Serverless Network File Systems

by
Michael Donald Dahlin

B.S. (Rice University) 1991
M.S. (University of California at Berkeley) 1993

A dissertation submitted in partial satisfaction of the requirements for
the degree of

Doctor of Philosophy
in
Computer Science
in the
GRADUATE DIVISION
of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in chaye:

Professor David A. Patterson, Chair
Professor Thomas E. Anderson
Professor Pamela Matson

1995

The dissertation of Michael Donald Dahlin is approved:

Chair Date

Date

Date

University of California at Berkeley

1995

Serverless Network File Systems

Copyright © 1995

by
Michael Donald Dahlin

All rights reserved

Abstract

Serverless Network File Systems
by
Michael Donald Dahlin
Doctor of Philosophy in Computer Science
University of California at Berkeley

Professor David A. Patterson, Chair

This thesis presents the design skaverless network file systeanfile system that dis-
tributes its functionality among cooperating, networked machines to eliminate the central file

server bottleneck found in current network file systems.

In a serverless system, any machine can cache, store, or control any block of data. This
location independence provides better performance and scalability than traditional file system
architectures. Furthebecause any machine in the system can assume the responsibilities of a

failed component, the serverless design can also provide higher availability

This dissertation details the design of three serverless subsystems, each of which distrib-
utes a specific piece of functionality that a traditional system would implement as part of a central
server | describe and evaluat®operative cachinga way to coordinate client caches to replace
the central servés cache. | evaluate &ifentdistributed disk storagarchitectures and present
several improvements on previous log-structured, redundant storage systems.| firedbnt the
design of adistributed managemeitrchitecture that splits the control of the file system among

managers while maintaining a seamless single system image.

Togetherthese pieces form a a serverless file system that eliminates central bottlenecks.
| describe the integration of these components in the context of xFS, a prototype serverless file
system implementation. Initial performance measurements illustrate the promise of the serverless

approach for providing scalable file systems.

Professor David A. Patterson

Table of Contents

CHAPTER 1. INtrOdUCTION.....cciiiiieeeeeeeee e e e e 1.
1.1. Design Environment and Applicability.............cccoeeeieiiiinennnnnn. 4..
1.2. Overview of the Dissertatian.............ccoevvvviviiiiiiiiinneeeeeeeeeeee 6....

CHAPTER 2. Trends in TEChNOIOGY.......ccooiiiiiiiiiiiiiiiieeeeeeeeeeee e 8.....
2.1. Trends in Technology.........coovvvuiiiiiiiiiii e 8.....
2.1.1. Disk PerformancCe............ooovveiiiiiiiiiiiiieee e 9.....
2.1.2. DiSK CAPACILY......cceeiiiiiiiiiiiiiiiii et 10....
2.1.3. NEtWOrK LatenCy........ccvvvvriiiiiiiiei e e eeeeeeeeeeeee e 10Q...
2.1.4. Network Bandwidth.............ooooiiiiiiiiic e 11..
2.1.5. Processor Performance............oovvvveeeveieiiiiiiiieeeee e, 12..
2.1.6. Memory Bandwidth...............ccccorrric e, l12..
2.1.7. MeMOry CapPaCity.......cceveruuiieeeeiiiiiieeeee et e e e e e e 13...
2.2. Increasing Demands on File Systems........ccccccceeeeiiiniiiinns 13
2.2.1. Demands From Sequential Applicatians...............cccce...... 14
2.2.2. Demands From Parallel and Distributed Applications......15
2.2.3. Demands From New Applications............ccccuvveveeeeiiieennnnn. 16.
2.3. Implications For File System DesSign...........cceeeeevvvvvveevinnnnnns 17
2.3.1. Cooperative Caching.........ccccoiieeiiiiiiiiiieeeiiee e 17...
2.3.2. Distributed StOrage..........cooovvviiiiiiiiiiiieeeee e 18...
2.3.3. Distributed Management..............oooevvviiiiiiiiiieieee e, 19..
2.4. Other Technology Trends...........ceiiieeiiiiiiiii e, 19..

CHAPTER 3. Cooperative CacChing............uuuueeeiiiiiiiiiiiaaaaaieeeeeieiiiiieneee 21...
3.1. Cooperative Caching Algorithms.............ccceeveveviiiiiicceen, 23.
3.1.1. Direct Client Cooperation............ccoeeeeeiiiiiieeeeeiiiiieeeeeeennns 24..
3.1.2. Greedy FOrwarding........ccccueeeeeeeiiiiiieeeeeee e 25...
3.1.3. Centrally Coordinated Caching.............cccceeeeeviiiiiiiiiiinnnnn, 26.
3.1.4. Hash Coordinated Caching...........cccoeeeeeeiiiiiiiic i, 21..
3.1.5. Weighted LRU Caching..........cccuuvveeiiiiiiiiiiiiiie 28..
3.1.5.1. Limiting Weighted-LRU Communication Requirements...31
3.1.6. N-Chance Forwarding............ccovvvuiiieeeiiiiiiiiee e 33..
3.1.7. Other AlgOrtNMS.......uiiiiiiiiii e 34...
3.2. Simulation Methodology.............uviiiiiiiiiieeeeieeeeee 35..
3.3. Simulation RESUILS........oooiiiiii e 37...
3.3.1. Comparison of Algorithms............eeevis 38..
3.3.2. Detailed Analysis of the Algorithms................viiiiiiennnn. 43
3.3.2.1. Direct Client Cooperation............ccoeveeeieiiiiiieeeeiiiiiieeeeeeennns 44..
3.3.2.2. Greedy FOrwarding........ccccuueieeeeeiiiiieeeeeee e 45...
3.3.2.3. Centrally Coordinated and Hash Coordinated Caching...45
3.3.2.4. Weighted LRUL.......ooooiiiiiiiiiiiieeeeeee e 47....

3.3.2.5.

3.3.3.

3.3.3.1.
3.3.3.2.
3.3.3.3.
3.3.3.4.
3.3.3.5.

3.3.4.

3.3.4.1.
3.3.4.2.
3.3.4.3.

3.3.5.
3.4.
3.5.
CHAPTER 4.
4.1.
41.1.
4.1.2.
4.1.3.
4.1.4.
4.1.5.

4.1.5.1.
4.1.5.2.
4.1.5.3.

4.2.
4.2.1.
4.2.2.
4.3.
4.3.1.

43.1.1.
4.3.1.2.

4.3.2.
4.3.3.
4.3.4.
4.4,
4.5.
45.1.
45.2.
4.5.3.
45.4.
4.6.
4.6.1.
4.6.2.
4.7.
CHAPTER 5.

N-Chance FOrwarding..........ccccuuvvvimiieieiiiiiieieeeeeeee e 48..

Sensitivity to Hardware Parameters.........cccooeeeeeeeeeeennnne, 49
Client Cache Size.......cooeviiiiiiiiiiiii 49...
Dynamic Cache SiZiNg........uuuviieiiiiiiiiiiieieiieeeeeeiene 50..
Server Cache SiZe.........ooooiiiiiiiiiiiiiieeeeee e 50...
NEtWOIrK SPEEM.......coiiiiiiiiiiiiei s 51...
Future Projections..........ccocoiuiiiiiiiiiiiieeieeeeee e 52...
Other Workloads...........coooiiiiiiiiiiiiiiiiieeceeee e 54...
Other SPrite TraCeSuuuuuu i 54...
Berkeley Auspex Workload.............ccccciviiiiiiiiiiiiiic 56..
Worst-case Workloads............ooooviiiiiiiiiiiiiiiiiiiiiccccee 59..
Summary of Simulation Results..............ooovviiiiiiiiiiinnnnnn. 63.
Related WOrK........cooveieeeeeeee e 65....
CONCIUSIONS ...ttt 67.....
Distributed DiSk Storage..........ooovvvvviieiiiiiiiiieeeeee e 68..
Log-based Network Striping............ccoeevvviiiiiivivviiinieneeeenn 0.
RAID .ottt 70.....
L S i ——————— 71.....
4] o] - TSRS 73.....
Limits to Zebra’s Scalability............cccccoevieiiiiieiiiiiiiiiiiiiinn, 75.
Alternatives to Log-based Striping........cccooeeeeeeeeiieeeieennnnns 75
RAID LeVel 1 MirTOriNg.........uuuueurmrmeeireeeeieeieeeeeeeeaaaaaaannnnns 75..
AULORAIDoiiiiiiiiiie ettt 76....
Journaling File Systems...........coooiiiiiiiii e, 77..
SHIPE GrOUPS ... iiiiiiiit ittt 77....
Motivation for Stripe GroUpS...........ccevvvviiviiiiiiiieeeeeeeeeeeeee, 78.
Implementing Stripe Groups..........ccovvvveviiiiiiiiiiiaaeeeeeeeeeen 80.
ClEANING ... eeeeeeeeieeee et 82.....
Monitoring Segment Utilization................ccceoevvveiviviiiinnnnn, 33.
Distributed BoOKKEepiNg........cooovveeeeeiiiiiiiiiieiiiiiiiinn 83..
SRS e 84....
When to Activate Cleaners...........cccccvvviiiiiiiiiiiiiiiieeeeeee, 85..
Distributing Cleaning..........ueeeiiiniiiieeeeeieeeeeeeiii 85..
Coordinating ClEaNEIS........ccccuuviiiiiiiiiiiieiiieeee e 86..
Cleaning and Cooperative Caching...........cccccvvvvvveiiiiennennn. 36.
AVAIADIITY .. 89....
Local Storage Server State..........oovvvvvvvvviiiiiiiiieeeeeeeeeeee, 89..
Stripe Group Map Reconfiguration...........cccccceeeeeeeeeeenene. 89
Cleaner RECOVELY.........ccuuuuuiiiiiiiaee e Q...
Parity RECONSIIUCHION...........covviiiiiiiiiiiieeeee e 90...
Related WOrK........uuueiiiiiiiiiiiiiieeeee e Q...
SPEd DISKS.....ccoiiiiiiiiiiiee e 9l....
Delayed WILES.....uvviieiiiiieieeeeeee e 9l...
CONCIUSIONS ...ttt 92....
Distributed Management.............ooouvuuuiiiiiiiiine e a93..

