[Henn90]JohnL. Hennessy and David. Patterson.
Computer Architecture A Quantitative Approach.
Morgan Kaufmann Publishers, Inc., 1990.

[Howa88]JohnH. Howard, MichaelL. Kazar, SherrG.
Menees, David\. Nichols, M.Satyanarayanan,
RobertN. Sidebotham, and Micha&l West. Scale and
Performance in a Distributed File SysterACM
Transactions on Computer Systems, 6(1):51-81,
February 1988.

[Ifto93] Liviu Iftode, Kai Li, and Karin Petersen. Memory
Servers for Multicomputers. Proc. of COMPCON93,
pages 538-547, 1993.

[Leffol] Avraham Leff, PhilipS. Yu, and Jodl. Wolf.
Policies for Efficient Memory Utilization in a Remote
Caching Architecture. InProc. First International
Conf. on Parallel and Distributed I nformation Systems,
pages 198-207, December 1991.

[Leffo3a] Avraham Leff, JoeL. Wolf, and PhilipS. Yu.
Replication Algorithms in a Remote Caching
Architecture.|EEE Trans. on Parallel and Distributed
Systems, 4(11):1185-1204, November 1993.

[Leffo3b] Avraham Leff, PhilipS. Yu, and Jodl. Wolf.

Implementation of the Sun Network Filesystem. In
Proc. of the Summer 1985 USENIX, pages 119-130,
June 1985.

[Schi91]Bill N. Schilit and Dan Duchamp. Adaptive

Remote Paging for Mobile Computers. Technical
Report CUCS-004-91, Dept. of Computer Science,
Columbia University, February 1991.

[Smit77]Alan Jay Smith. Two Methods for the Efficient

Analysis of Memory Address Trace DatéEEE
Transactions on Software Engineering, SE-3(1):94—
101, January 1977.

[Smit81] Alan Jay Smith. Long Term File Migration:

Development and Evaluation of Algorithn@omputer
Architecture and Systems, 24(8):521-532, August
1981.

[Thei89]Marvin M. Theimer and KeittA. Lantz. Finding

Idle Machines in a Workstation-Based Distributed
System.|EEE Transactions on Software Engineering,
15(11):1444-57, November 1989.

[VE92] Thorsten von Eicken, David. Culler, SettCopen

Goldstein, and KlauErik Schauser. Active Messages:
A Mechanism for Integrated Communication and

Performance Issues in Object Replication for a Remote Computation. InProc. of 1992 ASPLOS, pages 256—

Caching ArchitectureComputer Systems Science and
Engineering, 8(1):40-51, January 1993.

[Leno90]D. Lenoski, JlLaudon, K.Gharachorloo,
A. Gupta, and Mennessy. The Directory-Based
Cache Coherence Protocol for the DASH
Multiprocessor. InProc. of the 17th International
Symposium on Computer Architecture, pages 148-159,
May 1990.

[Litz92] Michael Litzkow and Marvin Solomon.
Supporting Checkpointing and Process Migration
Outside the UNIX Kernel. IiProc. of the Winter 1992
USENIX, pages 283-290, January 1992.

[Mart94] RichardP. Martin. HPAM: An Active Message
Layer for a Network of HP Workstations. Pnoc. 1994
Hot Interconnects, August 1994,

[Munt92] D. Muntz and PHoneyman. Multi-level Caching
in Distributed File Systems or Your cache ain’t nuthin’
but trash. InProc. of the Winter 1992 USENI X, pages
305-313, January 1992.

[Mutk91] MatthewM. Mutka and Miron Livny. The
Available Capacity of a Privately Owned Workstation
Environment.Performance Evaluation, 12(4):269-84,
July 1991.

[Nels88]MichaelN. Nelson, BrenB. Welch, and JohK.

Ousterhout. Caching in the Sprite Network File System.

ACM Transactions on Computer Systems, 6(1),
February 1988.

[Nich87] David A. Nichols. Using Idle Workstations in a
Shared Computing Environment. Rroc. of the 9th
Symposium on Operating Systems Principles, pages 5—
12, October 1987.

[Rost93]E. Rosti, E.Smirni, T.D. Wagner, AW. Apon,
and L.W. Dowdy. The KSR1: Experimentation and
Modeling of Poststore. InProc. of 1993 ACM
S GMETRICS, pages 74-85, June 1993.

[Ruem93]Chris Ruemmler and John Wilkes. UNIX Disk
Access Patterns. IRroc. of the Winter 1993 USENI X,
pages 405-420, January 1993.

[Sand85]Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, and Bob Lyon. Design and

14

266, May 1992.

[Wang93]RandolphY. Wang and Thomas. Anderson.

xFS: A Wide Area Mass Storage File System. In
Fourth Workshop on Workstation Operating Systems,
pages 71-78, October 1993.

[Zhou93]Songnian Zhou, Jingwen Wang, Xiaohu Zheng,

and Pierre Delisle. Utopia: A Load Sharing Facility for
Large, Heterogeneous Distributed Computer Systems.
Software - Practice and Experience, 23(12):1305—
1336, December 1993.

ideal performance, but that if clients made decisions on elude that cooperative caching can reduce read response

strictly local basis, performance &ried greatly times by nearly a factor of two for the workloads studied
This paper dfers from the Ldfstudies in a number of and that a relatively simple algorithm allows clients to

important ways. First, this paper uses actual file systerafficiently manage their shared cache.

reference traces as a workload, allowing us to quantify th

benefits of cooperative caching realizable under real woré‘CknOWledgm(':'ntS

loads. A second major feature of this study is that we have We owe special thanks to David Black of OSF for

focused on getting good performance while controlling thevorking as the OSDI shepherd for this pajée would

amount of central coordination and knowledge required bSO like to thank Fred Douglis, John Howard, Edward

the clients rather than focusing on optimal replacemeri€€, John Ousterhout, and the anonymous OSDI referees

algorithms. whose comments improved both the content and the pre-
Franklin et al. [Fran92] examined cooperative caching€ntation of this papeWe are grateful to Mary Baker

in the context of client-server data bases where clientdohn Hartman, Michael KupfeKen Shirrif, and John

were allowed to forward data to each other to avoid diskousterhout for making the Sprite traces available. Finally

accesses. The study used synthetic workloads and focus&§ thank Matt Blaze for providing the rpcspy tools we

on techniques to reduce replication between the clientdiSed to gather the Auspex traces.

cache_s and the server cache. The_ server did not attemptFn\%fer ences

coordinate the contents of the clients’ caches to reduce)

replication of data among the clients. Their “Forward-[Arch86]James Archibald and Jean-Loup Baer. Cache

. . " . o Coherence Protocols: Evaluation Usin a
ing—Sending Dropped Pages” algorithm is similar to our ., inrocessor Simulation ModeACM Transactio%s

N-Chance Forwarding algorithm, but they send the last g Computer Systems, 4:273—-298, November 1986.
copy of a block to the server cache rather than to anoth{aArpa94] Remzi Arpaci, Amin Vahdat, Thomas Anderson,
client. and David Patterson. Combining Parallel and

Blaze [Blaz93] proposed allowing file system clients ~ Sequential Workloads on a Network of Workstations.
to supply hot data to each other from their local on-disk ~Technical —report, Computer Science Division,
file caches. The focus of this work was on reducing server University of California at Berkeley, 1994.

; ; ; ake91]Mary G. Baker, Johi. Hartman, MichaeD.
load rather than improving responsiveness. He found th&B Kupfer, KenW. Shiriff, and Johrk. Ousterhout.

the use of client-to-client data transfers allovagdamic Measurements of a Distributed File SystenPrac. of

hierarchical caching and avoided the store and forward the 13th Symposium on Operating Systems Principles,

delays experienced by static hierarchical caching systems pages 198-212, October 1991.

