
1

A Quantitative Analysis of Cache Policies for Scalable Network File Systems

MichaelD. Dahlin, Clifford J.Mather, RandolphY. Wang,
ThomasE. Anderson, and DavidA. Patterson

Computer Science Division, University of California at Berkeley
{dahlin, cjmather, rywang, tea, pattrsn}@cs.berkeley.edu

This work is supported in part by the Advanced Research Projects
Agency (N00600-93-C-2481), the National Science Foundation
(CDA 8722788), California MICRO, Digital Equipment Corporation, the
AT&T Foundation, Xerox Corporation, and Siemens Corporation. Dahlin
was also supported under a National Science Foundation Graduate
Research Fellowship. Anderson was also supported by a National Science
Foundation Young Investigator Award.

more than commodity workstations, even for the server. In
reality, the widely used SUN Network File System, NFS
[Sand85], has spawned a new industry dedicated to building
the high-performance multiprocessor systems needed to
scale NFS to more than a few dozen clients. The Andrew
File System, AFS [Howa88], was designed to reduce server
load relative to NFS in the interest of scalability, but its ulti-
mate scalability is limited because AFS still relies on a cen-
tral server to receive a copy of all modified data and to
supply data for all client cache miss requests. Also, NFS and
AFS must generally use specialized servers rather than com-
modity desktop workstations as server machines because
the server must support enough disks to hold a copy of the
entire file system, and desktop workstations are generally
limited to a single SCSI string. Commodity workstations are
a more cost effective way to buy computing power and I/O
bandwidth because server machines must be designed with
greater I/O expandability and because development costs of
the more complicated servers must be amortized over a
smaller sales volume. For instance in the SUN product line,
a server costs three times as much as a similarly configured
workstation.

Trends in file system use promise to place even heavier
demands on the central servers of file systems. Baker et al.
[Bake91] report that the size of large files grew by an order
of magnitude between 1985 and 1992. If this trend contin-
ues, the cost of transferring all data through the central
server may become prohibitive. File systems are also being
asked to manage data over wide area networks (WANs)
where bandwidth restrictions limit the amount of data that
can be supplied from a central source.

At the same time, technology trends are giving clients
tremendous amounts of disk space, main memory, and pro-
cessing power and are also providing high-speed low-
latency networks to tie these resources together. Inexpen-
sive disks make it feasible for clients to store large amounts
of data locally. A 1.3GB SCSI disk currently costs less than
$1000, and most workstations sold today are configured
with significant amounts of local disk. Similarly, the aggre-
gate memories and processing resources of client machines
dwarf the capacity of a single server machine. Additionally,
high speed local area networks (LANs) allow clients to
access data from peers across a local area network almost as
quickly as they can access local data.

This paper investigates the quantitative benefits of uti-
lizing cache techniques oriented towards extreme scalability

Abstract
Current network file system protocols rely heavily on a

central server to coordinate file activity among client work-
stations. This central server can become a bottleneck that
limits scalability for environments with large numbers of
clients. In central server systems such as NFS and AFS, all
client writes, cache misses, and coherence messages are
handled by the server. To keep up with this workload,
expensive server machines are needed, configured with
high-performance CPUs, memory systems, and I/O chan-
nels. Since the server stores all data, it must be physically
capable of connecting to many disks. This reliance on a cen-
tral server also makes current systems inappropriate for
wide area network use where the network bandwidth to the
server may be limited.

In this paper, we investigate the quantitative perfor-
mance effect of moving as many of the server responsibili-
ties as possible to client workstations to reduce the need for
high-performance server machines. We have devised a
cache protocol in which all data reside on clients and all
data transfers proceed directly from client to client. The
server is used only to coordinate these data transfers. This
protocol is being incorporated as part of our experimental
file system, xFS. We present results from a trace-driven sim-
ulation study of the protocol using traces from a 237 client
NFS installation. We find that the xFS protocol reduces
server load by more than a factor of six compared to AFS
without significantly affecting response time or file avail-
ability.

1 Intr oduction
Current network file systems rely on powerful central

servers that make it difficult to build economical large-scale
file systems. Ideally, a network file system should scale to
hundreds or thousands of client machines using nothing

2

to reduce the load on the central server. These techniques
provide better and more cost-effective file service than a
specialized server machine by pushing responsibilities onto
the clients in the system to exploit the aggregate client disk,
processing, and memory capacities. The protocol has four
pieces inspired by efforts to achieve scalable cache coher-
ence in massively parallel processors [Arch86, Leno90].
The protocol uses a no write through policy, utilizes client-
to-client data transfers, implements write ownership, and
takes advantage of cluster servers.

In this paper we compare the effects of this protocol to
a baseline AFS system. We base this comparison on event
driven simulation parameterized to model the service
demands of file system requests on a DECstation5000. We
compared the performance of the systems under a workload
taken from a large NFS system at Berkeley in which an
Auspex file server provides service for 237 client worksta-
tions1.

Our principal result is that for this workload the experi-
mental protocol reduced server load by more than a factor of
six. In addition, we show that each of the four parts of the
protocol has a significant impact on performance, that the
protocol not only reduces average server load but also sig-
nificantly reduces peak demand at the server, that the aggre-
gate client memories are more effective at reducing disk I/O
than the server memory, and that cluster servers isolate
almost all communication to within clusters, as is desirable
when clusters are connected by a WAN.

This study also addresses a number of issues that arise
when clients become responsible for more file system ser-
vices. We examine the problems of scalable backup, data
availability in the presence of client failures, and security
when clients supply data to each other.

We are currently implementing the protocol described
here as part of a file system called xFS. To facilitate com-
parison with AFS, this paper assumes the AFS policy of
synchronizing file consistency when a file is closed for writ-
ing and assumes whole-file caching. However our imple-
mentation of xFS does not have these restrictions. The
actual xFS implementation also stripes data in a RAID dis-
tributed across client disks to improve I/O bandwidth and
availability. We do not consider these other issues further.

Section2 of this paper outlines the file system caching
algorithms used by NFS and AFS and motivates the alterna-
tive strategies we consider in this paper. Section3 describes
our workload, and in Section4 we discuss the key aspects of
our simulation. Section5 details the results of our study,
with emphasis on the impact of the protocol on server scal-
ability, network load, and client load. Section6 examines
the potentially thorny issues of backup, availability, and
security that arise when clients are given responsibilities
that were formerly the server’s. We survey related network

1. The Auspex is built with special hardware to allow it to support
this large number of clients [Hitz90].

file system studies in Section7. Finally in Section8 we
summarize our conclusions.

2 File System Cache Protocols
An important factor in a file system’s scalability is its

caching policy. File systems use caches to improve response
time and to reduce server load. Clients can access data
found in their memory caches more quickly than they can
access remote data on a server. File caches reduce server
load by satisfying some requests without server interaction.
The use of caches, however, introduces the problem of
cache consistency: different caches may hold copies of the
same file, and if the file is changed by one client, the
changes must be seen when the file is read by a different cli-
ent. How the cached copies are kept consistent can have a
large effect on server scalability. This section describes the
cache protocols found in the industry-standard NFS, the
emerging AFS standard, and our more scalable xFS.

