Internat. Conf. on Parallel and Distributed Information Systems Active Messages: A Mechanism for Integrated Communication
pages 198-207, December 1991. and Computation. IRroc. of 1992 ASPLQPages 256-266, May

[Leno90] D. Lenoski, JLaudon, K.Gharachorloo, AGupta, and 1992.
J.Hennessy. The Directory-Based Cache Coherence Protocol fofWalk83] B. Walker, G.Popek, REnglish, CKline, and G.Thiel.
the DASH Multiprocessor. IRroc. of the 17th Internat. Symp.on ~ The LOCUS distributed operating system.Rroc. of the 5th

Computer Architecturgpages 148-159, May 1990. Symp. on Operating Systems Principlpages 49—69, October
[Lisk91] B.Liskov, S.Ghemawat, RGruber, PJohnson, 1983.
L. Shrira, and MWilliams. Replication in the Harp File System. [Wang93] R.Wang and TAnderson. xFS: A Wide Area Mass
In Proc. of the 13th Symp. on Operating Systems Principdeges Storage File System. Fourth Workshop on Workstation Oper-
226-238, October 1991. ating Systemgages 71-78, October 1993.
[Litz92] M. Litzkow and M.Solomon. Supporting Checkpointing [Wilk95] J.Wilkes, R.Golding, C.Staelin, and TSullivan. The
and Process Migration Outside the UNIX KernelPhoc. of the HP AutoRAID Hierarchical Storage System.Rroc. of the 15th
Winter 1992 USENIXpages 283—-290, January 1992. Symp. on Operating Systems Principl@scember 1995.

[LoVe93] S.LoVerso, M.lsman, A.Nanopoulos, WNesheim, [Wolfg89] J. Wolf. The Placement Optimization Problem: A Practi-
E. Milne, and RWheeler. sfs: A Parallel File System for the CM- cal Solution to the Disk File Assignment Problem.Proc. of
5. InProc. of the Summer 1993 Usenpages 291-305, 1993. 1989 SIGMETRICSages 1-10, May 1989.

[Majo94] D. Major, G.Minshall, and KPowell. An Overview of
the NetWare Operating System.Rnoc. of the 1994 Winter US-
ENIX pages 355-72, January 1994.

[McKu84] M. McKusick, W.Joy, S Leffler, and RFabry. A Fast
File System for UNIX.ACM Trans. on Computer Systems
2(3):181-197, August 1984.

[Nels88] M. Nelson, BWelch, and JOusterhout. Caching in the
Sprite Network File SystenrACM Trans. on Computer Systems
6(1), February 1988.

[Patt88]D. Patterson, GGibson, and RKatz. A Case for Redun-
dant Arrays of Inexpensive Disks (RAID). Internat. Conf. on
Management of Datgpages 109-116, June 1988.

[Pier89]P. Pierce. A Concurrent File System for a Highly Parallel
Mass Storage Subsystem.Rroc. of the Fourth Conf. on Hyper-
cubes, Concurrent Computers, and Applicatjgages 155-160,
1989.

[Pope90]G. Popek, RGuy, T.Page, and Heidemann. Replica-
tion in the Ficus Distributed File System.Pnoc. of the Work-
shop on the Management of Replicated Dgtages 5-10,
November 1990.

[Rash94]R. Rashid. Microsoft's Tiger Media Server. Tine First
Networks of Workstations Workshop Rec@dtober 1994.

[Rose92]M. Rosenblum and Dusterhout. The Design and Imple-
mentation of a Log-Structured File Systeh@M Trans. on Com-
puter Systemd0(1):26-52, February 1992.

[Sand85]R. Sandberg, DGoldberg, SKleiman, D.Walsh, and
B. Lyon. Design and Implementation of the Sun Network Filesys-
tem. InProc. of the Summer 1985 USENp&ges 119-130, June
1985.

[Schr91] M. Schroeder, ABirrell, M. Burrows, H.Murray,
R.Needham, TRodeheffer, ESatterthwaite, and hacker.
Autonet: A High-Speed, Self-Configuring Local Area Network
Using Point-to-Point LinkslEEE Journal on Selected Areas in
Communication9(8):1318-1335, October 1991.

[Selt93] M. Seltzer, KBostic, M.McKusick, and CStaelin. An
Implementation of a Log-Structured File System for UNIX. In
Proc. of the 1993 Winter USENIRgages 307-326, January 1993.

[Selt95] M. Seltzer, K.Smith, H.Balakrishnan, JChang,
S.McMains, and VPadmanabhan. File System Logging Versus
Clustering: A Performance Comparison. Pnoc. of the 1995
Winter USENIXJanuary 1995.

[Smit77] A. Smith. Two Methods for the Efficient Analysis of
Memory Address Trace Dat&EE Trans. on Software Engineer-
ing, SE-3(1):94-101, January 1977.

[VE92] T. von Eicken, DCuller, S.Goldstein, and KE. Schauser.

18

culating parity for small writes expensive when disks are dis-[Bode95] N.Boden, D.Cohen, RFelderman, AKulawik,
tributed over the network. SNS combats this problem by C.Seitz, JSeizovic, and WSu. Myrinet — A Gigabit-per-Second
using a RAID levell (mirrored) architecture, but this ap- Local-Area NetworklEEE Micro, pages 29-36, February 1995.
proach approximately doubles the space overhead for storingCao93] P.Cao, SLim, S.Venkataraman, and Wilkes. The
redundant data. AutoRAID addresses this dilemma by stor- TickerTAIP Parallel RAID Architecture. IiProc. of the 20th

ing data that is actively being written to a RAID leteind Symp. on Computer Architectuggages 52-63, May 1993.
migrating inactive data to a RAID levgl [Chai91]D. Chaiken, JKubiatowicz, and AAgarwal. LimitLESS

) Directories: A Scalable Cache Coherence Schenf&SRLOS-IV
9. Conclusions Proceedingspages 224—234, April 1991.

Serverless file systems distribute file system server re-[Chen94]P.Chen, ELee, G.Gibson, RKatz, and DPatterson.
sponsibilities across large numbers of cooperating machines. RAID: High-Performance, Reliable Secondary Stora§€M
This approach eliminates the central server bottleneck inher- €omputing Survey26(2):145-188, June 1994.
ent in today’s file system designs to provide improved per- [Corb93]P.Corbett, SBaylor, and DFeitelson. Overview of the
formance, scalability, and availability. Further, serverless Vesta Parallel File SystemComputer Architecture News
systems are cost effective because their scalable architecture?1(5):7—14, December 1993.
eliminates the specialized server hardware and convolutedCyph93] R. Cypher, AHo, S.Konstantinidou, and RMessina.
system administration necessary to achieve scalability under Architectural Requirements of Parallel Scientific Applications
current file systems. The xFS prototype demonstrates the vi- with Explicit Communication. IfProc. of the 20th International
ability of building such scalable systems, and its initial per- SYMPOsium on Computer Architectupages 2-13, May 1993.

formance results illustrate the potential of this approach. [Dahl94a] M. Dahlin, C.Mather, RWang, T.Anderson, and
D. Patterson. A Quantitative Analysis of Cache Policies for Scal-
Acknowledgments able Network File Systems. Rroc. of 1994 SIGMETRIG$ages

We owe several members of the Berkeley Communica- 150-1€0, May 1994'
tions Abstraction Layer group- David Culler, Lok Liu, and ~ [P2hl94b] M. Dahlin, R.Wang, T.Anderson, and CPRatterson.
Rich Martin— a large debt for helping us to get the 32-node 'C::_?ogeratlve FC):euf:hmg: UsmgrRemfotﬁ C#.e”t g/lemory toolmprove

. . tem Performance. oc. of the First ymp. on perat-
Myrinet network up. We also made extensive use of a mod- . re >ys . .
o . . Syst D d Impl tat 267-280, N -
ified version of Mendel Rosenblum’s LFS cleaner simulator. It?egr ﬁgsgfms esign and Implementatjrges ovem
Eric Anderson and John Hartman also provided helpful com-__. - - .

: : - - Dibb89] P.Dibble and M.Scott. Beyond Striping: The Bridge
ments on an earlier draft of this paper. Finally, we would like [: ; :
to thank the program committeeppgrticularly ?Jlohn QOuster- %ug'pgozce;;osr File g ysi%ngg omputer Architechture News
:32-39, September .

hout, our shepherd- as well as the other anonymous refer- ©) P
ees for their comments on initial drafts of this paper. These
comments greatly improved both the technical content and
presentation of this work.

[Doug91] F. Douglis and JOusterhout. Transparent Process Mi-
gration: Design Alternatives and the Sprite ImplementaSofi-
ware: Practice and Experienc21(7), July 1991.

[Hart95]J. Hartman and Justerhout. The Zebra Striped Network

References File SystemACM Trans. on Computer Systemsigust 1995.
[Ande95] T.Anderson, DCuller, D.Patterson, and the [Howa88] J.Howard, M.Kazar, SMenees, DNichols,
NOW team. A Case for NOW (Networks of WorkstationEEE M. Satyanarayanan, Bidebotham, and MVest. Scale and Per-
Micro, pages 54—64, February 1995. formance in a Distributed File SysteACM Trans. on Computer
[Bake91] M. Baker, JHartman, MKupfer, K.Shirriff, and Systems6(1):51-81, February 1988.
J.Ousterhout. Measurements of a Distributed File System. In [Kaza89]M. Kazar. Ubik: Replicated Servers Made EasyPiac.
Proc. of the 13th Symp. on Operating Systems Pringipkeges of the Second Workshop on Workstation Operating Syspamgs
198-212, October 1991. es 60-67, September 1989.

[Bake92] M. Baker, SAsami, E.Deprit, J.Ousterhout, and [Keet95] K. Keeton, T.Anderson, and DRatterson. LogP Quanti-
M. Seltzer. Non-Volatile Memory for Fast, Reliable File Systems. fied: The Case for Low-Overhead Local Area Networks2rioc.

In ASPLOS-Ypages 10-22, September 1992. 1995 Hot Interconnectugust 1995.
[Bake94]M. Baker.Fast Crash Recovery in Distributed File Sys- [Kist92] J.Kistler and M.Satyanarayanan. Disconnected Opera-
tems PhD thesis, University of California at Berkeley, 1994. tion in the Coda File SystetACM Trans. on Computer Systems
[Basu95]A. Basu, V.Buch, W.Vogels, and Tvon Eicken. U-Net: 10(1):3-25, February 1992.

A User-Level Network Interface for Parallel and Distributed [Kubi93] J.Kubiatowicz and AAgarwal. Anatomy of a Message
Computing. InProc. of the 15th Symp. on Operating Systems in the Alewife Multiprocessor. IRroc. of the 7th Internat. Conf.
Principles December 1995. on Supercomputingluly 1993.