[Munt92]. [Blaz93] MatthewAddison BlazeCachingin Large-Scale
The idea of forwarding data from one cache to Distributed File Systems. PhD thesis, Princeton

another has also been used to build scalable shared mem- UniVersity, January 1993. - N

. ; : . Order-Dependent Communication in a Distributed
scheme similar to Greedy Forwarding for dirty cache lines Virtual Memory Environment. In Symp. on

[Leno90]. This policy avoids the latency of writing dirty Experiences with Distributed and Multiprocessor
data back to the server when it is shared. The same optimi- Systems |1, pages 249-262, March 1992.

zation could be used for a cooperative caching file systeqbahl94] MichaelD. Dahlin, CliffordJ. Mather,
that uses delayed writes. Several “Cache Only Memory RandolphY. Wang, Thoma&. Anderson, and

Architecture” (COMA) designs have also relied on cache DavidA. Patterson. A Quantitative Analysis of Cache
to cache data transfers [Hage92, Rost93]. Policies for Scalable Network File SystemsPhac. of

) . . 1994 SGMETRICS, pages 150-160, May 1994.
Other researchers have examined the idea of usi .
. : . ;[%ougm]Fred Douglis and John Ousterhout. Transparent
remote client memory rather than disk for virtual memor Process Migration: Design Alternatives and the Sprite

paging. Felten and Zahorjan [Felt91] examined this idea in |mplementation.Software: Practice and Experience,

the context of traditional LANs. Schilit and Duchamp 21(7), July 1991.

[Schi9l] scrutinized using remote memory paging to[Felt91] EdwardW. Felten and John Zahorjan. Issues in the
allow diskless portable computers, and Iftode, Li, and |Tmp|r(]3merlltag0n OftagleglgotoegMegorty Pafglng Systti:*m.
Petersen [Ifto93] explored using memory servers in paral- ' €chnical Repor -Us-Ud, Depl. ot Lomputer
lel supercomputers. Comer and Goién propose a com- Science, University of Washington, March 1991.

munications protocol for remote paging in [Come92]. [Fr?_ri]\?r%]/M(i_glrc])?agll\]l'\/llzerr%rcl)lﬁgnMglril%ZaeerﬂéﬁﬂﬁyéﬁggtMsi;?\?er

6. Conclusions DBMS Architectures. InProc. of the International
) . . Conferenceon Very Large Data Bases, pages 596-609,
The advent of high-speed networks provides the August 1992.
opportunity for clients to work closely together to signifi- [Hage92]Erik Hagersten, Anders Landin, and Seif Haridi.
cantly improve the performance of file systeme hdve DDM-A Cache-Only Memory ArchitecturelEEE
investigated the technique of cooperative caching and con- Computer, 25(9):45-54, September 1992.

13

actual number of references in the full troks a further ~ This approach is very similar to the Centrally Coordinated
refinement, we utilize theead attribute requests present in algorithm and provides similar performance; moving 80%
our trace to more accurately simulate the local client LRWf client memory to the server yields improvements of
lists. NFS uses read attribute requests to validate caché6% and 93% over the standard memory distribution for
blocks before referencing themeWan therefore use read the Sprite and Auspex workloads respectiveljnese
attribute requests as a hint that the cached blocks of a figpeedups are nearly equal to the speedups for the N-
are being referenced even though the block requests do ohance algorithm, but fall short of equalling the N-
appear in our trace. The attribute requests still provid€hance algorithm because of the reduced local hit rates
only an approximation—an attribute cache hides attributeesulting from smaller local caches. Movinggearfrac-
requests validated in the previous three seconds, and rians of the clients’ caches to the server has a number of
all read attribute requests really signify that adiltached other disadvantages compared to a good cooperative cach-
blocks are about to be referenced—but they do allow us tmg algorithm such as N-Chance Forwarding:

infer some of the “missing” block hits. « Static allocation of the global/local caches is more likely
Although the results for the Auspex workload are to provide bad performance for some individual clients

only approximate, they support the results seen for theas was seen for Centrally Coordinated Caching in
Sprite workloads. The relative ranking of the algorithms Figure7.

under the Auspex workload is the same as it was for the
Sprite workload: Centrally Coordinated Caching and N-
Chance Forwarding work nearly as well as the best case,
and the Greedy algorithm also provides significant speed-
ups. Direct Cooperation provides more modest gains. This .)
result is insensitive to the hit rate assumed. The predictedmemory performance is redgced, moving memory to the
server becomes less attractive.
speedup factors for the Auspex workload does depend on
the hit rate assumed but is significant over a wide range ofReducing the size of client local caches and transferring
assumed local hit rates. more data from the server can increase server load. The
read load for a traditional caching system with the
4.5. Summary enlaged central cache is 50% higher than for N-Chance
N-Chance Forwarding is a relatively simple algorithm Forwarding under the Sprite workload.
that appears to provide very good performance over a
wide range of conditions. Centrally Coordinated Caching
and the omitted Hash Distributed Caching can also pro-
vide very good performance, but they are more likely to
degrade the performance of individual clients and depend
heavily on fast network performance to make up for the
reduced local hit rates they impose. Theigiited LRU * Configuring servers with lge amounts of memory may
algorithm (results omitted) performs similarly to the N- be less cost-&ctive than spreading the same amount of
Chance algorithm, but it is more complicated and may also memory among the clients. For instance, 80% of the

load the server with requests for information about global 16 MB of cache memory for the 237 clients in the Aus-
state. pex trace would be GB of memory demanding an

extremely expandable and potentially expensive server

A system with more cache memory at the server and less
at the clients would be very sensitive to network speed

as was seen for Centrally Coordinated Caching in

Figurel3. As the ratio of network performance to local

Memory physically moved for use as central server file

system cache cannot be used by clients for other activi-
ties. Cooperative caching, on the other hand, may allow
client cache memory to be released for use as client vir-
tual memory as system demands warrant [Nels88].

The Greedy Forwarding algorithm appears to be the
algorithm of choice if simplicity is the primary concern. 5 R ated Work
Although the Direct Cooperation algorithm is also simple,

S . . . This paper evaluates the performance benefits and
satisfying the demands of cooperative caching W|thou|tm lementation issues of cooperative caching. Its primar
interfering with other client activities may befditilt, par- P P 9-1sp y

. . . . contributions are evaluating realistic management algo-
ticularly since the Direct algorithm would have to Iocateri,[th under real file svstem workloads and a svstematic
32MB to 64MB of remote memory per active client to y y

X lorati fimpl i ions.
equal the Greedy algorithmperformance. exploration of implementation options

Finall der the al . . h Leff et al. [Lef91, Leff93a, Lef93b] investigate
. inatly, consider the alternative to cooperative cachyq e caching architectures, a form of cooperative cach-
ing: physically moving more memory to the central server

o ing, using analytic and simulation-based models under a
- Unfortunately the Auspex trace does not indicate the total num-gynthetic workload. Wo important characteristics of their

ber of references. For the results in Figldewe assume a “hidden” hit e .

rate of 80% (to approximate the 78% rate simulated for the Sprite trace}yorkload were that the access probabilities for each object

giving a maximum speedup of 2.00 for N-Chance Forwarding. If thepyy each client were fixed over time and that each client

local hit rate were higheall of the bars would have a slightlyder con- N PP

stant added and the fiifences among the algorithms would be smaller kKnew what these distributions were. L&fund that if cli-

(e.9. a 90% local hit rate reduces the N-Chance speedup to 1.67). If t%ts base their caching decisions on gIobaI knowledge of

local hit rate were lowethe diferences would be magnified (e.g. a 70% . . .

local hit rate gives an N-Chance speedup of 2.20). what other clients are caching, they could achieve nearly

