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Abstract

In a large-scale information system such as a digi-
tal library or the web, a set of distributed caches can
improve their effectiveness by coordinating their data
placement decisions. Using simulation, we examine
three practical cooperative placement algorithms includ-
ing one that is provably close to optimal, and we com-
pare these algorithms to the optimal placement algo-
rithm and several cooperative and non-cooperative re-
placement algorithms. We draw five conclusions from
these experiments: (1) cooperative placement can sig-
nificantly improve performance compared to local re-
placement algorithms particularly when the size of in-
dividual caches is limited compared to the universe of
objects; (2) although the Amortized Placement algo-
rithm is only guaranteed to be within 14 times the op-
timal, in practice it seems to provide an excellent ap-
prozimation of the optimal; (3) in a cooperative caching
scenario, the recent GreedyDual local replacement al-
gorithm performs much better than the other local re-
placement algorithms; (4) our Hierarchical GreedyD-
ual replacement algorithm yields further improvements
over the GreedyDual algorithm especially when there
are idle caches in the system; and (5) a key challenge
to coordinated placement algorithms is generating good
predictions of access patterns based on past accesses.

1. Introduction

Consider a large-scale distributed information system,
such as a digital library or the world wide web. Caching
popular objects close to clients is a fundamental tech-
nique for improving the performance and scalability of
such a system. Caching enables requests to be satisfied
by a nearby copy and hence reduces not only the access
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latency but also the burden on the network as well as
the server.

A powerful paradigm to improve cache effectiveness
is cooperation, where caches cooperate both in serving
each other’s requests and in making storage decisions.
Such cooperation is particularly attractive in environ-
ments where machines trust one another such as within
an Internet service provider, cache service provider,
or corporate intranet. In addition, cooperation across
such entities could be based on peering arrangements
such as are now common for Internet routing.

There are two orthogonal issues to cooperative
caching: finding nearby copies of objects (object lo-
cation) and coordinating the caches while making stor-
age decisions (object placement). The object location
problem has been widely studied [1, 3, 20]. Many
recent studies (e.g., Summary Cache [6], Cache Di-
gest [18], Hint Cache [19], CRISP [8] and Adaptive
Web Caching [25]) also focus on the location problem,
but none of these address the placement issue.

Efficient cache coordination algorithms would
greatly improve the effectiveness of a given amount of
cache space and are hence crucial to the performance
of a cooperative caching system. We believe that the
importance of such algorithms will increase in the fu-
ture as the number of shared objects continues to grow
enormously and as the Internet becomes the home of
more large multimedia objects.

In this paper we focus on the cache coordination is-
sue and provide placement and replacement algorithms
that allow caches to coordinate storage decisions. The
placement algorithms attempt to solve the following
problem: given a set of cooperating caches, the net-
work distances between caches, and predictions of the
access rates from each cache to each object, determine
where to place each object in order to minimize the av-
erage access cost. Compared to placement algorithms,
replacement algorithms also attempt to minimize the
access cost, but rather than explicitly computing a



placement based on access frequencies, they proceed
by evicting objects when a cache miss occurs.

Coordinated caching helps for two reasons. First,
coordination would allow a busy cache to utilize a
nearby idle cache [5, 7]. Second, coordination can bal-
ance the improved hit time achieved by increasing the
replication of popular objects against the improved hit
rate by reducing replication and storing more unique
objects.

In this work, we examine an optimal placement al-
gorithm and three practical placement algorithms and
compare them to several uncoordinated replacement
algorithms (such as LFU, LRU, GreedyDual [2, 23])
and a novel coordinated replacement algorithm. We
drive this comparison with simulation based on both
synthetic and trace workloads. The synthetic work-
loads allow us to examine system behavior in a wide
range of situations, and the trace allows us to examine
performance under a workload of widespread interest:
web browsing.