[Birr93] A. Birrell, A. Hisgen, CJerian, TMann, and GSwart. [Kusk94]J.Kuskin, D.Ofelt, M. Heinrich, JHeinlein, R.Simoni,
The Echo Distributed File System. Technical Report 111, Digital K. Gharachorloo, Xhapin, D Nakahira, JBaxter,
Equipment Corp. Systems Research Center, September 1993. M. Horowitz, A.Gupta, M.Rosenblum, and #Hennessy. The

[Blau94]M. Blaum, J Brady, JBruck, and JMenon. EVENODD: Stanford FLASH Multipro_cessor. IRroc. of the 21st Internat.
An Optimal Scheme for Tolerating Double Disk Failures in RAID ~ SYmp- on Computer Architectugages 302-313, April 1994.
Architectures. IrProc. of the 21st Symp. on Computer Architec- [Lee95] E. Lee. Highly-Available, Scalable Network Storage. In

ture, pages 245-254, April 1994. Proc. of COMPCON 951995.
[Blaz93] M. Blaze.Caching in Large-Scale Distributed File Sys- [Leff91] A. Leff, P.Yu, and JWolf. Policies for Efficient Memory
tems PhD thesis, Princeton University, January 1993. Utilization in a Remote Caching Architecture Aroc. of the First

17

Increasing the number of storage servers improves perthan the system with four managers under this policy. This
formance by spreading the system’s requests across moranprovement comes not from load distribution but from lo-
CPUs and disks. The increase in bandwidth falls short of lin- cality; when a larger fraction of the clients also host manag-
ear with the number of storage servers, however, because cliers, the algorithm is able to successfully co-locate managers
ent overheads are also a significant limitation on systemwith the clients accessing a file more often.

bandwidth. The Nonlocal Manager line illustrates what would hap-

Reducing the stripe group size from eight storage servergen without locality. For this line, we altered the system’s
to four reduces the system’s aggregate bandwidth by 8% tonanagement assignment policy to avoid assigning files cre-
22% for the different measurements. We attribute most ofated by a client to the local manager. When the system has
this difference to the increased overhead of parity. Reducingfour managers, throughput peaks for this algorithm because
the stripe group size from eight to four reduces the fractionthe managers are no longer a significant bottleneck for this
of fragments that store data as opposed to parity. The addibenchmark.

tional overhead reduces the available disk bandwidth by7 4. Limitations of these Measlements

16% for the system using groups of four servers.

Although these measurements suggest that the XFS archi-
tecture has significant potential, a great deal of future work
remains to fully evaluate our design. First, the workloads ex-
amined here are microbenchmarks that provide significant
parallelism and spread the load relatively evenly among
xFS’s components. Real workloads will include hot spots

7.3.3. Manager Scalability

Figure13 shows the importance of distributing manage-
ment among multiple managers to achieve both parallelism
and locality. It varies the number of managers handling

metadata for 31 clients running the small write benchrfark. T - .
g that may limit the scalability of XFS or may require xFS to

This graph indicates that a single manager is a significan ; 3 X X e
bottleneck for this benchmark. Increasing the system from€ly more heavily on its capacity to reconfigure responsibil-

one manager to two increases throughput by over 80%, andfi€s to avoid Iqaded_machines. _
a system with four managers more than doubles throughput A second limitation of these measurements is that we
compared to a single manager system. compare against NFS. Our reasons for doing so were

Continuing to increase the number of managers in thepractical— NFS is a well known system, so it is easy for us

system continues to improve performance under xFS'’s Firs,t.to compare to and provides a good frame of referentait

. . . : : : . —its limitations with respect to scalability are well known
Writer policy. This policy assigns files to managers running . X .

on the same machine as the clients that create the ﬁ'es%;m?fﬁ]p'sﬁgrm[;u?é?fsebm%ﬂyir’:'anl:ﬂft?g?ggggr Z?r'\?efst'
Section3.2.4 described this policy in more detail. The sys- y buying P '

. . it will be interesting to compare xFS running on worksta-
m m % m
tem with 31 managers can create 45% more files per secon ions to NFS running on more powerful server machines than

were available to us.

'81200 files/s First Writer Polic

o

©1000 files/s 8. Related Work

‘f Section2 discussed a number of projects that provide an

& 800 files/s important basis for XFS. This section describes several other

8 efforts to build decentralized file systems.

§ 600 files/s Several file systems, such as CFS [Pier89], Bridge

O [Dibb89], and Vesta [Corb93], distribute data over multiple

%’ 400 filesl/s storage servers to support parallel workloads; however, they

= lack mechanisms to provide availability across component

£ 200 files/s failures.

@ i %‘1‘ g%ﬁtgse serves Other parallel systems have implemented redundant data
0 files/g 510 15 20 25 30 35 storage intended for restricted workloads consisting entirely

Managers of large files, where per-file striping is appropriate and

Figure 13. Small write performance as a function of the
number of managers in the system and manager locality
policy. The x axis indicates the number of managers. Th
axis is the average aggregate number of file creates per se
by 31 clients, each simultaneously creating 2,048 sm&IB(1

files. The two lines show the performance using the F
Writer policy that co-locates a fie'manager with the client
that creates the file, and a Nonlocal policy that assi
management to some other machine. Because of a hard
failure, we ran this experiment with three groups of eic
storage servers and 31 clients. The maximum point on th
axis is 31 managers.

where large file accesses reduce stress on their centralized
manager architectures. For instance, Swift [Cabrera91b] and
SFS [LoVe93] provide redundant distributed data storage for
parallel environments, and Tiger [Rash94] services multime-
dia workloads.

TickerTAIP [Ca093], SNS [Lee95], and AutoRAID
[Wilk95] implement RAID-derived storage systems. These
systems could provide services similar to XxFS’s storage serv-
ers, but they would require serverless management to pro-
vide a scalable and highly available file system interface to
augment their simpler disk block interfaces. In contrast with

4 Due to a hardware failure, we ran this experiment with three groups the log-based striping approach taken by Zebra and xFS,

of eight storage servers and 31 clients.

TickerTAIP’s RAID level5 [Patt88] architecture makes cal-

clients available for our experiments, they could achieve case for this benchmark, the benefits of XxFS’s log-based
even more bandwidth from the 32 xFS storage servers andtriping for both network and disk efficiency outweigh the
managers. limitations of our current implementation. XFS also demon-

Figure10 illustrates the performance of xFS and NFS for strates good scalability for this benchmark. 32 XFS clients

large reads from disk. For this test, each machine flushed it%ere’ able to generate a total of 1,122 files per second, while
in-memory file cache and then sequentially read a per-client \" > S Peak rate was 86 files per second with five clients.
10MB file. Again, a single NFS client outperforms a single ili

XFS client. One NFS client can read at MIR/s, while the 7.3.2. Storage Server Scalability

user-level xFS implementation and network overheads limit In the above measurements, we used a 32-node xFS sys-
one xFS client to 0.MB/s. As is the case for writes, XFS ex- tem where all machines acted as clients, managers, and stor-
hibits good scalability; 32 clients achieve a read throughputage servers and found that both bandwidth and small write
of 13.8MB/s. In contrast, five clients saturate NFS at a peak performance scaled well. This section examines the impact
throughput of 2. MB/s. of different storage server organizations on that scalability.
Figure12 shows the large write performance as we vary the

Figurell illustrates the performance when each client .
creates 2,048 files containing<B of data per file. For this Slrjonl]gesfizog storage servers and also as we change the stripe

benchmark, not only does xXFS scale well, its absolute perfor-
mance is greater than that of NFS, even with one client. @

5 10 15 20 25 30 5
Clients

Figure 11. Aggregate small write performance.The x axis

2 MB/s

. . £1200 files/s
Where one xFS client can create 40 files per second, an NF3
client can create only 22 files per second. In the single client$1000 files/d

@

e - o
S 14 MB/ @ 800 files/s
S 12 MB/s S _
® G 600 files/s
© 10 MBIy 2
= L 400 files/d
;I 8 MB/s (‘=IS
o) e)
g 6 MB/s 0 200 files/s
—
£ 4MBIs 0 files/st==
(o))
o
[}
(o))
<

0 MB/s indicates the number of clients, each simultaneously crea
5 10 15 20 25 30 35 2,048 1KB files. The y axis is the average aggregate num
Clients of file creates per second during the benchmark run. xFS 1|
Figure 9. Aggregate disk write bandwidth. The x axis four groups of eight storage servers and 32 managers.
indicates the number of clients simultaneously writing privi achieves its peak throughput of 86 files per second with
10MB files, and the y axis indicates the total throughg clients, while xFS scales up to 1,122 files per second witr
across all of the active clients. XFS used four groups of e clients.

storage servers and 32 managers. NR®ak throughput is
1.5MB/s with 6 clients; xFS is 13.9 MB/s with 32 clients.

14 MB/s
.g XFS (8 SS’s per Group
£ 14 MB/s S12 MB/s
S S
3 12 MBIs ©10 MB/s
c =
© 10 MB/s = 8MB/s P
@ g “"XFS (4 SS’s per Grou
¢ 8MBIs % 6MBs (P g
§ .
2 6MB/s £ 4MBIs
| (o]
L 4MBls S 2MB/s
(=]
o <
] v
S 2mBis |, 0 MB/ 10 15 20 25 30 35
2 Storage Servers
0 MB/s 5 1O 15 50 75 30 5 Figure 12.Large write throughput as a function of the
Clients number of storage servers in the systemThe x axis
Figure 10. Aggregate disk ead bandwidth. The x axis indicates the total number of storage servers in the system
indicates the number of clients simultaneously reading pri\ the y axis indicates the aggregate bandwidth when 32 cli
10MB files and the y axis indicates the total throughput acr each write a 10 MB file to disk. The 8 SSine indicates
all active clients. xFS used four groups of eight storage ser performance for stripe groups of eight storage servers
and 32 managers. NESpeak throughput is 2MB/s with 5 default), and the 4 SS'shows performance for groups of fot
clients; xFSs is 13.8MB/s with 32 clients. storage servers.

15

The prototype implementation consists of four main overheads further reduce network performance for both sys-
pieces. First, we implemented a small amount of code as dems.
loadable module for the Solaris kernel. This code provides
xFS’s interface to the Solaris v-node layer and also accesseZ'B' Performance Results
the in-memory file cache. We implemented the remaining This section presents a set of preliminary performance
three pieces of xFS as daemons outside of the kernel addresesults for xFS under a set of microbenchmarks designed to
space to facilitate debugging. If the xFS kernel code cannotstress file system scalability. We examine read and write
satisfy a request using the buffer cache, then it sends the rehroughput for large files and write performance for small
quest to the client daemon. The client daemons provide thefiles.
rest of xFS’s functionality by accessing the manager dae- These performance results are preliminary. As noted

mons and the storage server daemons over the network. above, several significant pieces of the XFS system remain to
7.2. Test Environment be implemented. Also, the current prototype implementation

_ ~suffers from three inefficiencies, all of which we will attack
For our testbed, we used a total of 32 machines: eightin the future.

dual-processor SPARCStation 20’s, and 24 single-processor
SPARCStation 10’s. Each of our machines hadi&4of
physical memory. Uniprocessor MHz SS-20's and SS-
10’s have SPECInt92 ratings of 74 and 65, and can copy

large blocks of data from memory to memory aMB/s and space crossing requires the kernel to schedule the user

20 MBY/s, respectively.)
, level process and copy data to or from the user process’s
For our NFS tests, we use one of the SS-20’s as the NFS address space. To fix this limitation, we are working to

server and the remaining 31 machines as NFS clients. Forthe move xFS into the kernel.

xFS tests, all machines act as storage servers, managers, and RpC and TCP/IP overheads severely limit xF8ét-
clients unless otherwise noted. For experiments using fewer \york performance. W have begun to port xEStom-
than 32 machines, we always include all of the SS-20's be- mynjcations layer to Active Messages [VE92] to address
fore starting to use the less powerful SS-10's. this issue.