12

3.5ms
Inferred Local Hits\\»
3ms] 1.Omsp Local s]
o g Server Memorymsss
€ 2.5 ms} Base - 1 = 0.8ms Remote Clien~ew~
= - Direct —+ —) N\ Server Diskorsa
$ 2mst Greedy-o -1 2 0.6 ms \\\
= @ X X X [} & ~
8 1.5 mst x S a x
@ Centrally Coordinateds g 0ams 7/ &
@ 1mst N-Chance-» /
Best -x 0.2 msf
0.5 mst / & 7/
0ms 0.0 ms /s

64 MB 128 MB 256 MB 512 MB 1 GB
Server Cache Size

Figure 12. Response time. \total central server
cache size. The circled points highlight tr

results for the default 128B server
assumption.
6 ms
)
E 5ms
|_
)
2 4 ms Base -+
g Direct — —
@ 3 ms Greedy- o -
L —
g 2ms oordinateds"
& 1ms 'N-Chance =]
Best - =
0Oms 1 1 1 1 1
10 ms 1ms 100pus 10us

Remote Memory Time

Figure 13. Response time as function of
network speed. The X axis is the round trip tim
to request and receive anK8 packet. Disk
access time is held constant atm® and the
memory access time is held constant at 260
For the rest of this study we have assum
200us per hop plus 400s per block transfer for
a total remote fetch time of 8@ (request-reply
excluding memory copy time), indicated by th

Base DirectGreedyCoord N- Best
Algorithm ~ Chance

Figure 14. Response time for algorithms under
the Auspex workload. Thienferred Local Hits
segment indicates an estimate of the amount ¢
time spent processing local hits that do no
appear in the incomplete Auspex traces
assuming that the traced system had an 80
local hit rate.

network times are not a significant source of delay com-
pared to the constant memory and disk times.

Although either coordinated algorithm can provide
nearly ideal performance when the network is fast, N-
Chance Forwarding appears to be much less sensitive to
network speed than Centrally Coordinated Caching. Cen-
trally Coordinated Caching only makes sense in environ-
ments where accessing remote data is much closer to
accessing local data than going to disk. Otherwise, its
reduced local hit rate outweighs the increased global hit
rate.

4.4. Berkeley Auspex Workload

The response time results for a second workload,
called Berkeley Auspex, appear in Figar#e The Berke-
ley Auspex workload traces the NFS file system network
requests for 23€lients in the U.C. Berkeley Computer
Science Division that are serviced by an Auspex file

server This workload is interesting because it follows the
activity of a lager number of clients and includes a longer
period of time than any of the Sprite traces. Thegdar
The emegence of fast networks means that the time isiumber of clients provide an extremely gar pool of

ripe to begin utilizing cooperative caching in file systemsmemory for cooperative caching to exploit. The traces
Although Ethernet-speed networks are too slow to gegover a €day period and include five million read and
large benefits from cooperative caching, egirey ATM write events of which we use the first million to warm the
networks promise to be fast enough to see significarfi2ches: _

improvements. Figurg3 plots response time as a function The trace was taken by snooping on the network;

of the network time to fetch a remote block. For an Etherp_ecaus_e it does not include loc‘f.’ll hlts, we must adjust the
imulation to account for the missing local accesses. W

net-speed network, where a remote data access can t % Smiths Stack Deletion method [Smit77] to approxi-
nearly 10ms, the maximum speedup seen for a COOpergyate the response time results based on this incomplete
tive caching algorithm is 20%. If network fetch time wereyace. Smith found that omitting references that hit in a
reduced to Ins, for instance by using a fasTM net- small cache makes little fence in the number of faults
work, the peak speedup increases to 70%. This grapfeen when simulating a tr cache. The actual miss rate
shows little benefit from reducing network block fetchcan be accurately approximated by dividing the number of
time below 10Qus because once the network is that fastfaults seen when simulating the reduced trace by the

vertical bar TheN-Chance andBest lines nearly
overlap over the entire range of the graph.

1

time plateau when 40% to 90% of each clietdtal cache cache often lands in a relatively idle cache and so remains
is managed as a global resource. Note that these measure-memory for a significant period of time before being
ments do not take increased server load into accounfiushed. When the parameter is two, the random forward-
increasing the centrally managed cache fraction alsimg almost always gives a block at least one relatively long
increases the load on the central server as local caches gariod of time in a mostly idle cache. Higher values make
isfy fewer requests. This fett may increase queueing little additional diference both because few blocks need a
delays at the server as the centrally-managed fraction third try to find an idle cache and because the algorithm
increased, reducing the overall speedups and pushing teemetimes discards old cache items without recirculating
“break-even” point towards smaller centrally managedhem allntimes to avoid a “ripple” ééct among caches.
fractions. e

We chose to use 80% as the default centrally manageA('jS' SenStIVItY o
fraction because that appears to be the more “stable” part This subsection explore§ the sensitivity of t.he results
of the plateau under défrent workloads and cache sizes. We Present here to assumptions about each slieathe
For instance, the plateau runs from 60% to 90% for th&iZ€ the central se.r\lercache size, and the performance
same workload but with BIB client caches. A high cen- of the LAN over which the machines are connected.
trally managed fraction tends to achieve good perfor- Figurell plots the performance of the algorithms as a
mance because of the dar disparity between disk and function of the size of each cliestocal cache. The graph
network memory access times compared to the gaphows that the two coordinated algorithms, Centralized
between network and local memot/the network were Coordination and N-Chance Forwarding, perform well as

slowet a smaller percentage would be appropriate. long as caches are reasonablygdarlf caches are too
4.2.4 N-Chance Forwarding small, howevercoordinating the contents of client caches

N-Chance Forwarding also provides very good overProvides litle benefit because borrowing any client mem-

all performance, but it does so by improving overall hitgry rgaﬁgsbsngs i'r?(;re%isgnm dll(; Cka!e\crzlesssseess W'Il'tl’l;]e“;tilri le
rates without significantly reducing local hit rates. This g9reg 9 : P

algorithm also has good server load and fairness charactecl:"-reEdy a'go”th”.‘ also performs relatively well over the
istics range of cache sizes.

Figure10 plots response time against the recirculation ~ Figure12 illustrates the &ict of varying the size of
count parametern, for this algorithm. The Iaest the cache at the central servMacreasing the server cache

improvement comes whem is increased from zero (the _size significa_ntly improves the_ base no cooperative cach-
Greedy algorithm) to one. Increasing the count from ond9 case, while only modestly improving the performance
to two also provides a small improvement whilgéarval- of thg cooperative gl_gorlthms that already have good glo-
ues make little dference. Relatively low values forare Pl hitrates. For stiiently lage server caches, coopera-

effective since data that is recirculated through a randoriVé caching provides no benefit once the server cache is
about as laye as the aggregate client caches. Suclga lar

3ms T T T T T cache, howevemould double the systemimemory cost
compared to using cooperative caching. Note that when
the server cache is very dgr Centrally Coordinated Cach-

2 msh | ing performs poorly because of its degraded local hit rate.
N Total —-— 3.5ms

h ~ i T 'Basle—o—
"‘\@__e._.,._D'f.!(iZ 3msk Direct —
1ms|] w wy"'
E25msp. . RS |

i Other - + -] = R O S ~.
PO TS A 9 2mst el .

» P

5
0ms L L L L L 81.5ms}

. *
@entrally Coordinatedx

0 1 2 3 4 5 6 0

Recirculation Countr) g 1mst N-Chance
Figure 10. Response time for N-Chanci 0.5 msk
algorithms depends on number of time '
unreferenced blocks are recirculated throu 0Oms — ...
random caches. Zero corresponds to the Gre 4MB 8MB 16MB 32MB 64MB
algorithm (no recirculation). Theotal time is Client Cache Size
the sum of the time for requests that are satist))) i
by going toDisk and Other requests that are Figure 11. Response time as a function of clier
satisfied by a local or remote memofe rest cache memory for the algorithms. Other grap!
of this study uses a recirculation count of two f in this study have assumed a client cache size
this algorithm, indicated by the circled points. 16 MB (circled).