2.1 Existing Protocols
NFS, the current industry-standard distributed file sys-

tem protocol, was designed to provide good response time
for moderate numbers of clients rather than to provide scal-
ability. NFS caches file system data in main memory on
each client workstation. NFS does not attempt to use the cli-
ent’s local disk space as a cache, nor does it attempt to keep
file data strictly coherent. Instead, periodic invalidations of
file attribute information ensure that new data eventually
(within several seconds) replace any out-of-date cached
copies. Once a file’s attributes are invalidated, the next time
the file is referenced the client will verify that its cached
copy is current. If it is not, the client will fetch the new data
from the server. Clients write through all modified file data
to the server to ensure that fetches from other clients will
receive the new data. NFS maintains separate caches for
data, attributes, and names, and the protocol caches data on
a per-block basis.

NFS’s scalability is limited by its use of relatively small
in-memory file caches rather than the larger caches possible
if local disks were used. NFS’s policy of periodically invali-
dating attributes guarantees a stream of client requests to the
server as attributes expire, even for files that are not being
modified. NFS’s write through policy sends all changes to
the server disk, even if no other clients are using the data.

AFS improves upon NFS’s scalability by using a large
local on-disk cache at each client and by using callbacks for
cache consistency. AFS uses a two-level cache on each cli-
ent. An in-memory file cache similar to NFS’s file cache
provides good response time for most accesses, but misses
to the in-memory file cache go to a client on-disk file cache
and only go to the server if not satisfied there. Rather than
requiring periodic verification of a file’s consistency as NFS
does, AFS reduces server load further by usingcallbacks:
the server maintains a list of all cached copies of each data
file and notifies clients when another client modifies the file.

3

The client fetches the new data from the server the next time
it opens the file. AFS clients send all modified data to the
server when a file is closed, guaranteeing that the server has
the most current version of the data and allowing the server
to know when to invalidate the other cached copies. Clients
also cache directory information in write through directory
caches. All modifications to directories are sent immedi-
ately to the server, which maintains callbacks to keep
cached copies of directory information consistent.

Despite these improvements, AFS’s scalability is still
limited. All communication and data transfer takes place
between the clients and the server; no direct client-to-client
communication is allowed. In particular, the server supplies
data each time a client has a cache miss and receives data
each time a client closes a file it has written. The central
server must have enough disk space to store all of the file
system data; this is despite the fact that the aggregate size of
the client disks is typically much larger than that of the
server disks. The server is also responsible for fielding all
directory modification operations and for generating call-
back messages on every cache coherence operation.

2.2 xFS Protocol
In this paper we consider the effect of four separate

optimizations to the AFS protocol. Together, these push
most server responsibilities onto the client machines. Col-
lectively we refer to these as the xFS protocol. Each of these
optimizations has been proposed as a way to improve the
scalability of multiprocessor hardware caches, and some
have also been suggested for file systems. In Section5.2 we
evaluate their performance impact individually and find that
all are important to get good performance.

The first two optimizations, write through and client-to-
client data transfers, eliminate file transfers through the
server, making the server responsible only for coordinating
the data that flow from client to client. These two aspects of
the protocol also eliminate the need to buy a specialized
server machine configured with a large amount of disk
space.

1. No write thr ough. Clients no longer write modified data
to the server on close. Instead they inform the server of
the update, and the server invalidates cached copies at
other clients using callbacks. Modified files remain on
each client’s local disk.

The elimination of write through is motivated by a
number of studies showing that when a client writes a file, it
is often deleted or quickly rewritten by the same client
[Thom87, Bake91, Blaz91, Kist92]. We confirmed this pat-
tern for the Berkeley NFS traces. After discarding the statis-
tics for writes made during the last day of the simulation, we
found that of the bytes that would be sent to the server in
AFS, 85% were overwritten or deleted without being read
by another client, another 5% were never read by another
client, and only 10% were read by another client. With no

write through, bytes that are overwritten can be discarded at
the client without ever being transferred to the server. Note
that there is no need to write data to the server to ensure the
data’s durability. Delayed writes of about 30 seconds have
been used in other network file systems to reduce writes to
the server without putting too much data at risk of loss in a
client crash [Nels88], but xFS’s use of client disks allows a
complete no write through policy where files are never writ-
ten to the server.

2. Client-to-client data transfers. When a client has a
cache miss, it sends a request for the data to the server,
and the server forwards the request to a client that is cur-
rently caching the needed data. The second client then
sends the desired data directly to the client that wants the
data.

Client-to-client data transfers reduce server load by
replacing a large server data transfer with a small forward-
ing packet. Direct client-to-client communication also per-
mits the no write through policy to be implemented without
the significant delays that would be incurred if all requested
dirty data were first written to the central server and then
supplied by the server. Client-to-client data transfers are an
example of separating the control and data paths as sug-
gested by the Mass Storage Reference Model [Coyn93].

The first two parts of the protocol allow all data to be
stored on client disks, implementing what is referred to for
multiprocessors as a cache only memory architecture
(COMA) [Hage92, Rost93]. An important detail of this
approach is that we must guarantee that the clients don’t dis-
card the last copy of any file. The clients do this by marking
one copy of each file as permanent. A copy becomes
marked when it is written, and marked copies may be
passed between clients but not discarded. When a client’s
cache is full it sends any marked copies it would normally
discard to a randomly selected client. The client notifies the
server of this transfer. These marked data copies are other-
wise managed in the same way as unmarked data copies.

The final two optimizations, write ownership and clus-
tering, try to reduce the demands on the server of coordinat-
ing cached copies of files.

3. Write ownership based cache consistency. The first
time a client closes a modified file the server is notified,
triggering an invalidation of all copies cached on other
clients. At that point the client has exclusivewrite own-
ership [Arch86] and may modify the file freely without
notifying the server; there are no other copies of the data
to be invalidated. A client will lose exclusive ownership
of a file when another client opens the file for reading.
Its copy will be invalidated if another client acquires
exclusive ownership.

Write ownership is an optimization of the write invali-
date consistency protocol on which AFS’s callback mecha-

4

nism is based. It allows us to eliminate messages to the
server in the common case of repeated writes by the same
client to the same file.

4. Clustering. Clusters are formed by selecting groups of
workstations that closely cooperate or are near each
other on the network topology, for instance, on the same
LAN. Cluster servers keep track of the ownership and
callback state for all of the clients in the cluster. The cen-
tral server only tracks file location information to the
cluster level, relying on the cluster server to forward
requests to the specific clients caching data. The cluster
servers isolate ownership changes and data transfers
internal to the cluster from the central server. For
instance, if ownership is transferred between two clients
in the same cluster, the cluster server is notified of the
change, but the central server need not be. On the other
hand, if ownership is transferred between clients from
different clusters, the central server must be involved so
it can know that a new cluster server is responsible for
tracking the ownership of the file.

Clustering is inspired by the DASH multiprocessor
architecture [Leno90] which clusters processing nodes on
busses as we cluster clients on LANs. Clustering improves
scalability by off-loading some central server state to cluster
servers and isolating the central server from changes in state
only affecting clients in the cluster [Blaz91, Munt92,
Sand92]. Clustering also allows the system to work in a
wide area network context by organizing communication
around the cluster LAN networks and using the WAN links
only when necessary.

xFS clustering is distinct from name space splitting and
read replication, two methods of utilizing multiple servers
available to NFS and AFS. Name space splitting improves
file system scalability by manually splitting the file system
into logical pieces, each managed by a different server.
However, it can be difficult to divide files among servers so
as to balance load and avoid hot spots [Wolf89]. Name
space splitting is, however, useful when the different parts
of the file system are managed by different administrative
domains. xFS can support this splitting by using multiple
“central” servers, with each cluster server providing a com-
bined file system view to its clients. File systems can also be
replicated across multiple servers to improve scalability for
reading files, at a cost of making file writes more expensive
[Lisk91, Kist92]. We will show in Section5 that xFS-style
clustering reduces the cost of both reads and writes.

