Experience with a Language dér Writing Coher ence Pptocols

Satish Chandra Michael Dahliff, Bradley Richards, Randolph YWand'
Thomas E. Andersdrand James R. Larblis

luniversity of Wsconsin, Madison
2University of Exas, Aistin
3\assar Collge
4University of California, Berkley

Abstract. In this paper we describe owperience withTeapot[7], a domain-specific language for
addressing theache coheence poblem The cache coherence problem arises when parallel and
distributed computing systems n®local replicas of shared data for reasons of scalability and per-
formance. In both distrided shared memory systems and distgl file systems, @oheence po-

tocol maintains agreement among the replicated copies when the underlying data are modified by
programs running on the system. Unfortunatefiche coherence protocols are notoriouskcdit

to implement, deltrg, and maintain. Furthermore, the details of the protocols depend on the require-
ments of the system under consideration and are higirlgds This paper presents case studies
detailing the successes and shortcomings of uséagdt for writing coherence protocols inotw
distinct systems. The first systelopsely coheent memoryLCM) [16], implements a particular
flavor of distrituted shared memory suitable for data-parallel programming. The second system, the
xFS distrituted file systeri9], implements a high-performance, smtess file system.

Our overall experience with #apot has been posii In particular Teapots language features
resulted in considerable simplifications in the protocol source code for both systems. Furthermore,
Teapots close coupling between implementation and fornegifigation alleved us to achiee

much higher confidence in our protocol implementations than hatbpséy been possible, and
reduced the time needed toild the protocols. By usingebpot to sole real problems in comple
systems, we also diseered seeral shortcomings of thee@pot design. Most noticeaplye found

Teapot lacking in support for multithreadedvieonments, for gpressing actions that transcend
several cache blocks, and for blocking system calls. ddhclude that domain-specific languages

can be wluable in the specific problem domain of cache coherenceiidyan our &perience, we

also praide guidelines for domain-specific languages in the broadendaftsystems softare.

1 Introduction closely linked to its sharing semantics and performance
goals. lr example, diferent distriluted shared memory
Cache coherence engines agg éomponents in seral systems preide different memory consistepanodels
pal’allel and distribted Computing SyStemS. COherence[j_g]’ supporting diferent assumptions that app"cation
issues arise whewer distrituted systems maklocal programs can makabout the curregof cached alues.
replicas of shared information for reasons of perforﬂsystemS with similar sharing semantics cavehastly
mance or @ailability (or both) because the systems mustyifferent protocols, implementing @fent algorithms
keep those replicas current whilegheodify the shared tor 4chieing the same task, albeit with féifent perfor-
information. Thus, distrited shared memory Systems ance considerations. Thus, each system essentially
[6,15], distrituted file systems [20, 9], and high-perfor- neeqs 4 ne coherence protocol. Second, and perhaps

mance client-seer database systems [12] all implement,, ;e importantly cache coherence protocols represent
cache coherence protocols. Coherence in web caching i\ n1e “distrituted algorithms that are fiult to rea-

also a cgrrent research topic in the distitll systems son about, often resulting in subtle race conditions that
community [19]. are dificult to delug via system testing. Furthermore, to
Tools that &cilitate the implementation of cache coher-our knavledge, most systems hitherto viea not

ence protocols are important for dweasons. First, attempted a clear separation between the cache-coher-
coherence protocols, while ubiquitous, stegreat deal ence engine and other implementation details of the sys-
of variety because the protocol for a particular system isem, such asalult management, Welevel 1/O, threads,

synchronization, and nebrk communication. It is not using C without ay domain-specific tools. The paper
difficult to imagine the hazards of this approach. Thenakes seeral contrilutions. First, it highlights the
implementor cannot reason about the coherence protaspects of @apot that pneed successful acrossveeal
col in isolation from other details, andyamodification protocols:

she maks in the system can potentially impact the cor-

rectness of the coherence protocol, augeing night- * Domain-specific languge constructs such

mare. Experimentation with wer protocols is a as a state-centric control structure and continu-
perilous proposition at best. ations, simplified the protocol writing task.
Teapot is a protocol writing gimonment that preides » Automatic potocol verification using the
two Significant impmements uer ertlng ad-hoc C Murd System |mprmed System confidence and

codg. First, it is_ a domain-specific IangL_lage specifically reduced testing time.

designed to write coherence protocols: it forces a proto-

col programmer to think about the logical structure of @Perhaps more importanththis paper also discusses
protocol, independent of the other entanglements of ahortcomings of the language that became apparent only
system, and language features effot &cilitate the when we attempted to delop protocols that were much
task of epressing the control structure commonly foundmore complicated than the simple protooadmples on

in coherence protocols. Secon@apot &cilitates auto- which Teapot vas originally tested. In particulaour
matic \erification of protocols because it not only trans-experience indicates that immed support for multi-
lates Bapot protocols intoxecutable C code, it also threaded erironments, for protocol actions thaffesdt
generates input code for Mbran automatic erifica- multiple blocks, for local protocol actions that might
tion system from Stanford[10]. Mdrcan then be used block, and for automatedexification test stratges

to detect violations of irariants in a modest amount of would further ease the job of a protocol designer
verification time. Br example, our system might report Finally, the paper generalizes owperience to prade

a stylized trace of a sequence eémts that wuld cause guidelines for future domain-specific languages for sys-
a deadlock. A protocol can be run througledfication tems softvare.

system prior to actualkecution to detect possible error
casewithouthaving to manually rerite the protocol in
Murd®’s input language.

The rest of the paper isganized as follws. Sectior2
provides some basic background on cache coherence
protocols and describes the implementation problems
The Teapot vork was originally undertadn to aid proto- generally ficed by protocol programmers. Sectbn
col programmers in the comteof the Blizzard distrib- introduces the language features @ajiot that address
uted shared memory system[25]. Blizzap@ts a the dificulties presented in Secti@ Sectiord presents
cache-coherence protocol programming itegfto an the case-study of LCM, and SectiBpresents the case-
application writer so she can supply a coherence protostudy of xFS. Sectiof describes some relatecbrk.

col that best suits the requirements of her applicatiorsection7 concludes the paper with implications for
Writing such protocols in C, without domain-specific domain-specific languages for systems safay

tools, turned out to be a fidult task, fraught with prob-

lems of deadlocks, Velocks, core dumps, and most

anngingly, wrong answers. After ¥ initial protocols 2 Coherence Potocols and Complications

(all variants of ordinary shared memory protocols) were

successfully desloped using @apot, the Blizzard team In systems with caching, read operations on shared data
at Wisconsin wrote seral other more complicated typically cache the alue after fetching it from remote
coherence protocols for their systeme Véport on one nodes, in thexpectation that future read references will
such protocol here. Subsequentlye xFS team at UC “hit” locally. Write operations on shared data musetak
Berkeley adopted Eapot to write the coherence protocol Steps—coherence actions—so readers with cacaled v
of their distrituted file system. Asxpected, these teams ues do not continue to see the ollue indefinitely
encountered seral rough spots, because the originalThis section describes coherence protocols in more
Teapot design did not anticipate all of the requirementgetail in the conte of distrituted shared-memory sys-

of other protocols in the conteof Blizzard, much less tems, though the issues discussed apply equally well to
those arising in a distnited file system conte other contets with appropriate changes in terminology