5.1. Distributed Management Design...........ccccuvviiiiiiiieiiieieeeeeenn. 94.

5.1.1. Disk Storage Location Metadata...............ccccovvvvvvrvniinnnnnns 96.
5.1.2. Cache ConsiStency State............uueeeeiiiiiiieeeeeeeieeeeeeiiiiiienns 97..
5.2. System OperatiQn............oooieiiiiiiiiiiiiiiieeeeeee e 97...
5.2.1. Reads and Caching.........cccceeeeeeiiiieieiiiciiee, 97...
5.2.2. WWVIIEES. ot e e e e e e e e eeeeeaeees 99.....
5.2.2.1. Cache CONSISIENCY.........uuuviiiiiiiiiiiiiiieeeeeee e 100.
5.2.2.2. Commit of WriteS to LOG.......ccovvviiiiiiiiiccciieee e, 100
5.2.2.3. Writes Due to Loss of Ownership..........ccccevvvviiiiiiinnnn. 101
5.2.3. Index Node and Indirect Node AcCeSS...........ceevvvvvrnnnns 102
5.2.4. Assigning Files to Managers..........ccccccccvveiiiieeeeeeeeeee, 102
5.2.4.1. Assigning and Changing Index Numbers....................... 102
5.24.2. Changing the Manager Map...........cccccevveiieiiicciiiiiinee, 103
5.3. Management LOCality..........ccceeeieeiiiieeeieiiceeeee e 104.
5.3.1. Methodology.......cooe i 105..
5.3.2. RESUIS. ..t 106...
5.4. Recovery and Reconfiguration.............ccooovvvvvviiiiicieeee e, 109
5.4.1. Manager Map Reconfiguration.............cccceeeeeeeeeeeeeeneeeee. 109
5.4.2. Recovery of Disk Location Metadata....................c.ee.n. 110
5.4.2.1. Distributed Checkpoint ReCOVELY............vveiiieiieeeeeennnn. 111
5.4.2.2. Distributed Roll Forward.............ccoooiiiiiiiiiiiiicceee, 112
5.4.2.3. Consistency of Disk Location Metadata......................... 113
5.4.3. Cache Consistency State..............evvvvviiiiiiieieieeeeeeeeeee, 114
5.4.4. Cleaner Recovery Revisited............ccccoevviiiiiiiiiiiiiinnneenn. 114
5.4.4.1. Scalability Of RECOVEIY..........uuuiiiiiiiiiiiiiiiiieiieeeeeeeee 115
5.5. Related WOrK........uuueiiiiiiiiiiiiecee e 116..
5.5.1. Hash-based Metadata Distributian................ccceevviiinnnnns 117
5.5.2. Hierarchical Metadata Distribution...............ccoovvvvvvvnnnns 118
5.6. CONCIUSIONS ...ttt 118..
CHAPTER 6. SECUIMLY .eeiiiiieiiiee ettt e e e e e e e e e e e e e e e s s e e snnnnnes 1109...
6.1. Security ASSUMPLIONS.......cccuiiieiiiiiiiiiieiiereeee e e e e e e e e e e e 121
6.1.1. Compromising the Kernel........cccccooeeeeeiiiiiiiiiins 122
6.1.1.1. Compromising Client Kernels............ccoovvveeiiiiiiiiiinnnn. 123
6.1.2. Compromising Server, Manager, and Storage Server Kéagls
6.1.3. Compromising the NetworK............cccovvvvviiiiiciceeeee . 124
6.1.4. Physical Access to a Machine............ccccvvvvviiviiiiinnnennn. 125
6.2. Untrusted Clients in Mixed-Trust Environments.................. 125
6.2.1. Using the Serverless System as a Scalable Server....... 126
6.2.2. Safe Serverless Client Protocal...........cccooovveiiiiiiiiinnnnnne. 128
6.2.2.1. Client Writes to Storage Server LOgS........ccoevveeeeeennnnnnn. 128
6.2.2.2. Client Reads from Storage Servers...........ccccvvvveeevvvnnnnns 129
6.2.2.3. Cooperative Caching........ocooeveiiiiiiiiiiii e 129
6.3. SUMIMEBTY. ettt e e e e e e e e ee e neannnes 132..
CHAPTER 7. XFS ProtOtyPe....ceuiiiiiiie et 133..
7.1. Serverless File ServiCe........uuuiiiiiiiiiiieeeeis 133

7.2. XFS ProtOtYPe. ..o 134..

7.2.1. Prototype StatusS.........oovviviiiiiiiiiecce e 135.
7.2.2. TeSt ENVIFONMENT....cuuiiiiiiii e 135.
7.2.3. NFS and AFS ENVIrONMENES.....c.uovviiiieeeiieeieeeieeeis 136
7.2.4. Performance ReSUlS........ccocovuiiiiiiiiiiiie e 137
7.2.5. Performance of the Prototype..........ccoovvviiiiiiiiciiinneen. 138
7.2.6. Scalability........ooooiiiiiii 139..
7.2.7. Storage Server Scalability..............coeeeeiiiiiiiiiin 142
7.2.8. Manager Scalability...........coooiriiiiiii 144.
7.3. Conclusions and Future WorK...........ccoooevvveiiiiiiiiiciiiieeeeenne, 145
CHAPTER 8. CONCIUSIONS......ciiitiiiiii it 147..
8.1. Lessons Learned About Research............ccccoeeeeeiiiiennnnnnn. 148
8.2. FULUIE DIrCLIONS. ... civeieiieeie e 150.
8.2.1. Serverless File System ISSUES............ooevvvvvivviiiiiiieeeennn. 150
8.2.2. Other ReSearCh ISSUES.........cocuueviviiiiiciieeeeeeee e 153
8.3. SUMIMEBY. ettt e e e e e e e e e e ennnnenes 155...

Vi

List of Figures

1-1: “Attack of the Killer MICrOS.ccoi i e e e 1.
2-1. Disk cost expressed in dollars per megabyte of capacity..........cccceeeeeeiiiieeeeennnnn.. 11.
2-2: DRAM price per Megabyte. 14......
2-3: Bandwidth and processor PerformManCe...........uuuuuuiriiiiiiiiiiieeee e 15....
3-1: Cooperative caching algorithm design SPACE...........cceveiiiiieeieeiiieeieeeee 24...
3-2: Greedy FOrwarding.........ooo oo a e e e e aeeaaaee 25.......
3-3: Average DIOCK read timMe..........uuuiiiiiiiiiiiiieeee e 39......
3-4: Cache and diSK ACCESS rateS........ccoeiiiiiiiiiiiiiii ittt 39.....
3-5. SIVEI IOAAS.. ..o 41........
3-6: Performance of each individual Client...............oovviiiiiii e 42....
3-7: Direct Client Cooperation SPEEAUP.uuuuuiie it e eeeeeeeeeeeeeeeitii s e e e e e e e eeeeeeeeeeanannnn 44....
3-8: Response time for Centrally Coordinated Caching............coooveeeiiiiiiiiiiiiiiiiiiiennn. 46..
3-9: RESPONSE tIME PlALEALL. ...ttt e e e e e e e 4a7.......
3-10: Response time for N-ChanCe...........ccoooiiiiiiiiicee e 48.....
3-11: Response time as a function of client cache memory for the algorithms.............. 49
3-12: Response time as a function of size of central server cache...............cccccceeeennn. 51
3-13: Response time as function of network speed..........cccceeeiiiiiiieeeiiieeeeee 52...
3-14: Cooperative caching response time under assumed technology.trends.............. 53
3-15: Response time for four, two-day SPrite traCeS.........ooovviiviiiiiiiiiiiiiieeeeee e 54...
3-16: Server loads for the algorithms.............oovvviiiiii e, 56.....
3-17: Response time for algorithms under the Auspex worklaad..............cccccooeeeieennnnnn. 58.
3-18: Server load for the algorithms..........ooooii i 58.....
3-19: Effect of WOrKiNg SEt SIZE........cooviiiiiiiiiiee e e e e e e e e aeeaanaes 61......
3-20: Effect of [oad imbalanCe............oooiiiiiiii 62......
3-21: EffeCt Of SNANNG.....coo i 63.......
4-1: RAID striping With Parity............uuuuiiiiiiiiiieeeee e e e e e e e e eeeeeeeennnnnnn e A Qe
4-2: A log-structured file SYSIEML..... ..o 12.....
4-3: Log-based striping used By Zehlra...........cviiiiiiiiiiii 14.....
4-4: Hours of downtime per month under different parity organizations....................... 80
A-5. A SUIPE OIOUP MBI n cttttttttnnnnaaaaeeeeeeeeaeeeeeeaeeessanaaaaeaaeaeeaaeeeeeeesssssssnnnaaaaaaeaaaeaanees 81.......
4-6: Simulated network communication between clients and cleaner......................... 84
4-7: Cooperative Caching and Cleaning..............ceiiiiieieeeeeeiieeieeeeeeee e e e e e e e eaeee 88....
5-17 The MaNAQEr IMAP .. . uuuuiiiaiee e e e ettt e e e e e e e e e e e e e e eae et e e e e e e e eeaeaeenees 95.......
5-2: The disk location metadata form a tree rooted in the imap..............cooeeeeiiiinnnnne. 96.
5-3: Procedure to read @ BIOCK...........oouiiiiiiii i 98......
5-4: Changing afile’s index NUMDer ... 103...
5-5: ComparisON Of I0CAIILY..........uuuueiiiiiiiiiiiiieiie e 106....
5-6: ComparisOn Of [0CAILY.........ciiiiiii e 107....
5-7: Network meSSages PEr MEOUEBST.uuuuuuuiiai e e e e e e eeeeeeeeetiiiiaa e e e e e e e e e e e eeeeeeeeenennes 107...
5-8: Network messages Per FEQUEST.ccccuuiiiiiiiiiie et e e e e e 108...
B-1: A SEIVEIESS COMB..uiiiiiiiiiiiiii ettt e e e e e e e e e e e 126.....
6-2: Four adminiStrative CellS........ ... 1217....

vii

6-3:
6-4.
7-1:
7-2:
7-3.