The combination of these four changes allows xFS to
be dramatically more scalable than AFS. The central server
is no longer involved in any data transfers and coordinates a
much smaller amount of control activity: the central server
must forward read miss requests between clusters when they
cannot be satisfied within a cluster; the central server must
send consistency messages between clusters when a modifi-

cation in one cluster invalidates cached copies in another;
finally, the central server is informed when files are created
or deleted so that it always knows what files exist and where
to forward requests for all files.

3 Trace Overview
To evaluate the performance impact of these changes

we gathered traces of NFS file system activity from a large
NFS installation served by an Auspex file server. The sys-
tem includes 237 clients spread over four Ethernets, each of
which connects directly to the central server. The trace
spans seven days, and unless noted, the measurements that
appear in this paper cover the last six days of the trace after
using the first day’s activity to warm the caches. During the
full seven day trace 141,574 files were referenced.

We gathered this trace by monitoring network activity
on each of the four Ethernets. On each subnet we placed a
workstation that monitored all network traffic using rpcspy
[Blaz93] which is built on the Ultrix Packetfilter interface
[Mogu87]. Over the trace period, rpcspy reported that it
dropped 4% of all network traffic calls due to buffer over-
flow.

We postprocessed the NFS trace to reflect the semantics
of the AFS and xFS protocols. Since we gathered the traces
at the network, we had access only to NFS network traffic,
which introduced some biases of NFS into our raw trace.
For instance NFS has no network-visible open or close
calls, and manygetattr (get file attribute) calls are really
for validating cache consistency.

In the first step of the postprocessing we added opens
and closes to the trace. We added file opens before the first
access to an unopened file. Read and read/write opens signal
AFS and xFS to bring the file being accessed into the local
on-disk cache. We inserted file closes immediately after the
last file access before a long (2 minute) period of inactivity
for the file or before a block write to block zero of a file
after a series of writes to other parts of the file. We use
AFS’s write close semantics: after the close, the newly writ-
ten file should be supplied to any subsequent read open.

Block reads and writes in the trace are caused by NFS
in-memory cache misses. In AFS and in the version of xFS
simulated here, these reads and writes cause local disk traf-
fic, but no network activity, since whole file caching is
assumed and file consistency is handled when the file is
opened or closed.

We included NFS directory reads and writes as AFS
and xFS directory reads and writes. Directories were simu-
lated with the semantics that each directory write is immedi-
ately visible to the entire system. AFS implements this by
writing directory changes through to the server while xFS
uses its file ownership and invalidation mechanisms.

Finally, we include most NFSgetattr calls as simu-
lator requests for file attributes. We excludedgetattr
calls immediately before an access to a block of the same
file, assuming those calls to be NFS cache validation pack-

5

ets. The simulator also dynamically eliminates many
getattr calls by filtering calls through an attribute cache.
The attribute cache is kept consistent in the same way as the
directory cache for each protocol. An attribute is invalidated
when the file it references is written. Note that we are not
simulating the “access time” attribute, which is updated for
each file read, for either AFS or xFS.

The resulting trace is similar to other measured AFS
workloads in macro characteristics. Our simulated AFS
server supplied on average 5.0MB to each of its clients per
day for read opens; [Spas94] measured 5.3MB per client
per day for a large AFS installation. We measured a 5.7MB
per client per day write back load; 4.7MB per client per day
loads were measured by [Spas94].

This trace reflects the file system activity of a real sys-
tem. Although this enhances our confidence that the trace is
realistic, the capabilities of the traced system can limit the
activity seen in the trace. The prime example of this limita-
tion is on peak load. Our trace will underestimate the peak
server load that might be imposed on a more scalable sys-
tem for two reasons. First, the limited speed of the traced
system will spread out requests, resulting in longer periods
of activity but lower peaks. Second, users will tend to avoid
operations that take a long time on the traced system, lower-
ing both peak and overall load. Sharing is another example
where the system’s limitations may distort the workload.
Since NFS has weak data sharing semantics, few users
attempt to share data. If more files were shared, both AFS
and xFS would see increased server loads, although AFS’s
increase would be larger since AFS’s sharing requires data
transfer through the server while sharing under xFS is
accomplished with read forwarding and invalidation pack-
ets.

4 Simulator Methodology
We built a simulator to evaluate the performance of

AFS and xFS for the traced workload. This simulator starts
with a model of system behavior describing what actions are
taken to implement the AFS and xFS protocols. We then
parameterized the system to reflect the performance of real
hardware. The subsections below describe the system model
and the hardware parameters used.

4.1 System Model
Our simulator provides both average resource utiliza-

tion and more detailed performance information. In the sim-
plest case we can determine average processor, disk, and
network utilizations by simulating cache behavior on the
trace input and counting accesses to the different hardware
resources. We get more detailed performance information
by adding an event driven model to the cache simulation to
measure the response time of different requests and monitor
the burstiness of the utilization of different parts of the sys-
tem. This event-driven hardware model includes both hard-

ware and queuing delays. The rest of this subsection
provides details about the simulated caches.

Our simulations of xFS and AFS include both on-disk
and in-memory client file caches, and our AFS simulations
include an in-memory file cache at the server. These caches
are simulated using whole-file caching for simplicity,
although in practice both AFS and xFS would cache chunks
of files. We do break large transfers into 64KB chunks for
realistic latency measurements. We assume in-memory
caches of 8MB per client and 128MB at the AFS server,
and we give each client a 100MB on-disk file cache.

Our simulations also include attribute caches used
when clients access a file’s attributes without fetching the
entire file. Each client had a 2048entry in-memory attribute
cache backed by its disk, and the server has a 32,768entry
in-memory cache. The server supplies attributes and the
systems maintain attribute consistency using the same pro-
tocols used for the files themselves.

Because cache behavior is so crucial to performance of
large scale file systems, we warm the caches before gather-
ing statistics. The results presented in this paper are gath-
ered during the last six days of our seven day trace, after
warming the caches for the first day, a Saturday. Figure1
plots the hit rate of read opens not satisfied completely in
the in-memory cache over time and indicates that after the
first day, the hit rate fluctuates between 30% and 95%.
There appears to be no general upward trend as we would
expect once the caches are warm. The steady state hit rate is
relatively low because opens that are completely satisfied in
the NFS local in-memory cache did not appear in the trace.

Even after warming the caches, 8% of the read opens
(21% of those that miss on the local disk) access files that
have not been referenced earlier in the trace. We must make
some assumption about which xFS client owns these files.
We arbitrarily assume each file with unknown location is
stored on a randomly selected client disk. The impact of this

Figure 1. Local hit rate over time. This plot of local on-disk
cache hit rate against day of the simulation of AFS suggests that
one day is sufficient to warm the caches. Hour-to-hour fluctuations
have been smoothed in this plot by averaging over the previous 4
hours for each point.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7

AFS Local Disk Hit Rate

Day of Simulation

R
ea

d
O

pe
n

H
its

 o
n

Lo
ca

l D
is

k

Traces Gathered

6

assumption is limited since 92% of the file opens are located
normally, at a client that is currently caching the data.