This paper describes ouxperiences with usingebpot Shared-memory systems can be implemented using a
to implement the coherence engines io tlistinct sys- pair of mechanisms: access control and communication.
tems. In both systems, we foun@apot to be astly Access control alles the system to declare which types
superior to earlier &rts to implement the protocols of accesses to particulamgiens of memory are permit-

(a) (b)

Figure 1: Idealized protocol state machine for (a) the non-home side, and (b) the home side. Transitions are
labeled with causes and, in parentheses, actions.

ted. These permissions typically include—no accessvhich processors kia a readable cgpor which proces-
(invalid), reads only readonly, and both reads and sor has anx&lusive copy.

writes feadwritd. Performing an illgal access (for

example, writing areadonlyregion) causes aaccess As an &le, consider a (non-home) block that is ini-
fault and irvokes the coherence protocol. Communica-tially in the Invalid state. A processor readingyan
tion allovs a system toxehange control information address within the block causes an accasi, fat which
and data between processors. The coherence protoaithe the protocol is woked. Its action is to send a
comes into play at an accessift. It must obtain a cgp request to the home node for a readable eopl avait a
of the referenced data with appropriate access permigesponse. Assuming no outstanding writableyaeqsts
sions and satisfy the access. Mamotocols designate a (the Idle state in Figurd), the home responds with a
home nodethat coordinates accesses to a particulafeadable copand changes its state ReadShard The
range of memory addresses. Thaulfing processor grrival of this message on the non-home side causes the
sends a request to the home node for & afpthe protocol to cog the incoming data to memory and
required data, which responds with the data after Updaéhange the block’state tdReadablgand access permis-
ing its bookleeping information. After recdng the gjons are changed fromvalid to readonly.

response, theafilting processor typically caches the

data_ o] _subsequent accesses will succeed without comnfortunately specifying protocols is much more fiif
munication. cult than the simple three-state diagrams in Fidure
would lead one to beke. The main dffculty is that,
although the transitions sl appearto be atomic,
mary state changes in response to protogehts can-
not be performed atomicallyConsider the transition
from the Exclusive state to theReadShad state in

A common technique for ensuring coherencevediat
most a single writer or multiple readers foy drock of
memory at a time. When the home reesia request for
a writable cop of the block, it asks processors currently

holding a readable cygpo invalidate it, i.e. allev no fur- Figurel. Conceptuallywhen a request avds in the

ther accesses. A writable gopan then be sent to the .
requestar A cache coherence protocol specifies theEXCIUS'Ve;tate for a readable cppf a block, the proto-

actions takn by the home and caching processors "gol must retrige t_he &clusive copy from the preious
response to accesaults and incoming messages. These?VNer and pass it along to the requesidre protocol
actions are commonly captured by finite state machineS€Nds an walidation request to the current block holder
with transitions between protocstatesoccurring in ~ and must wait a response before proceeding. But, to
response todults and messages. Figdrehavs sample avoid dea_dlock, prgtocol actions must run to co_mplenon
state machines describing protocol actions for a caching"d terminate. This requires that an intermediate state,
processor and the corresponding home side. Both tHexcl-To-ReadShad, be introduced. After sending the
home and caching processors associate a state with edgwalidation request, the protocol mes to theExcl-To-
memory block. At an accesauit or upon a message ReadShard state and relinquishes the proces¥dhen
arrival, the protocol engine consults the appropriatéhe invalidation ackneledgment arkies in this interme-
block's state to determine the correct actiogpidal diate state, the processor sends a response to the original
protocol actions iwplve sending messages and updatingequestor and completes the transitioRéadShad A

the state, the access permissions, and contents ofrevised state diagram incorporating the required inter-
memory block. Home nodes also maintaidirgctory a mediate states is sia in Figure2 (which is still fr
perblock data structure that usuallyedps track of removed from a realistic protocol).

appear to request copies of cache blocks whick the
ReadShared glregdy .hae, if a read request messqgmm:ales an
invalidation acknwledgment message in the netk:.
The protocol might hae to avait delayed messages
before deciphering the situation and determining the
correct action. Whout machine assistance, anticipating
all possible netark reorderings is aery difficult task!

The traditional method of programming coherence state

machines usually resorts to ad-hoc techniquesx-une

pected messages may be queued, ey be ngatively

acknavledged (nack’ed), or their presence may be

marked by a “flag” ariable. Additional flag ariables
Figure 2. State machine (home side) with are often used to track the qut-oqurder\ﬁaﬂriof mes-
intermediate states necessary to avoid synchronous Sages as well. The_se techniquesitén protocol lnlgs
communication. Queuing can easily lead to deadlocks; similarly

nack’ing can lead to\elocks or deadlocks. Flagn-

Introducing intermediate states increases the number ghles are essentiallyxtea protocol state—diling to

states a programmer has to think about. Furthermorgypdate or test a flag at all the right placeaimépads to

while in an intermediate state, messages other than th@yrectness problems. Mones;, protocols implemented

expected reply can awe. For exkample, before the Val- i this style are ery difficult to understand and modify

idation response awes in the Excl_T_ReadShad

state, another request for arckisive copy could arrve The case studies presented in sections 4 andvb thlad

from a diferent processorA protocol designer must all these complications were serious issues in the initial

anticipate the awal of such unsolicited messages andstate machine ersions of those protocols. In thexhe

handle them in an appropriate mannemay be tempt- Section, we highlight the features oéapot that aid a

ing to not tale such messages out of the ratawhile ~ protocol programmer

they are not welcome: this, tn@ver, is not an option on

most systems, because messages must constantly be

drained out of the netwk to avoid deadlock in the net- 3 Teapot

work fabric [27].

The Teapot language resembleasPal with gtensions
Message reordering in the netk adds to the mes of a for protocol programming supportutbfewer tuilt-in
protocol programmerFor example, processors may types. Space does not permit a complete description of

1. State Stache.Home_Exclusive{}

2. Begin

3 Message GET_RO_REQ(id:ID; Var info:INFO; src: NODE)

4. Var

5. itor : SHARER_LIST_ITOR,;

6 j : NODE;

7 Begin

8. Send(GetOwner(info), PUT_DATA_REQ, id);

9. IncSharer(info, src);

10. Suspend (L, SetState(info, Home_Excl_To_Sh{L}));

11. -- send out a readable copy to all nodes that want a copy
12. -- (nmore nodes mght want a copy while you were waiting)
13. Init(itor, info, NumSharers(info));

14. While (Next(itor, j)) Do

15. SendData(j, GET_RO_RESP, id, TPPI_BIk_No_Tag_Change);

16. End,;

17. End,;

18. -- other nessages ...

