Layer (SSL)

5-41

Software defined networking (SDN)

- Logically centralized controller
 - controller provides accurate network state information to "network-control applications"
 - centralized computation of flow tables is easier than distributed computation using protocol messages
 - greater flexibility and better control of traffic flows
- Open standards allow "unbundling" of network functionality
 - data plane boxes, SDN controllers can be provided by different vendors

Observation: SDN is (mainly) for networks under the same administrative control e.g., Google SDN uses both inter-AS and intra-AS routing protocols: BGP between datacenters and IS-IS for intra-datacenter

11/13/2017

Network Layer (SSL)

5-45

Chapter 5: outline

- 5.1 introduction
- 5.2 routing protocols
 - link state
 - distance vector
- 5.3 intra-AS routing in the Internet
- 5.4 inter-AS routing: BGP
- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

11/13/2017

ICMP: Internet Control Message Protocol

 "above" IP in network layer ICMP msgs carried in IP datagrams error reporting: unreachable network, host, port, protocol echo request/reply (used by ping) ICMP message type, code plus first 8 bytes of IP datagram causing error 	Type 0 3 3 3 3 3 4 4 8 9 10 11 12	Code 0 0 1 2 3 6 7 0 0 0 0 0	description echo reply (to ping) dest. network unreachable dest host unreachable dest protocol unreachable dest port unreachable dest network unknown dest host unknown source quench (congestion control - not used) echo request (ping) route advertisement router discovery TTL expired bad IP header
---	-----------------------------------	--	--

11/13/2017

Network Layer (SSL) 5-47

Traceroute uses ICMP messages

- Source sends series of UDP segments to dest
 - First has TTL =1
 - Second has TTL=2,
 ..., each with
 unlikely port number
- When nth datagram arrives to nth router:
 - Router discards datagram and
 - sends to source a "TTL expired" message with name of router & IP address

- When "TTL expired" message arrives, source calculates RTT
- □ Traceroute does this 3 times for each TTL value

Stopping criterion for source

- Such a UDP segment arrives at destination host
- Destination returns msg "dest port unreachable" packet
- Upon receipt of this msg, source stops.

11/13/2017

- 5.1 introduction
- 5.2 routing protocols
 - link state
 - distance vector
- 5.3 intra-AS routing in the Internet
- 5.4 inter-AS routing: BGP
- 5.5 The SDN control plane
- 5.6 ICMP: The Internet Control Message Protocol
- 5.7 Network management and SNMP

11/13/2017

Network Layer (SSL) 5-49

End of Chapter 5

11/13/2017