4.2 Hardware Parameters
To estimate the performance of xFS and compare it to

AFS, absent an implementation, we parameterized the
model to reflect the performance of a mid-range workstation
for tasks similar to those that would be performed in an xFS
or AFS implementation. We approximate the performance
of a DECstation5000/200 using measured and reported per-
formance results for its subsystems summarized in Figure2.
Each hardware resource services arequestSize request in
time overhead+requestSize/bandwidth. This approach is
clearly an oversimplification: not all requests to a given
piece of hardware will have the same overheads and band-
widths and the actual overheads are unlikely to exactly
match those for current systems. Nevertheless, these simple
assumptions provide a starting point for system evaluation.
[Lazo86] used a similar approach in parameterizing perfor-
mance for network file system simulations.

The processor overhead time represents the CPU and
memory subsystem time to send or receive one network
request and do a small amount of work in the file system.
We estimated this time by measuring the time for a
DECstation5000/200 to handle an NFSgetattr request.
For the CPU bandwidth for large requests, we use the time
to supply file system data from the in-memory file cache
reported in [Chen93].

We assume that the machines use disks that rotate at
5400 RPM, that the typical seek time is 4ms2, and that the
disk bandwidth is 2MB/s.

We base the network topology on the configuration of
the clients in our NFS trace: four subnets each connected to
the server. For AFS, each subnet connects directly to the
server, and for xFS each subnet connects to a cluster server.
The cluster servers connect to the central server using a fifth
subnet. The network latency is the time to transmit a mini-
mum-sized Ethernet packet and the network bandwidth is an
optimistic estimate of the net bandwidth available on an
Ethernet.

While other performance assumptions would result in
differences in the absolute latency and burstiness numbers
reported later, they are unlikely to affect our central conclu-

2. This estimate of the typical disk overhead differs from the “aver-
age” seek time reported by manufacturers because it accounts for locality
seen in real workloads[Henn90] while the manufacturer-reported average
seek is the mean time over all possible source and destination tracks—
seeks that average one third of the distance across the disk surface.

Overhead Bandwidth

Processor 1.4 ms 7 MB/s

Disk 9.6 ms 2 MB/s

Network 0.1 ms 4 or 5 x 1 MB/s

Figure 2. Service demand parameters.

sion that the xFS protocol scales significantly better than
AFS.

5 Results
This section presents the results of our simulations. We

show that the proposed optimizations reduce server load by
more than a factor of six compared to AFS, and we also
show that the xFS protocol greatly reduces peak bursts of
server load. xFS also significantly reduces total network
load, and the distribution of traffic that remains is better
suited for a mixed LAN/WAN environment. The increased
responsibility this protocol places on clients does increase
client file system load slightly, but the extra forwarding of
read requests does not increase response time.

 The next subsection presents our overall results in
more detail, and the subsection after that examines the indi-
vidual impact of each of the four main aspects of xFS: its no
write through policy, client-to-client transfers, write owner-
ship, and clustering. We find that all four techniques make
significant contributions to the overall performance.

5.1 Overall Results
This section compares the xFS protocol to AFS in

terms of server CPU load, the burstiness of server load,
response time, network load, and client load.

Figure3 summarizes our results showing that xFS
reduces server load by more than a factor of six compared to
AFS. This load estimate is the total server processor
demand including both overhead and bandwidth as
described in Section4.2, expressed as a fraction of AFS’s
server demand. We find that xFS reduces server load by
85% compared to AFS by eliminating data transferred at the
server and by reducing the number of messages the server
must handle.

Figure4 details how much server load each type of
operation demands. Write close operations at the server
include write through (for AFS), notifying the server of a
write of a file that is not write owned (for xFS), and the mes-
sages sent by the server to invalidate cached copies. Read
open operations at the server are caused by client misses and
include handling the client request and supplying the data
(for AFS) or forwarding the request (for xFS). Delete opera-
tions include the message sent to the server to indicate that a
file has been deleted and the server messages notifying the
clients caching that file. Attribute messages include packets
to request, update, and invalidate file attribute information.
The category “other” includes all other packets sent to or

Figure 3. Total server load. The normalized server load
expresses the server CPU load for the simulated protocols as a
fraction of the simulated server load for AFS.

Server
Messages

Server
Data

Server
Load

AFS 1,411,504 15.2GB 1.000

xFS 457,356 0.0GB 0.153

7

received by the server; an xFS client notifies the server
when it purges a file (potentially forwarding marked data to
another cache) to make room for new data.

In addition to the total work at the server, performance
and scalability will also be dependant on periods of heavy
load. Figure5 summarizes the distribution of time spent at
increasing levels of server load for AFS and xFS. It shows
that xFS’s reduction in average load translates into a reduc-
tion in time spent at high load. This figure indicates that the
AFS server spends several minutes per day working at loads
of over 0.5 while the xFS server is never loaded that heavily.
The extremely low peak demands of xFS suggest that we
could scale the system to a larger number of clients than
AFS. We note that the absolute load level for both machines
is relatively low, suggesting that either server could proba-
bly handle the Berkeley Auspex workload. As we noted ear-
lier, however, the maximum load that either system
experiences in this simulation is limited by the maximum
load accepted by the NFS system where the workload trace
was gathered.

Having servers forward read requests can potentially
increase latency. Our measurements show, however, that the
aggregate effect of the client in-memory caches minimizes
the impact of the extra step. We focus on the time spent to
open a file for reading, from when the request is issued until
the first chunk of up to 64KB arrives on the local disk. We
consider both requests that are found on the local disk with-
out additional network communication and requests that are
satisfied over the network.

AFS xFS

Write Close 0.429 0.018

Read Open 0.453 0.073

Delete 0.014 0.013

Attribute 0.104 0.043

Other 0.000 0.006

Total 1.000 0.153

Figure 4. Server load breakdown. Portion of AFS server load
due to each type of request.

Figure6 breaks down the response time based on where
requested files are found. Opens that are satisfied locally,
requiring no disk accesses, account for most of the opens
and are satisfied quickly by both systems. Misses that are

Figure 5. Cumulative distribution of server load. The X axis is
the amount of load presented to the server during a one second
interval. This load is the sum of the service demands for all
requests that arrive at the server during a one second interval. The
Y value is the amount of time during the day that the server
experienced at least that load level. The AFS server handled at
least one request per second for 159 minutes per day, while the
xFS server was completely idle for all but 34 minutes per day. The
circled points indicate that the AFS server would have a load of
more than 0.2 for over eight minutes per day while the xFS server
would have a load that high less than ten seconds per day.

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

AFS

xFS

M
in

ut
es

 P
er

 D
ay

Server Load Level (1 Second Intervals)

Figure 6.Read open response time. The response time is the
time needed to put the first chunk of the opened file onto the
local disk and return. Local hits are data that are already on the
local disk. For both AFS and xFS data not found in the local on-
disk cache are fetched from a remote machine. For AFS that
remote machine is the server but for xFS that remote machine is
another client. At that remote machine the desired data may be
found on disk or in the in-memory cache.