10

4.2.1 Direct Client Cooperation lem appears solvable; if only the most active 10% of

Although Direct Client Cooperation is appealingly clier_1ts are able to recrui_t a cooperat_ive ca_che they WOU|d
simple, achieving even the modest 5% response tim@c_meve 85% of_the maximum benefits available to Direct
improvement seen above may befidifit. We based the _Cl|ent Coop(_eratlon for th|s_ _trace. On th_e other hand, the
above results on the optimistic assumption that clientinPlementation of a recruiting mechanism detracts from
could recruit sufcient remote cache memory to double the algorithms simplicity and may require server involve-
their caches without interfering with each otHerrealiy =~ Ment.
the algorithm must meet three challenges to provide eveé.2.2 Greedy Forwarding

these modest gains. Although the performance gains for the greedy algo-
The first dificulty for Direct Client Cooperation is rithm are modest, the greedy algorithm may still be attrac-

that clients may not be able to find enough remote memonjve because of its simplicitypecause it does not increase

to significantly afiect performance. Figur@ plots Direct server load, and because it is .fairother words, this 22%

Cooperation response time as a function of the amount gerformance improvement comes essentially for free once

remote memory recruited by each client. If, for instancethe clients and server have been modified to forward

clients can only recruit enough memory to increase theirequests and the seri®rcallback state is expanded to

cache size by 25% (MB), the response time improve- track individual blocks.

ment drops to under 1%. Significant speedups of 40% aig 2 3 Centrally Coordinated Caching

only achieved if each client is able to recruit about

I . hi . ianiii-
64 MBs—four times the size of its local cache. Centrally Coordinated Caching can provide signif

i o ~_ cant speedups and very high global hit rates. On the other

memory becomes active, it will flush any other client’ potentially increasing the server load and reducing overall
data from its memonyA client trying to take advantage of performance for some of the clients.

remote memory sees a series of temporary caches, reduc- g fraction of each cliemt'cache that is treated as a
ing its hit rate since a new cache will not be warmed with.orajized resource determines théeafveness of the

its data. Studies of workstation activity [Nich87, Theng,aIgorithm. Figured plots the overall response time as the
Doug91, Mutk9l, Arpad4] suggest that although manyeenirally coordinated fraction is increased. As the fraction
idle machines are usually available, the length of their idles ihcreased. the global hit rate improves, reducing the
periods can be relatively short. A possible solution to t.hiftime spent fetching data from disk. At the same time, the
problem would be to send the evicted data to a new idig,c4| hit rate decreases, driving up the time spent fetching

client rather than discarding it, but that would increase thg,m remote caches. These two trends create a response
system$ complexity

A final challenge for Direct Client Cooperation is 3ms

dynamically selecting which clients should donate mem-
ory and which should utilize remote memofis prob- o
£
. . . . = 2mst
1.4} Direct Client Cooperation.— o
@ 12} g N ng N
- — = —
& 1.0 2 1ms} =
> a4 .
D_OS- L e ®_-0 E
%OG' i N e Other<*'
g 0.
O 0ms
(% 0.4} . 0% 20% 40% 60% 80% 100%
0.2 Centrally Coordinated Percent
' Figure 9. Response time for Centrally
0 : . : : : Coordinated Caching depends on the percent
2MB 4MB 8MB 16MB 32MB 64 MB 128 MB the cache that is centrally coordinated. 09
Remote Cache Size (Per Client) corresponds to the baseline no cooperatiy
. _ _ . caching case. Th#otal time is the sum of the
Figure 8. Direct Client Cooperation speedu time for requests that are satisfied by Bisk
compared to the base case as a function of e and the time foOther requests that are satisfied
client's remote cache size. The circle indicat by a local or remote memorihe rest of this
the result for the 18B per client remote cache study uses a centrally coordinated fraction c
assumed for this algorithm in the previot 80% for this algorithm, indicated by the circled
section. points.

Also, we base the server load calculations on the netaching algorithm compared to that clisngerformance
work messages and disk transfers made by the server fior the base case. The graph positions data points for the
each algorithm. \& assume that a network message overelients so that inactive clients appear on the left of the
head costs one load unit and that a block data transfgraph and active clients on the right. Speedups or slow-
costs two load units. A small network message therefordowns for inactive clients may not be significant both
costs one unit; a network data transfer costs one for ovelpecause the clients are spending relatively little time wait-
head plus two for data transfer for a total of three unies. Wing for the file system in either case and because these
also chage the server two load units for a disk data transinactive clients’ response times can be significantly
fer. affected by adding just a few disk accesses.

The results of the server load measurements suggest One important aspect of individual performance is
that most of the cooperative caching algorithms will noffairness: are any clients significantly worsé lbécause
significantly increase server load and that our respong@ey contribute resources to the community rather than
time approximation of ignoring queueing delay shouldmanaging their local caches greedily? Fairness is impor-
provide valid comparisons with the base case. The Ceriant because even if the average client performance is
tralized Coordinated algorithm does appear to increas@proved, some clients may refuse to participate in coop-
server load somewhat, at least under these simple assun§ative caching if their performance would be worse.
tions. This increase is because the centralized algorithm The data in Figur@ suggest that fairness is not a
significantly increases the local miss rate, and all localvidespread problem for this workload. Direct Client
misses are sent to the senipre detailed measurements Cooperation and Centrally Coordinated Caching each
would have to be made to determine if the centralizedlow a few clients by modest amounts. Greedy Forward-
algorithm can be implemented without increasing serveing and N-Chance Forwarding do no harm to any clients
queueing delays. in this workload.

A final comparison among the algorithms examines Although we would expect the two algorithms with
individual client performance rather than the aggregat@reedy client cache management to always beDéiect
average performance. Figutdllustrates the relative per- Client Cooperation causes a few clients tofesufip to

formance for individual clients under each cooperative?5% worse performance than they had without the addi-
tional cooperative cache memorfhese clients do not

benefit greatly from their cooperative cache memory but
have lower server cache hit rates under Direct Client
Cooperation than in the base case. The lower server hit
o | rates occur because the accesses to the server cache by all
the clients in the system are filtered by thefeetfvely

larger local caches, reducing the correlation among client
access streams at the server

0 100002000030000 0 100002000030000 Although both the N-Chance and Centrally Coordi-

Number of Client Reads Number of Client Read nated algorithms disturb local greedy caching, their signif-
Centrally Coordinated N-Chance icant improvements in global caching provide a net benefit
8 v to almost all clients. N-Chance Forwarding hurts no cli-

., - ents for this workload, and Centrally Coordinated Caching
2 te damages the response of one client by 19%. Neither of
these algorithms help a client whose working set fits com-
pletely into its local cache, but such a client can be hurt by
interference with its local cache contents. Since N-Chance
Forwarding interferes with local caching less than Cen-
trally Coordinated Caching as was indicated in Fidijrie
is less likely to be unfair to individual clients. Other algo-

Direct Client Cooperation

Greedy Forwarding

O BRADNEDNMO®
T
k3
o

O PA~ANEDNPMO
—
4
o
L
Sowdown Speedup

Sowdown Speedup

K

o NENMO©

Sowdown Speedup

Sowdown Speedup
O PA~ANEDND

0 100002000030000 0 100002000030000

Number of Client Read: Number of Client Read
Figure 7. Performance of each individual client
Each point represents the speedup or slowdo'

seen by one client for a Cooperative cachir rithms that Statica"y partition client memOB)UCh as Hash
algorithm compared to that cliestperformance Distributed Caching or physically moving cache from the
in the base case. Speedups are above the line clients to the servewould sufer from the same vulnera-
slowdowns are below it. A cliest'slowdown is bility as Centrally Coordinated Caching.