We draw five conclusions from these experiments.

e Cooperative placement can significantly improve
performance compared to local replacement par-
ticularly when the size of individual caches is lim-
ited compared to the universe of objects.

o It was established in an earlier theoretical work by
Korupolu, Plaxton and Rajaraman [13] that, un-
der a hierarchical model for distances, the Amor-
tized Placement algorithm is always within a con-
stant factor of the optimal. Although the proof
only guarantees that the amortized placement al-
gorithm is within a factor of 14 of the optimal, in
practice we find that it is within 5% for a wide
range of workloads. This is an important result
for two reasons. First, in systems that can gener-
ate good estimates of access frequencies, amortized
placement is a practical algorithm that can be ex-
pected to provide near-optimal performance. Sec-
ond, for large-scale studies of cache coordination,
amortized placement can provide a practical “best
case” baseline that can be used to evaluate other
algorithms. In addition, we find that the Greedy
Placement algorithm, which is a simplified version
of the amortized algorithm, also provides an ex-
cellent approximation of the optimal even though
in theory its performance can be arbitrarily worse
than the optimal.

e Previous work [2] has shown that the GreedyD-
ual algorithm works well for stand-alone caches.
Our contribution is to examine its performance
in cooperative caching scenarios. We find that,

for cooperative caching, it significantly outper-
forms other local replacement algorithms because
it includes miss costs in its replacement decisions,
thereby creating an implicit channel for coordinat-
ing the caches.

e Our Hierarchical GreedyDual replacement al-
gorithm yields further improvements over the
GreedyDual replacement algorithm especially
when there are idle caches in the system.

e A key challenge to coordinated placement algo-
rithms is generating good predictions of access
patterns based on past accesses.

The rest of the paper is organized as follows: First,
Section 2 describes the algorithms we study. Sections 3
and 4 detail our experimental results under synthetic
and trace workloads, respectively. Section 5 surveys re-
lated work, and Section 6 summarizes our conclusions.

2. Algorithms

In this section, we present several placement and re-
placement algorithms for coordinated caching. How-
ever, this is preliminary work in this direction and
hence we make several simplifying assumptions in order
to focus on the coordination problem. One assumption
is that all the objects have the same size and are read-
only. Second, we assume that the network distances
(or communication costs) between node pairs are fixed
and do not change over time. An interesting area for
future work is to relax these assumptions.

In order to capture the varying degrees of locality
between the nodes, we use a clustering based network
model. This is illustrated in Figure 1 which shows a set
of cooperating nodes, and a possible network-locality
based clustering of these. This clustering is a natural
consequence of how network topologies reflect organi-
zational and geographic realities. For example, in a
collection of universities, each node typically belongs
to the department cluster which in turn belongs to the
university cluster and so on. This cluster structure can
be captured using a cluster-tree (or, a network-locality
tree) as shown in the figure. The individual caches
form the leaves of this tree, and the internal nodes cor-
respond to the clusters. A cluster C' is a child of cluster
C' if C is immediately contained within C'.

Because communication between two clusters is
likely to traverse the same bottleneck link regardless of
which particular nodes are conversing, we use a simple
model of network distances: each cluster has an asso-
ciated diameter, and the distance between any pair of
nodes is given by the diameter of the smallest cluster
that contains both these nodes. (This model is same
as the ultrametric model used by Karger et al. in [12].)
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Figure 1. Model for network distances

2.1. Non-cooperative local algorithms

In this subsection, we outline four baseline algorithms
that make all their placement or replacement decisions
locally without consulting any other cache.

MFU Placement. The cache looks at the local fre-
quencies to the various objects, and if the size of the
cache is k, it stores the k& most frequently used objects.

LRU Replacement. When a cache miss occurs, this
algorithm evicts the least recently used object.

LFU Replacement. When a cache miss occurs, this
algorithm evicts the object with the least (local) fre-
quency of access.

GreedyDual Replacement. This is a generaliza-
tion of the LRU algorithm to the case where each ob-
ject has a different but fixed miss cost [2, 23]. The
motivation behind the GreedyDual algorithm is that
the objects with larger cost should stay in the cache
for a longer time.

The algorithm maintains a value for each object that
is currently in the cache. When an object is fetched
into the cache, its value is set to its fetch cost. When a
cache miss occurs, the object with the minimum value
is evicted from the cache, and the values of all the
other objects in the cache are reduced by this minimum
value. And if an object in the cache is accessed (or
‘touched’), then its value is restored to its fetch cost.