7-5:
7-6.
7-7:
7-8:
7-9:

[0 Tod Y o 11 o] o TSP PPPPPPPPPP 131.....

MESSAQE TIgESTS. .. ciiiiieiiiiiitte et e e e e e e e e e e e e e e 131.....
Two simple XFS INStallationNS...........ueeiiiii e 134...
Time to read data via cooperative Caching...........cccccuvvviiiiiiiiiiiiiee e 138.
Aggregate disk write bandwidth..................oiiiiiiii 140...
Aggregate disk read bandwidth..............coooooii s 141...
Aggregate small Write PerformManCe..........uuuieiiiiiiiiiiiiie e 142..
Average time to complete the Andrew benchmark...................cccoiiiiiiinnnn, 143
Storage server thrOUGNPLL........... e 144....
Manager thrOUGNPUL.ooeiiiiee e 145....
Ideal performanCe gOalS........ccooei i i 146....

viii

2-1
2-2
2-3
2-4

3-2
3-3
3-4
3-5
4-1
4-2
6-1
6-2
7-1

List of Tables

Summary of hardware Improvement trends...........cooooeveriiiiiiiiiiii e 8....
Disk performancCe ParameterS...........uuuiiiiieeieeeeeee e i et s e e e e e e e e e e e e eeeeaanananans 10....
Memory bandwidth for 1989 and 1994 machines............ooovviiiiiiiiiiiiiieee e, 13.
(O Tod 010 01 KT 1] 0 =S 18......
Weighted LRU benefit/CoSt ValUES............ovvvviiiiiiiii e 30...
Memory hierarChy aCCeSS tIMEBS. i e e e e e e e eeeeaeaeees 36....
Impact of hints on Weighted LRU performance and communication................... 48
Read reSPONSE LM, ..ot e e e e e e e e e e e eeeeeeennes 50......
TechNOlOgICal trENUS.o e e e e e e eeeeeeeed 53.....
Performance and COSt/PerfOrmManCe...........ooo it 78...
Comparison of cleaning cost as segment size is varied............cccevvvvvvvviiiieeeeennn. 79
DIreCt SECUILY IMPACT.... .ottt e e e e e e e e e eees 121...
Encryption and message digest performancCe..............uuuviiiiiiiiieeeeeeeeeeeeeeeeeiiinnnns 130
Breakdown of time for cooperative caching read.............cccceeeeiiiiieiiiiiiiiiieiiiiiinn, 139

Acknowledgments

One of the things I've looked forward to most about writing my dissertation has been the
chance to write this acknowledgments section. So many people have contributed to my enjoyment
and success as a graduate student, but in our hectic day-to-day lives, | seldom have the chance to
thank them. Whout the people listed here (and others I'm sure I'vgdtien) | would not be

here. Thank you all for five terrific years!

I have been fortunate to work with Dave Patterson amd Anderson acting as my co-advi-
sors. Although each is a terrific mentor in his own right, a happy set of circumstances has let me
benefit from their complementary strengths and philosophies. Not only have figveyg ahvalu-
able technical guidance, criticism, and inspiration, but they have also helped me develop as a
writer, teacherand professional engine®oth are also well aware that everyone needs a life out-

side of the lab— an important quality in an advisor

Pam Matson has been kind enough to act as the third member of my committee and as an
informal advisor for my Global Climate Change mindnave enjoyed working with her and ben-

efitted greatly from her guidance as | tried to get a toe-hold for my understanding of global change.

My office-mates, Jeanna Neefe, Drew Roselli, and Randggywhave contributed to the
development of many of the ideas in this thesie.N&ve worked together on the xFS project for
several years and will continue to develop the ideas discussed in this dissertation in the future. It is
great to work in a group where everyone criticizes each’sthark (quite engyetically at times),
and everyone accepts criticism in the productive spirit in which itfeseaf. xFS is a diicult

project, and it would be impossible without this constant, critical feedback.

The other members of NOW project also provided much advice and inspiration during my

work on my thesis. | could always find someone to bounce an ilebarfrun a rough paper draft

past, and it has been fun to work with a group of about 30 smart people working on a wide range of

interesting projects.

Katherine Crabtree, Bob Milleand Erry Lessard-Smith have protected me from the bureau-
cracy of a 30,000 student universitiheir ability to make paperwork do the right thing and to help

avoid bureaucratic pitfalls is nothing short of brilliant.

The dissertation has benefitted greatly from Thomas Plsllgforts. His careful proofread-

ing and editorial suggestions have made this process much more bearable.

I must also thank all of my fellow students who have made graduate school such a pleasure.
The Happy Hour/Alexis Monday/Bago crew has been a constant source of dearly needed distrac-

tions, and W¥dnesday basketball has been a blast.

My debt to my parents and family is immeasurable. They hdgesdf me their unconditional
support in all of my endeavors. Leading by example, they have instilled in me the value of hard
work and a job well done, and their confidence in me has given me the confidence to succeed in

graduate school.

Finally, my fiance, Marla, deserves much of the credit for this dissertation. Her love and sup-
port have been unfailing, and she has always been understanding of the evenings and weekends

spent in the lab.

This research was funded by a National Science Foundation graduate fellavistational
Science Foundation grant (CDA 0401156), a Advanced Research Projects Agency grant (NOO600-
93-C-2481, F30602-95-C-0014), and California MICRO. Corporate support for different aspects of
the xFS and NOW projects came from the AT&T Foundation, Digital Equipment Corporation,

Exabyte, Hewlett Packard, IBM, Siemens Corporation, Sun Microsystems, and Xerox Corporation.

Xi

1 Introduction

The evolution of computer processing has followed an apparently inexorable trend as the plat-
form of choice for demanding applications has moved from centralized, shared “mainframe” com-
puters to collections of commoditypersonal” computers. This evolution has been described
variously as the “attack of the killer micros” (a description popularized by Eugene Brooks),
“many, little defeating fewbig” [Gray, 1995], and, as Figurk-1 illustrates, an inverted food chain

in which the little fish eat the big ones.

No matter what name it is given, this trend arises from the incredible economies of scale for
microcomputers, which ship in volumes measured in tens of millions of units eaciTlyese
high volumes enable research and development expenditures that cause microprocessor perfor-
mance to improve by 60% per year while microcomputer prices hold steady or even decline over
time. These trends make microcomputers the most destieé computing platform for many

applications.

wfpdadel ghod afed afed afed

wri G TT et el e afied
CUI’"FI.I‘OY mm m Wm
afted afed aped el afed e
mmm afpred afed afted e
o afird afed e afed g
A frd et
NOW

FIGURE 1-1.“Attack of the killer micr 0s.” This drawing illustrates the “attack of the Kkiller
micros” in the form of an inverted food chain, where little fish eat the big ones. The same forces
make killer micros attractive for compute-intensive applications make them attractive way to pro
file service. This illustration was assembled by Drew Roselli based on an earlier version by |
Patterson.

1

Recent advances in local area networks (LANs) expands the range of applications for which
killer micros can be used. Next-generation LANs such as Autonet [Schroeded 891], AAM
[ATM Forum,1993], switched Ethernet, and Myrinet [Boderaket1995] provide aggregate net-
work bandwidth that scales with the number of machines connected to the network, diotvnew
latency network interfaces [von Eicken abt 1992, Martin, 1994, Basu edl.,1995] allow
machines connected by these networks to cooperate cld$elge network technologies allow
groups of microcomputers to work together to solve problems that aregeddam single one to
handle, further extending the realm of the killer micros. For instance, massively-parallel comput-
ers such as the Thinking Machines CM-5, IBM SP-2, Cray T3D, and Intel Paragon are based on
microprocessors connected by fast networks and are replacing vector supercomputers such as the

Cray Y-MP for many applications.

Although compute-intensive applications have been quick to benefit from the personal com-
puter revolution, file systems have been slower to take advantage of the “killer micros.” Even
when many users each run their programs on microcomputers, they typically store their file data
on a single, centralizefile server This central server is both a performance and reliability bottle-
neck: because all file system requests go through the séwesingle server limits the system’
throughput, and a server failure halts file system acti@tyrent file systems attempt to address
this problem by using high-end, special-purpose central server machines that resemble main-

frames in their cost and complexity

My thesis is that file systems built around a new architecture catedrless network file sys-
temscan exploit the performance and cost/performance advantages of microcomputers that are
connected by fast LANs. A serverless network file systerchitecture can be described with the
phrase “anything, anywhere” because this approach distributes all aspects of file-sencted-
ing data storage, data caching, and control processiagross potentially all of the machines in
the system. | hypothesize that this approach can realize three primary benefits compared to a cen-

tral server architecture.

 Improved Performance

A serverless system outperforms a centralized system by eliminating the central bottleneck
and utilizing the aggregate resources of gdarumber of machines. For instance, a single client

can read or write data in parallel to aganumber of disks and thereby achieve a peak disk band-

width limited only by the bandwidth between the client and the network. Simieaiign many

clients actively access disk storage, the systafisks work together to provide aggregate disk
bandwidth approaching the sum of the bandwidths of all of the disks. Because fast networks make
it faster to access remote RAM than local disk, the serverless system can also provide better per-
formance than a central server by exploiting the combined memory caches of all of the machines;
this laige cooperative cacheeduces the number of disk accesses compared to the individual cache
of a typical central serveFinally, the serverless system distributes control processing across many

machines so that control bottlenecks do not limit data throughput.

In addition to eliminating bottlenecks, the location independence of the serverless approach
improves performance by improving locality and balancing load. For instance, because any
machine in the system can control any file, a serverless system can co-locate the control and meta-
data processing of a file with the client using thatfitigta, thereby reducing latency and load due
to communication between the client and ileianagerSimilarly, if a disk, processpor network
link is a hot spot, a serverless system can change the distribution of files to machines to balance

load more evenly

 Improved Availability

A serverless system provides high availability because when one machine fails, the remaining
machines can take over its responsibilitieso Bspects of the serverless design are crucial to this
goal. First, the distributed storage system uses redundant disk storage [Pati@sb88&] and
log-based storage [Rosenblum and Ousterdi®@®2] to ensure that higher levels of the system
can access all necessary file system state even when some machines have failed. Second, the sys-
tem can use location independence to delegate the duties of failed machines to the remaining

machines.