AFS xFS

Freq. Time Freq. Time

Local 60% 6.3 ms 60% 6.3 ms

Remote

Mem

Disk

40%

9%

31%

57 ms

25 ms

66 ms

40%

15%

25%

56 ms

30 ms

71 ms

Total 100% 27 ms 100% 26ms

Protocol Write Read Delete Attr . Other Total

AFS 0.429 0.453 0.014 0.104 0.000 1.000

+ no write through 0.113 0.496 0.014 0.102 0.003 0.728

+ client-to-client 0.113 0.175 0.014 0.102 0.015 0.418

+ write ownership 0.032 0.175 0.014 0.102 0.015 0.337

+ clusters (full xFS) 0.018 0.073 0.013 0.043 0.006 0.153

Figure 11. Server load by type of activity and protocol. The AFS line indicates the server load stemming from write closes, read
opens, deletes, attribute operations, and other operations. Each subsequent line shows the breakdown and total after one more part
of the xFS protocol is added. Server loads that changed significantly from the previous line are highlighted.

8

satisfied in the remote in-memory cache and misses that
require remote disk accesses are slightly slower in the xFS
implementation because of the extra forwarding step. This
does not, however, increase the cost of a miss because xFS
misses are satisfied by the remote client in-memory cache
more often than AFS requests are satisfied by the server in-
memory cache. The higher remote client in-memory cache
hit rate is initially surprising because the AFS server in-
memory cache is 128MB while each xFS client cache is
just 8MB. We note, however, that the aggregate size of the
237 client caches is 1896MB, making them together an
effective file cache even though many of the files stored in
this distributed cache are duplicates. Further, note that the
server does not attempt to keep track of which clients have a
file cached in memory rather than on disk; although this
would be an obvious optimization, it could increase server
load. Figure7 plots the remote in-memory hit rate for xFS
as a function of client memory cache size and indicates that
the 128MB server cache is about equivalent to 5MB client
caches.

Network load, the number of bytes transferred over the
network during the trace, is an important metric of scalabil-
ity. We are particularly concerned about minimizing net-
work usage for wide area network file systems, where
network bandwidth can become a bottleneck. Bandwidth
can also be an issue for mobile computing using wireless
interconnects [Kist92].

Figure8 summarizes total network traffic for AFS and
xFS using the assumption that each packet sent has a header
of 128bytes. The table indicates that xFS reduces total net-
work traffic by 52%. The major difference in total network
bandwidth is xFS’s elimination of write through traffic for
files that are later modified or deleted by the same client.

Although xFS only reduces total network traffic by a
factor of two compared to AFS, it significantly changes the
nature of that traffic. Figure9 shows that client-to-client
transfers reduce the bytes transferred to the server by more
than 99%. This reduction is crucial for file systems where
the server may be located across a WAN. The use of cluster-
ing also reduces the number of bytes transferred out of the

Figure 7.Remote in-memory cache hit rates for local misses.

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60

xFS Aggregate Client Cache

AFS 128 MB Server Cache
AFS 256 MB Server Cache
AFS 512 MB Server Cache

M
em

or
y

H
it

R
at

e

Per-Client Memory Cache Size (MB)

cluster to less than 20% of AFS’s total traffic, a consider-
ation when clusters are separated by gateways or WANs.

Finally, we note that overall client load is increased
only slightly even though clients shoulder considerably
more responsibility in xFS than in AFS, for instance by sup-
plying data to other clients. The xFS protocol increases the
total amount of file system work done by clients by 10% for
the measured workload. The increase in client load is small
because most of a client’s load comes from local block reads
and writes which are unchanged in xFS. Further, although
xFS increases the load on each client to handle data requests
from other clients, the reduced write through activity largely
offsets this increase. This fraction would be smaller still if
the trace included the even larger amount of file system
activity that is purely local, such as reads that hit the client’s
in-memory cache. Figure10 shows that the demands on cli-
ents are not greatly altered by the xFS protocol.

5.2 Protocol Breakdown
In the previous section, we considered the aggregate

effect of all four optimizations studied. Here we consider
their individual effects. We conclude that each of the opti-
mizations contributes significantly to the performance of the
xFS protocol. Figure11 summarizes the load as each part of
the xFS protocol is added to the system. This section
explains the benefits of each of the strategies in more detail.

Simply eliminating write through from AFS would
reduce the server load by 27% for this workload. The server
load associated with closing files that have been written

Figure 8. Network traffic for xFS and AFS from all sources.
The total bytes transferred is an estimate formed by adding the
total data bytes transferred plus 128 bytes per request to reflect
protocol overhead and control information. The packet count for
xFS reported here differs from the number of messages reported in
Figure3 because Figure3 only considered traffic to and from the
server.

AFS xFS

Packets

Overhead

1,411,504

180MB

1,968,242

252MB

Data Bytes

Write Through

Other Data

15,251MB

8,096MB

7,154MB

7,222MB

0 MB

7,222MB

Total Bytes 15,431MB 7,474MB

AFS xFS

Central Server 15,431MB 58MB

Other Out Cluster N/A 2,902MB

In Cluster N/A 4,514MB

Figure 9. Total network traffic over differ ent parts of the
network. The total includes both data and a 128 byte per-packet
header. In a WAN or large-scale environment the connection to
the central server or to other clusters may be slower than the
network within a cluster.

9

would be reduced by nearly a factor of four because clients
only need to send a small notification message to the server
rather than transmitting the modified file in one or more
larger messages. However, the server load associated with
supplying read misses is increased slightly as the server
endures write backs of modified files that other clients want
to read. 10% of the bytes that were written to the server by
AFS are later read and show up as increased read load.
Another small load, in the categoryOther, comes from write
throughs that must eventually be made to free cache space.

Utilizing client-to-client data transfers reduces the
server load by an amount equal to 0.31 times the original
AFS load. This reduction comes from the elimination of
data transfers through the server on read opens. Note, how-
ever, that the work in the categoryOther is increased
slightly. This increase is from messages clients send when
they free space by discarding files from their caches. The
server must be informed when even clean files are discarded
so that it doesn’t forward read requests to a client no longer
caching the desired data.

Write ownership reduces the number of messages pro-
cessed by the server, and therefore server load, by an addi-
tional 25% compared to the client-to-client line. Figure12
indicates that over 80% of the messages notifying the server
that a file has been closed are eliminated using write owner-
ship.

Cluster servers reduce messages of all types by inter-
cepting requests that would have been handled by the cen-

Figure 10. Cumulative distribution of one-second load levels
at clients. The average client processor is active doing file
system activity for less than three minutes per day. The xFS and
AFS client loads are almost indistinguishable.

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

AFS
xFS

Client Load Level (1 Second Intervals)

M
in

ut
es

 P
er

 D
ay

Figure 12. Write close messages without and with write
ownership. Notify Server messages tell the server to invalidate
any other cached copies of a file. It invalidates files with
Invalidate Client messages.