From an implementation point of view, it would be
expensive to modify the value of each cache object,
upon each cache miss. However, this expense can be
avoided by noting that only the relative values, not
the absolute ones, that matter [2]. In an efficient im-
plementation, upon a cache miss, the minimum valued
object is evicted from the cache and no other values
are modified. However, when an object is touched or
added, its value is set to its fetch cost plus the value of
the minimum-valued object in the cache.

2.2. Cooperative placement algorithms

A placement assigns objects to caches without violat-
ing the cache size constraints. The cost of a placement
P is defined in the natural manner: the sum over all
nodes u and all objects a of the access frequency for ob-
ject a at node u times the distance from node u to the
closest copy of that object. The goal of a cooperative
placement algorithm is to compute a placement with
minimum cost. Even though we do not explicitly mini-
mize the network load and the server load these would
typically fall when the access cost is minimized. This
is because the latter objective would encourage objects
to be stored closer to the clients, thereby reducing the
load on both the network as well as the server.

We study three cooperative placement algorithms.
One of them is provably optimal, but unfortunately
it is impractical for scenarios with large numbers of
nodes and objects. The other two algorithms are not
provably optimal, but they are much simpler and can
be implemented efficiently even in a distributed setting.

2.2.1. An optimal placement algorithm

A centralized optimal algorithm for the placement
problem was developed in an earlier paper [13], using
a reduction to the minimum cost flow problem. The
algorithm and its proof of optimality appear in [13],
hence we do not reproduce it here.

Since the minimum cost flow problem is computa-
tionally intensive, this optimal algorithm incurs a high
running time complexity. Moreover, since the algo-
rithm is centralized, it requires all the frequency in-
formation to be transferred to a single node, thereby
imposing a high bandwidth requirement. These factors
make this algorithm impractical for use with large in-
puts, and hence our sole use for this algorithm is as a
benchmark for evaluating other algorithms.

2.2.2. The greedy placement algorithm

This algorithm follows a natural greedy improvement
paradigm, and involves a bottom-up pass along the



cluster-tree. It starts with a tentative placement in
which each cache (i.e., a leaf in the cluster-tree) picks
the locally most valuable set of objects. The algorithm
then proceeds up the cluster-tree improving the place-
ment iteratively.

In a general step, suppose we have computed the
tentative placements for clusters C,...C}y which con-
stitute a larger cluster C'. While computing the place-
ment for cluster C;, the algorithm uses the access fre-
quency information from within that cluster only. Now
at cluster C, we first merge the placements computed
for subclusters C; through C}. The placement P ob-
tained by this merging is clearly a starting placement
for cluster C, but it may be improveable using the in-
formation about the aggregate frequencies across dif-
ferent subclusters in C.

For example, there may be an object a that is not
chosen in any of the clusters C; through Cj} since its
access frequency within each cluster is small. But its
aggregate frequency in the larger cluster C may be
large enough that the placement P can be improved
by taking a copy of object a and dropping a less ben-
eficial item from P. To determine such useful swaps,
we calculate a benefit for each item in P and a value
for each object not in P. (Such objects are said to be
P-missing.)

The value of a P-missing object is C’s aggregate ac-
cess frequency for that object times the cost of leaving
the cluster C' to fetch that object. The latter quantity
is the difference between the diameter of the parent
cluster of C' and that of the cluster C itself.

The benefit of an item z in placement P, on the
other hand, corresponds to the increase in the cost of
the placement when the item z is dropped. Benefits
are computed in a bottom-up manner. Each subclus-
ter C; calculates a local benefit for each item in its
placement. After the merge step, the parent cluster C
updates the benefits as follows. For each object that
has one or more copies in P, we pick the copy with the
highest local benefit as the primary copy, and call all
other copies as secondary copies. The benefits of the
secondary copies are not changed, but the benefit of
the primary copy is increased by C’s aggregate access
frequency to the object times the cost of leaving the
cluster C'. The intuition is that among all the copies of
an object, the primary copy will be the last one to be
removed from P, and its removal will increase the cost
of the placement by the above amount.