In a central server architecture, in contrast, the central server is a critical resource; when a cen-
tral server fails, file system clients can access only data that they already have cached until it is
repaired. Several central server systems have attempted to use server replication to increase avail-
ability [Walker etal.,1983, Kazarl989, Popek ail.,1990, Liskov ehl.,1991, Kistler and
Satyanarayanan992, Birrell etal., 1993]. Howeverreplication increases the cost and complex-
ity of central servers, and it can also increase the latency of writes since the system must replicate

data at multiple servers.

 Improved Scalability

A key design goal is to eliminate all centralized bottlenecks from the file systefiectively
treating the file system as a parallel program. A serverless sggtenfdbrmance and availability
improve as more CPUs, DRAM, or disks are added to provide more resources for the system to
exploit. This architecture should work well for systems with tens or hundreds of machines; it was
not designed to scale beyond about one thousand machines because gaudystams are
unlikely to provide the uniformly fast networks and mutual trust among machines assumed by the

design.

In addition to these benefits, because the serverless architecture relies on commodity micro-
computers and LANSs, it should achieve these goals in a destie¢é manner compared to cen-

tral-server approaches and allow file systems to take advantage of the “killer micro” revolution.

To support my thesis, | make four principal contributions in this dissertation.

1. | demonstrate how cooperative caching, using the cache memory already present in desktop
machines as a global file cache, outperforms traditional central server caching.

2. | evaluate a range of distributed disk storage approaches and conclude that log-structured
redundant network storage [Hartman and Ousteri®95] is the most promising approach; |
extend this design to provide scalable, distributed disk storage.

3. | describe how to distribute file system control across many machines through distributed file
management and quantify its benefits compared to central server management.

4. 1 bring these elements together in the design of a prototype serverless network file system and
demonstrate that the prototype achieves good performance and scalability

1.1. Design Environment and Applicability

| have developed the serverless system described here in the context of the Berkeley Network
of Workstations (NOW) project [Andersonat, 1995]. This environment has four characteristics
that afect the design. First, the building block for this system is a commodity workstation or per-
sonal computer (PC) that contains a high-performance procassignificant amount of memaory
and a disk. Second, these computers are connected by a high-performance, switched local area net-
work. Third, these machines are administered as a unit, so all machines are considered to be
equally secure. Finallya NOW can be used for a wide range of workloads from traditional,

office/engineering programs to batch and parallel jobs.

Although | describe the serverless design in a context where the building blocks are complete
workstations that act as peers, other configurations are possible. For instance, it may be desirable
to configure some machines with many more disks than a typical desktop machine to amortize the
cost of the machins’processor and memory over many inexpensive disks. Also, while the server-
less system can be made entirely of desktop workstation peers suppling file service to one another
another approach would be to run the serverless file system on a number of computers in a
machine room and then use this serverless “core” of machines to supply file system services to
“fringe” client machines on desktops; this approach could be used when desktop machines do not
meet the high-performance network assumptions or security assumptions made in the serverless

design.

My design also assumes that networks are fast compared to disk; Chdfgeusses this
assumption. Emging high-bandwidth, switched local area networks allow machines to cooperate
closely to provide seamless, high-performance file service. Although my description and initial
implementation assume that machines communicate via explicit network messages, the benefits of
the serverless design would also apply to systems that use a shared-memory abstraction to provide
high-performance communication among nodes that each behave like a workstation [Kubiatowicz
and Agarwal 1993, Blumrich eal., 1994, Kuskin eal., 1994].

To get the full benefits of the serverless design, machines must trust one another so that file
service can be distributed among machines. As I've already mentioned, dividing machines up into
“core” trusted machines and “fringe” less-trusted machines may allow the serverless design to be
used in environments that are less homogeneous than a QApte6 explores security issues

in detail.

The serverless design presented here should work well for a wide range of workloads. Most of
the simulation results presented in this thesis usge@ngineering trace workloads that include
graduate students, stafnd facultys day-to-day activities such as reading mail, editing files, and
simulating computer systems. These workloads present a number of challenges to file system
designers: in particular they require systems to handle not jgstfites, but also small filesfief
ciently. The system was also designed with other NOW workloads in mind; while | did not have
access to trace workloads for the parallel and batch workloads that may become more common in
a NOW the serverless system eliminates central bottlenecks and supports data sharing to make it

work well in such an environment. Furthesile | do not consider multimedia workloads explic-

5

itly, the scalable system presented here should be of interest to file system designers who wish to

support those workloads.

1.2. Overview of the Dissertation

The body of this thesis consists of six chapters. The first motivates taking a new approach to
file system design. The remaining chapters present the serverless design and evaluate that
approach by describing how to distribute each of the three main pieces of a file server (cache, disk,
and control), the security implications of this new approach, and how feeedif pieces of the

design fit together in a prototype serverless file system.

In Chapter2, | review key technology trends thafeat file system design. | explore the
changing trade-¢é made possible as fiifent technologies evolve at fdifent rates over time and
conclude that disk, processaremory and network technologies are improving in ways that moti-
vate distributing file system services across a network. | also examine how workload trends moti-

vate scalable file systems.

Chapter3 describes cooperative caching. Cooperative caching replaces central server caching
by coordinating the contents of clients’ caches and allowing clients to satisfy other clients’ read
requests. In addition to being more scalable than central server caching, cooperative caching out-
performs central server caching by reducing the percentage of requests that go to disk. For
instance, | simulated both cooperative caching and traditional central server caching under an
office/engineering workload and found that cooperative caching improved file system read perfor-
mance by 30% to 150%.

Chapterd explores how to distribute disk storage across multiple machines. It begins by
exploring a range of options and concludes that redundant, log-based striping similar to that used
in Zebra [Hartman and Ousterholi§95] has the most promise. It then builds on the Zebra design

to make it scale to lge numbers of disks by eliminating its bottlenecks.

| then describe how to distribute the remaining file system functionality by spreading control
to distributed managers. Chapfepresents an approach that adapts multiprocessor cache consis-
tency designs [Lenoski at., 1990, Chaiken «dl., 1991] to the rigors of file system use. In partic-
ular, | describe how to adapt the data structures of log structured file systems (LFS) [Rosenblum

and Ousterhout,992] for distributed management and how to allow the system to reconfigure

6

management duties to continue operation in the presence of failures; | also explore policies for

assigning files to managers to improve locality

While the serverless design generally assumes that machines are equally secure, not all envi-
ronments meet this assumption. Chapteescribes how the serverless design can be modified to
work in environments where not all machines trust one anadthd@ortunately reducing trust
makes it harder for machines to use one anwhiesources to provide file service, but restricted

versions of the serverless protocol may still provide benefits for some machines.

Chapter7 integrates the pieces of the design by describing xFS, a prototype serverless net-
work file system. | first detail how cooperative caching, distributed disk storage, and distributed
management work together to provide integrated file service. | then present initial performance
results for xFS running on up to 32/8®CStation 105 and 23Gs. These results illustrate the prom-
ise of the serverless approach, but they also point out several limitations of the current xFS imple-

mentation.

Finally, Chaptei8 summarizes the key conclusions of this dissertation, points out some of the
lessons | have learned during this project, and discusses areas that would benefit from further

investigation.

2Trends in €chnology

This chapter describes several key trends in technology that will influence the design of file
systems for the next decade. Secfah outlines the basic trends to hardware performance that
underlie file system design. These trendiscifboth user demands on file systems and traderof
their design. SectioR.2 considers how technologies will drive more demanding file system work-
loads that will demand scalable file systems. Se&i8noutlines how opportunities raised by
these low-level technology trends impact specific aspects of the serverless design to provide that
scalable file service. Finallyo put the serverless approach in context, Se2tibiiscusses other
technology trends thatfatt file systems but that are not explicitly addressed in the serverless

design.

2.1. Trends in Bchnology

Table2-1 summarizes the current performance and expected rates of improvement for hard-

ware technologies that influence file system design. The data in this table provide a basis for four

Hardware Parameter | 1995 Baseline| Yearly Improvement Rate
Disk Latency 12 ms 10%l/year
Disk Bandwidth 6-9 MB/s 20%/year
Disk Cost/Capacity $0.24/MB 100%l/year
Network Latency 1ms 20%/year
Network Bandwidth 20 MB/s 45%]/year
Processor Performance 100 SPECInt92 55%/year
Memory Bandwidth 30-70 MB/s 40%l/year
Memory Cost/Capacity $31/MB 45%]/year

TABLE 2-1. Summary of hardware improvement trends. The 1995 Baseline reflects the
performance a high-end, desktop workstation in 1995, andahdyYImprovement Rate’reflects
trends discussed in greater detail in Secidn Although network latency has historically improvec
slowly as indicated in the table, research in low latency network protocols may provide drar
improvements in the future. Conversefshile memory cost has historically improved quickscent
progress has been much slowhis chapter documents the rates of improvement.

8

general sets of observations. First, disks are,sdod their performance improves slowly relative

to other technologies. Second, compared with disks, networks have somewhat better bandwidth
and much better latencgnd both latency and bandwidth are improving more quickly for networks
than for disks. Third, processors and memories are much faster than either disks or networks, and
their performance is improving quicklyourth, disk storage is two orders of magnitude less
expensive than equivalent memory storage, and this gap is widening as disk costs improve more

rapidly than memory costs. The rest of this section describes these trends in detail.

2.1.1. Disk Performance

Disk accesses rely on mechanical motions that are slow compared to electronic operations
such as DRAM reads. Furthé¢he rate of improvement in disk mechanical performance is lower
than the rate of improvement of integrated circuit performance. Disk delays are dominated by
three factors: seek time, rotational latenayd transfer time. During the seek time, an actuator
moves the disk heads to the disk cylinder being accessed. Rotational latency allows a specific disk
block to spin under the disk head, and transfer time allows data to be accessed as it passes under
the disk head. Note that for physically sequential transfers, only the first block need pay seek and

rotation times.