defined as the inverse of its speedup if i

speedup is less than one. The x-axis indicates 4.2. Detailed Algorithm Analysis

number of read requests made by each clie i) _ _)
relatively inactive clients appear near the le This subsection examines the cooperative caching
edge of the graph, and active clients appear algorithms in more detail and evaluates their sensitivity to
the right. algorithm-specific parameters.

improvement of 1.73. Both coordinated algorithms are23%. N-Chance also provides a very low overall disk
within 10% of the ideal cooperative caching responseccess rate of 7.7%.

time. A comparison between the static memory partition
Two conclusions seem apparent from Figlr&irst, algorithm, Centralized Coordination, and the dynamic par-
disk accesses are the dominant source of latency for thigion algorithm, N-Chance Forwarding, illustrates that
base case, sofefts like cooperative caching that improve both the local and global miss rates must be considered in
the overall hit rate will be beneficial. Second, the mosevaluating these algorithms. Although the static algorithm
dramatic improvements in performance come from therovides the lower disk access rates, it provides this low
coordinated algorithms, where the system makesfart ef miss rate at significant cost to its local cache performance.
to reduce the duplication among cache entries to improvéhe N-Chance algorithm coordinates a smaller fraction of
the overall hit rate. the client cache contents, protecting the local cache hit

Figure5 provides additional insight into the perfor- rate but sacrificing some global hits.

mance of the algorithms by illustrating the access rates at Another important metric of comparison is the server
different levels of the memory hierarchiyhe total height load imposed by the algorithms. If a cooperative caching
of each bar represents the miss rate for each algosithmélgorithm significantly increases server load, increased
local cache. The base, Direct Cooperation, Greadgd queueing delays might reduce the performance gains.
best case algorithms all manage their local caches greedifygure6 illustrates the relative server loads for the algo-
and so have identical local miss rates of Z2@entral rithms.

Coordination has a local miss rate of 36%, over 60% gjhce we are primarily interested in verifying that
higher than the baseline local miss rate. This algorithn&ooperaﬂ\,e caching’ increased server coordination
makes up for this local deficiency with aggressive coordiggesnt greatly increase server load, we make a number of
nation of most of the memory in the system, providingsimpiifications in our server load calculations. First, we do
combined memory miss rates essentially identical to thosgot include the load for write-backs, deletes, file attribute
achieved in the best case, with just 7.6% of all requesigquests, or other sources of server load in the load com-
going to disk. This disk access rate is less than half of thﬁarison. Including these loads would add equally to the

15.7% rate for the base caching scheme. The N-Changgaqd for each algorithm, reducing the relativefetiénces
algorithms emphasis on holding onto the last data copiegmong them.

hurts the local miss rate by a surprisingly small amount;
recirculation increases the local miss rate from 22% to 120%

110% Other Loack\w'l
100% Hit Server Memorymmm
o Hit Remote Clienaag
Server Memor yimmm e
35% Remote Client Cs0% 87% Hit Disk ss
Server Dislaa~ oov7or 72% iy
30% - —
% 25% GEJGO% - g]
0 20% $B4a0% | 1]
@ 150, L v/
g 1% 7/ % 20% | % / %]
“on 2775 | 0,
5% / / / 7V 0% 7, /
’ / / 4 1 Base DirectGreedyCoord N- Best
0% 7N/ /07 Algoritthhance

Base DirectGreedyCoord N- Best))
Chance Figure 6. Server loads for the algorithms as ¢

Algorithm percentage of the baseline no cooperativ

Figure 5. Fraction of requests satisfied at eac
level of the memory hierarchy for &fent
algorithms. The total height of the bar is the
local miss rate for each algorithm. The sum c
the Server Disk and Remote Client segments
shows the miss rate for the combined local ar
server memories. The bottom segment shows t
miss rate once all memories are included, i.e. tt
disk access rate.

caching server load. Thelit Disk segment
includes both the network and disk load for al
requests satisfied at the server disk. Hie
Remote Client segment shows the server load fo
receiving and forwarding requests to remot
clients. The Hit Server Memory segment
includes the cost of receiving requests an
supplying data from the servemrmemory Local
hits generate no server load. TBther Load

segment includes server overhead fc
measuren or e Sprte machings m IBokebt] bocause e ams f | IMvalidating _ client cache ' blocks and ~ for
caches than the averag®B caches observed in that study and because ?nsw_erlng client queries (e.g. N,',Chance ask
these lager caches service requests to only one server Is this block the last cached copy”).

For most of the results in this papere use traces five 4.1. Comparison of Algorithms
and six from the Sprite workload, described in detail by
!Baker et al. [Bake91.]. The Sprite user communltyhit rates, server loads, and impact on individual clients.
included about 30 full time and 40 part time users of th

svstem. These users included operating svstems researcte” initial comparison of the algorithms fixes the client
Y ’ P gsy caches to be 18IB per client and fixes the server cache to

ers, computer architecture researchers, VLSI designergé 128MB for the Sprite workload. For the Direct Coop-

and “others” including administrative stadnd graphics : . S)
) - . _eration algorithm we made the optimistic assumption that
researchers. These traces list the activity of 42 client,. . :

. . clients do not interfere with each other when they use
machines and one server over a two day period measuré

under the Sprite operating systériThey contain over remote caches; we simulate this assumption by allowing

700,000 read and write block accesses, and we use the ﬁgézgclfri]ttst?on;:;n;?el%ifegznfzii\i?0:1%53526 3:: size
400,000 accesses (a little over a day) to warm the simiJ y X y 9

.)) . size of each clierg’ cache. For the Central Coordination
lated caches. Secti@gh4 describes simulation results for algorithm. we assume that 80% of each cliergiche
an additional workload. 9 ! 0

_ _ memory is dedicated to the cooperative cache and that
When reporting our results, we compare against a seigy, is managed locallfFor the N-Chance algorithm, we
of baseline cache management assumptions and against@ose a recirculation count of two; unreferenced data will

a cache, but that no cooperative caching is used. The unigsrameters in Sectioh2.

alizable best case assumes that the cooperative caching

algorithm is able to achieve a global hit rate as high as i F|gur§4 |IIustr§tes the response times for each of'the
all client memory were managed as a single global cach our algorithms being examined and compares these times

but that the local hit rates are as if all client memory Werg. thet gase castg on thg(:eft anld the beﬁ’t casz on tf*;i gght.
managed as a private local cache. This best case provide iyect Looperation provides only a small Speedup orL.

lower bound for the response time for cooperative Cachingomp?reilto tlhe t')te:]se cGase gestlte oudr. optlrrTlsuc assugm—
algorithms that physically distribute client memory ons for this aigorithm. tsreedy Forwarding Shows a mod-

equally to each client and that use LRU replacemest. lsztsz_JI_thS|gn|f|czlint pﬁrfomr]]ance gg_m, with ?1 speedup of
simulate this algorithm by doubling each clisntbcal -22. The two algorithms that coordinate cache contents to

cache and allowing the clients to manage half of it |0ca"yre<cheCredunldzént c;chg entrles.dshow mored 'mprfeisé\f
and allowing the server to manage half of it globally as jgains. Central Coordination provides a speedup of 1.

does for the centrally coordinated case. For the best ca§8d N-Chance Forwarding provides a performance
we assume that data found in remote client memory is

This section compares the algorithms’ response times,

fetched with three network hops (request, forward, and 3ms
reply) for a total of 125Qis per remote memory hit. %.62ms Server M(';‘r)ncg&‘:
o [2.24 ms Remote CliemAan]
4. Simulation Results E 5 msl Server Disksss |
This section presents the main results from our simu- & 188 M3 59 mg 57 ms
lation studies of cooperative caching. Sectlah com- 5 g 1
pares the diérent cooperative caching algorithms to the & 1 msk // V //
base case, to each othand to the unrealizable best case. & / / /
For clarity this comparison is made assuming a particular / % / %
set of parameters for each algorithm, for a given set of 7/ // 7/

technology and memory assumptions, and under a single 0 ms :
Base DirectGreedyCoord N- Best

workload. Sectiod.2 examines the individual algorithms . ance
more closelystudying diferent values for the algorithms’ Algorithm
parameters. Sectigh3 examines the sensitivity of our Figure 4. Average block read time. Each be

results to technology and memory assumptions such as the represents the time to complete an average rt
client cache size, server cache size, and hardware perfor- O one of the algorithms. The segments of t