Once the benefits and values have been computed,
we use a simple greedy swapping phase to improve the
placement P. While there is a P-missing object «
whose value is more than the least beneficial item z
in P, we remove x from P and substitute a copy of a.

This phase terminates when the benefit of each item in
P is higher than the value of each P-missing object.

This swapping phase concludes the computation for
cluster C', and the algorithm proceeds to the parent
cluster of C iteratively.

Though this greedy algorithm looks simple and
promising, it is shown in [13] that its worst-case perfor-
mance can be arbitrarily far from the optimal. How-
ever, we conjecture that such worst-case examples oc-
cur rarely and that the algorithm would perform well
in practice.

2.2.3. The amortized placement algorithm

The worst-case analysis indicates that a drawback of
the greedy algorithm is the following: A single sec-
ondary copy of some object may prevent the swapping
in of several missing objects. Though the benefit of the
secondary copy may be larger than the value of each
of the missing objects, on the whole it might be much
less than the sum of all these values put together.

To circumvent this drawback, the greedy algorithm
is augmented with an amortization step using a po-
tential function. The potential function accumulates
the values of all the missing objects, and the accumu-
lated potential is then used to reduce the benefits of
certain secondary items thereby accelerating their re-
moval from the placement. Due to space constraints,
we omit the full description of the algorithm.

It is proved in [13] that the above amortized place-
ment algorithm is always within a constant factor of the
optimal. The constant factor is about 13.93. However,
this factor is still large for practical purposes. We con-
jecture that, in practice, this algorithm will be much
closer to the optimal.

2.3. A cooperative replacement algorithm

Our experiments show that, in a cooperative scenario,
the GreedyDual algorithm performs much better than
the other local replacement algorithms. This is because
even though the GreedyDual algorithm makes entirely
local decisions, its value structure enables some implicit
coordination with other caches. In particular, an ob-
ject that is fetched from a nearby cache has a smaller
value than an object that is fetched from afar. Hence
the former object would be evicted from the cache first,
thus reducing unnecessary replication among nearby
caches. However, this limited degree of coordination
does not exploit all the benefits of cooperation. For
example, the idle caches are not exploited by nearby
busy caches.

Hence we devise Hierarchical GreedyDual, a coop-
erative replacement algorithm that not only preserves
the implicit coordination offered by GreedyDual but



also enables busy caches to utilize nearby idle caches.

In this algorithm, each individual cache runs the lo-
cal GreedyDual algorithm using the efficient implemen-
tation described in subsection 2.1. Recall that the local
GreedyDual algorithm maintains a value for each ob-
ject in the cache, and upon a cache miss, it evicts the
object with the minimum value. In our hierarchical
generalization, the evicted object is then “passed up”
to the parent cluster for possible inclusion in one of its
caches. When a cluster C receives an evicted object
a from one of its child clusters, it first checks to see if
there is any other copy of a among its caches. If not, it
picks the minimum valued object 8 among all the ob-
jects cached in C. Then the following simple admission
control test is used to determine if a should replace 3.
If the copy of a was used more recently than the copy
of B3, then a replaces 8 and the new evicted object 3 is
recursively passed on to the parent cluster of C. Oth-
erwise, the object « itself is recursively passed on to
the parent cluster of C.

From our experiments, we learned that the particu-
lar admission control test described above is crucial for
obtaining good performance. This is because an im-
portant purpose of the admission control test is to pre-
vent rarely-accessed objects from jumping from cache
to cache without ever leaving the system. Such objects
would typically have a high fetch cost since no other
(nearby) cache would have stored them, and hence any
fetch-cost based admission control test would repeat-
edly reinsert such objects even after they are evicted
by individual caches. This can result in worse perfor-
mance than even the local GreedyDual algorithm. We
avoid this problem by maintaining a last-use timestamp
on every object in the cache. With this timestamp
based admission control strategy, rarely used objects
are eventually released from the system.

For a practical implementation, algorithm would use
data-location directories [6, 8, 18, 19] to determine if
other copies exist in the subtree, and would use ran-
domized [5] or deterministic [7] strategies to approxi-
mate the selection of .