Table2-2 summarizes disk performance trends for high-performance, commodity disks
appropriate for workstation servers in 1987, 1990, and 1994. The 1987 and 1990 values reflect
performance parameters reported by Gibson [GitE®®2] while the information for the more

recent drive is from a product data sheet [Sea@a&4].

During this period, seek and rotational latencies have improved skavdbout 10% per year
while bandwidth has increased more quickityabout 20% per yearhese improvement rates are
similar to those discussed by Hennessy and Patterson [Hennessy and Pa@ég&joBandwidth
increases more quickly than rotational speed because of increasing storage densities orthe disk

more data spins under the disk head at a given rotational speed.

A consequence of disks’ high seek time and rotational latency is thatttansfers use disks
much more diciently than small ones. As the table indicates, latency dominates the time to access
8 KB from disk while disk bandwidth dominates the time to transtdB1l However because disk
bandwidths improve more rapidly than other aspects of disk performance, increasgetydas-

fers are needed over time to maintain a given levelfigiericy. For instance, to reduce seek and

9

rotational latency to less than 10% of the total access time requiredkd5&tjuential transfer in
1987 and a 98BB transfer in 1994.

2.1.2. Disk Capacity

Disk capacity per unit cost improves dramatically over timat 100% per year since 1992.
As the data in Figurg-1 indicate, between 1983 and 1995 the cost of disk storage has fallen by
more than a factor of 400, from about $100/MB in January of 1983 to less than $0.24/MB in July
of 1995. For instance, advertisement®Biyte magazine in January of 1983afa 44MB hard
drive for $4,395 while advertisements in the July 1995 edition price a MBQdrive at $2,159.
This improvement reflects an increase of 62% per year over the twelve and one-half year period

with a faster rate since 1992 as PC manufacturing volumes and competition have ramped up.

2.1.3. Network Latency

Between 1989 and 1994 network RPC latency improved by less than a factor of three, from
2.66ms [Schroeder and Burrows990] to about 1.00 ms, a speedup of about 20% perkyear

ever a number of researchfefts have demonstrated extremely low network latency using proto-

Impr ovement Rates
1987 1990 1994 1987-94| 1987-90| 1990-94;
Model Fujitsu Seagate Seagate
M2361A ST-41600n ST-15150n
Average Seekiie 16.7 ms 11.5ms 8.0/9.0ms (rd/wr)| 11%/yr | 13%/yr | 9%lyr
Rotational SpeedMy. Latency 3600 rpm/8.3 m$5400 rpm/5.5 ms 7200 rpm/4.2 ms 10%/yr | 15%l/yr | 7%lyr
Bandwidth 2.5 MB/s 3-4.4 MB/s 6-9 MB/s 20%l/yr | 21%lyr | 20%lyr
8 KB Transfer 28.3ms 18.9 ms 13.1ms 12%lyr | 14%lyr | 10%/yr
1 MB Transfer 425 ms 244 ms 123 ms 19%l/yr | 20%lyr | 19%lyr

TABLE 2-2. Disk performance parameters.This table compares the parameters of a 1987, 199
and 1994 commaodity disk drive. Although these disks represent only a single data point for ¢
year | believe the trends accurately describe high-end commodity hardware available over
specified periods. Verage seek time is the time it takes to seek one-third of the way across the
surface, so it represents a pessimistic estimate of the seek time for a typical request becaus
requests will benefit from locality [Hennessy and Patters®86]. For the 1994 disk, the seek time is
higher for writes than for reads because of more stringent head settling requirements for writes
rotational latency represents the time for the disk to complete half of a complete revolution al
given rotation speed. The bandwidth is the uncached transfer rate fge aléda transfeignoring
seek and rotational latencies. For the 1990 and 1994 drives, transfer bandwidth is higher ne:
edges of the disk than near the center because of the higher linear velocity of the media nei
edges. @ provide an upper bound on disk improvement rates, | use the more aggressive read
time and outeedge bandwidths when computing improvements over time. K& &d 1MB
transfer times indicate the time to transfer afB8or 1 MB contiguous block of data including the
time for one “average” seek and rotational latermlys the transfer size divided by the désk’
maximum bandwidth.

10

cols somewhat more restrictive than those of RPC. Thekkath, for example, demonstrated a
restricted RPC protocol with 48 round-trip latency on 13@bit/s ATM [Thekkath and
Levy, 1993], and Martin and von Eicken have measure@s2@nd 52us round trip times for
active message implementations using FDDI amt¥l Arespectively [Martin1994, von Eicken
etal.,1995]. If any of these simplified protocols could be used as a fast path for file system com-

munication, order of magnitude improvements in network latencies may be possible.

Whether or not researchfefts provide new protocols, network latencies are significantly
smaller than disk latencies, and they seem likely to improve more quickly in the future. As a result,

networks will provide faster access to small data items than will disk.

2.1.4. Network Bandwidth

Over the past 15 years, the aggregate network bandwidth available to a 32-node cluster of
high-end, desktop workstations has increased by a factor of 256, froMlaitishared Ethernet
in the early 198@ to a 2,56Mbit/s switched, Myrinet [Boden @i., 1995] network in which half

$1000/MB

0 00000 ® o
0 60 o o
°

$100/MB | .

W O W e 0o
o
0000 %0 o
00000600
© N0 0 O
°

LRy

° BOIWO & ®
0%® O
WBOOS 9000 00
o we
00N XN
0o ®
© OO0 O
°
°
°
°

000 0006 &

$10/MB |

®» o 6000
°
°

°

Cost Per Megabyte

9000 00 WOOW® O
<

$1/MB |

© UMM 00
© EREEIE—G

$0.1/MB : : : : : :
1982 1984 1986 1988 1990 1992 1994 199¢€

Year

FIGURE 2-1.Disk cost expessed in dollars per megabyte of capacitach point indicates the
capacity in megabytes divided by price in dollars for a hard disk drive advertised in the Janua
July edition ofBytemagazine for the indicated yeaiote the log scale for the y-axis.

11

of the workstations can each send at W&t/s while half receive at the same rate. This improve-
ment represents an increase of about 45% per year over this period. This improvement in network
speed has come from two sources, faster network links to each machine, and better topologies to
increase the aggregate bandwidth above thdirgebandwidth. The pelink bandwidth has
increased by a factor of 16 over this period, at about 20% perTyeaother factor of 16 comes

from the move from the bus-based Ethernet to switch-based topologies [Schraddda9ei]

such as AM [ATM Forum,1993], Myrinet, and switched Ethernet.

Although the one-time move from bus-based topologies to switch-based topologies contrib-
uted significantly to the improvement in network bandwidths over the last decgeeiniarove-
ments in network speed are likely to continue because it is easier to increase the speed of switched
network links than bus-based network links. First, many switched networks allow individual links
to be upgraded independently; in the past, a netwapeed could only be increased if all of the
machines in a system were simultaneously upgraded. Second, electrical signalling is easier on
these point-to-point networks; the bandwidth of the Myrinet network, for instance, is limited by
the workstatiors 1/0 bus bandwidth rather than the @4Bit/s physical link bandwidth
[Martin, 1995].

This evaluation suggests that high-performance networks will be faster than high-performance

disks, even for l@re data transfers.

2.1.5. Processor Performance
Processor performance benefits from improving integrated circuit technologies that allow
designers to increase the number of transistors per chip and to increase the speed of these transis-

tors. As a result, processor speed increases at 50% to 55% per year [GAW@85hp,

2.1.6. Memory Bandwidth

Improvements to DRAM architectures including wider memories, memory interleaving,
and eficient access modes [Bursky992, Jonesl992, Prince edl.,1992, Hart1992,
Bondurant1992]— allow memory bandwidths to improve quickJable2-3 summarizes the
memaory-to-memory copy bandwidths of machines available in 1989 compared to machines mea-

sured in late 1994 and suggests that memory bandwidths are increasing at 40% per year or better

12

for each product line. In absolute terms, memory speeds are much faster than disk speeds, and the

relatively high rate of memory speed improvements suggest this gap will reng@in lar

2.1.7. Memory Capacity

The capacity of memory chips increases at about 60% per year due to improvements in tech-
nology that quadruple the amount of memory that can fit on a chip every three years [Hennessy
and Pattersori,996]. As Figure-2 indicates, before 1992, memory prices reflected this trend,
falling at over 100% per year during that time. During the last three years, hptieveost per
megabyte of memory has been flat. It is not yet clear whether this drastically reduced rate of
improvement in cost is a long-ternfesdt or a temporary blip. Over the full seven-year period indi-
cated in the figure, prices fell by an average of about 45% perbysdhe most recent trends sug-
gest that this may be an optimistic estimate for memory-size improvement rates. In any event,

memory capacity seems likely to grow more slowly than disk capacity in the future.

2.2. Increasing Demands on File Systems

A key trend that impacts file systems is the dramatically increasing computing power available
to users. These increases come from several sources.nNew powerful CPUs increase the
demands of sequential applications, and fast networks give users the ability to exploit multiple
processors to run distributed or parallel applications, further increasing both average and peak
demands on file systems. Furthermore, expanding computing power enables new classes of
demanding applications such as databases and multimedia programs that add additional pressure
to I/0O systems. As a result, I/O systems must advance quickly to avoid limiting system perfor-

mance. This trend motivates the radically more scalable serverless design.

1989 1994 Five-year

Average

Bcopy Bcopy Rate of
Manufactur er Machine Bandwidth Machine Bandwidth Increase
SUN SFARCStation 1 5.6 MB/s | SFARCServer 20 Model § 27.9MB/s| 38%/year
Hewlett-Packard 9000-835CHX 6.2MB/s 715/80 32.1MB/s | 39%lyear
IBM RT-APC 5.9 MB/s 6000/370 67.2MB/s | 63%lyear
Digital Equipment DS3100 5.1MB/s 3000/400 43.8MB/s | 54%lyear

TABLE 2-3. Memory bandwidth for 1989 and 1994 machinesThe 1989 values were measured b
Ousterhout [Ousterhout990]. The 1994 values are fordaer 10MB transfers to reduce cache
effects. The rate of increase is the change for each manufacturer for the products listed con
over five years. Note that these rates woultedgomewhat if dierent products in each vender
line were chosen.