The XFS storage servers store data on VB @artition 3.We have done little profiling and tuning. As we do so,
of a 1.1GB Seagate-ST11200N disk. These disks have an we expect to find and fix inffiencies.

advertised average seek time of Bd and rotate at pegpjte these limitations, the prototype isfisiént to dem-
5,411RPM. We measured a peak bandwidth to read from thegnsirate the scalability of the xFS architecture. However

raw disk device into memory of 2.7 MB/s for these disks. FOr ihe absolute performance is much less than we expect for

all xFS tests, we use a log fragment size dkB4and unless the well-tuned xFS. As the implementation matures, we

otherwise noted we use storage server groups of eight Magypect one xFS client to significantly outperform one NFS

chines — seven for data and one for parity; all xFS tests in-¢jient by benefitting from the bandwidth of multiple disks

clude the overhead of parity computation. and from cooperative caching. Our eventual performance
The NFS server uses a faster disk than the xFS storaggoal is for a single xFS client to achieve read and write

servers, a 2.GB DEC RZ28-VA with a peak bandwidth of bandwidths near that of its maximum network throughput,

5 MB/s from the raw partition into memory. The NFS server and for multiple clients to realize an aggregate bandwidth

also uses a Prestoserve NVRAM card that acts as a buffer foapproaching the systesnaggregate local disk bandwidth.

disk writes [Bake92]. We did not use an NVRAM buffer for -

the XFS machines, although xFS’s log buffer provides simi- 7.3.1. Scalability

lar performance benefits. Figures9 through 11 illustrate the scalability of xFS'’s

A high-speed, switched Myrinet network [Bode95] con- Performance for large writes, large reads, and small writes.
nects the machines. Although each link of the physical net-For each of these tests, as the number of clients increases, so

work has a peak 80B/s bandwidth, RPC and TCP/IP does xFS’s aggregate performance. In contrast, NFS's single
protocol overheads place a much lower limit on the through-Server is saturated by just a few clients for each of these tests,
put actually achieved [Keet95]. The throughput for fast net- limiting peak throughput.

works such as the Myrinet depends heavily on the version Figure9 illustrates the performance of our disk write
and patch level of the Solaris operating system used. For outhroughput test, in which each client writes a largeMB),

XFS measurements, we used a kernel that we compiled fronprivate file and then invokes sync() to force the data to disk
the Solaris 2.4 source release. We measured the TCHsome of the data stay in NVRAM in the case of NFS.) A sin-
throughput to be 3.®IB/s for 8KB packets when using this gle xXFS client is limited to 0.8IB/s, about half of the
source release. For the NFS measurements, we used the hbi-2 MB/s throughput of a single NFS client; this difference
nary release of Solaris 2.4, augmented with the binary patchis largely due to the extra kernel crossings and associated
es recommended by Sun as of June 1, 1995. This release@ata copies in the user-level xFS implementation as well as
provides better network performance; our TCP test achievedhigh network protocol overheads. As we increase the num-
a throughput of 8.4B/s for this setup. Alas, we could not ber of clients, NFS’s throughput does not increase while the
get sources for the patches, so our XFS measurements are pe=S configuration scales up to a peak bandwidth of
nalized with a slower effective network than NFS. RPC 13.9MB/s for 32 clients, and it appears that if we had more

1.xFS is currently implementeaks a set of user-level pro-
cesses by redirecting vnode layer calls as in AFS
[Howa88]. We took this approach to simplify debug-
ging, but it hurts performance since each user/kernel

14

Like other file systems, XFS trusts the kernel to enforce asatisfy any requests not satisfied by its local cache. Multiple
firewall between untrusted user processes and kernel subNFS clients can utilize the XFS core as a scalable file server
systems such as xFS. The xFS storage servers, manageiisy having different NFS clients mount the xFS file system
and clients can then enforce standard file system security sedsing different xFS clients to avoid bottlenecks. Because
mantics. For instance, xFS storage servers only store fragxFS provides single machine sharing semantics, it appears to
ments supplied by authorized clients; xFS managers onlythe NFS clients that they are mounting the same file system
grant read and write tokens to authorized clients; xFS clientsfrom the same server. The NFS clients also benefit from
only allow user processes with appropriate credentials andkFS’s high availability since they can mount the file system
permissions to access file system data. using any available xFS client. Of course, a key to good NFS
We expect this level of trust to exist within in many set- SErVer performance is to efficiently implement synchronous

writes; our prototype does not yet exploit the non-volatile

tings. For instance, xS could be used within a group or de_RAM optimization found in most commercial NFS servers
partment's administrative domain, where all machines are P)
I[_Bake92], so for best performance, NFS clients should

administered the same way and_theref.or_e trust one anOthemount these partitions using the “unsafe” option to allow
Similarly, XFS would be appropriate within a NOW where S to buffer writes in memor

users already trust remote nodes to run migrated processe)g: Y-
on their behalf. Even in environments that do not trust all
desktop machines, the xFS could still be used within a trust-
edcore of desktop machlnesd "’f‘.Td SEIVErs, among ;k)‘hysmally This section describes the state of the XFS prototype as of
secure compute servers and file servers in a machine room st 1995 and presents preliminary performance results
or within one of the parallel server architectures now being aasured on a 3de cluster of SPARCStation 10's and
researched [Kubi93, Kusk94]. In these cases, the XFS COrgyg ajthough these results are preliminary and although we
could still provide scalable, reliable, and cost-effective file expect future tuning to significantly improve absolute per-
service to less trustefd.nge_chents running more restrictive formance, they suggest that xFS has achieved its goal of scal-
protocols. The downside is that the core system can not exébility For instance. in one of our microbenchmarks

ploit the untrusted CPUs, memories, and disks located in the'32 clients achieved an aggregate large file write bandwidth

fringe. of 13.9MB/s, close to a linear speedup compared to a single
Client trust is a concern for xFS because xFS ties its cli-client’s 0.6MB/s bandwidth. Our other tests indicated simi-

ents more intimately to the rest of the system than do tradi-lar speedups for reads and small file writes.

tional protocols. This close association improves
performance, but it may increase the opportunity for mis-
chievous clients to interfere with the system. In either XFS or
a traditional system, a compromised client can endanger dat
accessed by a user on that machine. However, a damag
XFS client can do wider harm by writing bad logs or by sup-e?'l' Prototype Status

plying incorrect data via cooperative caching. In the future 1 prototype implements most of xFS's key features,

we plan_to examinetechniques_to guard against_unauthorize%duding distributed management, network disk striping
log entries and to use encryption-based techniques to safe;ip, single parity and multiple groups, and cooperative

guard cooperative caching. caching. We have not yet completed implementation of a

Our current prototype allows unmodified UNIX fringe number of other features. The most glaring deficiency is in
clients to access xFS core machines using the NFS protocokFS’s crash recovery procedures. Although the system can
as Figures illustrates. To do this, any xFS client in the core automatically reconstruct data when a storage server crashes,
exports the xFS file system via NFS, and an NFS client em-we have not completed implementation of manager state
ploys the same procedures it would use to mount a standar@heckpoint and roll forward. Also, we have not implemented
NFS partition from the xFS client. The xFS core client then the consensus algorithms necessary to calculate and distrib-
acts as an NFS server for the NFS client, providing high per-ute new manager maps and storage group maps; the system
formance by employing the remaining xFS core machines tocurrently reads these mappings from a non-xFsS file and can

e NFS Clients === not change them. We have not implemented code to change

7. XFS Pototype

The rest of this section summarizes the state of the proto-
type, describes our test environment, and presents our re-
g.ults.

afile's index number to dynamically assign it a new manager
after it has been created, and we have yet to implement the
cleaner. Finally, xFS is still best characterized as a research
prototype; although the system is becoming more stable over
time, considerable stress testing is needed before real users
will want to entrust their data toft.

- The current version of the xFS source tree is available at
http://nowcs.berkeleydu/Xfs/release/sosp95-snapshafZtar We make
this code available to provide detailed documentation of our design as of
. " . August 1995, not with the illusion that anyone will be able to download the
Figure 8. An xFS coe acting as a scalable file server fo code and start running xFS. In the future, we plan to provide more stable
unmodified NFS clients. releases of xFS in that directory

13

needed to evaluate its scalability. Our design is based on thést includes a count of how many “holes” that client created

observation that, while the procedures described above caim each modified segment. The cleaner updates its s-files by
require O(l\?) communications steps (where N refers to the decrementing the utilization of each segment by the total
number of clients, managers, or storage servers), each phasaimber of “holes” created by clients since the cleaner check-
can proceed in parallel across N machines, and the workpoint.

done in each phase can be further limited by decreasing the cjients create these summaries when they scan their logs

interval between checkpoints. during the main xFS roll-forward phase. As a client reads the
For instance, to locate the tails of the systems logs, alldeltas from each segment, it tallies the modifications that
machines involved in recovery must query all storage serverswrites to that segment made to other segments.

to locate the newest segment of the log being recovered. A grawback of this approach is that it can decrement a
While this requires a total of Ofimessages (each machine segment’s utilization twice for the same modification. For
must ask each storage server group for the newest log SeGpgtance, a cleaner can store an s-file to disk between the
ment stored at that group), each client or manager only needgme of g cleaner checkpoint and a crash. In that case, the
to contact N storage server groups, and all of the clients anQeaner will use client summaries that include modifications

managers can proceed in parallel, provided that they take,eaqy reflected in the s-files. This mistake will result in the
steps to avoid recovery storms where many machines S|mul-segment being cleaned too early, but no permanent damage
taneously contact a single storage server [Bake94]. We pla

e) > fs done. When the cleaner cleans the segment, it reads the
use randomization to accomplish this goal. deltas from that segment, correctly identifies all of the live
Recovering the log checkpoint or rolling forward logs blocks, and moves them to a new segment.
raises similar scaling issues. Although each manager or cli- . .
ent must potentially contact all of the storage servers to read®-5. Reconfiguration and Consensus

the logs, each log can be recovered in parallel. In fact, the ac- ygg reconfigures its manager map and stripe group map
tual number of storage servers contacted for each log will beynen the system recovers from a crash or when machines are
controlled by the interval between checkpoints; shortening gqdded or removed. Although we have not yet implemented
this interval reduces how far back in the log the system musiyynamic reconfiguration of either of these data structures in
scan and thereby reduces how many storage servers eagfie prototype, we plan to do so as follows. When the system
manager or client must contact. detects a configuration change, it initiates a global consensus
: algorithm that elects a leader from among the active ma-

