Emulations Between QSM, BSP and LogP:
A Framework for General-Purpose Parallel Algorithm Design

Vijaya Ramachandran, Brian Grayson, and Michael Dahlin
The University of Texas at Austin

{vlr@cs, bgraysonQece, dahlin@cs}.utexas.edu

1 Introduction

BSP [8], LogP [2], and QSM [3] are general-purpose
parallel models that seek to achieve the right balance
of simplicity, accuracy and broad applicability in the
modeling of parallel machines. We show that these
models are essentially interchangeable by giving work-
preserving emulations with small slowdown between
these models. The one mis-match we have is between
stalling and nonstalling LogP, for which we expose an
error in an earlier paper [1] that claimed that stalling
LogP and BSP are essentially equivalent models.

The QSM is a shared-memory model (in contrast to
BSP and LogP), and it has fewer parameters. Thus we
argue that it is the model of choice for algorithm design.
We formulate a suitable cost metric for QSM algorithms,
and we describe simple efficient QSM algorithms for
prefix sums, sample sort and list ranking. Experimental
evaluation of these algorithms indicates that the QSM
cost metric is a good predictor of performance for
problem sizes that arise in practice.

2 Models

The QSM (Queuing Shared Memory) model [3] consists
of a number of identical processors that communicate by
reading and writing shared memory. Processors execute
a sequence of synchronized phases, each consisting
of an arbitrary interleaving of shared memory reads,
shared memory writes, and local computation, subject
to the restriction that (i) the values returned by shared-
memory reads issued in a phase cannot be used in the
same phase and (ii) the same shared-memory location
cannot be both read and written in the same phase.
A phase takes time max (mop, g - Myw, k), Where my,
is the maximum number of local operations, m,, is
the maximum number of shared-memory read-writes
issued by any processor, and « is the maximum number
of requests to any single memory location. Here g is
the gap parameter, which captures the delay incurred
by limited bandwidth to shared-memory. The s-QSM
(Symmetric QSM) is the same as the QSM, except that
a phase takes time max (Mop, g - Myy, g - K).

URL: www.cs.utexas.edu/users/vlr/pub.html

The BSP (Bulk Synchronous Parallel) [8] and LogP
[2] each model a parallel machine as a collection of
processor-memory units with no global shared memory.
The processors are interconnected by a network whose
performance is characterized by a gap parameter g and
a latency parameter [(in LogP) or synchronization
parameter L (in BSP). The LogP model also models
the per-message overhead o for sending and receiving
messages, and it limits network congestion by requiring
that no more than [/g messages be in transit to a given
destination processor in any interval of length [.

3 Emulation Results

The results on work-preserving emulations between
models are tabulated in Table 1 with new results printed
within a box. We focus on work-preserving emulations.
An emulation is work-preserving if the processor-time
bound on the emulating machine is the same as that
on the machine being emulated, to within a constant
factor. The ratio of the running time on the emu-
lating machine to the running time on the emulated
machine is the slowdown of the emulation. Typically,
the emulating machine has a smaller number of proces-
sors and takes proportionately longer to execute. For
instance, the entry in Table 1 for the emulation of s-
QSM on BSP states that there is a randomized work-
preserving emulation of s-QSM on BSP with a slowdown
of O(L/g+logp). This means that, given a p-processor
s-QSM algorithm that runs in time ¢ (and hence with
work w = p - t), the emulation algorithm will map the
p-processor s-QSM algorithm on to a p'-processor BSP,
for any p' < p/((L/g) + logp), to run on the BSP in
time t' = O(t - (p/p')) w.h.p. in p.

We mention three aspects of these emulation re-
sults, which are described in [7]. First, we have devel-
oped new, work-preserving emulations of QSM, s-QSM
and BSP on LogP; previously known emulations [1] re-
quired sorting and increased both time and work by
a logarithmic factor. Second, we have provided new
analysis of the known emulation of LogP on BSP [1];
we have provided a counter-example to the claim that
this emulation holds for the stalling LogP model, and

| Slowdown of Work-Preserving Emulations (sublogarithmic factors have been rounded up for ease of display) |

Emulated Model Emulating Model

(p processors) BSP | LogP (stalling) | sQSM | QSM
BSP O(log*p + (L/g)log’ p) O([£E27) O([#1£2T)
LogP (nonstalling) O(L/1) (det.)t 1 (det.) O([%s—p]) O([%g—p])
s-QSM O((L/g) +logp) [O(log*p + (1/9)log” p) | 1 (det.)
QsM O((L/g) + glogp) | [Ollog* p+ (1/9)log? p+g - logp) | | O(g) (det.)