13

2.2.1. Demands From Sequential Applications
The faster improvement rate of processor performance compared to that of disk performance

suggests that future 1/0O systems be designed to take advantage of multiple-disk transfers; improv-
ing computers allow users to process more data more guiickigasing the speed required from

the file system. For example, the Case/Amdahl rule of thumb suggests that a balanced machine
should have Mbit of /O bandwidth for each MIPS of CPU performance [Hennessy and
Patterson1996]. Figure2-3 plots the actual local single-disk bandwidth against processor perfor-
mance for ten machines manufactured during the last decade. This graph suggests that high-per-
formance machines with single disks no longer conform to the Case/Amdahl rule of thumb and
that the gap is growing lger as processors get fasfgne trend discussed above, whereby proces-

sors get faster more quickly than disk transfers, suggests that this imbalance will continue to grow

If anything, Figure2-3 understates the imbalance. First, it assumes that disk performance
improves with disk bandwidth. In fact, because disk latency improves more slowly than disk band-
width, overall disk performance is likely to improve more slowly as well. Second, as relative disk
latencies increase, systems use more aggressive prefetching [Patteatoh9@5], which

$1000/MB

$100/MB

Cost Per Megabyte

$10/MB - - - - - -
1989 1990 1991 1992 1993 1994 1995 1996

FIGURE 2-2. DRAM price per megabyte. Each point indicates the cost per megabyte of DRAM
memory based on advertisements fiByte magazine. All prices reflect memory purchased in 9-bit
wide SIMM form with access times of 88 or betterTo provide the best price for each data point,
points before July of 1991 are the prices for 1IMB SIMMs, and points from July of 1991 and latet
one quarter of the prices oMB SIMMs. Note the log scale for the y axis.

14

increases demands for disk throughput. faaf prefetching reduces latencies for disk requests by

increasing demands for bandwidth.

2.2.2. Demands From Parallel and Distributed Applications

Although sequential processors stretch the limits of conventional file systems, the increasing
need for high-performance, parallel file access by mainstream users seems likely to swamp them.
Efforts to allow users to harness the aggregate power of many workstations in Netwodt&-of W
stations (NOWSs) [Anderson at., 1995] will increase both the average and peak demands on file

systems from parallel programs or multiple, simultaneous, sequential jobs.

The ability to harness multiple machines will allow users to tackietgrroblems, increasing
the total amount of data passed through file systems. Cypher [Cyied893] measured the
I/0 demands of parallel supercomputing applications and found that average I/O requirements

increased linearly as the size of a problem increased. This conclusion suggests that the perfor-

140
120+
100} Disk Bandwidth > Processor Speed
Q)
5
S 80t
<
5
=
G rocessor Speed > Disk Bandwidth
4]
4
0
O 40!
SRARC 20
20l SFARC 100 « HP 735 HP9000/J200
. DEC50002200 Hp 715/80 “pEC 3000/400 ‘Pentium90
. 11/780 smRC 2
O L L

0 20 40 60 80 100 120 140
Processor Performance (SPECInt 92)

FIGURE 2-3. Bandwidth and processor performanceThis comparison of local disk bandwidth
against processor performance suggests that single-disk sequential machines have too i
capacity for their processing power and that this imbalance is increasing as processors .gel
Each point shows the measured bandwidth when reading a file that isgeddadfit in the in-
memory cache from a single local disk plotted against the published SPECInt performance f
machine. Note that SPECInt92 is used to rate processor power rather than MIPS. If the highel
figures had been used, the machines would appear to be even more out of balance.

15

mance |/O systems must scale as quickly as that of aggregate just sequential- processing

for systems that support parallel jobs.

Further not only will NOWSs increase total demands on file systems, these demands are likely
to come in bursts as the actions of many machines become correlated. Where traditional file sys-
tems could depend on the “law ofdarnumbers” to smooth file system demands over time, paral-
lel and distributed jobs running on NOWSs synchronize the actions of many machines. For
instance, NOW users may compile programs using panalle¢ rather than sequentialligzven if
a parallelmake demands no more total work from the file system that a sequential one does,
requests are sent to the file system much more quickly in the parallel @&seplfrom reducing
perceived end-user performance, the file system must provide higher peak performance to keep up

with increased peak demands from users.

2.2.3. Demands From New Applications

Increasing workstation capabilities also enable new classes of demanding applications. For
instance, 1/O intensive database applications would challenge conventional file systems because
they require lage numbers of relatively small, concurrent accesses. Fudhtbase vendors
want access to a @& number of disks and they want to control how data are distributed over those

disks to assist in load balancing.

Continuous media applications such as video and audio will also pressure file systems by
requiring them to supply lge amounts of aggregate bandwidtidéé applications demand sig-
nificant bandwidths for periods ranging from seconds to hours, requiring that storage systems
accommodate lge numbers of simultaneous, demanding users. Furthermore, the sequential
nature of video streams may prevent file system caching from being useful, although by the same
token prefetching may befettive. Finally continuous media applications may require real-time
guarantees for smooth playback. Although this thesis does not address continuous media applica-
tions or real-time guarantees explicitiydoes suggest methods by which storage systems may be
built to provide lage amounts of aggregate bandwidth. These techniques could then be used as a

basis for a continuous media file system.

16

2.3. Implications For File System Design

Not only do changing technologies increase the demands on file systems, they also change the
design trade-d$ that should be made to satisfy those demands. Fast, switched, local area networks
such as AM and Myrinet enable serverless file systems by allowing LANs to be used as I/0O back-
planes, harnessing physically distributed processors, mearuydisks into single file systems.

The switched networks provide aggregate bandwidths that scale with the number of machines on
the network, and neviow latency network interfaces enable closer cooperation among machines

than has been possible in the past. As the rest of this section describes, the trend towards faster
scalable networks motivates each of the pieces of the serverless design, although particular design

decision were also shaped by other technology trends.

2.3.1. Cooperative Caching

The serverless design replaces central server caching with cooperative caching that coordi-
nates the clients’ caches to allow reads not satisfied by one slgauhe to be supplied from
anothers. Trends in network performance and in memory capacity motivate cooperative caching,

which ChapteB discusses in detail.

High-speed, low-latency networks provide the primary motivation for cooperative caching by
allowing clients to access remote memory much more quickly than they can access remote or even
local disk, as @ble2-4 indicates. Where fetching data from remote memory might be only three
times faster than getting the data from remote disk on an Ethernet, remote memory may now be
accessed ten to twenty times more quickly than disk, increasing thd fumyadoperative cach-
ing. At the same time, fast networks reduce tliecéf’eness of architectures like AFS [Howard
etal., 1988] that use local disk as a cache rather than using remote memory; with fast networks,

such an approach will be much slower than cooperative caching.

The recent lag in improvements to memory capacity provides a second motivation for cooper-
ative caching. As memory capacity grows more slp@@signers can no longer rely on growing
memoaries to maintain or improve hit rates or to cope with tlgedaworking set sizes enabled by
larger disks. Instead, designers must use available memory rfiorendlf. Cooperative caching
does so by providing improved global hit rates with a given amount of memory and by reducing

duplicate caching between clients and the server and among clients.

17

2.3.2. Distributed Storage
A serverless system replaces centralized disk storage with storage servers that distribute stor-

age to diferent machines’ disks. This approach works well because of high-bandwidth networks.
Furthermore, to exploit trends in disk technologies, the specific storage server design discussed in
Chapter4 uses redundant, log-structured storage to provide availability and improve write perfor-

mance.

Fast, scalable networks motivate distributed disk storage. When networks are faster than disks,
a single client can read or write at its full network bandwidth by accessing multiple disks that are
distributed on the network. Additionallpecause a switched netwarlkiggregate bandwidth can
be orders of magnitude fer than its pelink bandwidth, the peak aggregate bandwidth of a dis-
tributed disk system is the sum of all of the disk bandwidths or network link bandwidths in the sys-
tem. In contrast, a centralized systerbandwidth is limited to the network link bandwidth of a
single machine— the central server even if the server uses a local RAID to increase its disk
bandwidth.

The storage server design described in Chapstores redundant data on disks to provide
high availability The low cost of disk storage makes this approach to availability more faust-ef
tive than alternatives designs such as replicated servatkdietal., 1983, Kazarl989, Popek
etal., 1990, Liskov etl., 1991, Kistler and Satyanarayana@92, Birrell etal., 1993].

Ethernet 77 Mbit/s ATM
(Half of 155 Mbit/s)
Local Local Disk Remote Remote Remote Remote
Memory Memory Disk Memory Disk

Mem. Copy 250us 250us 250pus 250ps 250ps 250ps
Net Overhead -- -- 400pus 400pus 400us 400us
Data -- -- 6250us 6250us 800us 800us
Disk -- 14,800us -- 14,800us -- 14,800us

Total 250us 14,800us || 6,900us | 21,700us 1450ps 16,250us

TABLE 2-4.Cache miss timeTime to service a file systeafocal cache miss from remote memory
or disk for a slow network, Ethernet, and a faster network, &8s ATM network that achieves
half of its maximum link throughput. Copy time for local memory is the measured time it take
read 8KB from the file cache on a DEC AXP 3000/400. Network overhead times indicate rot
trip, small-packet latencies based on TCP times reported in [Ma99d] for a Hewlett-Packard
9000/735 workstation. ransfer figures for Ethernet make the unrealistically optimistic assumpti
that data is transferred at the full 10 Mbit/s link speed (in reélktyause Ethernet utilizes a shared
bus architecture, transfer times could often be several times those listed above)Mrtrarisfer
time assumes that half of the full 155 Mbit/s bandwidth is attained to account for protocol overh
[Keeton efal., 1995]. The disk transfer time is based on measured, physical-disk time (exclu
gueueing) for the fastest of three systems measured under real workloads by Ruemmiteand '
[Ruemmler and Wkes, 1993].