5.3. Cache Consistency State chines and supplies that leader with a list of currently active

After the managers have recovered and rolled forwardnodes. We will adapt the spanning tree algorithm used by
the imap, they must recover the cache consistency state assé@wutonet for reconfiguration for this purpose [Schr91]. The
ciated with the blocks they manage. xFS will use server-driv- leader then computes a new manager or stripe group map and
en recovery [Bake94]. The manager contacts all of thethen distributes it to the rest of the nodes.

system’s clients, and they send the manager a list of the |, 16 case of incremental configuration changes
blocks that they are caching or for which they have write \; o a machine is added or removed or one or a small num-

ownership fr.om the indicated portion of the index number par of machines crask the system can continue operation
space. As with the other manager state, the N to N commuyy, o ghout this process. For stripe group map reconfigura-
nication in this phase is tempered by its N-way parallelism. ijon “clients can continue to read from soon to be obsolete
stripe groups using the old map, and if they try to write to a
54. Cleaner State storage server that has left the system, they will find out
The xFS cleaners’ state consists of segment utilizationabout the missing machine and either rewrite the segment to
information that resides in the s-files. Since the s-files area new, undamaged stripe group or simply write the segment
normal xFS files, earlier levels of recovery recover them. without parity protection. In the case of a manager map
However, because clients buffer their writes to the s-files, change, access to unaffected managers can continue, but ac-
the s-files may not be completely up to date, even after thecesses to portions of the map being reconfigured have to wait
lower levels of recovery have rolled forward all of the deltas until the management assignments have been transferred.
in the logs— the s-files may not account for modifications .
at about the time of the failure. 6. Security

Cleaners combat this problem with a checkpoint and roll XFS, as described, is appropriate for a restricted
forward protocol. Each cleaner periodically flushes its s-files environment— among machines that communicate over a
to disk and writes aleaner checkpoirtb a regular file inits fast network and that trust one another’s kernels to enforce
s-directory. The checkpoint indicates the most recent seg-security. XFS managers, storage servers, clients, and cleaners
ment that each client had written to its log at the time of the must run on secure machines using the protocols we have de-
checkpoint. After XxFS recovers the s-files and the check-scribed so far. However, XFS can support less trusted clients
points, each cleaner rolls forward the utilization state storedusing different protocols that require no more trust than tra-
in its s-files by asking each client for a summary of the mod- ditional client protocols, albeit at some cost to performance.
ifications since the cleaner checkpoint. Each client respondOur current implementation allows unmodified UNIX cli-
with a list of segments controlled by that cleaner that the cli- ents to mount a remote xFS partition using the standard NFS
ent modified since the time of the cleaner checkpoint. This protocol.

12

XFS leaves these basic techniques in place, modifying theng, 2, Manager Metadata

only to avoid centralized bottlenecks. To recover the managers’ disk location metadata, xFS

These techniques allow xFS to be resilient to uncorrelat-managers use the checkpoint and roll forward method devel-
ed failures— for instance, users kicking power or network oped in LFS and Zebra, but they split responsibility for roll-
cords out of their sockets. When one xFS machine fails, acing forward different components of the logs for scalability.
cess to unaffected clients, managers, and storage servers can During normal operation, managers store modified index
continue. However, XFS can not continue operation whennodes and modified blocks of their ifile in their logs using the
multiple machines from a single storage group fail or when standard client interface. The ifile holds the imap containing
a network partition prevents storage servers from regeneratpointers to the index nodes in the log, but to locate the ifile
ing segments. in the log after a crash, managers dlseckpointghat they
periodically store in their logs. Like BSD LFS [Selt93],
XFS’s checkpoints consist primarily of lists of pointers to the
ifile’s disk storage locations at the time of the checkpoints.

) ! . The checkpoint also lists the segment ID of the last segment
data from_parlty Wh_en one storage server in a group fails, anqdp, each client’s log at the time of the checkpoint.
clients write deltas into their logs to support manager recov-

ery. However, we have not implemented manager check-
point writes, checkpoint recovery reads, or delta reads for
roll forward. The current prototype also fails to recover

cleaner state and cache consistency state, and it does not y(él%ﬂI

The prototype currently implements only a limited subset
of xFS’s recovery functionality— storage servers recover

To recover the manager’s state in Zebra, the manager be-
gins by reading its log backwards from the end of the log un-
til it finds the last checkpoint. The manager reads the

eckpoint to get pointers to the ifile blocks as they looked
. . . at the time of the checkpoint. Using those pointers, the man-
|mplement the consensus algorlth_m needed to dyna_mlcallyager recovers the imap from the ifiles. To account for more
reconfigure manager maps and stripe group maps. Given th?

. ecent modifications, the manager then reads all of the cli-
complexity of the recovery problem and the early state of OUl o pytg? logs, starting at the time of the checkpoint and rolling
implementation, continued research will be needed to fully ;

derstand labl forward its checkpoint state using the information in the
understand scalable recovery. logs’ deltas to play back each modification.

The rest of this section explores the issues involved in To generalize this approach to handle multiple managers,
scaling the basic Zebra recovery model and discusses ongFS allows each new manager to recover a separate portion
additional aspect of recovery: reaching consensus on managef the imap state. Three scalability issues arise. First, only

er maps and stripe group maps. one recovering manager should read each manager’s log.
) Second, when replaying deltas, the system should read each
5.1. Persistent State client’s log only once. Third, each machine involved in re-

. _covery must locate the tail of the logs it is to read.
The storage servers provide the keystone of the system’s To assign one manager to read each manager log, XFS

recovery and availability strategy by storing the system’s uses the consensus algorithm described in Sestioduring

persistent state in a redundant log structured file system. W‘?ecovery to create an initial manager map that assigns each

base the storage servers’ recovery on the Zebra design: aﬂ%anager’s log to one of the new managers. That manager re-
Eovers the checkpoint from that log, restoring the portion of

a crash, a storage server reads a local checkpoint block. Thi
pheckpomt preserves three sets of state: the storage servc?rtﬁe imap formerly handled by the manager that wrote that
mtemal mapping from XFS fragment IDs to the fragments. og. By assigning each log to a manager, we parallelize re-
physical disk addresses, the storage server's map of free dis overy so that each manager recovers only a subset of the

space, and a list of locations where the storage server Wagystem’s metadata, and we make this parallel recovery effi-
planning to store the next few fragments to arrive after the qjent by reading each log once.

checkpoint. XFS takes a similar approach for reading the deltas from

After reading the checkpoint, the storage server exam-clients’ logs. It assigns a client or a manger to read the log
ines the locations where it might have stored data just beforeand replay its deltas. Note that where a manager’s log only
the crash. It computes a simple checksum to determine if anygontained information of interest to that manager, each cli-
of them contain live data, updating its local data structures ifent's log contains deltas that potentially affect all managers.
any do. Incomplete fragments that were being written at theThus, the machine reading deltas from a client's log sends
time of the crash will fail this checksum and be discarded. €ach delta to the manager that the delta affects. Like Zebra,

managers use version numbers included in the deltas to order
~ To help recover the stripe group map after a crash, xFSconflicting updates to the same data by different clients.
'?}CIUdﬁS afield in each fragmtra]nt that lists its stripe group and 1 gapje machines to locate the tails of the logs they are
the other storage servers in that group. to recover, each storage server keeps track of the newest seg-

Storage server recovery should scale well in XFS becausénent that it stores for each client or manager. A machine can
each storage server can independently recover its local staticate the end of the log it is to recover by asking all of the
and because storage servers' local checkpoints allow them t§torage groups and choosing the newest segment.
examine only small fractions of their disks to locate incom- Even with the parallelism and efficiency provided by
plete fragments. xFS’s approach to manager recovery, future work will be

11

©0100% |
2 Q
Q .
= 80% \ Modified By
> 0 \ NN Same Client
g ,\\ (< 30s)
B 60%| // // '
% / / Modified By
/1 Same Client
5 40% | % / (>30s) 1
5 7 /
> 20% / / Modified By |
/ [Different
0% “ e Client
8g 8% ¢
SE SE 3
S50 5.5 s
con c3g]
3¢ 86 5

Figure 6. Simulated network communication between
clients and cleanerEach bar shows the fraction of all block
modified or deleted in the trace, based on the time and cl
that modified the block. Blocks can be modified by fediht
client than originally wrote the data, by the same client witt
30 seconds of the previous write, or by the same client a
more than 30 seconds have passed. Tentralized
Pessimistic policy assumes every modification require
network trafic. The Centralized Optimisticscheme avoids
network communication when the same client modifies
block it wrote within the previous 3econds, while the
Distributed scheme avoids communication whenever a blo
is modified by its previous writer

ter mark or when the group is idle. The group leader decides
which cleaners should clean the stripe group’s segments. It
sends each of those cleaners part of the list of s-files that con-
tain utilization information for the group. By giving each
cleaner a different subset of the s-files, XFS specifies subsets
of segments that can be cleaned in parallel.

A simple policy would be to assign each client to clean
its own segments. An attractive alternative is to assign clean-
ing responsibilities to idle machines. xFS would do this by
assigning s-files from active machines to the cleaners run-
ning on idle ones.

4.3. Coordinating Cleaners

Like BSD LFS and Zebra, xFS uses optimistic concur-
rency control to resolve conflicts between cleaner updates
and normal file system writes. Cleaners do not lock files that
are being cleaned, nor do they invoke cache consistency ac-
tions. Instead, cleaners just copy the blocks from the blocks’
old segments to their new segments, optimistically assuming
that the blocks are not in the process of being updated some-
where else. If there is a conflict because a client is writing a
block as it is cleaned, the manager will ensure that the client
update takes precedence over the cleaner’s update. Although
our algorithm for distributing cleaning responsibilities never
simultaneously asks multiple cleaners to clean the same seg-
ment, the same mechanism could be used to allow less strict
(e.g. probabilistic) divisions of labor by resolving conflicts

cause the simulator assumes that blocks survive in clientsbetween cleaners.

write buffers for 3Geconds or until overwritten, whichever

is sooner; this assumption allows the simulated system to?- Recovery and Reconfiguration

avoid communication more often than a real system since it
does not account for segments that are written to disk early,

due to syncs [Bake92]. (Unfortunately, syncs are not visible

Availability is a key challenge to a distributed system
ch as xFS. Because xFS distributes the file system across
many machines, it must be able to continue operation when

in our Auspex fraces.) Finally, under the Distributed policy, some of the machines fail. Fortunately, techniques to provide

each client tracks the status of blocks that it writes so that it

needs no network messages when modifying a block for
which it was the last writer.

During the seven days of the trace, of the one million

highly available file service with potentially unreliable com-
ponents are known. RAID striping allows data stored on disk

to be accessed despite disk failures, and Zebra demonstrated

how to extend LFS recovery to a distributed system. Zebra’s

blocks written by clients and then later overwritten or delet- approach organizes recovery into a hierarchy where lower

ed, 33% were modified within 3®conds by the same client

levels of recovery are performed first, followed by higher

and therefore required no network communication under thelevels that depend on lower levels, as Figuiiustrates.