19. Message DEFAULT(id:ID; Var info: INFO; src: NODE)

20. Begin

21. Error(“Invalid message %s to Home_Exclusive”,Msg_To_Str(MessageTag));
22. End,;

23. Endg;

Figure 3: Teapot example

1. State Stache.Home_Excl_To_Sh{C:CONT}

2. Begin

3. Message PUT_DATA_RESP (id: ID; Var info: INFO; src: NODE)
4. Begin

5. RecvData(id, TPPI_BIk_Validate_RW, TPPI_BlIk_Downgrade_RO);
6 SetState(info, Home_RS{});

7 Resume(C);

8. End,

9. -- other nessages

10. Message DEFAULT (id: ID; Var info: INFO; src: NODE)

11. Begin

12. Enqueue(MessageTag, id, info, src);

13. End,;

14. End;

Figure 4: Teapot example (cont'd)

the language; the reader is referred to the original pap€€) as an ajument. (Note from line 1 in Figurethat

[7] for further language details. Theedpot compiler the continuation ariableC is a state parameter and is a

can generatexecutable C code from a protocol specifi- part of the evironment visible to all the message han-

cation, and can also translate it to code that can be fed tthers in that state.) Operationallif restarts the sus-

the Murd verification system[10]. (See Sectidr2.) pended handler immediately after th8uspend
statement that called this intermediate state. Thus, after
the Resume statementGET _RO_RESPnessages are

3.1 Language katures sent to the set of requesters (see Figuagnin, lines 13-

A Teapot program consists of a set of states; each sta}g)' Continuations indapot Iet_ us\aid hg/mg to man-
%Ily decompose a handler into atomicalkeeutable

specifies a set of message types and the actions to s .
taken on receipt of each message, should iverfor a pieces and sequencing them. Furtheraathges of the

cache block in that state.e/éhibit some of the features f:;gz?:éizsume primitives are brought out in the
of Teapot using an xample; The €apot code in '

Figure3 implements coherence actions for a block inTeapot prgides a mechanism for hand]ing upected

the Exclusivestate at the home node. Suppose the b|0Ch‘|essages by queuing_ It does not edhve prob|em of
receves the request messa@&T_RO_REQasking for deadlocks directlybut facilitates deadlock detection via

a readable cgp The action code for this message firstyerification. In lines 10-13 of Figurk all messages not
sends #UT_DATA_RE@nessage to the currentioer directly handled DEFAULT are queued for latexecu-
(note that the ariableinfo is a pointer to the directory tion—these messages are appropriately dispatched once
data structure). Ne, it executes &uspend statement. the system mees out of an intermediatergnsieny

A Suspend statement is much kka “call-with-cur- statel Teapot relies on a small amount of system-spe-
rent-continuation” of functional programming lan- cific dispatch code to detr incoming netwrk mes-
guages. Syntacticallyt takes a program label], and sages and pviously queued messages, based on a state
an intermediate statdHéme_ Excl_To_Sh) which it lookup and the message tag. Note thatDE-FAULT
visits “in transition”. The second labgl} , specifies messages in Figuflag an error because these mes-

where gecution resumes upon return, and caredif sages cannot occur in a correctly functioning system.
from the first agument. Operationall\suspend saves

the ewvironment at the point it appears in a handler body
and efectively puts the handler to sleep. This mecha-3.2 \&rification Support
nism is used to prade a blocking primitte inside a

handler which plysically needs to relinquish the pro- T€apot maks no attempt toevify protocols, bt trans-
cessor gery time it is ivoked lates protocols into code for the MRiautomatic erifi-

cation system[10]. M@ explores all possible protocol
What. happens in the intermediate state? Fidugilgavs actions by dectively simulating streams of shared-
the Teapot code »ecuted when &@UT_DATA_RESP memory references and ensuring that no system-wide
message awes. The handler res@s the up-to-date invariants are violated. If unanticipated messagesearri
content of the cache block from the nefly sets its or deadlock occurs,eBpot transforms the M@rerror
own state t(ReadShaed and eecutes &kesume state- |og into a more easily understood diagram of the proto-
ment. TheResume is the equialent of a “thrv” for a col events leading to the violation.
“call-with-current-continuation” of functional program-
ming. Syntactically it takes a continuation parameter

1. Users must declare which states are transient.

Three basic components are required fmfication: A
description of the protocol under test, Murcode

difficult. Memory is returned to a globally consistent
state by maging these distinct copies into a singiue

implementing all types and subroutines used by the prder each data item and ensuring that all processors see

tocol, and arulesetthat describes ¢l sequences of

protocol &ents. While only the first component is gen-

erated by €apot, gamples of the remaining code are

these n& values. This requires coordination among all
processors in the system and esxomputation (mge
functions) with traditional protocol actions.

included with Bapot and can often be reused without

modification. User inteention is required only if e
types or routines are added, or the protocol beinglde
oped only handles stylized streams of protoc@ngs.

4.1 Initial Implementation
Our first LCM implementation &irt was undertadn

The latter scenario is described in more detail in the folwithout the support of anformal methods or tools. The

lowing section.

4 LCM

The Loosely Coherent Memory €M) [16] coherence

C code source of the Stache (ordinary shared memory)
protocol was &ailable to us, so we used it as a starting
point and addedxéra LCM functionality as required. In
retrospect, starting with Stachesvan unfortunate deci-
sion. Stache, while a relagily simple protocol design,

is still a lage and comple piece of softare. Adding

protocol implements the semantics of the parallel prot cM functionality required both that the befiar of

gramming language C** [17]after than conseative,
compilerimplemented approaches. C** is a dar

existing protocol states be altered and that states be
added—a dffcult proposition for the unaided program-

grained data-parallel programming language based ofer Small changes inxésting states (and the addition

C++ and preides a semantics in which parallel function
invocations on agggate data xecute simultaneously

and instantaneouslyso conflicting data accesses are
impossible. Processes can still collaborate to produc
values via a rich set of reduction operations (includindr’_v

i

userspecified reductions)ubthe results of these reduc-
tions are not \ailable until after all parallel function

of a nev states) often hadfreaching dects that were
difficult to fully anticipate.

|t took seeral months for a single graduate student,
orking full-time, to complete the basic protocol modi-
cations, after which a delgging phase lgan. It took
roughly as long to dely the modified protocol as it did

invocations complete. During a parallel computation, nd© Write it in the first place since the protocaswiddled

function invocation can influence the state of anather

LCM helps implement C** by alling protocol-leel
copies of shared data towedop at runtime and f&f
ciently reconciling copies once all tasks V& finished.
The compiler uses LCM direwgtis to identify memory

with subtle timing-relatedums, the result of the unpre-
dictable efects of our modifications. A suite of applica-
tions was used to dely the protocol—each application
exercising a ne set of path-specificugs in LCM which

had to be isolated, understood, and repaired. It often
took days to identify infrequently-occurringudps, and

accesses in parallel functions that can possibly conflicthe resulting “fixes” often introduced me bugs. Een
At these references, LCM copies the memory block conafter the LCM protocol had achied relatve stability

taining the accessed location and e®k prvate to the
invocation. If multiple iwvocations modify the same
location, LCM creates local copies for eachoeation.
These multiple writable copies presemthe semantics of

user confidence in its correctneszsiaw.

4.2 Teapot and LCM

C**, even though shared memory as a whole is Nqun early \ersion of the &apot system as ready for
longer consistent. When the parallel call terminatesiesting as daigging of the hand-written LCM protocol

LCM reconciles multiple ersions of a block to a single
consistent alue.

LCM provides consistent memory as a aldf and is
similar in mary respects to protocols priding sequen-
tially consistent distribted shared memory such as
DASH [18], Alewife [1], and Stache[24],ui it differs in
several ley respects. Most importantht CM allows

was being completed, and LCMaw reimplemented
using eapot to more thoroughlyaluate the system.
The Teapot ewironment vas a ast improeement oer

the hand-coded approacheVibund two language fea-
tures of Bapot particularly useful: the “state-centric”
programming model, and the use of continuations to
allow blocking operations in handler code.

global memory to become temporarily inconsistentin Teapot, one declares a protocol state, then lists the

under program control. During these phases, vangi
data item may hee different \alues on dferent proces-

actions to be tan for the arious messages that could
arrive in that state. This contrasts with the “message-

sors, making correct management of shared data mooentric” approach ta in the handwritten protocol,

1. State LCM.Home_Excl {}

2. ... other messages

3. Message GET_RO_REQ (id: ID; Var info: INFO; src: NODE)
4. Begin

5. [...]