3. Performance evaluation on synthetic
workloads

This section explores the performance of the above al-
gorithms under a range of synthetic workloads. These
workloads allow us to explore a broader range of system
behavior than trace workloads. In addition, because
the synthetic workloads are small enough be tractable
under the optimal algorithm, we can compare our al-
gorithms to the optimal placement.

This section first describes our methodology in detail
and then shows the results of our experiments. These

[ Param. | Meaning | Default
L Number of levels 3
D Degree of each internal node 3
A Diameter growth factor 4
c Cache size percentage 20% (synth. only)
m No. of local objects per node 25 (“)
r Sharing parameter 0.75 ( “)
PAT Access pattern Uniform ( )
I Idle cache factor 1

Table 1. Default system parameters.

results support the first four conclusions listed in Sec-
tion 1.

3.1. Methodology

We simulate a collection of caches that include a di-
rectory system, such as the ones provided by Hint
Cache [19], Summary Cache [6], Cache Digests [18] or
CRISP [8], so that caches can send each local miss di-
rectly to the nearest cache or server that has the data.
For the placement algorithms MFU, Greedy, Amor-
tized, and Optimal, we compute the initial data place-
ment according to the algorithm under simulation,
and the data remain in their initial caches through-
out the run. For the replacement algorithms LFU,
LRU, GreedyDual, and HrcGreedyDual, we begin with
empty caches, and for each request we modify the cache
contents as dictated by the replacement algorithm. In
that case, we use an initial warm-up phase to prime
the caches before gathering statistics.

We parameterize the network architecture and work-
load along a number of axes. The parameters are de-
fined in detail in the following two subsections. Table 1
summarizes the default values for these parameters.

3.1.1. Network architecture

Recall from Section 2 that the distances between the
cache nodes are completely specified once the network-
locality tree and the cluster diameters are given. We
create an L-level network-locality tree with the degree
of each internal node being D. The root is consid-
ered to be at level L and the leaves are at level zero.
The cluster diameters are captured by A, the diameter
growth factor. The diameter for a cluster at level 7 is
A%, and the cost of leaving the root cluster is AL+,

Because all objects have the same size, it suffices to
express the size of a cache in terms of the number of
objects it can hold. We set all cache sizes to be the
same, using a single parameter C' which is called the
cache size percentage. Specifically, the cache size at
a node is set to CM*/100, where M* is the average
number of objects accessed by the node.
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Figure 2.

3.1.2. Workload

As observed in Section 1, an important parameter for
the performance of cooperative strategies is the degree
of similarity of interests among nearby nodes. At one
extreme, there is total similarity (all nodes access the
same set of shared objects with the same frequencies)
while at the other extreme there is absolutely no simi-
larity (each node accesses its own set of local objects).
Our synthetic workload models such sharing by
creating m objects for each cluster in the network.
This pattern could represent a hierarchical organiza-
tion where some objects are local to an individual,
some to a group, some to a department, and some
of organization-wide interest. The sharing parame-
ter, r, determines the mix of requests to the “pri-
vate”, “group,” “department,” and “organization” col-
lections. The fraction of requests that a client sends
to level-i objects is proportional to r’. Note that as
r varies from 0 to infinity, the degree of sharing in-
creases: when r < 1, clients are more likely to access
“local” objects, when r = 1 they are equally likely to
access objects from all levels, and when r > 1 they
focus much of their attention on “global” objects.
Within each cluster, we select objects according to
a pattern PAT that is either “Zipf-like” or “Uniform.”
Thus, for a particular cache v and a particular object
7 that is local to cluster C' and that is the kth-ranked
object of the m objects local to C, the fraction of node
v’s requests that go to object j, is computed as follows:

F,(j) = 0 if C does not contain v,
= ar' if C contains v and PAT is “Uniform”,
ar’

= if C contains v and PAT is “Zipf-like”,

for an appropriate normalization constant a.
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100 T T T T T T T T T

80

60 [\

40 |

AmortPlace
GreedyPlace

. Optimal
20 LN P

Average cost per request (% of base cost)

Per site cache size (% of number of objects accessed)

(b) With PAT = “Zipf-like”

Varying Cache Size

The above workloads ensure that all clients are al-
most equally active. However in reality, there may be
several caches that are idle for periods of time. We
model this effect by using another parameter I (called
the idle cache factor) and by adding a special cache
called the idle cache for each level-one cluster. The
idle cache makes no access requests at all, but it has
a cache of size I times that of any other cache. As I
is increased from 0 upwards, the amount of idle cache
space in the system increases.