Centralized Optimistic policy. However, the Distributed
scheme does much better, reducing communication by a fac
tor of eighteen for this workload compared to even the Cen-
tralized Optimistic policy.

4.2. Distributing Cleaning

Clients store their segment utilization informationsin
files. We implement s-files as normal xFS files to facilitate
recovery and sharing of s-files by different machines in the
system.

Each s-file contains segment utilization information for
segments written by one client to one stripe group: clients
write their s-files into per-client directories, and they write
separate s-files in their directories for segments stored to dif-
ferent stripe groups.

A leader in each stripe group initiates cleaning when the
number of free segments in that group falls below a low wa-

10

Under this scheme, recovery proceeds in four steps:

- 1.Recover log segments stored on disk.

2.Recover managers’ disk imap metadata by reading a
manager checkpoint and the subsequent deltas from the
log.

3.Recover managers’ cache consistency state by querying
clients.

4.Recover cleaners’ state by reading cleaner checkpoints
and rolling forward to update their s-files.

Cache Consistenc}y Cleaner

Manager Imap
On-Disk Logs

Order of Recover
salouapuadag

Figure 7. Bottom up ecovery in xFS and Zebra ests on the
persistent state stoed reliably in the logs.

guest includes all of the network hops indicated in FiGure was local one-third of the time. Finally, when clients flushed
Despite the large number of network hops that can be in-data to disk, they informed the manager of the data’s new
curred by some requests, the average per request is quite lowtorage location, a local operation 90% of the time.

75% of read requests in the trace were satisfied by the local peletes, though rare, also benefit from locality: 68% of

CaChe; as noted earlier, the local hit rate would be even hlghf"e delete requests went to a local manager, and 89% of the

er if the trace included local hits in the traced system. An av-clients notified to stop caching deleted files were local to the
erage local read miss costs 2.9 hops under the First Writefnanager.

policy; a local miss normally requires three hops (the client .
asks the manager, the manager forwards the request, and tfe Cleaning

storage server or client Supplies the da.ta), but 12% of the When an LFS system such as XFS writes data by append_
time it can avoid one hOp because the manager is CO-|Ocated']g Comp|ete segments to its |Og, it deletes or overwrites
with the client making the request or the client supplying the plocks in old segments, leaving “holes” that contain no data.
data. Under both the Centralized and First Writer policies, alL FS systems uselag cleanerto coalesce live data from old
read miss will occasionally incur a few additional hops to segments into a smaller number of new segments, creating
read an index node or indirect block from a storage server. completely empty segments that can be used for future full
segment writes. Since the cleaner must create empty seg-
55% of write requests that required the client to contact the;nimglzf Ise:;lg:r?tglf'gggr?:rtcvijﬁfén awggiiserrliivg/ks%g;ng?st_s,

manager to estab_hsh write owner_shlp, the manager was CO%ributed system such as xXFS. The xFS architecture therefore
located with the client 90% of the time. When a manager had rovides for a distributed cleaner, although we have not

to invalidate stale cached data, the cache being invalidate ompleted implementation of the cleaner in the prototype.

Writes benefit more dramatically from locality. Of the

6,000,000} Delete Ho] An LFS cleaner, whether centralized or distributed, has
A - P three main tasks. First, the system must ke#igation sta-
o / Write Hop “ \ .
2 5,000,000 Read Hop - tus about old segments- how many “holes” they contain
@ and how recently these holes appearetb make wise de-
é 4,000,000 I cisions about which segments to clean [Rose92]. Second, the
3,000,000 / | system must examine t_hls bookkeeping mformatlor) to select
% 4 77 segments to clean. Third, the cleaner reads the live blocks
% 2,000,000} | from old log segments and writes those blocks to new seg-
2z ments.
1,000,000} The rest of this section describes how xFS distributes
0 cleaning. We first describe how xFS tracks segment utiliza-
Centralized First Writer tions, then how we identify subsets of segments to examine
Management Policy and clean, and finally how we coordinate the parallel clean-
Figure 4.Comparison of locality as measugd by network ers to keep the file system consistent.
ggﬁféci:efsc.)r the Centralized and First Writer management 4.1. Distributing Utilization Status
XFS assigns the burden of maintaining each segment’s
% 4t Centralized[] First Writer /] 1 utilization status to the client that wrote the segment. This
% 35l - — | approach provides parallelism by distributing the bookkeep-
2 ing, and it provides good locality; because clients seldom
5 31 write-share data [Bake91, Kist92, Blaz93] a client’s writes
a 25t 1 usually affect only local segments’ utilization status.
§ 2| 7/ | We simulated this policy to examine how well it reduced
E 15 / the overhead of maintaining utilization information. As input
5 7 / 1 to the simulator, we used the Auspex trace described in
2 1t / 1 Section3.2.4, but since caching is not an issue, we gather
(] . .
Z o5l / | statistics for the full seven day trace (rather than using some
@ % / of that time to warm caches.)
0 Hops Per Hops Per Hops Per Figure6 shows the results of the simulation. The bars
Read* Write Delete summarize the network communication necessary to moni-
Figure 5. Average number of network messages needed t tor segment state unc_ier_ three poI|C|e_s: _Centrallzed Pessimis-
satisfy a read block, write block, or delete file equest tic, Centralized Optimistic, and Distributed. Under the
under the Centralized and First Wtiter policies. The Hops Centralized Pessimistic policy, clients notify a centralized,
spgén\i’glrt]? C%Orilt-l;?nf}ngogi% Cfi(O\tNlrﬁggftig ;sigggguvsvgt;ﬂg ;2% | remote cleaner every time they modify an existing block.
write is asynchronous to the block write request and beci The Centralized O_pt|m|st|c po.I|cy also uses a cleaner that is
the lage segment amortizes the per block write cost. *N remote from the clients, but clients do not have to send mes-
that the number of hops per read would be even lower if sages when they modify blocks that are still in their local
trace included all local hits in the traced system. write buffers. The results for this policy are optimistic be-

The manager uses the data block’s log address and theach block allows managers to invalidate stale cached copies
stripe group map7j to send the request to the storage serverin the first case and to forward read requests to clients with
keeping the block. The storage server reads the data from itgalid cached copies in the second.

disk 8) and sends the data directly to the client that original- s . ..
ly as(ke);d for it. Y g 3.2.4. Management Distribution Policies

One important design decision was to cache index nodes XFS tries to assign files used by a client to a manager co-
at managers but not at clients. Although caching index nodedocated on that machine. This section presents a simulation
at clients would allow them to read many blocks from stor- study that examines policies for assigning files to managers.
age servers without sending a request through the managéie show that co-locating a file’s management with the cli-
for each block, doing so has three significant drawbacks.ent that creates that file can significantly improve locality,
First, by reading blocks from disk without first contacting reducing the number of network hops needed to satisfy client
the manager, clients would lose the opportunity to use coopLequests by over 40% compared to a centralized manager.
erative caching to avoid disk accesses. Second, although cli- The xFS prototype uses a policy we call First Writer.
ents could sometimes read a data block directly, they wouldwhen a client creates a file, xFS chooses an index number
still need to notify the manager of the fact that they now that assigns the file’s management to the manager co-located
cache the block so that the manager knows to invalidate thQ\”th that client. For Comparison, we also simulated a Cen-

block if it is modified. Finally, our approach simplifies the tralized policy that uses a single, centralized manager that is
design by eliminating client caching and cache consistencynot co-located with any of the clients.

for index nodes— only the manager handling an index num-

ber directly accesses its index node. We examined management policies by simulating xFS’s

behavior under a seven day trace of 2{Bénts’ NFS access-
3.2.2. \Writes es to an Auspex file server in the Berkeley Computer Science
. o .) . Division [Dahl94a]. We warmed the simulated caches
Clients buffer writes in their local memory until commit- hrough the first day of the trace and gathered statistics
ted to a stripe group of storage servers. Because xFS usesifroygh the rest. Since we would expect other workloads to

log-based file system, every write changes the disk addresgje|q different results, evaluating a wider range of workloads
of the modified block. Therefore, after a client commits a yemains important work.

segment to a storage server, the client notifies the modified .
blocks' managers; the managers then update their index 1€ Simulator counts the network messages necessary to
tisfy client requests, assuming that each client hd4BL6

nodes and imaps and periodically log these changes to stablg® . .
storage. As with Zebra, xFS does not need to “simultaneous-Of Iocal_ cache and that there is a manager co-located with
ly” commit both index nodes and their data blocks because®ach client, but that storage servers are always remote.

the client’s log includes deltathat allows reconstruction of Two artifacts of the trace affect the simulation. First, be-
the manager’s data structures in the event of a client or maneause the trace was gathered by snooping the network, it
ager crash. We discuss deltas in more detail in Sefstibn does not include reads that resulted in local cache hits. By

As in BSD LFS [Selt93], each manager caches its Ioortionomitting requests that resulted in local hits, the trace inflates

of the imap in memory, storing it on disk in a special file the average number of network hops needed to satisfy a read

called theifile. The system treats the fifile like any other file €duest. Because we simulate larger caches than those of the

with one exception: the ifile has no index nodes. Instead, the"aced system, this factor does not alter the total number of

system locates the blocks of the ifile using manager check."etWork requests for each policy [Smit77], which is the rel-
points described in Sectidn?. ative metric we use for comparing policies.

. The second limitation of the trace is that its finite length
3.2.3. Cache Consistency does not allow us to determine a file’s “First Writer” with

XFS utilizes a token-based cache consistency schemé&ertainty for referenc_:es to files created before t_he beginning
similar to Sprite [Nels88] and AFS [Howa88] except that of the trace. We assign management of these files to random
xFS manages consistency on a per-block rather than per-fildnanagers at the start of the trace; if they are later written in
basis. Before a client modifies a block, it must acquire write the trace, we reassign their management to the first writer in
ownership of that block. The client sends a message to thdh® trace. Since write sharing is rare96% of all block
block's manager. The manager then invalidates any othefoverwrites or deletes are by the block’s previous wsiter
cached copies of the block, updates its cache consistency int_hls_ heuristic will yield results close to a true “First Writer
formation to indicate the new owner, and replies to the client, POlicY-
giving permission to write. Once a client owns a block, the Figure4 shows the impact of the policies on locality. The
client may write the block repeatedly without having to ask First Writer policy reduces the total number of network hops
the manager for ownership each time. The client maintainsneeded to satisfy client requests by 43%. Most of the differ-
write ownership until some other client reads or writes the ence comes from improving write locality; the algorithm
data, at which point the manager revokes ownership, forcingdoes little to improve locality for reads, and deletes account
the client to stop writing the block, flush any changes to sta-for only a small fraction of the system’s network traffic.

ble storage, and forward the data to the new client. Figure5 illustrates the average number of network mes-
XFS managers use the same state for both cache consisages to satisfy a read block request, write block request, or
tency and cooperative caching. The list of clients cachingdelete file request. The communication for a read block re-

below. When a client writes a segment to a group, itincludes To open afile, the client first reads the file’s parent direc-
the stripe group’s ID in the segment’s identifier and uses thetory (labeledl in the diagram) to determine its index num-
map’s list of storage servers to send the data to the corredber. Note that the parent directory is, itself, a data file that
machines. Later, when it or another client wants to read thatmust be read using the procedure described here. As with
segment, it uses the identifier and the stripe group map to loFFS, xFS breaks this recursion at the root; the kernel learns
cate the storage servers to contact for the data or parity. the index number of the root when it mounts the file system.