6. If (SameNode(src, GetOwner(info))) Then

7. Suspend (L, SetState(info, Home_Excl_To_ldle{L}));
8. If (SameState(GetState(info), Home_ldle{})) Then

9. SetState(info, Home_RS{});

10. AccChg(id, TPPI_BIk_Downgrade_RO);

11. Else

12. If (InSharers(info, src)) Then

13. Suspend (L2, SetState(info, Home_Await_ PUT_ACCUM{L2}));
14. Endif;

15. Endif;

16. [...]

17. Else

18. Send(GetOwner(info), PUT_DATA_REQ, id);

19. Suspend (L1, SetState(info, Home_Excl_To_Sh{L1}));
20. IncSharer(info, src);

21. [...]

22. Endif;

23. [...]

24. End;

Figure 5: Teapot handler code containing multiple Suspend statements

where a single handler is written for each possible messuspend statements. \Whout continuations, this code
sage, and a lge conditional statement in its body would hare been split into at least four distinct handlers
selects the appropriate action based on the recipiemaking it much harder to write and dep Teapot also
block’s state. Qganizing the protocol by states instead allows dynamic nesting of continuations, a feature used
of message type me& it easier tox@ress and imple- numerous times during the specification of LCNr F
ment for seeral reasons. First, each handler isvred example, the firstSuspend in Figure5 moves to the
smaller unit of code. Instead of writing agarmessage Home_Excl_To_ldle state, where other handlers
handler that must beba correctly for a block in an (not shevn) may suspend a@ to avait delayed mes-
state, a self-contained handler is written for each comb#$ages

nation of message and block state. Second, progra
mers typically hae a well-defined concept of Waeach
state should beka, and grouping handlers by state
instead of message typedps related information close
together A states behaior can be understood by scan-
ning a set of consecué handlers, instead of ¥iag to
look through the entire protocol for actions welet to a
given state. This mas modification and delgging eas-
ier as well. Of course, in retrospect, we couldeha
adopted a state-centricganization in the handwritten
protocol, lut the C language did not makhe benefits of
doing so immediately alious while the €apot system
enforced a disciplined programming style that utilized
the better design choice.

IEven with the cleaner design, we unered a total of 25
errors using automaticevification. (Each error as
fixed as soon as itag detected and understood, and the
verification step &s repeated.) Marof these were sub-
tle bugs that were unlidy to occur often in practiceub
were all the more dangerous as a result. Fi§uhes-
trates an LCM bg that is representaé of those found
through erification. Both diagrams sho messages
being exchanged between a pair of processors, with time
increasing from top to bottom. In each case, a preceding
exchange of messages (not wim) has left the cache
(non-home) side with thexelusive copy of a gwven
coherence.block

In Figure6a, the caching processor performs an LCM
Teapots continuations also made an enormous im®ro modification of the block, creating aemsion that is
ment in handler igibility. Even for handlers using a sin- inconsistent with respect to other copies in the system.
gleSuspend statement, &eping the code on either side However, since the cache side held thxelasive copy at
of the call in the same handler dramatically increasethe time it performed the modification, it first sends a
readability Some handlers used as mas threeSus- copy of the block home. This data can be used by the
pend statements, and therefore had to be split into mulhome to respond to requests for the block from other
tiple code fragments in the handwritterersion. processors. The block is returned home ViRUT_MOD
Figure5 shavs part of an LCM handler with three message when the cache side is finished. The second

[Home_Excl] [Cache_RW]

LCM Modify
‘Home_Excl] [Cache_RW] LCM Modify Done w/Mod
LCM Modify Done w/Mod Write Fault
Done w/Mod [Home._dle]
LCM Modify [Home_Excl]
[Cache_RW]
Read Fault
(@) (b)

Figure 6: Two different scenarios in which a GET_RO_RECQarrives in state Home_Exclusive . The
appropriate response to the message is different in each case.

LCM maodification then dults and requests the block because of 8apot, we were able to implement easily
back from the homé Messages ha been reordered in three \ariants of LCM: one that eagerly sends updates to
the netverk such that the first to appear at the home igonsumers at the end of an LCM phase, another that
the request for data. The home detects the reorderinghanages multiple, distrited copies of some data as a
since the requestor alreadias a copy of the block performance optimization, and @rgion that incorpo-
according to directory information. The correct action inrgtes poth of these features.

this case is tovaait the SHARE_DATAmessage, then

satisfy the request. The home\ea the block in the

Home_LCMstate to denote thadt that at least one pro- 4 3 Teapot Shortcomings

cessor has created itwio version of the block.

While Teapot made it significantly easier to get LCM
written and verking, it fell short of our needs invaral
respects. One significant obstacle éafots inability to
perform actions acrosssetof blocks. A message han-
dler, for example, can only update the state of the block

case shen in Figuredb, this caused the protocol to to which a message is directed. In LCM, action must

respond incorrectlyThe home should insteadvait the periodically be tagn across a collection of blocksorF
PUT_DATA RESP message, transition to the ©ample, during the reconciliation phase, a processor

Home_Idle state, and satisfy the request. Correctingreturnsall modified blocks to their homes, wherethe
the protocol is straightforard once the tw scenarios —are meged with copies from other processors. Amre
have been identified, Ut it is unreasonable toceect an handler vas written to carry out this flushing operation
unaided programmer to vaforeseen such ai, due to for a single block, bt the handler must somehdoe
the compleity of the cases irolved. Enumerating all invoked for each block returned. As an application runs,
chains of protocol vents and ensuring that theare the LCM protocol constructs a list of modified blocks
properly handled is a job much better handled througithat require flushing at the xtereconciliation. This list
verification. is traversed when the reconciliation phasegihe, and
the appropriate vent handler imoked on each block.
Using Teapot, the ne version of the LCM protocol & additional C code \&s written to treerse the list and
written, \erified, and running applications inaweeks’ i oke handlers in thexecutable ersion of the proto-
time. Only one bg was unceered during field testing o) 1t this code is outside the scope of tieafot pro-
of the nev protoco!, and.|t occurred Ina simple SUPPOTt 4o specification and therefore cannot befied. The
routine that was intentionallynot simulated® Also, workaround in Eapot vas to structure the Mdrruleset
1. This scenario arises frequently in applications whereengi so that, during a reconciliation, itvioked the handlers
{’i\r,%f;ssor handleswsmal of a set of parallel tasks consecu- ¢ 4 ch plock in the list. This restructuring significantly
increased the complity of the ruleset and therefore the
chances that it could contain an error

Initially, we thought the anal of theGET_RO_RE@
theHome_Excl state alvays implied the message reor-
dering scenario in Figuga, and both the hand-written
version of LCM and the firstéhapot ersion encoded
this assumption. Unfortunately the more complicated

2. The routine \@s deemed too simple to be hidiny &ngs.

Even without operations on sets of blocks the ruleset for [H [H
. Manage Manage
LCM was already much more complicated than those

for our preious protocols. Unlie Stache, where gn [C”em} [C“em} [C“em} [Manageﬂ
arbitrary stream of interlead loads and stores to shared

memory must be handled, LCM only properly handles
= B —F t—=

stylized sequences of loads and stores. There are distin
phases that all processors must agree to initiate, in

which only certain access patterns agaleEncoding
this into a ruleset as a lengti, complicated, and poten- «

tially errorprone process, and represented a significant / \
fraction of the werk required to implement LCM. It

would be preferable to generate such rulesets automatiﬁ ﬁ ﬁ ﬁ
cally from a high-lgel description of a protoca’mem- [Storag(—:j [Storagej [Storagej [Storagej
ory model, it we currently are umeare of amy Server Server Server Server
techniques for doing so. Figure 7: A sample xFS configuration. Clients,

managers, and storage servers provide a global
memory cache, a distributed metadata manager,
and a striped network disk respectively.