Protocol
Notify
Server

Invalidate
Client

no write through 291,198 46,015

+ownership 50,423 46,015

tral server. Cluster servers reduce the server load for reading
files and reading attributes by forwarding requests that can
be satisfied within the cluster. This read forwarding is the
primary benefit of cluster servers. The number of write
close messages is also reduced, and this reduction comes
from two sources that combine to reduce server load by
0.014 times AFS’s load. First, a few write closes transfer
ownership between clients of the same cluster. These writes
are handled by the cluster server, reducing central server
load by 0.003 times AFS’s original load. More significantly,
the cluster server acts to fan out invalidation packets from
the central server. One invalidation packet from the central
server to the cluster server is sufficient to invalidate all data
copies in the cluster. These invalidations reduce the central
server load by 0.011 times the original load. The load of
delete messages andOther messages processed by the cen-
tral server is also reduced slightly. Some delete messages,
invalidating multiple copies of the same file in caches in one
cluster, are eliminated because the cluster server distributes
these messages to the appropriate clients in the cluster.
Other messages are reduced when a file discarded from a
cache is still cached in some client in the cluster; in that case
the server may still forward requests for that file to the clus-
ter and so need not be notified of the change. Finally, note
that the four cluster servers’ loads ranged from 0.05 to 0.20
as a fraction of the AFS server load. In other words, they
have about the same load as the xFS central server.

We also considered extending the strategy of write
ownership of files to include ownership of directory sub-
trees to allow us to avoid notifying the server of all file cre-
ations and deletions. If a client owned a directory, it would
notify the server of file creations and deletions when owner-
ship of the directory containing the file was lost. This strat-
egy would exploit the common case of files being created,
used, and deleted without ever being seen by another client.
Our simulations did not measure the benefits of directory
ownership, but they allow us to place an upper bound on the
benefits by noting that of the 0.018 load for write closes,
0.009 was for newly created files and of the 0.013 load for
deletes, 0.012 was for messages notifying the server of the
delete. If all of these messages could be omitted, the total
server load would be reduced by 0.021 units, a 14% reduc-
tion from the xFS protocol in this unrealistically optimistic
case. We conclude that this improvement would not justify
the considerable added complexity of the approach. If some
of the other sources of load were reduced further, this reduc-
tion would be a more significant fraction of the remaining
load, and this decision would have to be reexamined.

6 Challenges for Decentralized Operation
Although the xFS protocol’s reliance on client disk

caches improves scalability, it introduces three potential
challenges for reliable operation. We must provide backup
that scales with the number of clients; we must ensure that
the files are highly available despite being distributed over

10

many disks; and we must provide security guarantees so that
unauthorized clients cannot read or change data they store.
We find that the data replication that is a natural part of the
xFS protocol makes backup easier and increases availabil-
ity. Also, message digests can be used to provide security
for data supplied by other clients.

6.1 Backup
xFS’s ability to manage multiple data copies in normal

operation can be used to manage the backup copies of the
data as well. This simplifies the design of the system and
also allows us to use multiple backup archives to scale the
backup bandwidth as the rest of the system scales.

xFS treats each archive as another client, and the server
keeps track of the backup copies of data just as it tracks
other cached copies. A client cache backs up a file by send-
ing it to an archive and telling the server about the new
copy. The system must have policies for the frequency of
backup, for deciding which of the potentially many clients
caching a file is responsible for backing it up (this decision
can be made without additional communication), and for
retrieving data from the backing store.

We plan to use tertiary storage robots to manage the
backup media. Tertiary storage robots provide from hun-
dreds of gigabytes to tens of terabytes of storage with file
access times measured in tens of seconds [Katz91]. The
robots provide deep storage as traditional tape systems do,
but they have the added advantage that all files are on-line
in the sense that a user may access the data without human
intervention. Tertiary robots are not a requirement of xFS;
backup could be done using traditional off-line tapes. The
advantage of using storage robots for backup is that data
may be sent to or retrieved from the tertiary storage system
without operator intervention, allowing the system to auto-
matically provide services such as access to old versions of
files or deleted files.

Note that the server’s disk need not be backed up; the
server can reconstruct its list of cached copies and metadata
by polling the cluster servers [Nels88].

Backup over the network exerts a small additional load
on the system. Although we did not include this load in the
simulations, its impact on performance should be small. As
noted in Section2.2, almost all files are overwritten or
deleted quickly and so need not be copied from the client to
the backup archive. Further, backup may be scheduled for
periods of low system load to avoid disturbing regular sys-
tem activity.

6.2 Availability
 xFS’s second challenge is availability. As the file sys-

tem is spread over more machines, the probability that one
of the machines containing file system data is unavailable
increases. Availability problems are mitigated by large cli-
ent caches, file replication, and the file access patterns

observed in our trace. Even higher availability could be
achieved using explicit data replication.

Large client caches and file replication from caching
and backup reduce xFS’s vulnerability to unavailable cli-
ents. Large client caches provide some insulation—the
crash of one machine will often not be noticed by others
[Kist92]. xFS also automatically stores redundant copies of
shared read files in different caches increasing the availabil-
ity of those files, and on-line backup provides added copies
of older files. These properties of xFS mean that only a few
files, those recently written but not backed up and not read
by a second client, are vulnerable to single point failures.
Since files written by one client are seldom read by another,
these vulnerable files are seldom accessed when their writer
is down.

We estimate from our trace of file activity that the aver-
age client will go hundreds of days without noticing file
unavailability stemming from the crash of another client.
This low rate suggests that the xFS protocol will not signifi-
cantly change data availability which will still be dominated
by the availability of the server. For this calculation we
assumed that clients fail randomly with an exponentially
distributed mean time to failure of 30 days and an exponen-
tially distributed mean time to repair of one hour. We also
assumed that data was backed up to a reliable on-line tape
robot every morning at 2AM. Under these assumptions we
found that each day an average of 0.56 of the 237 clients in
the trace would try to access data that was cached only on
an unavailable client. This figure was based on 500,000
seven day trials and has a 95% confidence interval of±0.04.
Availability could be more of a problem if write-sharing of
data were more widespread than seen in our trace. Also, if a
user’s machine crashes, the user may not be able to switch
to an alternate machine to do work since modified data will
unavailable until the crashed machine recovers.

If stronger availability guarantees are needed, client-to-
client data replication of recently modified data provides a
scalable solution. Shortly after a client closes a file for writ-
ing, it would send the data to one or more other clients
[Lisk91, Birr93]. This solution is scalable since it adds no
additional server messages if the server knows ahead of
time which clients mirror writes to each other. The copy
delay chosen is a trade-off between performance and avail-
ability guarantees with longer delays significantly reducing
client-to-client bandwidth [Bake91] while increasing the
length of time the file is vulnerable to a single point failure.
In the future we plan to investigate these trade-offs for cli-
ent-to-client transfers and also plan to look at using striping
to reduce the cost of high availability. Our current simula-
tions do not make additional client copies.

11

6.3 Security
xFS’s use of client disks to store and supply data raises

two security concerns, data confidentiality and integrity. We
do not want clients to transfer data into a cache that is not
authorized to read the data, and we do not want to accept
altered data from a malicious client on a client-to-client
transfer.

We believe that in many environments most clients will
trust at least the other clients in the same cluster to enforce
the system’s data access rules. Communication between
trusting clients does not require the steps described here.

The confidentiality of data cached on client disks is also
addressed by AFS [Saty89] and the techniques used there
apply to xFS as well, for data read by the client. xFS, how-
ever, adds one new way that data can be brought into a cli-
ent’s cache: clients flush data to one another as their caches
fill. Since this flushing is rare, the performance impact of the
chosen strategy will be limited. In the extreme case, if no
other clients are trusted with the data, the data could be
encrypted before it is flushed. The same client would have
to decrypt it if it were later accessed. More commonly, data
will only be flushed to a limited subset of trusted clients, for
instance only to clients in the same cluster and administra-
tive domain.

xFS can guarantee data integrity, allowing clients to
accept data from even untrusted clients, by guaranteeing
two things: that a secure copy of each file always exists and
that a client can detect when a file has been altered from the
secure image.