XFS distinguishes current and obsolete groups to support As the top left path in the figure indicates, the client first
reconfiguration. When a storage server enters or leaves thehecks its local UNIX block cache for the blo&a); if the
system, XFS changes the map so that each active storagslock is present, the request is done. Otherwise it follows the
server belongs to exactly one current stripe group. If this re-lower path to fetch the data over the network. xFS first uses
configuration changes the membership of a particular group,the manager map to locate the correct manager for the index
XFS does not delete the group’s old map entry. Instead, itnumber 2b) and then sends the request to the manager. If the
marks that entry as “obsolete.” Clients write only to current manager is not co-located with the client, this message re-
stripe groups, but they may read from either current or obso-quires a network hop.
lete stripe groups. By leaving the obsolete entries in the map,
XFS allows clients to read data previously written to the

groups without first transferring the data from obsolete its cache consistency staga), and, if possible, forwards the

groups to current groups. Over time, the cleaner will move ') .
data from obsolete aroups to current arouns [Hart95]: when €duest to a client caching the data. That client reads Fhe
group groups [) block from its UNIX block cache and forwards the data di-

the cleaner removes the last block of live data from an Obso_rectly to the client that originated the request. The manager
lete group, xFS deletes its entry from the stripe group map. X M- . .
group, x ! y 'P€ group map also adds the new client to its list of clients caching the block.

3.2. System Operation If no other client can supply the data from DRAM, the
anager routes the read request to disk by first examining
e imap to locate the block’s index no@b)(The manager
ay find the index node in its local cacH@)(or it may have
read the index node from disk. If the manager has to read
the index node from disk, it uses the index node’s disk log
address and the stripe group mdp) (to determine which
3.2.1. Reads and Caching storage server to contact. The manager then requests the in-
dex block from the storage server, who then reads the block
Figure3 illustrates how XFS reads a block given a file from its disk and sends it back to the managerihe man-
name and an offset within that file. Although the figure is ager then uses the index no@gtp identify the log address
complex, the complexity in the architecture is designed to of the data block. (We have not shown a detail: if the file is
provide good performance with fast LANs. On today’s fast large, the manager may have to read several levels of indirect
LANS, fetching a block out of local memory is much faster blocks to find the data block’s address; the manager follows
than fetching it from remote memory, which, in turn, is much the same procedure in reading indirect blocks as in reading

The manager then tries to satisfy the request by fetching
the data from some other client’s cache. The manager checks

This section describes how xFS uses the various maps wi
described in the previous section. We first describe how
reads, writes, and cache consistency work and then preserﬂ1
simulation results examining the issue of locality in the as- 0
signment of files to managers.

faster than fetching it from disk. the index node.)
Cache
Consistency Mar. UNIX Client Data
State to Cache to Block [D
UNIX Data Client Client Index # Client 0
Cache Block |D ™ ID TZ> Offset — ™ > n
G o S UNIX e
e Cache i
Stripe
. Mgr. Client Group
Directory Map to Map
Name, Index # | == _ Mgr.Mgr. Index A
— - — Oﬁset - ff NOd b ,‘;_»
Offset (U ceD: ID Offset X Addre.

Access Local Data Structure— gtripe
. roup
Possible Network Ho Map
Data or Metadata Block (or Cache) é?atak R
Globally Replicated Dataiis T A —’,®
Local Portion of Global Da ' T e

fror

Figure 3. Piocedure to read a block.The circled numbers refer to steps described in Se8tibh. The network hops are labelled
“possible” because clients, managers, and storage servers can run on the same machines. For example, xFS tries to co-locate
of a file on the same machine as the client most likely to use the file to avoid some of the network hops. “SS” is an abbre
“Storage Server

managers send the corresponding part of their manager staiéying directories to permit xFS to dynamically change a

to the new manager. Sectibrdescribes how the system re- file’s index number and thus its manager after it has been

configures manager maps. Note that the prototype has notreated. This capability would allow fine-grained load bal-

yet implemented this dynamic reconfiguration of manager ancing on a per-file rather than a per-manager map entry ba-

maps. sis, and it would permit xFS to improve locality by switching
xFS globally replicates the manager map to all of the Managers when a different machine repeatedly accesses a

managers and all of the clients in the system. This repIicationf"e-

allows managers to know their responsibilities, and it allows Another optimization that we plan to investigate is as-

clients to contact the correct manager direetlywith the signing multiple managers to different portions of the same

same number of network hops as a system with a centralizegile to balance load and provide locality for parallel work-

manager. We feel it is reasonable to distribute the managefoads.

map globally because it is relatively small (even with hun-

dreds of machines, the map would be only tens of kilobytes3.1.4. The Stripe Goup Map

in size) and because it changes only to correct a load imbal- Like Zebra, XFS bases its storage subsystem on simple

ance or when a machine enters or leaves the system. . . ' :
. s _ storage servers to which clients write log fragments. To im-
The manager of a file controls two sets of information prove performance and availability when using large num-
about it, cache consistency state and disk location metadataers of storage servers, rather than stripe each segment over
Together, these structures allow the manager to locate alh|| storage servers in the system, xFS implements stripe
copies of the file’s blocks. The manager can thus forward cli- groups as have been proposed for large RAIDs [Chen94].
ent read requests to where the block is stored, and it can ingach stripe group includes a separate subset of the system’s
validate stale data when clients write a block. For each bIOCk,Storage servers, and clients write each Segment across a
the cache consistency state lists the clients caching the blocktripe group rather than across all of the system’s storage
or the client that has write ownership of it. The next subsec-servers. xFS uses a globally replicated stripe group map to
tion describes the disk metadata. direct reads and writes to the appropriate storage servers as
3.1.2. The Imap the system conflguratlon chan.ges. Like the manager map,
_ XFS globally replicates the stripe group map because it is
Managers track not only where file blocks are cached, small and seldom changes. The current version of the proto-
but also where in the on-disk log they are stored. xFS usesype implements reads and writes from multiple stripe
the LFS imap to encapsulate disk location metadata; eachyroups, but it does not dynamically modify the group map.

file’s index number has an entry in the imap that points to . .
Stripe groups are essential to support large numbers of

that file’s disk metadata in the log. To make LFS's imap torage servers for at least four reasons. First, without stripe

scale, XFS distributes the imap among managers accordin : , ;
to the manager map so that managers handle the imap entri@d@uPs: clients would stripe each of their segments over all
of the disks in the system. This organization would require

and cache consistency state of the same files. : R
_) clients to send small, inefficient fragments to each of the
The disk storage for each file can be thought of as a treenany storage servers or to buffer enormous amounts of data
whose root is the imap entry for the file’s index number and per segment so that they could write large fragments to each
whose leaves are the data blocks. A file’s imap entry con-storage server. Second, stripe groups match the aggregate
tains the log address of the filefisdex node xFS index pandwidth of the groups’ disks to the network bandwidth of
nodes, like those of LFS and FFS, contain the disk addresseg client, using both resources efficiently; while one client
of the file’s data blocks; for large files the index node can \yrites at its full network bandwidth to one stripe group, an-
also contain log addresses of indirect blocks that containgther client can do the same with a different group. Third, by
more data block add_resses, double indirect blocks that CONtimiting segment size, stripe groups make cleaning more ef-
tain addresses of indirect blocks, and so on. ficient. This efficiency arises because when cleaners extract
3.1.3. File Dirctories and Index Numbers segments’ live data, they can skip completely empty seg-
ments, but they must read partially full segments in their en-
XFS uses the data structures described above to locate @rety; large segments linger in the partially-full state longer
file’s manager given the file's index number. To determine than small segments, significantly increasing cleaning costs.
the file’s index number, xFS, like FFS and LFS, uses file di- Finally, stripe groups greatly improve availability. Because
rectories that contain mappings from file names to index each group stores its own parity, the system can survive mul-
numbers. xFS stores directories in regular files, allowing atiple server failures if they happen to strike different groups;
client to learn an index number by reading a directory. in a large system with random failures this is the most likely
In XFS, the index number listed in a directory determines case. The cost for this improved availability is a marginal re-
a file’s manager. When a file is created, we currently chooseduction in disk storage and effective bandwidth because the
its index number so that the file’s manager is on the sameSystem dedicates one parity server per group rather than one

machine as the client that created the file. Se@iam de- for the entire system.
scribes simulation results of the effectiveness of this policy The stripe group map provides several pieces of informa-
in reducing network communication. tion about each group: the group’s ID, the members of the

In the future, we plan to examine other policies for as- group, and whether the groupcigrrentor obsolete we de-
signing managers. For instance, we plan to investigate modscribe the distinction between current and obsolete groups

disk metadata and cache consistency state, XFS splits manFhe rest of this subsection examines four key maps used for
agement amonmetadata managersimilar to multiproces- this purpose: thenanager maptheimap, file directories
sor consistency managers. Unlike multiprocessor managersand thestripe group mapThe manager map allows clients to
XFS managers can dynamically alter the mapping from a filedetermine which manager to contact for a file, and the imap
to its manager. Similarly, to provide scalable disk storage, allows each manager to locate where its files are stored in the
XFS uses log-based network striping inspired by Zebra, buton-disk log. File directories serve the same purpose in xFS
it dynamically clusters disks inttripe groupsgto allow the ~ as in a standard UNIX file system, providing a mapping from
system to scale to large numbers of storage servers. Finallyg human readable name to a metadata locator called an index
xFS replaces the server cache veitioperative cachinthat ~ humber. Finally, the stripe group map provides mappings
forwards data among client caches under the control of théfom segment identifiers embedded in disk log addresses to
managers. In xFS, four types of entities — the clients, stor-the set of physical machines storing the segments. The rest
age servers, and managers already mentioned antbére of t_hls subsection dlscuss_,es the_se _four data structures before
ers discussed in Sectioh— cooperate to provide file 9iVing an example of 'ghelr use in file reads and writes. For
service as Figurg illustrates. reference, Tablé provides a summary of these and other
key XFS data structures. FiguBen Sectior3.2.1 illustrates
The key challenge for xFS is locating data and metadatahow these components work together.

in this dynamically changing, completely distributed system.
3.1.1. The Manager Map

orage oragg @ oragg L I .
XFS distributes management responsibilities according

to a globally replicated manager map. A client uses this map-

ping to locate a file’s manager from the file's index number

== by extracting some of the index number’s bits and using
Network them as an index into the manager map. The map itself is

simply a table that indicates which physical machines man-
age which groups of index numbers at any given time.

This indirection allows xFS to adapt when managers en-
ter or leave the system. Where multiprocessor cache consis-
tency distribution relies on a fixed mapping from physical
addresses to managers, xFS can change the mapping from in-
dex number to manager by changing the manager map. The
map can also act as a coarse-grained load balancing mecha-
nism to split the work of overloaded managers.