. . . bars show the fraction of the total read time fi
mance. Sectiod.4 examines the algorithms under an data accesses satisfiedlmcal memory Server

additional workload. FinallySectiord.5 summarizes our Memory, Remote Client memory or Server Disk.
results, highlights our conclusions, and compares coopera-—; . , I
" All speedup and performance improvement figures in this paper

tive caching to moving more of the systenmemory to use the terminology in [Henn90]. Speedup is defined as the execution
the server time of the slower algorithm divided by the execution time for the faster
algorithm. Performance improvement percentages are calculated by sub-

1 Baker et al$ traces also included requests to three auxiliary serviracting 1.00 from the speedup and then multiplying by 100 to get a per-
ers. W& just used accesses to the main seBar of the trace. centage.

discard or forward it, so only one message is needed dusumes until the next time the block is referenced [Smit81],
ing a blocks lifetime in a cache. In the special case wher@approximately the time since the last reference. Thus,
the client is making space for a singlet that was kicked outeighted LRU explicitly balances keeping frequently used
of another cliens cache, it will not discard blocks that it duplicates to avoid network accesses against keeping less
discovers to be singlets, but it will mark those blocks afrequently used singlets to avoid disk accesses. For our
singlets (without setting the recirculation count) so that itraces, howeveresponse time was slightly worse than for
will not need to ask the server again unless another clietthe substantially simpler N-Chance Forwarding.
references the block. If another client references such . .
block, the server forwards the request to the singlet, ang' Simulation Methodology
the client resets the singlet flag. We use trace-driven simulation to evaluate the coop-
The main advantage of N-Chance Forwarding is thagrative caching algorithms. Our simulator tracks the state
it provides a simple dynamic tradet-dfetween each cli- Of all caches in the system and monitors the requests and
ent's private cache data and the data being cached for thi rates seen by each cliente\dssume a cache block size
good of the overall system. Favoring singlets provides beff 8 KB, and we do not allow partial blocks to be allocated
ter performance than the simple Greedy algorithm sincgVven for files smaller thankB. We verified our simulator
discarding a singlet is potentially more expensive than digly using the synthetic workload described in {B88] as
carding a duplicated block; later references to the duplit’Put.
cate can still be satisfied from another clientiemory We calculate response times by multiplying the local
[Leff91]. A potential disadvantage of this approach is thafnemory remote client memoyserver memoryand disk
a given block may be bounced among multiple cacheBit rates by the times it takes to access those memories.
while living in the “cooperative” portion of the caches, Our baseline technology assumptions are the same as for
resulting in unnecessary system load. the 155Mbit/s ATM columns of Figurd, that an &B
. block can be fetched from local memory in 280 that a
2.5. Other Algorlthms)) fetch from remote memory takes an additional 48®lus
~ We considered two other cooperative caching algopng s per network hop, and that an average disk access
rlthms._Performange measurements for these algorlthqakes a further 14,80@s. Figure3 summarizes access
are omitted from this report b_ecause each p_erformed SiMiimes to diferent resources for the algorithms. In
larly to one of the other algorithms we examined. Section4.3 we examine the sensitivity of our results to
Hash-Distributed Caching differs from Centrally {echnology changes. Note that we do not include any
Coo_rt_jmated Caching in that Hash-Distributed CaCh'”gqueueing delays in our response time figures. Since the
partitions the centrally managed cache based on bloglysst attractive algorithms studied do not increase server
identifiers, with each client managing one partition of thgya4 and since emging high performance networks use a

cache. The central server sends blocks displaced from it§itched topologywe would not expect queueing to sig-
local cache to a client selected by hashing on the HOCk'nificantIy alter our results.

identifier On a local miss a client accesses this distributed To maintain data consistency on writes, we assume
cache by sending its request directly to the appropriate Clip,5y gata modifications are written through to the central

ent. That client supplies the data if it is currently CaChingserver and that client caches are kept consistent using a
that block, or forwards the request to the server if it doe%rite-invalidate protocol [Arch86]. Since we focus on

not have that blqck. Our .simulations indica}te thqt Hashzooq performance, a delayed write or write back policy
Distributed caching provides nearly identical hit rates,yould not afect our results.
compared to Centrally Coordinated caching; fixed parti-

tioning of the centrally managed cache does not hurt the

hit rate. The main advantage of Hash-Distributed caching L ocal Remote Server | Server
over Centrally Coordinated Caching is that Hash-Distrib- Mem. Client Mem. Disk
uted caching significantly reduces server load since many Mem.

requests satisfied by the cooperative cache tdga’ Direct 250pus| 1050us| 1050ps|15,850us

through the server _ Greedy | 250ps| 1250ps| 1050ps|15,850us
We also examined\eighted LRU, a dynamic algo-

rithm that attempts to replace the object with the globally |Central 250ps| 1250ps| 1050ps|15,850ps
lowest value/cost ratio. As with N-Chance, objects that are [IN-Chance | 250us| 1250us| 1050us|15,850us
duplicated in multiple client caches are not very valuable - 3 A i for the dérent levels |
since even if one copy is’ discarded, the data may be tr:gu%eemog/cﬁ?esralmﬁ; f(())rr cﬂgren'[egoo?)\e/:?astil/ne
fetched from another cliestmemory On the other hand caching algorithms. The dérences among the
the last cached copy of a block is very valuable since its Remote Client times for the @fent algorithms
loss might cause a disk access. The opportunity cost of depends on the number of network hops to rea
keeping an object in memory is the cache space it con- the data for the algorithm.