To guarantee the existence of pristine data, the system
must trust the client that created the data—which it must do
in any event since it has given the client permission to mod-
ify the data—and must trust the on-line backup archive. The
client that created the data pins a copy in its cache until the
file is backed up to the robotic storage. After the file is
backed up, the writer is free to flush the data, since if
another client modifies it without permission, the system
may still recover the file from the tape robot.

A client verifies untrusted data using amessage digest,
a special checksum that can be calculated efficiently, but for
which it is computationally infeasible to create different
data to match [Rive92]. The server stores a 128-bit digest
for each 64KB data chunk with its list of chunks cached at
the clients. When it forwards a client’s request for data, it
includes the digest for the pristine data in the forwarding
packet. The digest in the forwarding packet is protected
using an encrypted digital signature [NIS92]. The protected
part of the forwarding packet would also include a request
identifier to protect against playback attacks. The client sup-
plying data forwards the protected digest along with the
data. The original client then verifies the data supplied
against the original digest. If the file is corrupt, the client
asks the server for a copy from another source.

Because the work of computing digests is done at the
clients, digests do not severely impact server scalability.
Digests can be supplied to clients reading data using no
additional network packets and they are updated at the
server only when file write ownership is lost. When the
server forwards a data read request, it must encrypt a short
message including the digest and request identifier and
append that message to the forwarding packet. If the work
of encrypting this message is small compared to sending the
packet, digests will not increase server load for read
requests. (If encryption is hard compared to sending a mes-
sage, the unprotected digest may be sent directly to the cli-
ent requesting the read in a separate message.) Our
simulation assumes that the cluster servers are trusted by the
clients in the cluster, so once a cluster server knows the
digest for a particular file chunk, the cluster server may for-
ward the digest to the appropriate client. Digests only
change when a file is written, so clients only calculate a new
digest and send it to the server when they lose write owner-
ship.

We simulated message digests assuming that the signa-
ture encryption is cheap compared to sending a message. In
that case the only additional server load is receiving 15,510
digest updates when write ownership is lost. This increases
server load by less than 1% of AFS’s total server load.

Message digests do not severely impact response time.
We measured the bandwidth to compute the MD4 digest on
a DEC Alpha AXP3000/400 to be 13.3MB/s. To be consis-
tent with the other processor speeds used in this paper, we
simulated MD4 calculations using our measured
DECstation5000/200 MD4 bandwidth of 2.5MB/s. Even if
clients calculate a message digest on all data received, trust-
ing no other clients, the read open time for files is 28ms,
just 2ms slower than the 26ms read open time reported in
Section5 for xFS without message digests. Since the MD4
calculation bandwidth exceeds the bandwidth of the net-
work, the impact to performance is minimal. This approach
will become even more attractive if processor speed
improvements continue to outpace I/O system improve-
ments.

7 Related Work
This paper evaluates the effectiveness of a file system

that combines the strategies of eliminating write through,
client-to-client transfers, write ownership, and clustering.
The fusion of these strategies has produced a system that we
believe will scale in size and across wide area networks.
This section surveys some other combinations of these
schemes that have been suggested as methods to achieve
scalable file systems.

The Andrew file system, AFS, was designed with scal-
ability as a main criteria [Howa88, Saty90]. Andrew based
scalability on the use of, first, large on-disk client caches to

12

reduce file reads from the server, and second, callbacks to
reduce the number of protocol messages handled by the
server. xFS is also based on large on-disk client caches and
callbacks but generalizes their use using four additional
techniques.

The mass storage system reference model [Coyn93]
decouples location and name service from the actual storage
of data. The model defines a name server and location
server that locate the storage server that actually manages
the bitfile. Goldick et al. [Gold93] have implemented an
AFS-based storage system which allows data to reside in up
to 32 separate locations. In xFS each client acts as a storage
server, and server and cluster servers together act as a two-
level location server. This study indicated that this division
greatly reduced the load on the central resource, the central
server.

Sprite [Nels88] uses delayed writes to the server to
reduce server load. The diskless Sprite clients, however,
must write data through to the server within about 30 sec-
onds to reduce vulnerability to crashes. xFS’s extends
delayed writes to a no write through policy by using the cli-
ents’ local disks.

Blaze and Alonso [Blaz91, Blaz92] suggest dynami-
cally building hierarchies for widely shared data. Once a
server has supplied a threshold number of copies of a file,
the server will refuse to supply the data to any more clients.
Instead, the request will be forwarded to a client already
caching the file. Clients acting as intermediate servers are
also responsible for keeping callback information on the
files they have supplied to other caches. The authors also
suggest a number of strategies which clients may use to
guess which other client has desired data without going to
the server. These hinting techniques could be applied to an
xFS implementation.

Muntz and Honeyman [Munt92] studied the effect of
putting an intermediate data server between the central
server and the clients in an Andrew system. They found that
the hit rates at the intermediate server were surprisingly low.
Client caches of 40MB, small for an on-disk cache, reduced
the intermediate cache hit rate to under 20% for both traces
studied. The reason is that it is difficult to give the interme-
diate server a big enough cache to hold significant amounts
of data not found in client caches. Because of this result,
xFS is designed with intermediate servers that field only
consistency requests; the intermediate servers do not store
data. We believe it is feasible to provide enough storage on
the intermediate servers to hold all of a cluster’s consistency
information

The Frolic system [Pang92, Sand92] implements repli-
cation of files among cluster servers. When a client accesses
data from a remote cluster, Frolic creates a copy of the data
in the local cluster. Clients use a different protocol, such as
NFS, to access data from the local cluster server. Frolic

cluster servers differ from xFS cluster servers in that Frolic
cluster servers act as intermediate data caches between the
clients and remote servers while xFS’s cluster servers
merely monitor the location of file copies within the cluster.
Frolic’s concept of a “locating server” responsible for track-
ing the current owner of a file is similar to xFS’s use of the
central server. The authors studied the behavior of shared
files using a synthetic workload and found that cluster repli-
cation improved performance and server load for shared
files unless the “degree of cluster locality” was low; clusters
do not perform well if files are read by one cluster and
quickly invalidated by another.

8 Conclusions
In this paper, we present and evaluate the xFS caching

protocol, designed to improve network file system scalabil-
ity by taking full advantage of clients’ processors, memo-
ries, and disks. All files are stored at the clients and all data
transfers go directly from client to client. The server is used
only to coordinate transfers among the clients. xFS reduces
the server load necessary for this coordination by using
write ownership and clustering, in most cases allowing cli-
ents and cluster servers to avoid interacting with the central
server.

We evaluated the performance of xFS using a trace-
driven simulation of 237 clients. We found that xFS reduced
server load by 85% compared to AFS by eliminating server
data transfers and by reducing the number of messages to
and from the server by 68%. By moving data storage and
data transfer responsibilities to the clients, xFS makes it
possible to build a large network file system using only
commodity desktop workstations, even for the file server.