= == :

Stora tora Stora

Servgr@\ /%ervgr Servgr

Figure 2. Two simple xFS installations.In the first, each
machine acts as a client, storage serdleanerand manager
while in the second each node only performs some of tt
roles. The freedom to configure the system is not compl
Managers and cleaners access storage using the ¢
interface, so all machines acting as managers or cleaners
also be clients.

To support reconfiguration, the manager map should
have at least an order of magnitude more entries than there
are managers. This rule of thumb allows the system to bal-
ance load by assigning roughly equal portions of the map to
each manager. When a new machine joins the system, xFS
can modify the manager map to assign some of the index
number space to the new manager by having the original

Data Structure Purpose Location Section
Manager Map Maps files index number. manager Globally replicated. 3.11
Imap Maps files index number- disk log address of file'index node. |Split among managers. 3.1.2
Index Node Maps file ofset - disk log address of data block. In on-disk log at storage servers. 3.1.2
Index Number Key used to locate metadata for a file. File directory 3.1.3
File Directory Maps files name- file’s index number In on-disk log at storage servers. 3.1.3
Disk Log Address Key used to locate blocks on storage server disks. Includes a sttiptex nodes and the imap. 3.14

group identifiersegment ID, and fsfet within segment.

Stripe Group Map Maps disk log address list of storage servers. Globally replicated. 3.14
Cache Consistency Stafgists clients caching or holding the write token of each block. | Split among managers. 3.2.1, 3.2.3
Segment Utilization Stat@tilization, modification time of segments. Split among clients. 4
S-Files On-disk cleaner state for cleaner communication and recovery |In on-disk log at storage servers. 4
I-File On-disk copy of imap used for recovery In on-disk log at storage servers. 5
Deltas Log madifications for recovery roll forward. In on-disk log at storage servers. 5
Manager Checkpoints |Record manager state for recovery In on-disk log at storage servers. 5

Table 1.Summary of key xFS data structues.This table summarizes the purpose of the key XFS data structures. The location ¢
indicates where these structures are located in XFS, and the Section column indicates where in this paper the structure is des

sions of the block, to allow the system to replay the modifi- We have also previously examined cooperative
cation during recovery. Deltas greatly simplify recovery by caching— using client memory as a global file cachevia
providing an atomic commit for actions that modify state lo- simulation [Dahl94b] and therefore focus only on the issues
cated on multiple machines: each delta encapsulates a set o&ised by integrating cooperative caching with the rest of the
changes to file system state that must occur as a unit. serverless system.

Although Zebra points the way towards serverlessness,3, Serverless File Service
several factors limit Zebra's scalability. First, a sinfile)
managettracks where clients store data blocks in the log; the . The RAID, LFS, Zebra, and multiprocessor cache con-
manager also handles cache consistency operations. SecongiStency work discussed in the previous section leaves three
Zebra, like LFS, relies on a single cleaner to create emptybas'c problems unsolved. First, we need scalable, distributed
segments. Finally, Zebra stripes each segment to all of thén€tadata and cache consistency management, along with
system’s storage servers. To increase the numbers of storaf"‘Jugh flexibility to dynamically reconfigure responsibili-
servers in a system, Zebra must either reduce the fragmerH€S after failures. Second, the system must provide a scal-
size (reducing the efficiency of the writes) or increase the @PI€ way 1o subset storage servers into groups to provide
size of the segment (increasing memory demands on the cliéfficient storage. Finally, a log-based system must provide
ents); even if the system were to increase the segment siz&calable log cleaning.
syncs would often force clients to write partial segments to This section describes the XFS design as it relates to the

disk, again reducing write efficiency [Bake92]. first two problems. SectioB.1 provides an overview of how
)] XFS distributes its key data structures. Secdi@then pro-
2.4. Multiprocessor Cache Consistency vides examples of how the system as a whole functions for

several important operations. This entire section disregards
several important details necessary to make the design prac-
tical; in particular, we defer discussion of log cleaning, re-
covery from failures, and security until Sectighthrough6.

Network file systems resemble multiprocessors in that
both provide a uniform view of storage across the system, re
quiring both to track where blocks are cached. This informa-
tion allows them to maintain cache consistency by
invalidating stale cached copies. Multiprocessors such as3.1. Metadata and Data Distribution
DASH [Len090] and Alewife [Chai91] scalably distribute
this task by dividing the system’s physical memory evenly
among processors; each processor manages the cache c
sistency state for its own physical memory locatibns.

The xFS design philosophy can be summed up with the
or'){jrase, “anything, anywhere.” All data, metadata, and con-
trol can be located anywhere in the system and can be dy-
namically migrated during operation. We exploit this

Unfortunately, the fixed mapping from physical memory |ocation independence to improve performance by taking ad-
addresses to consistency managers makes this approach ugantage of all of the system’s resoureesCPUs, DRAM,
suitable for file systems. Our goal is graceful recovery and and disks— to distribute load and increase locality. Further,
load rebalancing whenever the number of machines in xFSwe use location independence to provide high availability by
changes; such reconfiguration occurs when a machine crashallowing any machine to take over the responsibilities of a
es or when a new machine joins xFS. As we show infajled component after recovering its state from the redun-
Section3.2.4, by directly controlling which machines man- dant log-structured storage system.
age which data, we can improve locality and reduce network

L In a typical centralized system, the central server has four
communication.

main tasks:

2.5. Prvious xFS Wrk 1.The server stores all of the systendata blocks on its
. _ . local disks.
The design of xF'S has evolved considerably since our 2.The server manages disk location metadata that indi-

original proposal [\Nang_93, |_Dah|94a]. The original design cates where on disk the system has stored each data
stored all system data in client disk caches and managed block

cache consistency using a hierarchy of metadata servers
rooted at a central server. Our new implementation elimi- . . ; . .
nates client disk caching in favor of network striping to take memory to satisfy some client misses without accessing
advantage of high speed, switched LANs. We still believe its disks. .

that the aggressive caching of the earlier design would work 4-The server manages cache consistency metadata that
well under different technology assumptions; in particular, ~ !iSts which clients in the system are caching each block.
its efficient use of the network makes it well-suited for both It uses this metadata to invalidate stale data in client
wireless and wide area network use. Moreover, our new de- ¢aches:

sign eliminates the central management server in favor of a The xFS system performs the same tasks, but it builds on
distributed metadata manager to provide better scalability,the ideas discussed in Sect®io distribute this work over

3.The server maintains a central cache of data blocks in its

locality, and availability. all of the machines in system. To provide scalable control of

LIn the context of scalable multiprocessor consistetity state is 2-Note that the NFS server does not keep caches consistent. Instead
referred to as directory We avoid this terminology to prevent confusion NFS relies on clients to verify that a block is current before usingat. W
with file system directories that provide a hierarchicghaization of file rejected that approach because it sometimes allows clients to observe stale
names. data when a client tries to read what another client recently wrote.

workstation or disk failures using multiple parity blocks the data used to reside. The cleaner coalesces old, partially
[Blau94]. empty segments into a smaller number of full segments to

RAIDs suffer from two limitations. First, the overhead of Créate contiguous space in which to store new segments.

parity management can hurt performance for small writes; if ~ The overhead associated with log cleaning is the primary
the system does not simultaneously overwrite all N-1 blocksdrawback of LFS. Although Rosenblum’s original measure-
of a stripe, it must first read the old parity and some of the ments found relatively low cleaner overheads, even a small
old data from the disks to compute the new parity. Unfortu- overhead can make the cleaner a bottleneck in a distributed
nately, small writes are common in many environments environment. Further, some workloads, such as transaction
[Bake9l], and larger caches increase the percentage oprocessing, incur larger cleaning overheads [Selt93, Selt95].
writes in disk workload mixes over time. We expect cooper-

ative caching— using workstation memory as a global 2.3. Zebra

cache— to further this workload trend. A second drawback
of commercially available hardware RAID systems is that
they are significantly more expensive than non-RAID com-
modity disks because the commercial RAIDs add special-
purpose hardware to compute parity.

Zebra provides a way to combine LFS and RAID so that
both work well in a distributed environment: LFS’s large
writes make writes to the network RAID efficient; its imple-
mentation of a software RAID on commodity hardware
(workstation, disks, and networks) addresses RAID’s cost
2.2. LFS disadvantage; and the reliability of both LFS and RAID

. . . _ make it feasible to distribute data over the network.
XFS incorporates LFS because it provides high perfor-

mance writes, simple recovery, and a flexible method to lo- ~ LFS’s solution to the small write problem is particularly
cate file data stored on disk. LFS addresses the RAID smalimportant for Zebra’s network striping since reading old data
write problem by buffering writes in memory and then com- t0 recalculate RAID parity would be a network operation for
mitting them to disk in large, contiguous, fixed-sized groups Z¢ebra. As Figurd illustrates, each Zebra client coalesces its
calledlog segmentst threads these segments on disk to cre- Writes into a privat@er-client log It commits the log to the
ate a logical append-only log of file system modifications. disks using fixed-sizelg segmentseach made up of sever-
When used with a RAID, each segment of the log spans zallog fragmentshat it sends to different storage server disks
RAID stripe and is committed as a unit to avoid the need toOver the LAN. Log-based striping allows clients to efficient-
recompute parity. LFS also simplifies failure recovery be- ly calculateparity fragmentsentirely as a local operation,

cause all recent modifications are located near the end of th@nd then store them on an additional storage server to pro-
log. vide high data availability.