The last shortcoming & relatiely minor Teapot cur-
rently does not alle the testing of a pair ofxpressions
for equality There were seral places in the protocol
where pairs of states or node identifiers needed to beaching, managing, or storing ofyapiece of data or
compared, and arxeernal routine had to be written to metadata by instantiating one or more of these sub-
perform these tests. Future releases @dpbt should Systems. Figurg shavs a sample xFS installation.

extend the language such that comparisons can be dogechy of the three subsystems implements a specific
without resorting toxternal procedures. interface. A client accepts file system requests from
users, sends data to storage eexon writes, forards
5 xES reads to managers on cache misses, andsescesplies

X from storage semrs or other clients. It also answers
XFS, a netwrk file system described inazal preious ~ COoperatre cache forarding requests from the man-
papers[2,9], is designed to eliminate all centralized botg€r by sending data to other clients. The job of the
tlenecks and @tiently use all resources in a netik of metadata manager is tracking Iocat|0n§ of file data
workstations. One of the most important features of xF$locks and fonarding requests from clients to the
is its separation of data storage from data managemer@PPropriate destlnatlons.. Its fqutlonallty is similar to
This separation, while fefring superior performance the directory manager in traditional DSM systems.
and scalability compared to traditional file systems, alséinally, the storage seevs collectiely provide the illu-
requires a more sophisticated cache coherence protoc§ion of a striped netwk disk.
In addition, other aspects of the cluster file Syste’mh- en xFs emp|gs a directory-baged \validate cache coher-
ronment—such as multivel storage and reliability ence protocol. This protocol, while similar to those seen
constraints—further complicate the system compared tf traditional DSM systems xhibits four important dif-
more traditional DSM coherence protocols. Due to thes@erences that prent xFS from using pwously devel-
aspects of the design, we found iffidiflt to implement oped protocols and that complicates the design of xFS.
a correct prOtOCOl with traditional methods. The use Otl) XFS Separa‘[es data management from data Storage_
Teapot has resulted in clearer abstractiomel® Although this separation ailes better locality and more
increased system confidence, and reduced caityple flexible configuration, it splits atomic operations into
the implementation of cache coherence in xFS. At thgjifferent phases that are more prone to races and dead-
same time, there are significantfeiiences between XFS |ocks. (2) XFS manages more storagele than tradi-
and the original applications whictedpot vas designed tional DSM systems. d¥ example, it must maintain the
to support. These dérences hee revealed some short- coherence of theeknel caches, write-ahead logs, and

comings of Eapot. secondary storage. (3) XFS must maintain reliable data
storage in thedce of nodedilures, requiring protocol
5.1 Caching in xFS modifications that do not apply to DSM systemer F

example, a client must write its dirty data to storage
The three main components of an XFS system are treeners before it can forard it to another client. (4) The
clients the managers, and thestorage serves. Under xFS client is hedly multi-threaded and it includes
the XFS architecture, gmachine can be responsible for potentially blocking calls into the operating system,

introducing more chances for synchronization errors nasimplified viev of the xFS coherence engine contains
seen in DSM systems. twenty-two states. One needs a systematic approach
when dealing with this lge state space.

5.2 Implementation Challenges As we were implementing the protocol, it became clear
. .) that the C language a8 too general. Despite our best

The xFS design and @ionment mak the implementa- ntentions, aspects of implementations that were not

tion and testing of cache coherence in xXFS mofedlf o5ted to protocol specification were ®ixin. The

than in most systems. The usual problems of proliferagagyit vas less modulaharder to dely, and harder to
tion of intermediate states and subtle race conditiong,zintain. Although the xFS protocol is similar to man

were &en worse for XFS, as described in the fallog. other DSM protocols, we ke found it non-tsial to
reuse or modify xasting codes, due to their ties to the

5.2.1 Unexpected Messages and Netrk native ervironments.

Reordering

An xFS node can reca messages that cannot be pro-g 3 Teapot and xFS

cessed in its current state. This is also a problem in most

DSM coherence systemgythit is particularly perasve ~ After several unsuccessful attempts at completing the
in XFS because xFS separates data storage and cont¢gche coherence protocol using traditionalettepment
and thereby mads it dificult to serialize data transfer methods, we decided towste the system usingegpot.
messages and control messages with one another: d&ir experience with this domain specific language has
transfer messages pass between clients and storage séi€€en positie. In particularthe close ties betweered-

ers or between clients and clients while control mespot and the Mup verification system hee provided us
sages pass between clients and managers or storayigh an efective testing tool for attacking the problem
seners and managers. of unepected eent ordering; man of the lugs we

found and correctedauld hare been etremely dificult
The xFS protocol also defs from the message reorder- y, q|ate through field testing alone. Furthermore;

ing problems as mentioned in SectnFurther com-
pounding the problem, this protocol often waito
multiple outstanding messages in the retin order to
maximize performance.df example, an xFS manager
does not wit until a client completes a foanding
request to continue, so a subsequevdlidate message Figure8 shavs an @ample of a bg in an early ersion

can potentially reach the same client out of orderof the xFS protocol thateuld have been dffcult to iso-
Although such ordering can be enforced at the commuate via field testing it which Muib easily disceered.
nication layer[5], recent research hagusd that this |n this \ersion of the protocol, we wano need for the
ordering is bestgressed with application state[8]. Fur- manager to maintain sequence numbers for its outgoing
thermore, een if the netwrk ensured in-order messages messages. If a reser of a manager requesiasv not
between nodes, the causes mentioned in théiopie ready to act upon it, it simply queued it for later process-

paragraph wuld still require xFS toeplicitly handle ing. Murd found the folleving deadlock bg:
unexpected message asis.

se
eral aspects of thee@ipot language kia simplified the
engineering compléty in our system.