18

Trends in disk technology also favor the log-structured storage design used in the storage serv-
ers. Log structured file systems [Rosenblum and Oustert@@2, Seltzer adl.,1993] commit
modifications to disk using Ige, contiguous writes to the log; this approach uses di&eefly
by amortizing seek and rotational delays ovegdawrites. Furthermore, log structured file sys-
tems are more Bfient when free disk space is plentiful [Rosenblum and Ousterh@®®]; cheap

disks make it feasible to provide extra disk space to get improved performance.

2.3.3. Distributed Management

A serverless file system implements data management separately from data storage. Although
this separation can add an additional network hop to access data compared to a centtalxserver
latency scalable networks mitigate this cost. Low-latency networks make the additional network
hops needed to locate data inexpensive compared to the network or disk transfer of the data itself,

and scalable networks prevent congestion that could interfere with low-latency communication.

2.4. Other &chnology Tends

A number of other technologies will also influence file systems during the next decade. The
increasing distribution of data over wide area network&N¥Y, the growing use of portable com-
puters, and the engmnce of robotic, tertiary storage libraries will all demand new file system
capabilities. This thesis focuses on file service within the context of a LAN with on-disk storage
and does not address the opportunities and requirements of these other technologies ia detail. T
put this thesis in context, this section summarizes the relationship of the ideas it examines to these

wider technology trends.

The World Wide Web (WWW) enables data to be distributed widely and shared, and | believe
that there are many interesting research questions related to using file system techniques to
improve the dfciency and convenience of the WWWowever because WN and LAN perfor-
mance, availabilitysecurity and cost characteristics are sdetiént, the appropriate tradefofor
WAN and LAN file system protocols will be @&rent. As a result, | believe that futuréAW file
systems will implement two sets of protocols, one for communication within a cluster of machines
on a fast LAN network and the second for communication among these clusters over a slower
WAN [Sandhu and Zhou,992]. Although the research for this thesis is devoted to file systems

within a LAN, the techniques described here would also be appropriate for the LAN-specific pro-

19

tocol in a LAN/WAN file system. | have examined protocols appropriate f&NViile systems
elsewhere [Dahlin al., 1994].

This thesis also focuses on the needs of desktop, as opposed to portable, computers. Portable
computers pose a number of challenges to file systems stemming from their frequent disconnec-
tion from the network [Kistler and SatyanarayarkE892] or their use of relatively low-band-
width, wireless network connections [Le adt 1995, Mummert eal.,1995]. Because the
techniques described in this thesis assume an environment where machines are tightly coupled
using a fast LAN, they would not work well as the primary file system for portable computers. In a
mixed environment of portable and sedentary computers, howeweuld envision these tech-
niques being used on stationary workstations to provide a scalable file system “backbone.” In such
an environment, the portable machines would runfardifit protocol such as Coda [Kistler and
Satyanarayanan992] or Ficus [Popek ei.,1990], using this scalable backbone as their

“server”

Finally, tertiary-storage, robotic libraries [Drape&Q93] provide an opportunity for lge
amounts of data to be stored more cheaply than they can be stored on disk. This advantage exists
because these libraries allow massive archives to be built and some system services, such as file
backup and restore, to be automated. Because the latency that results when these devices are
accessed can be tens or hundreds of seconds, file systems must be carefully structured to hide this
latency Many of the techniques in this thesis address issues related to moving data afapng dif
ent storage servers and might be extended as a mechanism to provide migration to tertiary storage
libraries. This thesis does not, howewtamine the critical issue of migratipolicy — when to

move data between storage levels to mask latency

20

3Cooperative Caching

Cooperative caching seeks to improve file system performance and scalability by coordinating
the contents of client caches and allowing requests not satisfied by as dbeat’ in-memory

cache to be satisfied by the cache of another client.

Three technological trends discussed in Chabtarake cooperative caching particularly
attractive. First, processor performance is increasing much more rapidly than disk performance
(see Bble2-1 on pagé), making disk accesses a significant impediment to application perfor-
mance [Rosenblum at., 1995]. This divegence makes it increasingly important to improve the
effectiveness of caching to reduce the number of disk accesses made by the file system. Second,
emepging high-speed, low-latency switched networks can supply file system blocks across a net-
work much faster than standard Ethernet, as indicatedliteZ-4 on pagd 8. Whereas fetching
data from remote memory over an older network might be only three times faster than getting the
data from a remote disk, remote memory may now be accessed ten to twenty times as quickly as a
disk, increasing the payidbr cooperative caching. Third, the rising cost of memory capacity rela-
tive to the cost of disk capacity makes it important to use membcyeafly to maintain good
cache hit rates. raditional, central server caching uses the same technelodyRAM
memory— for both client caches and server caches. As a result, a significant fraction of the server
caches contents may be duplicated in client DRAM caches, reducing fietieéness of server
caching and wasting precious DRAM capacity [Franklinalgtl992, Muntz and
Honeyman,1992]. To combat this problem, cooperative caching unifies global and local DRAM
caching into a single abstraction and explicitly manages data within the cooperative cache to repli-

cate blocks only when doing so improves performance.

Existing file systems use a three-level memory hieramghich implements a limited form of
“cooperative caching” by locating a shared cache in server memory in between the other two lev-

els of storage: client memory and server disk. Although systems can often reduce the number of

21

disk accesses by increasing the fraction of the syste#M that resides in its seryéiree factors

make true, distributed cooperative caching more attractive than physically moving memory from
clients to the serveFirst, central server caching manages DRAM lefssi@itly than cooperative
caching: the memory at the server does not improve clients’ local hit rates, the data at one client
cannot be accessed by other clients, and the DRAM at clients and servers ditaritigfrepli-

cate the same data blocks. Second, a server in a cooperative caching system will be less loaded
than a server with a lge cache because it can satisfy many requests by forwarding them to the cli-
ents’ caches rather than having to transfegdarolumes of data. Finallgooperative cache sys-

tems are more costfettive than systems with extremelydarserver caches. For example, in
1995 it would be significantly cheaper to add\8 of industry-standard SIMM memory to each

of one hundred clients than it would be to buy a specialized server machine capable of holding the
additional 3.25B of memory Section3.3.5 quantifies the tradefsfbetween centralized and dis-

tributed caching in more detail.

Note that the analysis in this chapter assumes that clients cache file system data in their local
memories but not on their local disks. Because of the technology trends driving fast local area net-
works, it will be much quicker for a client to fetch aikKB block from another clierd’ memory

than to fetch that data from a local disk.

The key challenge to exploiting distributed client memory as a cooperative cache is providing
a distributed, global memory management algorithm that provides high global hit rates without
interfering with clients’ local cache hit rates. In this chapter | examine six cooperative caching
algorithms and find that three factors determine th&cg¥eness. First, to benefit from data shar-
ing, algorithms should allow each client to access the recently accessed data of other clients. Sec-
ond, algorithms should reduce replication of cache contents by globally coordinating the client
caches rather than allowing clients to greedily fill them with locally referenced data. ,Fioally
permit clients to maintain high hit rates to their local memories while also providing high hit rates
to the global cooperative cache, algorithms should dynamically adjust the portions of client mem-
ories dedicated to local caching and global caching so that active clients can use most of their
caches for local data, while idle clients allow most of their memories to be used for global data.
Based on these factors, | have developed a simple algorithm, called N-Chance Forwarding, that
provides nearly ideal performance. This algorithm is attractive because it provides good global
coordination of cache contents without relying on global communication. Instead, it exploits ran-

domized load balancing to get good performance [Eag#r, @986, Adler etl., 1995].
22

To evaluate a range of algorithms, | use simulation studies driven by both traces of file system
usage and by synthetic workload® provide a simple comparison with current systems, this
study assumes that cooperative caching coordinates the contents of client memories in a tradi-
tional, central server system that retains a central server cache. Under these assumptions, the trace-

based studies indicate that cooperative caching can often reduce the number of disk accesses by

50% or more, improving the read response time of a file system by 30% td BQ%ost of the
workloads studied. A fully serverless system would get even better performance from cooperative
caching by eliminating the separate, central cache memory and, instead, coordinating all of the
system$ memory as a single, cooperative cache. The synthetic-workload studies verify that coop-
erative caching will provide significant benefits over a wide range of workloads and that it will

almost never hurt performance.

Note that the algorithms examined in this work do négcafthe reliability of data storage
because cooperative caching only deals with “clean” file system data. If a client modifies a data
block and then another client requests that block via cooperative caching, the first client commits

the block to disk before allowing the second client to see it.

Section3.1 describes the six cooperative caching algorithms | examine. Sé&idascribes
the simulation methodologynd Sectior3.3 examines key simulation results. Sec8ah dis-
cusses related studies in cooperative caching and global memory managementSeict#iiy3.5

summarizes my conclusions.

3.1. Cooperative Caching Algorithms

This section examines six variations of cooperative caching in detail, covering a range of algo-
rithm designs. Dierent cooperative caching algorithms could manage remote client memory in
many diferent ways. Figur8-1 illustrates four fundamental design options and the relationship of
the six algorithms to these options. Although these algorithms are by no means an exhaustive set
of cooperative caching algorithms, the subset contains representative examples fgerparkar

tion of the design space and includes a practical algorithm whose performance is close to optimal.

1. All improvement values for speedup and performance use the terminology in [Hennessy and PE3&gkon,
Speedup is defined as the execution time of the slower algorithm divided by the execution time for the faster one. The
improvement percentages for performance are calculated by subtracting 1.00 from the speedup and then multiplying
by 100 to get a percentage.

23

The rest of this section examines these six algorithms; it then discusses several other possible

approaches.

3.1.1. Direct Client Cooperation

A very simple approach to cooperative cachidggect Client Cooperationallows an active
client to use an idle clie®’'memory as backing store. This process works when the active client
forwards cache entries that overflow its local cache directly to an idle machine. The active client
can then access this private remote cache to satisfy its read requests until the remote machine
becomes active and evicts the cooperative cache. The system must provide a mechanism and crite-

ria for active clients to locate idle ones.