Although log-based storage simplifies writes, it poten- Zebra’'s log-structured architecture significantly simpli-
tially complicates reads because any block could be locatedies its failure recovery. Like LFS, Zebra provides efficient
anywhere in the log, depending on when it was written. recovery using checkpoint and roll forward. To roll the log
LFS’s solution to this problem provides a general mecha-forward, Zebra relies odeltasstored in the log. Each delta
nism to handle location-independent data storage. LFS usegescribes a modification to a file system block, including the
per-fileinodes similar to those of the Fast File System (FFS) ID of the modified block and pointers to the old and new ver-
[McKu84], to store pointgrs to the _syst_em’; data blqcks. Client Memories
However, where FFS’s inodes reside in fixed locations, =
LFS’s inodes move to the end of the log each time they are

modified. When LFS writes a file’s data block, moving it to <One Client's Write Log «One Client's Write Log
the end of the log, it updates the file’s inode to point to the (=09 Segment (209 Segment
new location of the data block; it then writes the modified in- | 1 | 2 | 3 | | A | B | c |
ode to the end of the log as well. LFS locates the mobile in- Log Fragments Parity Log Fragments Parity
odes by adding a level of indirection, callediarap. The Fragment Fragment
imap contains the current log pointers to the system’s inodes;

LFS stores the imap in memory and periodically checkpoints 10203 f

it to disk. ADBOC

Network)

These checkpoints form a basis for LFS’s efficient recov-
ery procedure. After a crash, LFS reads the last checkpoint
in the log and therolls forward, reading the later segments
in the log to find the new location of inodes that were written
since the last checkpoint. When recovery completes, the
imap contains pointers to all of the system’s inodes, and the

8|
inodes contain pointers to all of the data blocks. % % % %

Another important aspect of LFS is ltg cleanerthat Storage Server Disks

i i £ o
creates free disk space for new log segments using a form o Figure 1.Log-based striping used by Zebra and xFSEach

generational garbage collection. When the system over- client writes its new file data into a single append-only log :
writes a block, it adds the new version of the block to the stripes this log across the storage servers. Clients corr

newest log segment, creating a “hole” in the segment where parity for segments, not for individual files.

disks. Although this made sense on an Ethernet, on today’shough scalable, reliable, and cost effectivdile server for
fast LANs fetching data from local disk can be an order of the fringe clients. xFS permits clients to use NFS [Sand85]
magnitude slower than from server memory or remote as one such fringe protocol, allowing the core xFS system to

striped disk. act as a scalable and reliable NFS server for unmodified
Similarly, a central server represents a single point of UNIX clients.
failure, requiring server replication [Walk83, Kaza89, e have built a prototype that demonstrates most of

Pope90, Lisk91, Kist92, Birr93] for high availability. Repli- yrs's key features, including distributed management, net-
cation increases the cost and complexity of central serversy,grk disk striping with parity and multiple groups, and co-
and can also increase latency on writes since the system Mugherative caching. As SectiGndetails, however, several
replicate data at multiple servers. pieces of implementation remain to be done; most notably,
In contrast to central server designs, our objective is towe must still implement the cleaner and much of the recov-
build a truly distributed network file system one with no ery and dynamic reconfiguration code. We present both sim-
central bottleneck. We have designed and implemented xFSulation results of the xFS design and a few preliminary
a prototype serverless network file system, to investigate thismeasurements of the prototype. Although the prototype is
goal. xFS illustrates serverless design principles in threelargely untuned, it demonstrates remarkable scalability. For
ways. First, xFS dynamically distributes control processing instance, in a 32 node xFS system with 32 clients, each client
across the system on a per-file granularity by utilizing a newreceives nearly as much read or write bandwidth as it would
serverless management scheme. Second, xFS distributes igee if it were the only active client.
data storage across storage server disks by implementing a

software RAID [Patt88, Chen94] using log-based network tail. Section2 provides an overview of recent research re-

striping similar to Zebra’s [Hart95]. Finally, XFS eliminates sults exploited in the XFS design. Sectexplains how

central server caching by taking advantage of cooperative S ;)
caching [Leff91, Dahl94b] to harvest portions of client XFS distributes its data, metadata, and control. Sedtae:

: scribes xFS’s distributed log cleaner, SecBooutlines
memqry as alarge, global file cache. o) xFS’s approach to high availability, and Secttoaddresses
This paper makes two sets of contributions. First, XFS the issue of security and describes how xFS could be used in
synthesizes a number of recent innovations that, taken tog mixed security environment. We describe our prototype in
gether, provide a basis for serverless file system design. XFSection7, including initial performance measurements.

relies on previous work in areas such as scalable cache corsection8 describes related work, and Sectosummarizes
SiStency (DASH [LenOQO] and Alewife [Cha|91]), disk Strip- our conclusions.

ing (RAID and Zebra), log structured file systems (Sprite
LFS [Rose92] and BSD LFS [Selt93]), and cooperative 2, Background
caching. Second, in addition to borrowing techniques devel-
oped in other projects, we have refined them to work well in ~ XFS builds upon several recent and ongoing research ef-
our serverless system. For instance, we have transformedorts to achieve our goal of distributing all aspects of file ser-
DASH's scalable cache consistency approach into a morevice across the network. xFS’s network disk storage exploits
general, distributed control system that is also fault tolerant.the high performance and availability of Redundant Arrays
We have also improved upon Zebra to eliminate bottlenecksof Inexpensive Disks (RAIDs). We use a Log-structured File
in its design by using distributed management, parallel System (LFS) to organize this storage, largely because Zebra
cleaning, and subsets of storage servers called stripe groupslemonstrated how to exploit the synergy between RAID and
Finally, we have actually implemented cooperative caching, LFS to provide high performance, reliable writes to disks
building on prior simulation results. distributed across a network. To distribute control across the
The primary limitation of our serverless approach is that gzmr'é’o)r(]';itgrnac";s dlggipglgitlolinirfgl)lr;/] Ssﬁr‘]’géa)l(g‘sulﬂggogiﬁ‘:er g
itis only appropriate in restricted environment -— among Ifrom our initial proposal [Wang93], we describe the relation-

machines that communicate over a fast network and that') . ,
trust one another's kernels to enforce security. However, weShiP Of the design presented here to previous versions of the

expect such environments to be common in the future. ForFS design.
instance, NOW systems already provide high speed net-2 1. RAID
working and trust to run parallel and distributed jobs. Simi- <"~
larly, xFS could be used within a a group or department yrg exploits RAID-style disk striping to provide high
where fast LANs connect machines and where uniform sys-performance and highly available disk storage. A RAID par-
tem administration and physical building security allow ma- titions astripe of data into N-1 data blocks and a parity
ch_ine_s to trust one another. A file_ system based on serverlesg|qck — the exclusive-OR of the corresponding bits of the
principles would also be appropriate for “scalable server” ar- a4 plocks. It stores each data and parity block on a different
chitectures currently being researched [Kubi93, Kusk94]. 4isk. The parallelism of a RAID’s multiple disks provides
XFS could also be used in a mixed environment, contain-high bandwidth, while its parity storage provides fault
ing both “core” trusted machines connected by fast networkstolerance— it can reconstruct the contents of a failed disk by
and “fringe” clients that are either connected to the core by ataking the exclusive-OR of the remaining data blocks and the
slower network or that are less trusted [Howa88]. In such anparity block. XFS uses single parity disk striping to achieve
environment the core machines would act as a traditienal the same benefits; in the future we plan to cope with multiple

The rest of this paper discusses these issues in more de-

Serverless Network File Systems

ThomaskE. Anderson, MichaeD. Dahlin, Jeanndl. Neefe,
David A. Patterson, Drew S. Roselli, and RandolpiVéng

Computer Science Division
University of California at Berkeley

Abstract LANSs, the expanding demands of users, and the fundamental
In this paperwe propose a new paradigm for network file limitations of central server systems.
system desigrserverless network file systeriighile tradi- The recent introduction of switched local area networks

tional network file systems rely on a central server machine,such as ATM or Myrinet [Bode95] enables serverlessness by
a serverless system utilizes workstations cooperating asproviding aggregate bandwidth that scales with the number
peers to provide all file system services. Any machine in the of machines on the network. In contrast, shared media net-
system can store, cache, or control any block of data. Ourworks such as Ethernet or FDDI allow only one client or
approach uses this location independence, in combinationserver to transmit at a time. In addition, the move towards
with fast local area networks, to provide better performance low latency network interfaces [VE92, Basu95] enables clos-
and scalability than traditional file systems. Furthecause er cooperation between machines than has been possible in
any machine in the system can assume the responsibilitieshe past. The result is that a LAN can be used as an I/O back-
of a failed component, our serverless design also providesplane, harnessing physically distributed processors, memo-
high availability via redundant data storage.demonstrate ry, and disks into a single system.

our approach, we have implemented a prototype serverless
network file system called xFS. Preliminary performance
measurements suggest that our architecture achieves its go
of scalability For instance, in a 32-node xXFS system with 32
active clients, each client receives nearly as much read o
write throughput as it would see if it were the only active
client.

Next generation networks not only enable serverlessness,
hey require it by allowing applications to place increasing
emands on the file system. The I/O demands of traditional
rapplications have been increasing over time [Bake91]; new
applications enabled by fast networkssuch as multime-
dia, process migration, and parallel processigyill fur-
ther pressure file systems to provide increased performance.
1. Intr oduction For instance, continuous media workloads will increase file

i . system demands; even a few workstations simultaneously

A serverless network file system distributes storage, r nning video applications would swamp a traditional cen-
cache, and control over cooperating workstations. This ap-ya| server [Rash94]. Coordinated Networks of Workstations
proach contrasts with traditional file systems such as Net- (NOWSs) allow users to migrate jobs among many machines
ware [Majo94], NFS [Sand85], Andrew [Howa88], and anq also permit networked workstations to run parallel jobs
Sprlte [Nels88] where a central server machme provides a”[Douggl, Litz92, Ande95]. By increasing the peak process-
file system services. Such a central server is both a perfor~mg power available to users, NOWs increase peak demands
mance and reliability bottleneck. A serverless system, on thegy ' the file system [Cyph93].
other hand, distributes control processing and data storage to . . i
achieve scalable high performance, migrates the responsibil- ~ Unfortunately, current centralized file system designs
ities of failed components to the remaining machines to pro- fundamentally limit performance and availability since all
vide h|gh ava“ab“ity, and scales gracefu”y to S|mp||fy read misses and all disk writes gOI thrOUgh the central server.
system management. To address such performance limitations, users resort to
costly schemes to try to scale these fundamentally unscal-
able file systems. Some installations rely on specialized
server machines configured with multiple processors, /O
This work is supported in part by the Advanced Research Projects Agency channels, and I/O processors. Alas, such machines cost sig-

(NO0600-93-C-2481, F30602-95-C-0014), the National Science Foundation (CDA it ; :
0401156), California MICRO, the AT&T Foundation, Digital Equipment Corporation, nlflcantly more than desktop workstations for a given

Exabyte, Hewlett Packard, IBM, Siemens Corporation, Sun Microsystems, and Xerox amount of computing or I/O capacity. Many installations
Corporation. Anderson was also supported by a National Science Foundation Presi-g|so attempt to achieve scalability by distributing a file Sys-

dential Faculty Fellowship, Neefe by a National Science Foundation Graduate Re- . ie . .
search Fellowship, and Roselli by a Department of Education GAANN fellowship. The tem among mult|ple Servers by partltlonmg the dlrectory

authors can be contacted at {tea, dahlin, neefe, patterson, drew, rywang}@Cs.Berkeiree. This approach only moderately improves scalability be-
ley.EDU. cause its coarse distribution often results in hot spots when

o el O T N o iaemom s, (N partitioning allocates heavily used files and directory
igi [is Wi u . : . .
is granted without fee provided that copies are not made or distributed for profit or com- (F€€S 10 a single server [Wolf89]. It is also expensive, since

mercial advantage and that new copies bear this notice and the full citation on the firsgt requires the (human) system manager to effectively be-
page. Copyrights for components of this WORK owned by others than ACM must be . .
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post COmepart of the file system— moving users, volumes, and

on servers or to redistribute to lists, requires prior specificpermission and/or a fee. Re-; i
Quest Parmissions from Publications Dept. ACM Ine. disks among servers to balance load. Finally, AFS [Howa88]

This work first appeared in the 15th Symposium on Operating Systems Principles,attemptS to improve Scalabi”ty by CaChing data on client
December, 1995.

Three factors motivate our work on serverless network
file systems: the opportunity provided by fast switched

