
CS 356 S. S. Lam

Lab Assignment 1

Overview

This Lab assignment is similar to the previous one, in that you will use Python to implement a simple client-

server protocol. There are several differences, however. This time you will use the SOCK_DGRAM service

instead of SOCK_STREAM; the SOCK_DGRAM service is implemented using UDP, the User Datagram Pro-

tocol, instead of TCP. In addition, the client and server in this assignment communicate by exchanging

structured binary information, instead of lines of ASCII text.

You will be constructing a server as well as a client. The server in this assignment is a “database”

server, which maps (fictitious) social security numbers to (fictitious) P.O. box numbers. The client sends

a request containing a single social security number; the server returns a response containing that social

security number and the Post Office box number of the student to whom it belongs. The “database” of

SSN–P.O. box number pairs will be provided in a file that you can use to check responses and to initialize

your own server.

The objectives of this exercise are:

• To acquaint you with some of the implementation techniques for protocols that use structured mes-

sages and attach a header to user data, such as IP, TCP, and UDP.

• To help you understand the use of datagram sockets.

• To help you understand the basic ideas of presentation encoding, including network vs. host byte

ordering.

• To acquaint you with the implementation of timeouts for recovery from message losses.

You should use a Linux machine that is connected to the department’s network (more specific instruc-

tions on TA web page). More information for this assignment can be found on the TA web page.

Exercise 0: Implementing a Client

The client and server in this exercise communicate by sending request and response messages over an

unreliable datagram service. Because the service is best-effort (there is no guarantee that a message sent

will arrive at all), implementing reliability is up to the communicating parties. For Lab 1, reliability is

entirely up to the client, which uses timeouts to detect losses.

The client loss-detection mechanism works like this: the client sends a request to the server, then waits

to receive the response (each request and each response is a single message). If a response is not received

within, say, 5 seconds, the client retransmits its request to the server. It keeps trying until it either receives

a response or reaches a predefined maximum number of tries, after which the client gives up and reports

failure to its user.
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In addition to detecting losses, the client and server both add a checksum to each message, to detect

corruption of messages in transit. Each computes the checksum value and places it in the message before

transmission; each performs a checksum calculation on a received message to verify that it is the same as

the message sent.

For this lab assignment, the CS356 server runs on three cores of paris.cs.utexas.edu (IP address

128.83.144.56) waiting to receive messages from ports 35604, 35605, and 35606. Your program can

contact the server at any one of these three ports.

When a server receives a request datagram containing a 32-bit integer representing a social security

number, it looks up the number in its database to find the corresponding P.O. box number, if any; places

the result in a response datagram; and sends the response back to the originating host and port. The server

always gives the same response for the same request. A list of 50 SSNs and P.O. box numbers that the

server knows is contained in a file available from the TA web page. The file contains a sequence of lines,

each containing two tokens separated by whitespace:

〈SSN〉 〈P.O. Box〉

An “SSN” is a sequence of nine digits, and a “P.O. Box” is a sequence of five digits. Each line is terminated

by a single newline character ‘\n’.

The Protocol

The request and response datagrams both have the same format, which is shown below.
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Request/Response Flag

Message Type

Lab # Version

Client Cookie

Request Data (SSN)

ResultChecksum

Transaction Outcome

32 bits

16 bits

Each message consists of exactly 16 bytes, organized as a series of one, two, and four-byte fields.

Note: All multi-byte integer-valued fields are transmitted in BIG-ENDIAN order, i.e. most

significant byte first. This is standard “network byte order.”

The first field of each message is 16 bits long, and contains the following information:

• The low-order 14 bits contain the value 356 in binary, i.e. 00000101100100.

• The most significant bit of the first 16-bit field is the Message Type bit, which for this exercise is 0.

(The message format for a Type 1 message is described in the next exercise.)

• The next-most significant bit of the first 16-bit field is the Request/Response bit; it is set to 0 in a

request, and 1 in a response. Every message the client sends has this bit set to 0.
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The next field is eight bits long, and contains the lab number of this exercise, i.e. the value one, or 0x01

in hex.