3.2. Results

Figure 2 plots the performance of the algorithms as the
cache size percentage C' is varied from 1 to 100, with
other parameters set to their default values.

The y-axis corresponds to the average cost per re-
quest, as a percentage of the base cost. The latter is
the cost that is paid if there are no copies of the object
in the hierarchy, and is given by the expression A\X+1.
The results for the case where the pattern within each
category is Zipf-like are similar and are presented in
Figure 2-b.

The primary conclusion from this data is that in-
creasing coordination can improve performance, par-
ticularly with small caches. When comparing the three
categories of algorithms—local (MFUPlace, LFU,
LRU, GreedyDual), cooperative replacement (Hrc-
GreedyDual), and cooperative placement (AmortPlace,
GreedyPlace, Optimal)—cooperative replacement gen-
erally outperforms local, and cooperative placement
generally outperforms cooperative replacement.

Within each category, the effect of increasing co-
ordination can also be seen. Although MFUPlace,
LFU, LRU, and GreedyDual are all “local” algorithms,
their performance differs markedly. MFUPlace per-
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forms poorly because caches tend to contain exactly
the same objects from the cluster, which wastes cache
space with inefficient replication. LFU and LRU do
somewhat better because randomization has an effect
similar to coordination—reducing the replication of the
most frequently accessed objects while increasing the
replication of less frequently accessed ones. Finally,
the miss-cost consideration in GreedyDual makes it ex-
pensive to throw away objects that are not cached by
nearby neighbors, which induces significant coordina-
tion across caches. In fact, for the “no idle cache” case,
GreedyDual matches the performance of HrcGreedyD-
ual (Figure 3-b). However, when there is idle cache
space to exploit, HrcGreedyDual outperforms Greedy-
Dual as Figure 2-b shows.

As we increase cache size, the performance of all
these algorithms improves. None of the algorithms per-
form well when caches are tiny, but for small to medium
sized caches, the coordinated algorithms significantly
outperform traditional replacement algorithms.

We also note that the amortized and the greedy
placement algorithms effectively match optimal across
a wide range of workloads.

3.2.1. Sensitivity to other parameters

Figure 3-a shows performance as we vary the sharing
parameter, r. When r is between 0 and 1, smaller val-
ues have better performance for all of the algorithms
because smaller values result in clients sending more
requests to their “local” collection of objects, of which
a large fraction will fit in their local caches under any
of the algorithms studied. When r > 1, increasing
r actually helps performance because sharing among
caches becomes more effective. The performance spike
for LFU at r = 1 occurs because a client is spreading its

requests across all levels of objects evenly and it con-
siders all objects equally likely to be referenced; all re-
placement decisions are ties and are broken randomly,
which results in most objects being widely cached.

We also note that the same general patterns emerge
as for the earlier experiment: across a wide range
of sharing factors, algorithms with more coordination
have better performance and GreedyPlace and Amort-
Place closely track the performance of Optimal.

Figure 3-b shows what happens as the amount of idle
cache in each level-one cluster is increased. The “im-
plicit” coordination of LRU and GreedyDual is not able
to take advantage of the increasing idle cache space.
On the other hand, the performance of the explic-
itly coordinated algorithms—HrcGreedyDual, Amort-

Place, GreedyPlace, and Optimal—improves.

Similar trends were observed when the other param-
eters (namely, L, D, and \) were varied. A discussion
of the sensitivity to these parameters will appear in the
full version of this paper.