5.3.1 "esting or Unexpected Eent Orderings

Initially, client B is the sole cacher of a clean block. (1)
Client C sends a read request to the mand8grmhe
manager fonards the request to client Bo indicate
Managing the lage number of states needed to imple-that Client B should send the data to Client C via coop-
ment the xFS state machinasva challenge. Although, eratve caching; the manager also updates its state to
intuitively, each block can be in one of only four indicate that both client B and C are caching the data.
states—Read Shard Private Clean Private Dirty, or (3) Meanwhile, client A sends a write request to the
Invalid—the system must, ira€t, use arious transient manager(4) The manager sends aake request to cli-
states to mark progress during communication with thent B, which arses at client B before the pieus for-
operating system and the netk. Dealing with une- warding message,validating its data. (5) The manager
pected or out of order messages, handling the separatisends a seconduake request to client C, which client C
between data storage and data management, maintainiqgeues, because its requested data has ne¢dar{6)
multiple levels of storage hierarghand orderingwents Client B sends a write request to the managhich the

to ensure reliable data storage all increase the number wfanager queues, because itsvimasly sent reoke
transient states needed to handle xW&nts. Een a message has not been acklemlged. (7) The delayed

5.2.2 Softwae Development Complexity

a b
Figure 8: A sample deadlock dis(cgvered by the protocol verifier. The three clients are Iat()e)led with “A”, “B”,
and “C”. The manager is labeled with “M”. In Figure (a), arrows denote the directions of the messages. The
numbers denote the logical times at which messages are sent and/or received. Shown to the left of each
host is a message queue, which holds the requests that are waiting to be processed. Messages that are not
gqueued are processed immediately. In Figure (b), arrows denote the wait-for relationship, and the presence
of a cycle indicates a deadlock.

forward message from step 2 finally @es, which cli- 5.4 Teapot Shortcomings
ent B queues, because its request to the manager has not

been satisfied. Newe hae finally reached a deadlock: Teapot vaLs designed and_is_t_)est s_uited for DSMi-en
client A is vaiting for the manager to complete the ronments in which the primites aailable to protocol

.) L . handler writers are limited and simple. The xFS coher-
revoke operations; the manager iaiting for client C to . . :
L L ence engine, on the other hand, must interact with other
acknavledge the reoke request; client C isaiting for

lient B t v the desired data: and client B st components of the system such as teen&l and the
clen 0 supply the desired data, and clien W active message subsystem via morev@dul operations
ing for the manager to process its write request. On

§uch as system calls and thread synchronizations. This

solution is to use sequence numbers to order the out9Qtrarence in terms of meer and pressveness of the
ing messages for a particular block from the manager pangler primitves hae revealed some shortcomings of

the sequence olvents seen by gnclient is consistent Teanot that were not apparent in its original application

with the viev of the manager domain.

The first shortcoming is the lack of support for multi-
5.3.2 Reduced Softwa Development threading. An XFS client is heiy multithreaded to
Complexity support concurrent users and react to concurrent

requests from the nebrk, kut the coherence engine
Several aspects of thee@pot language simplified the generated by pot has a lge amount of global state
engineering of xFS.&apots continuations significantly and is dificult to male thread-safe. rinsforming the
reduced the number of states needed bysp&tocol resulting Bapot coherence engine into a monit@sw
by combining each set of similar transient states into ansuccessful, as subtle thread deadlocks occurred when
single continuation state. By being more restrectas different xFS threads enter the coherence engine and
well as more stylized than Cedpot eliminated a source other xXFS modules in dérent orders.

of programming errors. The domain-specific languagerpe second shortcoming concerns blocking operations
also forced the decoupling of the coherence algorlthnan local nodes, which occur frequently in XFS coher-
from other details of the system. This resulted in a morg e handlers.df example, when an xFS client needs to
modular protocol code that is well isolated from the resjyalidate a file data block it caches, it reaka system

of the file system. Finallythe domain-specific language ca|i to invalidate the data cached in therikel. This sys-
encouraged softare reuse by isolating features that aregem call might block, recungély waiting for some other
common to the class of problems ythere designed to event that requires the attention of the coherence engine.
solve. In our case, we were able to bermmary support Although Teapot preides good support for blocking
structures such as message queues and state tables figperations that it for remote messages, using the
other protocols supplied with thedpot release, further same mechanism to handle local blocking operations is
reducing compbeity and chances of errors. tedious. In the ah@ example, one must split the syn-

chronous system call into asynchronous phasesnira machines that communicate synchronouShatecharts
new node to represent theetael, ivent nev states for support the notions of depth and orthogonality uédb

the lernel node, ivent nev messages theeknel must large state machines out of smaller onesapbt man-
accept and generate, and write a number of handlers éges the cross-product interaction (and the resulting
tie all these elements togeth&etter support for local state-space bloat) ekplicit protocol states and pending
blocking operations auld have significantly eased the events by &ctoring the pending vents into states
XFS protocol implementation. implicit in the continuations stack. e@pot shares
OIanother feature with ESTEREL and Statecharts in its

The third shortcoming concerns users’ inability to ad Lo
support for automaticerification.

new aguments to &apot handlers. ®were &ced with
the unpleasant dilemma of either modifyingapot

.) : o)) Teapot difers from synchronous languages irvesal
itself or simulating additional guments via globalari- P Y guag

respects. It does not Ve a notion of time, so it is not
Suitable for programming real-time applications. The
notion of concurrencin synchronous languages is also
different from that in @apot. In synchronous languages,
logical concurreng of state machines is cegnient for
expressing interacting sub-components; such concur-
reng is later compiled \way to obtain a single-thread
program. A "Bapot program logically specifies only one
ystate machine. The need for concuryeadses because
several such programs are required to run on the same
processing resource—thdave to interlese their ae-
cution (essentially as coroutines).

latter work around is bad sof@wve engineering and in
particular it makes the multithreading problenovse. A
more sgere restriction is dapots lack of support for
operations that &fct blocks other than the block on
which the current message aes. The problem arises,
for example, when servicing the reaalift of one block
by an xFS client requires thevietion of a diferent
block. This is similar to the problem encountered b
LCM during its reconciliation phase.

6 Related Vork Wing et al. [28] present an eloquent case for using

The Teapot vork most closely resembles the PCS sysModel checking technology with compleoftware sys-
tem by Uehara et al. at the Waisity of Tokyo [26]. €MS, such as a distuted file system coherence proto-
They described a framveork for writing coherence pro- €IS V& also use model checking technologyt our
tocols for distriited file system caching. Unéikleapot, ~ Primary focus is on a language for writing coherence
they use an interpreted language, thus compromisinQrOtOCC"Sv and on defing executable code as well as the
efficiengy. Like Teapot, the write protocol handlers verification system input from a single source. yThe
with blocking primitives and transform the program into Write the input to the model chemk separately from

a message-passing style. Ouorky differs in seeral their code, which introduces the possibility of errors.
aspects. &apot's continuation semantic model is more _ . . _ .
general than PCS's, which is a messagesdrinterpre- | n€ design and implementation of domain-specific lan-
tation of a protocol specification. PCS's applicationdUages has spurred considerable interest in the systems
domain is less sensit to protocol code Béiengy, so Programming community Recent wrk includes
they do not eplore optimizations. Finallywe eploit ~ instruction-set description languages [3,23], a specifica-
verification technology by automatically generating antion language for automatically generating ety

input specification for the Mdr verification system. paclet filters [22], and compiler optimizations for inter-
face description languages [11].
Synchronous programming languages, such as

ESTEREL [4] and the Statecharts formalism [14], are

useful for describing reawgé systems and real-time . C .
applications. The most important commonality between7 Conclusion: Implications br Domain

these programming languages amafot is that theall ~ SP€cific Languagesdr Systems Softwae

are ways of eapressing complicated finite-state

machines more intuitely than aflat automaton. The It would be gratuitous to reiterate the successes and
all support some mechanism of composing smadler- shortcomings of &apot. Instead, we present some gen-
pler state machines at the languageslleA compiler eralized insight gined from the &apot &ercise. While
then cowerts this composition into a flat automaton, our experience has been with only one domain-specific
which the programmer mer has to deal with directly language, we hope that our obsgions will be useful
ESTEREL supports decomposition of agkr state for designing other domain-specific languages, particu-
machine into smaller concurrently-running state larly for systems softare.