5

2.3. Centrally Coordinated Caching recently referenced. If a recirculating block reaches the
Centrally Coordinated Caching adds coordination to €nd of the LRU list, its count is decremented and it is for-
the Greedy Forwarding algorithm by statically partitioningwarded again unless the count is now zero, in which case
each clieng cache into a locally managed section, manj.t is SImpIy discarded. If a client references a singlet, it
aged greedily by that client, and a globally managed se¢esets the block’recirculation count and caches the data
tion, coordinated by the server as an extension of itgormally while the client that had been cooperatively
central cache. If a client does not find a block in its locallycaching the singlet discards the block from its cache.
managed cache, it sends the request to the sdéinthe The parameten indicates how many times a singlet
server has the desired data in memitrgupplies the data. should be allowed to recirculate throughfetiént clients’
Otherwise the server checks to see if it has stored tHeRU lists without being referenced before finally being
block in centrally coordinated client memotfit locates discarded. Greedy forwarding is simply the degenerate
the data in client memagnjt forwards the request to the case of this algorithm with = 0. Unless otherwise noted
client storing the data. If all else fails, the server suppliegve usen = 2 for our simulations.
the data from disk. This algorithm provides a dynamic tradé-fafr each
Centrally Coordinated Caching behaves very mucltlient caches allocation between local data, data being
like physically moving memory from the clients to the cached because the client referenced it, and global data,
server The server manages the globally managed fractioginglets being cached for the good of aggregate system
of each cliens cache using a global replacement algoperformance. Active clients will tend to force any global
rithm. When the server evicts a block from its local cachejata sent to them out of their caches quickly as local refer-
to make room for data fetched from disk, it sends the vicences displace global data. Idle clients will tend to accu-
tim block to replace the least recently used block amongnulate global blocks and hold them in memory for long
all of the blocks in the centrally coordinated distributedperiods of time. An enhancement to this algorithm might
cache. When the server forwards a client request to a dibe to preferentially forward singlets to idle clients to avoid
tributed cache entrjt renews the entry on its LRU list for disturbing active clients. For this stydyowevey clients
the global distributed cache. Unless otherwise noted wibrward singlets uniformly randomly to the other clients in
simulate a policy where the server manages 80% of eathe system.
client's cache. An implementation of this algorithm must prevent a
The primary advantage of Centrally Coordinatedripple efect where a block forwarded from one client dis-
Caching is the high global hit rate that it can achievejaces a block to another client and so on. Note that in the
through global management of the bulk of its memorycommon case, the displaced block is not the last copy of
resources. The main drawbacks to this approach are th@ta and so no ripple occurs, however we simulate a pol-
the clients’ local hit rates may be reduced since their locaty that prevents deep recursion from ever occurring: a cli-
caches are tdctively made smaller and also that the cenent receiving a recirculating block is not allowed to
tral coordination may impose significant load on theforward a block to make space. When a client receives
server such a block, it uses a modified replacement algorithm,
2.4. N-Chance Forwarding discarding its oldest duplicated block. If the cache con-
The final algorithm that we quantitatively evaluate, tains no duplicated blocks, the client discards the oldest
Chance Forwarding, dynamically adjusts the fraction of recirculating block with the fewest recirculations remain-
each cliens cache managed cooperativelgpending on N9
client activity The N-Chance algorithm modifies the ~ Several optimizations to this algorithm reduce the
Greedy Forwarding algorithm to have clients cooperate t@mount of communication with the servéiirst, on a
preferentially cacheinglets, blocks stored in only one cli- cache miss, the client combines its messages to the,server
ent cache. Except for singlets, N-Chance Forwarding/pdating the servés directory of client cache contents in
works like Greedy Forwarding. the same message that requests data to satisfy the miss.
N-Chance Forwarding attempts to avoid discardinglhis update indicates what block the client has discarded
singlets from client memonyWhen a client discards a from its cache and where, if anywhere, that block has been
block, it checks to see if that block is the last copy cachetprwarded.
by any client. This check may require a message to the The second set of optimizations reduces the number
server or it may be done by consulting some flags assoaf messages asking the server if a block is the last cached
ated with each block as described beltwhe block is a copy when a client is deciding if a block should be recir-
singlet, rather than throw the block awalye client sets culated or discarded. First, any block whose recirculation
the blocks recirculation count to n, forwards the data to a count is set must be a singlet, so no server message is hec-
random peerand then sends the server a message telling @ssary to decide its fate. For non-recirculating blocks, the
that the block has moved. The peer that receives the dathent must usually send a message to the sdouéonce
adds the block to its LRU list as if the block had beerit has determined if the block is a singlet the client will

4

private remote cache to satisfy its read requests until theontents of the client caches. If any client is caching the
remote machine becomes active and evicts the cooperativequired data, the server forwards the request to that cli-
cache. The system must define criteria for designatingnt. The client receiving the forwarded request sends the
active and idle clients and must provide a mechanism fadata directly to the client that made the request. Note that
the former to locate the latter the block is not sent back through the server since that
Direct Client Cooperation is appealing because of itsvould unnecessarily increase latency and add to the
simplicity—it can be implemented without server modifi- servets workload. If no client is caching the data, the
cation. As far as the server is concerned, a client utilizingequest is satisfied by the server disk as it would have been
remote memory appears to have a temporarily gathr if there were no cooperative caching.
local cache. A drawback of this lack of server coordination With Greedy Forwarding the only change to the file

is that active clients do not benefit from the contents Oéystem is that the server needs to be able to forward

other active .C"e.”ts memories. A clientdata request requests and the clients need to be able to handle for-
must go to disk if the desired block no longer happens to o .
. Warded requests; this support is also needed by the next

be in the limited server memory even if another client IS o alaorithms discussed. This server forwarding can be
caching that block. As a result, the performance benefits of© &9 : 9

Direct Client Cooperation are limited, motivating the nextmplemented with the datg structyres alre:?\dy present in
algorithm systems implementing write-consistency with call backs

[Howa88] or cache disabling [Nels88]. In those systems
2.2. Greedy Forwarding the server tracks the files being cached by each client so
Another simple cooperative caching approach, calledhat it can take appropriate action to guarantee consistency
Greedy Forwarding, treats the cache memories of all cli- when a file is modified. In this study we assume that coop-
ents in the system as a global resource that may I®fative caching extends a call back data structure to track
accessed to satisfy any clientequest, but the algorithm the individual file blocks cached by each client to allow
does not attempt to coordinate the contents of thederwarding. For systems such as NFS whose servers do
caches. As for traditional file systems, each client manage®t maintain precise information about what clients are
its local cache greedilwithout regard to the contents of caching [Sand85], implementation of this directory may
the other caches in the system or the potential needs bé simplified if its contents are taken as hints; some for-
other clients. If a client does not find a block in its localwarded requests may be sent to clients no longer caching
cache, it asks the server for the data. If the server has tkige desired block. In that case the client would inform the
required data in its memory cache, it supplies the dataerver of the mistake and the server would either forward
Otherwise, the server consults a data structure listing thie request to another client or get the data from disk.

Although the peblock forwarding table is lger than

Private/Globall traditional peffile callback lists, the additional server
Coop. Cachef: memory overhead is reasonable since each entry allows
Private Global the server to leverage a block of client cache. For instance,

i if the forwarding table is implemented as a hash table with
irect Clien Coordinated each hash entry containing a four byte file identififour
Cooperatiop [Cache Entrieg? byte block ofset, a four byte client identifiea four byte
No Coordination Coordination pointer for linked-list collision resolution, and two four
- - byte pointers for a doubly linked LRU list, the server
(Greedy Stat'C/D.ynam'C would require 24dytes for every block of client cache. For
Forwardin Partition’? a system caching BB file blocks, such a data structure

Statwm would consume 0.3% as much memory as it indexes. For a

Biock N- cighte system with 64&lients each with 3®I1B of cache, the
> (Chanc@ @ILI%U} server could track the contents of th&R distributed

Location cache with a 8B index.

Any Client Fixed Greedy Forwarding is also appealing because it pre-

(Cent. Coo@i (Hash) serves fairness—clients manage their local resources for
_ _ _ _ _ their local good while still deriving benefit from the other

E;)%%f: Zéggﬁpbeéiﬂ\r/gp?gggéqg g'gé)gé?é?] ddeeS(I:?S' clients. On the other hand, this lack of coordination among
space. =ach box represents an algorithr cache f:ontents may cause unnecessary data duplication,
examined in this studyWe focus on the four not taking the best advantage of the syssemémory to
highlighted algorithms and do not consider th avoid disk accesses [lféll, Fran92]. The next two algo-
other two in detail due to space constraints. rithms attempt to address this lack of coordination.

clients’ local caches, saving network latencies comparethance by not coordinating the contents of client caches
to going to the serveSecond, the server in the coopera-[Fran92].

tive caching system will be less loaded since it can satisfy Our primary result is that cooperative caching can
many requests with small packets to forward requestsnprove file read performance by as much as 73% for the
rather than lage data transfers. Third, cooperative cachingconfigurations and workloads studied.eViurther con-
allows more flexible use of memory: since the memory i€lude that an algorithm called-Chance Forwarding is a

still physically located at the clients, it can also be used fopractical algorithm that achieves nearly all of the potential
client virtual memory as system demands warranperformance gains for these workloads.