4. Performance evaluation on web-trace
workloads

In this section our goal is to evaluate the performance
of the various placement and replacement algorithms
on trace workloads. The main conclusions for the syn-
thetic workload are also supported here. In addition,
we find that a key challenge to coordinated placement
algorithms is generating good predictions of access pat-
terns based on past accesses. As a result, it appears
that hybrid placement-replacement algorithms may of-
fer the best option.
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Figure 4. Performance with the DEC procy trace

4.1. Methodology

Our simulations use the Digital web proxy trace [4],
which was collected at a proxy serving about 16,000
clients over a period of 25 days from August 29th, 1996
to September 22nd, 1996. About 24 million events were
logged using about 4.15 million distinct URLs. For
our simulations we use only the cacheable read accesses
(i.e., events with GET method, without involving CGI
scripts, et cetera).

Because the trace does not provide any information
regarding the architecture of the network connecting
the clients, we use our standard synthetic architecture
which was described in Section 3.1. This synthetic net-
work has 27 nodes, and we map each of the 16,000 trace
clients randomly on to one of these 27 nodes.

We believe that such a random mapping will gener-
ally inhibit the performance of cooperative algorithms
for two reasons. Firstly, random mapping of clients to
clusters will eliminate any similarity of interests among
nearby clients. Secondly, with about 600 random nodes
multiplexed to each leaf cache, cache load is evenly bal-
anced and hence there would be few chances to exploit
idle cache memory.

The large number of objects in the trace makes it in-
feasible to run the optimal placement algorithm. Nev-
ertheless, as seen in the previous section, we can obtain
almost optimal placements by using the simpler greedy
placement algorithm. Hence we focus on the greedy
placement algorithm alone.

4.2. Design Issues

We have seen that the placement algorithms yield sig-
nificant performance gains when the access patterns
are stable and known, as was the case for the synthetic
workloads. However, in reality access patterns change

over time, and an effective placement strategy must
be able to cope with these changes. A natural way of
coping with dynamically-changing access patterns is to
run the placement algorithms at regular intervals to re-
organize the data more effectively. However, there are
two crucial factors that affect the performance of such
a strategy: (1) How frequently should the placement
algorithms be run? and (2) How do we predict the ac-
cess frequencies for use by the placement algorithms?

The dynamic versions of our placement algorithms
break the time into epochs and run the placement algo-
rithm at the beginning of every epoch. If the epoch size
were too large, then the placement would get outdated
and hence yield bad performance. On the other hand,
if the epoch size were too small then the bandwidth
cost of reorganizing the data would be prohibitive. For
our experiments, we set the epoch size to 6 hours.

A key challenge for placement algorithms is to pre-
dict the future access frequencies based on past ac-
cesses. Ideally, a sophisticated prediction technique
would exploit the temporal, spatial, and geographi-
cal localities among requests to predict future requests.
(Spatial locality refers to the fact that related objects
such as objects from the same server or that are hyper-
linked to each other tend to be accessed together. Geo-
graphical locality refers to the fact that clients that are
close to each other may have similar interests.) How-
ever a study of these techniques is orthogonal to our
current focus, and we do not delve into this question.

For the purposes of evaluating the placement algo-
rithms, we consider two extreme prediction strategies.
The first one is an idealized predictor, based on future
knowledge, that looks ahead into the next epoch to de-
termine the access frequencies for each (client, object)
pair. This unrealizable algorithm serves as a bench-



mark for the best any prediction technique can achieve.
The second one is a naive predictor that computes the
predicted access counts for the next epoch using the ac-
cess counts from the earlier epochs, along with a damp-
ing factor r: if the access count for a particular (client,
object) pair was ¢; during the sth last epoch, then that
epoch contributes ¢; -r*~! to the predicted access count
for the coming epoch.

Finally, to cope with the dynamic access patterns
in these traces, we examine the performance of hybrid
placement-replacement algorithms. These hybrid algo-
rithms run a placement algorithm at epoch boundaries
and also run a replacement algorithm during the epoch.
We examine two hybridization techniques. Static par-
tition divides the cache space into two portions and
runs the placement algorithm on one portion and the
dynamic replacement algorithm on the other. In our
experiments, we use half of the cache for each partition.
The second technique, overlaying, reorganizes the en-
tire cache using the placement algorithm at the start of
each epoch and then gives the replacement algorithm
control of the entire cache during the epoch.