7.1 Howv big to make the Ianguage’? in the contgt of systems softare. V& have three obser-
vations in this rgard. First, storage allocation palic
should be made clear—programmers generally tik
know where in memory particularaviables We and
what their lifetime is. In &apot, the storage for state

parameters as not clearly defined. Itag not clear to
compare tw values of the typ&lODEbecause we could the programmers othe memory management of con-

not decide hw far, if at all, we vanted to support equal- i ation records happened. Bcf, in the current imple-
ity on opaque types in the language. Should proced“rﬁ]entation, unless Suspends and Resumes

calls be a part of the language? If so, are theye anyynamically match, there auld be a memory leak on
restrictions to be obseed in the code for the proce- .J.iinuation records, as we do notyide carbage col-
dures? Br example, Bapot does not alloSuspend |e¢tion and are umeare of techniques for identifying
inside called procedures. unused evironment records. dftunately most proto-
Making a language more compreheeshas the adin- cols naturally hee such balancedSuspend and
tage that less code needs to be writtenxiereal rou- Resume paths. Second, compiler optimizations should
tines. Havever, a lager language is harder to learn, be &plicitly specified and should be under user control.
harder to implement fullyand could be harder to opti- Even with all the virtues oferification, a systems pro-
mize. While smallness has virtues, a designer should ngrammer may need to go tondevel deluggers (per-
go overboard and apply senseless restrictionseap®t, haps for reasons unrelated to the coherence protocol). A
for example, most users were unhgpgbout the fied restructuring compiler such agdpots males the gen-

set of aguments that appeared as handler parameters. erated code harder to trace at runtime. Finagspite

Capturing th | . . these complications, we bel&that aggreseé optimi-
apturing the commonly Occurring programming SCe- 55,4 are essential. In owperience, users are unwill-
narios is an important role of domain-specific lan-

; ing to compromise étiengy for ease of programming,
guages. @apot, for rample, incorporates carefully g P v prog g

; . D particularly considering that speed is often the main pur-
designed abstractions fanng for asynchronous mes- pose of distribiting a computation.
sages. Haever, these abstractions were lesieetive at
capturing the scenario of aiting for asynchronous
eventsin general. This kind of aiting in XFS had to be 7.3 Threads
cast into the witing-formessages idiom usingxtea
messages. In hindsight, the language couie lzeen
designed to support asynchronousrés, with messages
as a special case ofents.

An important consideration when designing a domain
specific language is: hogeneral should the language
be? Bapot relies hedy on externally written routines.
For example, it has to call a functioBameNode to

As thread programming enters the mainstream, if
domain-specific languages are used to generate compo-
nents of systems sofase, their designers must pay
close attention to thread support.eBvwhen the lan-
For problem domains where it meksense, it is impera- guage does not currently support threads, if it is success-
tive to think about automaticevification from the ery fy|, sooner or later users with multithreading needs
beginning. In apot, for gample, we maintained a would want to use it. The DSL designedue to her
clear distinction between opaque types and their implegnijque knavledge of the internals, should be prepared
mentation. In &ct, the language has no mechanism tao proside recommendations, if not a full implementa-
describe the implementation of opaque types. This W tion, of thread support. The first obsatien from our
done so the erification system and C code could pro- experience is that thread support cannot be treated as an
vide an implementation suitable for their purpose, ratheéfterthought; instead it must be an gra part of the
than preiding a common base implementation which early language design. When we attempted toenial-

may be poor for both purposes. Axagnple of such an ot thread-safe as an add-on, we quickly disoed that
abstract type is a list of sharers, which is implemente@|oba| state made this an ermone process. Ew
using lav-level bit manipulation in C, it using an array though we only introduced a small number of coarse
of enumerated type 0..1 in Mbr The Tapot language grain locks, the frequently led to subtle synchroniza-
provides no pointers or dynamic memory allocation. tion problems because these locks were rpbsed at

the interfice leel. They broke abstractions and could
easily lead to deadlocks. The second olst@m con-
cerns the dferent alternaties that can enable the mod-
Ideally, language users should only need tovkrtbe ule written in a domain-specific language to interact
language definition, not the details of the languagevith other multithreaded componentseWae found
implementation. Een the popular general purpose lan-that a viable alternate to making €apot thread-safe is
guagesdll short of this ideal by great distances, at leasto turn the generated code into a single threastedt

7.2 Compiler issues

loop [21]. Instead of allwing multiple threads toxe- Finally, we hope our wrk provides further and concrete
cute concurrently in the cache coherence state machineyidence that it is better toudd application-specific
these threads interact with the single thread of the stateols, than to program complesystems with ad-hoc
machine via eents. This approach eliminates unneces-code. In our gperience, it is more profitable to start with
sary thread synchronizations inside the state machine. a focused domain-specific language or tool thatesodv
very specific problem to the satistion of a small user
community Language x¢ension and attempts at gener-
7.4 Distribution and cost of entry alizing the application-domain should be considered
only aftervards. Languages and tools with ggkascope
Most users wuld be reluctant toven install a ne pro- to begin with run the risk of being useful to no one,
gramming language, much less learn it. Thus, designet®cause the could tale much longer to design and
of domain-specific languages should be prepared to dimmplement, and ultimately be less useful to users than a
considerable hand-holding: pide a \ery complete set more focused tool.
of examples, documentation, and a disitibn that
bwlds out-of-the-box”. The xFS group fouqd thglvha Acknowledgments
ing a set of completexamples vas a crucial aid to
adopting Bapot. Havever, in the case of dapot, we Mark Hill brought together the xFS and theapot
faced tvo stumbling blocks: we had to ask our users taeams. Eric Eide, John McCorquodale and the ynon
go pick up SML/NJ compiler from Bell Laboratories, mous reiewers helped impne our presentation
and the Mu® system from Stanford. Mgrpeople gve through their insightful comments.
up at this point, ¥en when we déred to lead them
through obstacles. Perhapsveleperl scripts could be
built which would pick up the right softare from web
To add to our dffculties, all the pieces of our system—
SML compilef Mur® compilef and the €apot
source—were constantly in flux and iaswery difficult References
to maintain coherence [sic].&\see no easyay out of
this situation. From the point of vieof distritution, it ~ [1] Anant Agarwal, Ricardo Bianchini, David Chaiken,
would be best to pride everything in portable C code. Kirk L. t]ohnson, David Kran;, John Kubiatowicz, Beng-
However, without draving upon preiously distributed Hong Lim, Kenneth Mackenzie, and Donald Yeung. The

software. we couldi’have huilt Teapot in a reasonable MIT Alewife Machine: Architecture and Performance. In
T P Proceedings of the 22nd Annual International Symposium
amount of time.

on Computer Architecturgpages 2—-13, June 1995.