Table 1: All results are randomized and hold w.h.p. except those marked as ‘det.’, which are deterministic
emulations. The bozed results (those in which the LogP model is either the emulated or the emulating model)
are the new results reported in this paper (and described in detail in [7]). The remaining results are in [3, 6].

JrThis result is given in [1] but is stated erroneously that it holds for stalling LogP programs. We provide a counterexample in [7].

we observe that the original non-work-preserving emu-
lation may be trivially extended to be work-preserving.
Third, we observe that known emulations of message
passing on shared memory require sorting and multiple-
compaction, making emulations of BSP or LogP algo-
rithms on any shared-memory interface complex. On
the other hand QSM and s-QSM have simple emula-
tions on message-passing interfaces as modeled by BSP
and LogP (and also, of course, on shared-memory).
Since both message-passing and shared-memory are
widely-used in practice, we suggest that a high-level
general-purpose model should be one that maps on to
both in a simple way. QSM and s-QSM give us this
feature. Additionally, they have a smaller number of
parameters, and do not have to keep track of the layout
of data across shared memory. Hence they are ideal
models for general-purpose parallel algorithm design.

4 QSM cost metric and basic QSM algorithms

Our cost metric for a QSM algorithm asks to (1)
minimize work, (2) minimize the number of phases,
and (3) maximize parallelism, subject to the above
requirements.

The motivation for the second metric (which is the
new one) is the following. One major simplification
made by the QSM models is that it does not incorporate
an explicit charge for latency or the synchronization
cost at the end of each phase. The total time spent
on synchronizations is proportional to the number of
phases in the QSM algorithm. Hence minimizing the
number of phases in an s-QSM algorithm minimizes the
hidden overhead due to synchronization. In particular it
is desirable to obtain an algorithm for which the number
of phases is independent of the input size n as n becomes
large. All of the algorithms we present have this feature.

We are interested in the design of algorithms to
be used in practice. We expect problems sizes to be
fairly large in practice, hence maximizing parallelism is

a secondary goal in our cost metric.

In [7, 4] we describe the algorithms that lead to
the results stated below, together with implementation
results and comparison of implemented performance to
QSM and BSP predictions. The upper bounds in the
following theorems hold for both QSM and s-QSM,
and optimality (for s-QSM) is denoted using a ©; the
matching lower bounds are in [3, 5]. Here n is the input
size and P is the number of processors.

THEOREM 4.1. Algorithm Prefiz Sums runs with ©(gn)
work, @(loé?n7p)) phases and O(glogn) time (thus P <
n/logn).

THEOREM 4.2. Algorithm Sample Sort runs with ©(gn +
nlogn) work, and ©(1) phases whp when P < y/n/logn.

THEOREM 4.3. Algorithm List Rank runs with ©(gn) work
and O(log P) phases whp when P = O(n"), r < 1.

References

[1] G. Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci,
P. Spirakis. BSP vs LogP, ACM SPAA, 25-32, 1996.

[2] D. Culler, R. Karp, et al. LogP: Towards a realistic
model of parallel computation, PPoPP, 1-12, 1993.

[3] P.B. Gibbons, Y. Matias, and V. Ramachandran. Can
a shared-memory model serve as a bridging model for
parallel computation? ACM SPAA, 72-83, 1997.

[4] B. Grayson, M. Dahlin, V. Ramachandran, Ezperimen-
tal evaluation of QSM: A simple shared-memory model,
TR-98-21, CS department, UT-Austin, 1998.

[5] P. D. MacKenzie and V. Ramachandran. Computa-
tional bounds for fundamental problems on general-
purpose parallel models. ACM SPAA, 152-163, 1998.

[6] V. Ramachandran. A general purpose shared-memory
model for parallel computation. IMA Vol. 105 in Math.
and Its Appl., Springer-Verlag, in press.

[7] V. Ramachandran, B. Grayson, M. Dahlin, Emula-
tions between QSM, BSP, and LogP: A framework for
general-purpose parallel algorithm design. TR-98-22,
CS department, UT-Austin, 1998.

[8] L. G. Valiant. A bridging model for parallel computa-
tion. CACM, 33(8):103-111, 1990.