4.3. Results

Figure 4-a shows the performance of the various al-
gorithms under the ideal prediction strategy described
above. The x-axis shows the per-node cache size, as
a percentage of the number of objects accessed by the
node, and is varied from 1 to 40. All the other param-
eters are set to their default values.

The experiments show that, when the predictions
are ideal, the placement algorithms perform signifi-
cantly better than the replacement algorithms. This
is particularly encouraging for systems that can pro-
vide good predictions of access patterns (e.g., subscrip-
tion based systems). The effect of increasing coordi-
nation can also be seen: the Hierarchical GreedyD-
ual outperforms the GreedyDual algorithm while the
greedy placement algorithm performs better than the
local- MFU placement algorithm. However hybridiza-
tion hurts the performance of the placement algorithms
when the predictions are good.

Figure 4-b shows the effect of prediction on the per-
formance of the placement algorithms by comparing
these algorithms with naive prediction at one extreme
and ideal prediction at the other. With naive predic-
tions, the most effective algorithms are the hybrid com-
binations of placement and replacement. Even with
these combinations, the performance gains are modest
for this set of parameters.

This suggests that developing more accurate fre-
quency predictors could be a fertile area for future
work. The reason for this optimism is that our current

naive predictor uses only one type of locality, namely
the temporal locality, out of the three localities ex-
pected in web accesses.

5. Related work

A number of recent studies have examined the question
of what to store in caches. There are several studies
and prototypes (e.g., [3, 2, 17, 21]) that employ purely
local replacement strategies such as LRU or GreedyD-
ual at each cache. The GreedyDual local replacement
algorithm was evaluated in [2, 11, 23], but for single
stand-alone caches only. Here we study their perfor-
mance in a cooperative caching scenario.

The placement and replacement algorithms for
local-area networks were studied by Leff et al. [14],
Dahlin et al. [5], and Feeley et al. [7]. However the
scenario of wide-area networks is vastly different and
relatively unexplored.

Recently, Yu and MacNair [24] studied the ques-
tion of wide-area cache coordination, but under a very
simplistic model where all the network distances are
assumed to be the same. In such a scenario, clearly
the best strategy is simply to avoid duplication alto-
gether. Here, we study a more general problem with
non-uniform network distances.

The issue of server-initiated on-line replication has
received a good deal of attention [10, 12, 15, 16, 22]
recently. Two of these [12, 15] give theoretical results
while the remaining three [10, 16, 22] present heuristics
with empirical evaluation. In all of these studies, the
concern is more with the issue of reducing server load
when hot-spots occur (i.e., when the load on server in-
creases) and less with the issue of reducing the latency
when there are no hot spots.

Another useful technique for reducing the client la-
tency is that of push caching [9, 19]. Here the server
keeps track of client access patterns and pushes data
towards the clients even before they ask for it, thus
avoiding the compulsory misses. Such schemes involve
two orthogonal components: predicting future access
patterns and distributing the data according to these
predictions. The studies in [9, 19] aim at evaluat-
ing the potential benefits of push caching by focusing
on the first component and assuming that the cache
sizes are infinite. Our study of placement problem
address the second component of push caching, un-
der the more realistic assumption that the cache sizes
are bounded. The placement algorithms proposed here
are ideal for systems, such as subscription-based ser-
vices, where good predictions of access patterns are
available.



6. Conclusions

A powerful paradigm to improve cache effectiveness
is cooperation, where caches cooperate both in serv-
ing each other’s requests and in making storage de-
cisions. In this study, we evaluate several placement
and replacement algorithms that allow caches to coor-
dinate their storage decisions. Based on our simulation
studies, we conclude that coordinated decision making
can significantly improve performance. A fertile area
for future work is to generate good predictions of ac-
cess patterns based on past accesses. Other interesting
questions are to extend the algorithms described here
to handle multiple object sizes, and to cope with the
fact that network distances may vary dynamically de-
pending on the network load.
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