The next field is also one byte long, and contains the version number of the lab, which is seven, or

0x07 hex. Thus, the first 32 bits of a request in this exercise will contain the value:

0000 0001 0110 0100 0000 0001 0000 0111

The next field of the message is 32 bits in length and contains the Client Cookie. This is an arbitrary

value chosen by the client and placed in the request; it is always included by the server in its response to a

client request, and may be used by the client to associate a received response with the corresponding request

(e.g., in case the client has more than one request outstanding at any time).

The next field is also 32 bits long, and contains the Request Data. In a Type 0 message, this is a social

security number, represented as a (big endian) 32-bit integer.

The next field of the message is 16 bits in length and contains the Checksum, which is used to detect

transmission errors and (more likely) improperly-formed messages. For this assignment, we use a simple

version of the Internet checksum. Specifically, before sending a message (either a request or a response),

the sender constructs the value to be placed in the checksum field as follows:

1. Initialize the Checksum field to zero.

2. Viewing the message as a sequence of eight 16-bit integers, add them using ones complement arith-

metic and take ones complement of the sum.

3. Write the result in Checksum field of the message, i.e., overwriting the initial zero value.

Upon receiving a message, the Receiver computes the ones complement sum of the message viewed as

a sequence of eight 16-bit integers; if no error detected, the result is a bit string of 16 ones.

The last field of a Type 0 message is also 16 bits. It is unused in a Request (and its value is ignored by

the server). In the Type 0 Response message, it is the Result field. The most significant bit of this field is the

Transaction Outcome bit, which determines the meaning of the low-order 15 bits. A Transaction Outcome

of 0 signifies success; in this case the low-order 15 bits contain the Post Office Box number, encoded as an

integer. A Transaction Outcome of 1 indicates that an error occurred in processing somewhere; in this case

the following four integer values of the low-order 15 bits encode four types of errors:

1: Checksum Error. The server’s checksum computation on the received request yielded a result other

than a bit string of 16 ones. (This almost always means that the client has computed the checksum

incorrectly, since actual corruption of data is very rare in this environment.)

2: Syntax Error. The checksum on the request verified correctly, but some aspect of the message format

is incorrect (e.g. the value of the low-order 14 bits of the first two bytes was not 356).

4: Unknown SSN. The request data supplied in the message does not correspond to a Social Security

Number contained in the database.

5: Server Error. The server aborted processing of this message after detecting an internal error.

The entire transaction consists of a single message in each direction: the client sends a request, and the

server sends its response. In case of loss, retransmission is the client’s responsibility.
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Client Operation

To implement the above protocol, the client does the following:

(i) Create a socket of type SOCK_DGRAM and address family AF_INET.

(ii) Fill in a message structure with the required message type and version information, and a client

“cookie” value (and remember it for later use).

(iii) Prompt the user for a Social Security Number from the terminal, and put it in the appropriate field.

(iv) Compute the checksum and fill in the checksum field.

(v) Start a timer (to detect lost messages) using settimeout().

(vi) Send the request message to server (identified by its IP address and port) using sendto().

Do not forget to convert each multi-byte field in the message to network byte order.

(vii) Receive the response message using recvfrom().

(viii) If the timer expires, send the request message again, up to some maximum number of retransmissions

(five should be plenty).

(ix) When the response message is received, check it for the proper version, cookie, etc., and recompute

the checksum to ensure that no error has occurred in transit. If it is okay, output the P.O. Box number

in a response to the user.

Writeup

Turn in your well-commented code along with a record of the information your client received from the

CS356 server. (See TA web page for detailed submission instructions.)

Exercise 1: Writing and Testing a Server

In this exercise you will write a server that implements the protocol above. It is suggested that you first test

your server with the client you wrote in Exercise 0 by running them in different UTCS Linux machines. For

your own tests, the server address in your client program will need to be changed to that of your own server.

Subsequently, when your client and server interact with the CS356 server, your client and server will

run in the same UTCS Linux machine (they will have the same IP address.)

Then you will modify your client to send a Type 1 Request to the CS356 server. A Type 1 Request

message asks the CS356 server to act as a client and “probe” another server. The Type 1 Request contains

the IP address (a 32-bit integer) and port number (a 16-bit integer) of your server to be probed. These

integers must be represented in network byte order, i.e. Most Significant Byte is transmitted first.