Acknowledgments
We would like to thank Matt Blaze for providing us

with his rpcspy and nfstrace tools; these formed the basis for
our trace processing tools. We would also like to thank John
Hartman and the anonymous referees whose comments
were very helpful in improving this paper.

References
[Arch86] James Archibald and Jean-Loup Baer. Cache

Coherence Protocols: Evaluation Using a Multiprocessor
Simulation Model. ACM Transactions on Computer
Systems, 4:273–298, November 1986.

[Bake91]Mary G. Baker, JohnH. Hartman, MichaelD.
Kupfer, KenW. Shirriff, and JohnK. Ousterhout.
Measurements of a Distributed File System. InProc. of the
13th Symposium on Operating Systems Principles, pages
198–212, October 1991.

[Birr93] AndrewD. Birrell, Andy Hisgen, Chuck Jerian,
Timothy Mann, and Garett Swart. The Echo Distributed
File System. Technical Report 111, Digital Equipment
Corp. Systems Research Center, 1993.

[Blaz91]Matt Blaze and Rafael Alonso. Long-Term
Caching Strategies for Very Large Distributed File

13

Systems. InProc. of the Summer 1991 USENIX, pages 3–
15, June 1991.

[Blaz92]Matt Blaze and Rafael Alonso. Dynamic
Hierarchical Caching in Large-Scale Distributed File
Systems. InProc. of the 12th International Conf. on
Distributed Computing Systems, pages 521–528, June
1992.

[Blaz93]Matt Blaze.Caching in Large-Scale Distributed
File Systems. PhD thesis, Princeton University, January
1993.

[Chen93]PeterM. Chen and DavidA. Patterson. A New
Approach to I/O Performance Evaluation–Self-Scaling I/O
Benchmarks, Predicted I/O Performance. InProc. of 1993
ACM SIGMETRICS, pages 1–12, May 1993.

[Coyn93]RobertA. Coyne and Harry Hulen. An
Introduction to the Mass Storage System Reference Model,
Version 5. InTwelfth IEEE Symposium on Mass Storage
Systems, pages 47–53, April 1993.

[Gold93]JonathanS. Goldick, Kathy Benninger, Woody
Brown, Christopher Kirby, Christopher Maher, DanielS.
Nydick, and Bill Zumach. An AFS-Based Supercomputing
Environment. In Twelfth IEEE Symposium on Mass
Storage Systems, pages 127–132, April 1993.

[Hage92]Erik Hagersten, Anders Landin, and Seif Haridi.
DDM–A Cache-Only Memory Architecture.IEEE
Computer, 25(9):45–54, 1992.

[Henn90]JohnL. Hennessy and DavidA. Patterson.
Computer Architecture A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., 1990.

[Hitz90] David Hitz, Guy Harris, JamesK. Lau, and
Allan M. Schwartz. Using UNIX as One Component of a
Lightweight Distributed Kernel for Multiprocessor File
Servers. InProc. of the Winter 1990 USENIX, pages 285–
296, 1990.

[Howa88]JohnH. Howard, MichaelL. Kazar, SherriG.
Menees, DavidA. Nichols, M.Satyanarayanan, RobertN.
Sidebotham, and MichaelJ. West. Scale and Performance
in a Distributed File System.ACM Transactions on
Computer Systems, 6(1):51–81, February 1988.

[Katz91]RandyH. Katz, ThomasE. Anderson, JohnK.
Ousterhout, and DavidA. Patterson. Robo-Line Storage:
Low Latency High Capacity Storage Systems Over
Geographically Distributed Networks. Sequoia 2000
Technical Report 91/3, University of California,
September 1991.

[Kist92] JamesJ. Kistler and M.Satyanarayanan.
Disconnected Operation in the Coda File System.ACM
Transactions on Computer Systems, 10(1):3–25, February
1992.

[Lazo86]EdwardD. Lazowska, John Zahorjan, DavidR.
Cheriton, and Willy Zwaenepoel. File Access Performance
of Diskless Workstations.ACM Transactions on Computer
Systems, 4(3):238–268, August 1986.

[Leno90]D. Lenoski, J.Laudon, K.Gharachorloo,
A. Gupta, and J.Hennessy. The Directory-Based Cache
Coherence Protocol for the DASH Multiprocessor. In
Proc. of the 17th International Symposium on Computer
Architecture, pages 148–159, May 1990.

[Lisk91] Barbara Liskov, Sanjay Ghemawat, Robert Gruber,
Paul Johnson, Liuba Shrira, and Michael Williams.
Replication in the Harp File System. InProc. of the 13th

Symposium on Operating Systems Principles, pages 226–
238, October 1991.

[Mogu87]J.Mogul, R.Rashid, and M.Accetta. The Packet
Filter: An Efficient Mechanism for User-Level Network
Code. InProc. of the 11th ACM Symposium on Operating
Systems Principles, 1987.

[Munt92] D. Muntz and P.Honeyman. Multi-level Caching
in Distributed File Systems or Your cache ain’t nuthin’ but
trash. InProc. of the Winter 1992 USENIX, pages 305–
313, January 1992.

[Nels88]MichaelN. Nelson, BrentB. Welch, and JohnK.
Ousterhout. Caching in the Sprite Network File System.
ACM Transactions on Computer Systems, 6(1), February
1988.

[NIS92] The Digital Signature Standard Proposed by NIST.
Communications of the ACM, 35(7):36–40, July 1992.

[Pang92]JamesY.C. Pang, DeepinderS. Gill, and Songnian
Zhou. Implementation and Performance of Cluster-Based
File Replication in Large-Scale Distributed Systems.
Technical report, Computer Science Research Institute,
University of Toronto, August 1992.

[Rive92]R. Rivest. The MD4 Message-Digest Algorithm.
Request for Comments 1320, Network Working Group,
ISI, April 1992.

[Rost93]E. Rosti, E.Smirni, T.D. Wagner, A.W. Apon,
and L.W. Dowdy. The KSR1: Experimentation and
Modeling of Poststore. InProc. of 1993 ACM
SIGMETRICS, pages 74–85, 1993.

[Sand85]Russel Sandberg, David Goldberg, Steve Kleiman,
Dan Walsh, and Bob Lyon. Design and Implementation of
the Sun Network Filesystem. InProc. of the Summer 1985
USENIX, pages 119–130, June 1985.

[Sand92]HarjinderS. Sandhu and Songnian Zhou. Cluster-
Based File Replication in Large-Scale Distributed
Systems. InProc. of 1992 ACM SIGMETRICS, pages 91–
102, June 1992.

[Saty89]Mahadev Satyanarayanan. Integrating Security in a
Large Distributed System.ACM Transactions on
Computer Systems, pages 247–280, August 1989.

[Saty90]Mahadev Satyanarayanan. Scalable, Secure, and
Highly Available Distributed File Access.IEEE
Computer, pages 9–21, May 1990.

[Spas94]Marjana Spasojevic and M.Satyanarayanan. A
Usage Profile and Evaluation of a Wide-Area Distributed
File System. InProc. of the Winter 1994 USENIX, January
1994.

[Thom87]JamesGordon Thompson.Efficient Analysis of
Caching Systems. PhD thesis, University of California at
Berkeley, 1987.

[Wolf89] Joel Wolf. The Placement Optimization Problem:
A Practical Solution to the Disk File Assignment Problem.
In Proc. of 1989 ACM SIGMETRICS, pages 1–10, May
1989.