[Nels88]. Finally cooperative cache systems are more cost Cooperative caching is designed to improve cache
effective than building a system with an extremelgéar performance for file system reads. This technique does not
server cache. For example, it would be significantlyaddress issues such as write performance age e
cheaper to add 1@B of industry-standard SIMM mem- performance that are also important to end users of the file
ory to each of one hundred clients than it would be to bugystem. ® study these and other issues, we are imple-
a specialized server machine capable of holding the addirenting cooperative caching as a part of the XFS project
tional 1.6GB of memory We quantify the trade-tf [Wang93, Dahl94]. Cooperative caching illustrates a pri-
between centralized and distributed memory in morenary design philosophy of XFS, the use of the vast aggre-
detail at the end of Sectigh gate resources of the systsmtclients to improve
é:)erformance.

Section2 describes the four cooperative caching algo-
rithms we examine. Sectidh describes our simulation
methodology and Sectigh examines our simulation
(gsults. V¢ compare our work to previousfats to
improve file cache performance in SectnFinally
I,%ectionﬁ summarizes our conclusions.

Cooperative caching introduces a fourth level in th
network file systens’ cache hierarchyNot only can data
be found in local memoyyn server memoryor on server
disk, but it can also be found in another cligmtiemory
Depending on the cooperative caching algorithm used, th
new level may be found between a clisitical memory
and the server memory or between the server memory a

the disk. Note that we are examining cooperative caching Cooper ative Caching Algorithms

assuming that clients cache file system data in their local 1hig paper examines four variations of cooperative

memories but not on their local disks. For the fast netéaching in detail, covering a range of algorithm design

works of the future, it will be much faster for a client 10 gecisions. Cooperative caching creates a new level in the
fetch data from qnother clieatmemory than to fetch that e system storage hierarchy: remote client membify
data from local disk. ferent cooperative caching algorithms could manage this
In this paper we make the assumption that all clientsiew level in many diérent ways. Figur illustrates four
in the system are equally securee Welieve this to be a fundamental design questions and the relationship of the
fair assumption in most LAN environments where allfour algorithms to these gquestions. Although the algo-
machines are administered in the same. Way trustis no rithms we examine are by no means an exhaustive set of
stronger than that given to clients in currently popular filecooperative caching algorithms, the subset contains repre-
systems like NFS; in either case, if the clisraperating Sentative examples from g portion of the design space
system is compromised, the client can issue unauthorize&hd includes a practical algorithm with close to optimal
file system requests. The increasing availability of procesgerformance.
migration among networks of workstations [Nich87, Note that the algorithms examined do ndeetf data
Doug91, Litz92, Zhou93] is likely to speed the trendstorage reliability since they do not alter the write-
towards trust within an administrative domain—if a sys-through, write-delayor write-back policy of the file sys-
tem allows a usés jobs to be migrated among machines,tem. Clients still send modified data to the server when

that use's data may be cached in the memories of manfhey would have without cooperative caching, and the
machines regardless of cooperative caching. server commits data to disk as it would in a traditional sys-

This study has two goals. Our first goal is to ascertairtlem
whether cooperative caching can provide significant bene- The rest of this section descr'bes the four algorithms
fits under real workloads. Our trace-driven simulationu.nder scrutiny and then briefly discusses two other algo-

. : rithms.
approach contrasts with previougoefs to evaluate coop-
erative caching using synthetic workloads fegh, 2.1. Direct Client Cooperation
Fran92]. Our second goal is to evaluate a range of algo- A very simple cooperative caching approablrect
rithms to find practical algorithms to implementeetive Client Cooperation, allows an active client to use an idle
cooperative caching. Previous studies have focused aglient's memory as backing store. The active client for-
algorithms requiring global knowledge of client cachewards cache entries that overflow its local cache directly
contents [Le®3a] or on algorithms that sacrifice perfor- to an idle machine. The active client can then access this

2

Cooperative Caching: Using Remote Client Memory to
I mprove File System Performance

MichaelD. Dahlin, RandolphY. Wang, Thoma&. Anderson,
David A. Patterson

University of California at Berkeley
{dahlin, rywang, tea, patter son} @cs.berkeley.edu

Abstract Existing file systems use a three-level memory hierar-

Emeging high-speed networks will allow machines to f:hy' implementing a limited form of “cooperative cach-

access remote data nearly as quickly as they can accdd¢” Py locating a shared cache in server memory to
local data. This trend motivates the usecobperative ~ SUPPlement the other two memory levels, client memory
caching: coordinating the file caches of many machines@nd server disk. Although we can often reduce disk
distributed on a LAN to form a morefeftive overall file —accesses by increasing the fraction of the systé&AM
cache. In this paper we examine four cooperative cachingjat resides in the serveour factors make cooperative
algorithms using a trace-driven simulation stu@ijese caching more attractive than physically moving memory
simulations indicate that for the systems studied cooperdrom clients to the serveFirst, cooperative caching can
tive caching can halve the number of disk accessegrovide better performance: although either approach can
improving file system read response time by as much asmprove the global hit rate and thus reduce the system’
73%. Based on these simulations we conclude that coopetlisk accesses, cooperative caching leavege laxemories
ative caching can significantly improve file system readht the clients and so can also maintain high hit rates in the
response time and that relatively simple cooperative cach-

ing algorithms are sfi€ient to realize most of the poten- Ethernet 155 Mbit/s ATM
tial performance gain.

Remote | Remote || Remote | Remote
1. Introduction Memory | Disk |[Memory| Disk

Cooperative caching seeks to improve network file |Mem. Copy 250us| 250ug| 250ups| 250us
system performance by coordinating the contents of client [\et Overhead| 400pus| 400pd| 400us| 400ps
caches and allowing requests not satisfied by a dient’ Data 6250us| 6250pus| 400ps| 400ps
local in-memory file cache to be satisfied by the cache of |—
another client. Disk --| 14,800ps --| 14,800ps

Two technology trends push us to consider coopera-| Total 6,900 ps | 21,700 ps|| 1050 ps | 15,850 s

tive caching. First, processor performance is increasing .) . .
) . L Figure 1. Time to service a file system local
much more rapidly than disk performance. This diver- cache miss from remote memory or disk for

gence makes it increasingly important to reduce the num- glow network, Ethernet, and a faster network,
ber of disk accesses by the file system. Second gamger 155 MBit/s ATM. Local memory copy time is the
high-speed low-latency switched networks can supply file =~ measured time to readkd8 from the file cache

system blocks across the network much faster than stan- 90 & DEC AXP 3000/400. Network overhea

dard Ethernet as indicated in FigdreWhere fetching ggseesdlgtgllc?éeprg%nedstrr:appcs)mea:jll irr)]a[cl\lzg';tgegia ?c():;e

data from remote memory over an older network might be Hewlett-Packard 9000/735 workstation
only three times faster than getting the data from remote Ethernet data transfer figures makes tt
disk, remote memory may now be accessed ten to twenty unrealistically optimistic assumption that data i

; ; ale i i _ transferred at the full 10 Mbit/s link speed (ir
t|?1es as g'wckly as disk, increasing the phjart cooper reality, transfer times would likely be at leas!
ative caching. double those listed above for unswitche
Ethernet). The AM transfer time assumes the

This work is supported in part by the Advanced Research Projects i ; ; i
Agency (N0DB00-93-C-2481). the National Science Foundation (cba (Ull 155 Mbit/s bandwidth is attained (also ar

8722788), California MICRO, theT&T Foundation, Digital Equipment optimistic assumption, but one likely to be me
Corporation, Hewlett Packard, Siemens Corporation, Sun Microsystems, in a year or two as processor speeds continue
and Xerox Corporation. Dahlin was also supported under a National Sci- increase.) The disk transfer time is based ¢

ence Foundation Graduate Research Fellowship. Anderson was also sup- ; ; ; i
ported by a National Science Foundatiaulg Investigator ward. measu_red phyS|caI disk time (eXCIUde
queueing) for the fastest of three systerr

This paper first appeared in the Proceedings of the First Symposium measured under real workloads by Ruemmls
on Operating Systems Design and Implementation (OSDI 1994). and Wlkes [Ruemgg]_