The Response to a Type 1 Request contains information indicating whether the test was successful, i.e.

whether your server-under-test (SUT) successfully handled the CS356 server’s Type 0 requests.
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356 Lab # Version

Client Cookie

Checksum

Request Data (IP Address)

UDP Port

Request Format

Checksum

(same as request)

Result

Response Format

T

O

1 0 11

The Protocol (Type 1 messages)

The format of a Type 1 message is shown above. It is identical to the Type 0 message except for the Message

Type field (which is 1) and the interpretation of bytes 8–15.

The fifth field of the message (i.e. bytes 8–11) contains, instead of an SSN, the IP address of your server

to be tested, in network byte order, i.e. most significant byte first. The next field is the Checksum as before.

The final 16-bit field in the Type 1 Request contains the (big-endian) UDP Port Number of your server to be

tested. In the Response from the CS356 server, the most significant bit of the final field is the Transaction

Outcome (TO) bit, and the low-order 15 bits contain an integer Result code. A zero Transaction Outcome

bit indicates success; in this case the Result field contains zero. A Transaction Outcome of one indicates

failure, with the Result field containing error codes.

All of the low-order 15 bits are zero if no error detected. If errors were detected by the CS 356 server,

the lowest six bits are used to denote six different error conditions.

bit 0 is one: No response from SUT at all

bit 1 is one: No response from SUT to some requests

bit 2 is one: Bad message from SUT (syntax error)

bit 3 is one: Probable bad message from SUT (bad checksum)

bit 4 is one: Wrong result (P.O. Box Number) returned by SUT for a SSN

bit 5 is one: Incorrect error handling by SUT (in response to a bad message sent intentionally

by the CS 356 server)

The protocol for a Type 1 transaction is a three-party protocol: the client, the CS356 server, and the

server-under-test (SUT). It proceeds as follows:

1. Client sends a Type 1 Request to the CS356 server, containing the IP address and port number of the

SUT.

2. The CS356 server, having received the Request, formats and sends a Type 0 Request with a SSN to

the SUT at the specified address.

3. The SUT receives the Type 0 Request, looks up the P.O. Box number for the SSN and sends a Type 0

Response to the CS356 server.

4. The CS356 server receives the Response and checks it for well-formedness. It will send several

different Type 0 Requests to the SUT, and check every response from the SUT.

5. When it has finished interacting with the SUT, the CS356 server sends back a Type 1 Response

containing an indication of whether the SUT passed the test.
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Server Operation

Note: the server you write only has to implement the server side of the protocol described in Exercise 0, i.e.

Type 0 transactions.

The steps followed by the server are the following:

1. Load the database information from the file. (Alternatively, it’s okay if you just “wire in” the data in

the server code.)

2. Create a socket of type SOCK_DGRAM and family AF_INET.

3. Bind the socket to some port using bind().

4. Loop forever, doing the following:

(a) Receive a datagram with recvfrom(). Check it for correct version, format and checksum,

etc. If any of these is incorrect, return the appropriate result error code specified in Exercise 0.

(b) Otherwise, look up in the database the P.O. Box number for the SSN supplied in the request;

if the SSN is present, fill in the Result field of the response, re-compute the checksum, and

send the response datagram back whence it came using sendto(). Note that you can use the

address returned in the recvfrom() call as the argument to sendto(); you don’t even need

to examine the address itself.

You would want to have your server record each transaction in a log file, or output a summary as it

executes.

Writeup

Turn in your well-commented code and a record of your client’s interactions with the CS356 server. (See

TA web page for detailed submission instructions.)

Notes

Modifications to the client in Exercise 0 to make it send a Type 1 request are straightforward.

You can run both the client and your server (SUT) of Exercise 1 in different Linux machines. However,

we ask you to run them both in the same UTCS Linux machine to facilitate the work of the TA.

Lastly, the interaction between the CS356 server and your server may involve several transactions, and

may take a long while, particularly if any messages are lost in transit. Therefore the client should use a

much longer retransmission timeout interval for Type 1 Requests than for Type 0.
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