Teapot is freely distrited. Please see theapot page
for the latest grsion:http://www.cs.wisc.edu/
~chandra/teapot/index.html

[2] T.Anderson, MDahlin, J.Neefe, D Patterson,

; _ _ D. Roselli, and RWang. Serverless Network File Sys-
7.5 A Spade Ishota general pyose earth tems. ACM Transactions on Computer Systei#g1):41—

shattering device 79, February 1996.

A tool-builder should be up front about what a tool doed3] MarkW. Bailey and JackV. Davidson. A Formal Model
and does not do. Despite our careyesal people of Procedure Calling Conventions. @onference Record
thought of Bapot as aerification system, which it is of POPL "95: 22nd ACM SIGPLAN-SIGACT Symposium
not. In fact, we got an inquiry aboute@pot which on Principles of Programming Languaggsages 298~
Lo ' 9 . quiry p. 310, San Francisco, California, January 1995.

implied that we hee discoered a more practicalay of

doing model-checking, rather than brute-force statef4] G'erard Berry and Georges Gonthier. The ESTEREL Syn-
space Ep|oration! AISO, we note thate'apot is not chronous Pltogrammlng Language: DES|gn, SemanthS,
directly suitable for describing hardwe cache-coher- Implementatlon. Tgchnlcal Rgport 842, Ecole Nationale
ence controllers because it permits unboundeeldeof Sup'erieure des Mines de Paris, 1988.

continuations. W were also askl wty Teapot vould [5] K.P. Birman, ASchiper, and PStephenson. Light-
not be suitable for model-checking systems unrelated to weight Causal and Atomic Group MulticadCM Trans-
cache-coherence. These obstéinns became apparent actions on Computer System$(3):272-314, August

when people forced us to thinkywad the contet of 1991.
Blizzard style DSMs. One should think carefully about g] j0nnB. Carter, Johik. Bennett, and Willy Zwaenepoel.
languages or systens restrictions and whthey exist Implementation and Performance of Munin.Aroceed-

from the bginning, so as not to unnecessarily frustrate ings of the 13th ACM Symposium on Operating System
potential users. Principles (SOSP)ages 152-164, October 1991.

[7] Satish Chandra, Brad Richards, and Jamdsarus. Tea- [18] Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
pot: Language Support for Writing Memory Coherence Wolf-Dietrich Weber, Anoop Gupta, John Hennessy,

Protocols. InProceedings of the SIGPLAN '96 Confer- Mark Horowitz, and Monica Lam. The Stanford DASH
ence on Programming Language Design and Implementa- Multiprocessor. IEEE Computer 25(3):63-79, March
tion (PLDI), May 1996. 1992.

[8] D.R. Cheriton and DSkeen. Understanding the Limita-
tions of Causally and Totally Ordered Communication. In
Proc. of the 15th ACM Symposium on Operating Systems
Principles pages 44-57, December 1993.

[19] Chengjie Liu and Pei Cao. Maintaining Strong Cache
Consistency for the World-Wide Web. Technical report,
Department of Computer Science, University of Washing-
ton, May 1997.

[9] M. Dahlin, R.Wang, T.Anderson, and DRatterson. Co-
operative Caching: Using Remote Client Memory to Im-[20] M. Nelson, BWelch, and JOusterhout. Caching in the
prove File System Performance. Rroc. of the First Sprite Network File SystenACM Trans. on Computer
Symposium on Operating Systems Design and Implemen- ~ Systems6(1), February 1988.

tation, pages 267-280, November 1994.
[21] J.K. Qusterhout. Why Threads Are a Bad Idea. http://-
[10] David L. Dill, AndreasJ. Drexler, AlanJ. Hu, and CHan www.sunlabs.com-/verb+ouster-/, 1995.

Yang. Protocol Verification as a Hardware Design Aid. In

1992 IEEE International Conference on Computer De-[22] ToddA. Proebsting and Scoit. Watterson. Filter Fusion.
sign: VLSI in Computers and Processgages 522-525, In Conference Record of POPL '96: The 23rd ACM SIG-
1992. PLAN-SIGACT Symposium on Principles of Program-

[11] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary ming Languageslanuary 1996.

Lindstrom. Flick: A Flexible, Optimizing IDL Compiler.
In ACM SIGPLAN Conference on Programming Lan- 23] ,l\\l/lornp]gn F\Z:an;se%/ aTI?' I\/:g?gl;e&nande_lz_. TLle.Ne]vg:Jefrsey
guage Design and Implementatidras Vegas, Nevada, achine-Code Toolkit. senix fechnical t-onter-

June 1997. ence pages 289-302, New Orleans, LA, January 1995.

[12] MichaelJ. Franklin, Michael. Carey, and Miron Livny. [24] SteverK. Reinhardt, JameR. Larus, and David.
Transactional Client-Server Cache Consistency: Alterna- Wood. Tempest and Typhoon: User-Level Shared Memo-
tives and Performanc&CM Transactions on Database ry. In Proceedings of the 21st Annual International Sym-
SystemsNovember 1996. posium on Computer Architectyneages 325337, April

1994.
[13] Kourosh Gharachorloo, Daniel Lenoski, James Laudon,

Philip Gibbons, Anoop Gupta, and John Hennessy. Mem[25] loannis Schoinas, Babak Falsafi, AN# Lebeck,
ory Consistency and Event Ordering in Scalable Shared- Steverk. Reinhardt JameR. Larus. and David

Memory_. InProceedings of the .l7th Annual International Wood. Fine-grain Access Control for Distributed Shared
Symposium on Computer Architectupeges 15-26, June Memory. InProceedings of the Sixth International Con-

1990. ference on Architectural Support for Programming Lan-
[14] David Harel. Statecharts: A visual formalism for complex guages and Operating Systems (ASPLOSpdles 297—
systems Science of Computer Programm;jrig(3):231— 307, October 1994.

274, June 1987.
[26] Keiraro Uehara, Hajime Miyazawa, Kouhei Yamamoto,

[15] Kirk L. Johnson, MFrank Kaashoek, and Deborah Shigekazu Inohara, and Takasha Masuda. A Framework
Wallach. CRL: High Performance All-Software Distribut- for Customizing Coherence Protocols of Distributed File
ed Shared Memory. IAroceedings of the 15th ACM Sym- Caches in Lucas File System. Technical Report 94-14,
posium on Operating System Principles (SOSP) Department of Information Science, University of Tokyo,
December 1995. December 1994.

[16] JamesR. Larus, Brad Richards, and Guhan Viswanathan
LCM: Memory System Support for Parallel Language Im-
plementation. InProceedings of the Sixth International

[27] Thorsten von Eicken, David. Culler, SettCopen Gold-
stein, and Klaug&rik Schauser. Active Messages: a Mech-

Conference on Architectural Support for Programming anism for Integrating Communication and Computation.

Languages and Operating Systems (ASPLOSpégjes Ir) Proceedings of the 19t'h Annual International Sympo-
208-218, October 1994, sium on Computer Architectyrpages 256-266, May

1992.
[17] JameR. Larus, Brad Richards, and Guhan Viswanathan.
Parallel Programming in C**: A Large-Grain Data-Paral- [28] Jeannett®1. Wing and Mandana Vaziri-Farahani. Model
lel Programming Language. In Gregdfy Wilson and Checking Software Systems: A Case StudyPlaceed-
Paul Lu, editors,Parallel Programming Using C+# ings ACM SIGSOFT Symposium On The Foundations Of
chapter8, pages 297-342. MITP, 1996. Software EngineeringOctober 1995.