Direct Client Cooperation is appealing because of its simplieitit can be implemented
without modification to the serveFrom the servés point of view when a client uses remote
memory it appears to have a temporarily egedrlocal cache. One drawback to this lack of global
cooperation is that active clients do not benefit from the contents of other active clients’ memories.
A client’s data request must, for example, go to disk if the desired block no longer happens to be in
the limited server memory even if another client is caching that block. As a result, the performance

benefits of Direct Client Cooperation are limited, motivating the next algorithm.

Private/Global
Coop. Cachef:

Private Global
irect Clien Coordinated
Cooperatio Cache Entrieg?
No Coordination Coordination
(Greedy Static/Dynamitc

F

orwardin Partition?

StatMm
Block (We;ght?(N- ;
Location? LRU Chanc

Any Client Fixed
Centrally) (Hash)
Coordinate

FIGURE 3-1. Cooperative caching algorithm design spacdzach box represents a design decisic
while each oval represents an algorithm examined in this.study

24

3.1.2. Greedy Forwarding

Another simple approach to cooperative cach@igedy Forwading, treats the cache memo-
ries of all clients in a system as a global resource that may be accessed to satisfy asy client’
request, although the algorithm does not attempt to coordinate the contents of these caches. For
Greedy Forwarding, as for traditional file systems, each client manages its local cache ;greedily
without regard to the contents of the other caches in a system or the potential needs of other cli-

ents.

Figure3-2 illustrates how Greedy Forwarding allows clients to supply data from their caches
to one anothelif a client does not find a block in its local cache, it asks the server for the data. If
the server has the required data in its memory cache, it supplies the data; otherwise, the server con-
sults a data structure that lists the contents of the client caches. If any client is caching the required
data, the server forwards the request to that client. The client receiving the forwarded request then
sends the data directly to the client that made the original request. Note that the system does not
send the block through the serveecause doing so would unnecessarily increase latency and add
to the serves workload. If no client is caching the data, the request is satisfied by the server disk

as it would have been without cooperative caching.

With Greedy Forwarding the only change to a file system is that the server needs to be able to
forward requests, and the clients need to be able to handle forwarded requests; this support is also
needed by the remaining algorithms discussed here. Server forwarding can be implemented with

the data structures already present in systems implementing write-consistency with callbacks

Client 2
1/
readfoo Client Cache Client Cache
o =
miss |- supply
block
requesfoo foo forward
from serve request
for foo
Sevr

A—s__.%

FIGURE 3-2. Greedy Forwarding. Using Greedy Forwarding, clients supply data already prese
in their caches to one anoth€tient 1 tries to read block foo, not found in its local cache. It reque
the data from the Server that then forwards the request to Client 2, which is caching the data. C
forwards block foo to Client 1, satisfying the request.

25

[Howard etal., 1988] or cache disabling [Nelsonadt, 1988]. In such systems, the server tracks
the files being cached by each client so that it can take appropriate action to guarantee consistency

when a client modifies a file. Cooperative caching extends this callback data structure, sometimes

called adirectory[Lenoski etal., 1990]? to allow request forwarding by tracking the individual

file blocks cached by each client. For systems such as NFS whose servers do not maintain precise
information about what clients are caching [Sangletal., 1985], implementation of this direc-

tory may be simplified if its contents are taken as hints; some forwarded requests may be sent to
clients no longer caching a certain block. In that case the client informs the server of the mistake,

and the server either forwards the request to another client or gets the data from disk.

Although cooperative cachirgyperblock forwarding table is lger than traditional, pile
consistency callback lists, the additional overhead of server memory is reasonable since each entry
allows the server to leverage a block of client cache. For instance, a system could implement the
forwarding table as a hash table with each hash entry containing a four byte file idertifier
byte block ofset, a four byte client identifiea four byte pointer for resolution of linked-list colli-
sions, and two pointers of four bytes each for a doubly linked LRU list. In this configuration, the
server would require 2dytes for every block of client cache. For a system cachikBg 8le
blocks, such a data structure would consume 0.3% as much memory as it indexes. For a system
with 64 clients, each with 3®1B of cache, the server could track the contents of {G8 2listrib-

uted cache with a BIB index.

Greedy Forwarding is also appealing because it allows clients to benefit from other clients’
caches while preserving fairnessclients manage their local resources for their own good. On
the other hand, this lack of coordination among the contents of caches may cause unnecessary
duplication of data, which fails to take full advantage of the systen&@mory to avoid disk
accesses [Léfetal.,,1991, Franklin eal.,1992]. The remaining four algorithms attempt to

address this lack of coordination.

3.1.3. Centrally Coordinated Caching

Centrally Coodinated Cachingadds coordination to the Greedy Forwarding algorithm by

statically partitioning each cliestcache into two sections: one managed locally (greedily by that

1. In this dissertation, | avoid using the term “directory” to refer to cache consistency state to prevent confusion with
file directories that provide a hierarchical file name space.

26

client) and one managed globally (coordinated by the server as an extension of its central cache.)
If a client does not find a block in its locally managed cache, it sends the request to théf server
the server has the requested data in menitosypplies the data. Otherwise the server checks to
see if it has stored the block in centrally coordinated client merfotyocates the data in client
memory it forwards the request to the client storing the data. If all else fails, the server supplies

the data from disk.

Centrally Coordinated Caching behaves very much like physically moving memory from the
clients to the server for central server caching. The server governs the globally managed fraction
of each cliens cache using a global replacement algorithm. In this whgn the server evicts a
block from its local cache to make room for data fetched from disk, it sends the victim block to
replace the least recently used block among all of those in the centrally coordinated distributed
cache. When the server forwards a client request to a distributed cachi eariepws the entry on
its LRU list for the global distributed cache. Unless otherwise noted, | simulate a policy where the

server manages 80% of each clisméche.

The primary advantage of Centrally Coordinated Caching is the high global hit rate that it can
achieve by managing the bulk of its memory resources globety main drawbacks to this
approach are that the clients’ local hit rates may be reduced because their local caches are ef
tively made smaller and also that the central coordination may impose a significant load on the

server

3.1.4. Hash Coordinated Caching

Hash Coodinated Cachingresembles Centrally Coordinated Caching in that it statically
divides each clierd’ cache into two portions — local and cooperative caehleut it avoids
accessing the server on a hit to the cooperative cache by spreading the contents of the cache across
clients based on block identifiers. Each client manages one cache partition that contains blocks
selected by hashing on the blocks’ identifiers. On a local miss, a client uses the hash function to
send its request directly to the appropriate client without first going through the 3émateclient
then supplies the data if it is currently caching that block, or it forwards the request to the server if
it does not have the blockoBtore data in the cooperative cache, the central server sends blocks

displaced from its local cache to the appropriate partition of the cooperative cache.

27

Hash-Coordinated caching performs similarly to Centrally Coordinated Caching. Hash func-
tion partitioning of the centrally managed cache has only a small impact on hit rates, and going to
the cooperative cache before going to the central server reduces server load because many requests
satisfied by the cooperative cache dayo through the servebDirect access to the cooperative
cache also improves the latency of its hits, but direct access hurts latency for central server cache

hits or disk accesses.

3.1.5. Wighted LRU Caching

To disadvantage of Centrally Coordinated and Hash Coordinated caching is that those algo-
rithms statically partition clients’ memories into global and local portions. This approach hurts
active clients because it reduces their local hit rates. Furthermore, it fails to take full advantage of
idle clients’ memories. The next two algorithms address this problem by dynamically balancing

the fraction of each cliemst’cache used for local caching and the fraction used for global caching.

The Weighted LRUpolicy uses global knowledge to attempt to make a globally optimal
replacement decision whenever it makes room in a cache to add a new block. When a client adds a
new block to an already full cache, it ejects either the least-recenthsingget (a block stored in
only one client cache) or the least recently uhaglicate(a block stored in more than one client
cache). When deciding between the LRU singlet and LRU duplicate, the algorithm weighs the
blocks by the expected global cost of discarding the duplicate, discarding the singlet, or forward-
ing the singlet to another cache. Hence, the namigiwéd LRU. Although the basic algorithm
requires potentially unreasonable amounts of communication because it uses global knowledge to
make all replacement decisions, a more practical implementation that relies on hints rather than on

constant global communication performs nearly as well.

On each cache miss,aighted LRU performs a global benefit/cost calculation to decide which
block to replace. Thbenefitof caching a block is the reduction in latency that will be realized the
next time the block is referenced. For instance, if a client keeps a singlet in its local cache and then
later references it, it savelsatencCyjisyaccess LatenCyscaiaccesy compared to the time for that ref-
erence if it discards the singlet and has to read it from disk. The opportosttyf caching a
block until it is referenced is the cache space that it consumes until the referdineespace-time
product of its size and the time until the next reference [SA8®]. Because the system cannot

know future reference times and because each block in the system is the same size, the algorithm

28

approximates the cost of caching a block until its next reference as the time since tteeldsdbdck’

reference.

When a client makes space in its local cache, it has five options:

Discard a duplicate from its local cache.
Discard a singlet from its local cache.

Forward a singlet from its local cache to a remote cBerdthe that has free space.

P w N PE

Forward a singlet from its local cache to a remote cBetdche, forcing the remote cache to
discard a duplicate.

5. Forward a singlet from its local cache to a remote chettiche, forcing the remote cache to
discard a singlet.

Notice that it never makes sense to forward a duplicate, because having two remote copies saves

no time (e.g., adds no benefit) compared to having one remote copy; in either case, if the client

later references the block, the latency will be the remote network access time.

Table3-1 summarizes the benefit/cost of each option. For each replacement, the system
chooses to discard or forward the block that results in the smallest reduction in the global cache

systems total benefit/ cost.

If the client discards a local duplicate, only the local machine is hurt because only that
machine benefits from the local copfyany other machine accesses that block, it can get one of
the other duplicates as easily as the copy being considered. The local machine,, imenedhits
from the local copy since it will save a network latency when it next references the block. Thus,
the system computes the global reduction in benefit/cost caused by discarding a local duplicate as
the diference between the latency of a remote memory hit and a local hit divided by the time since

the last local reference to that duplicate, as the first formulakite3-1 indicates.

If the client discards a local singlet, it loses the local benefit of that singlet as it does for a local
duplicate, but other clients may be hurt as well. In addition to the cost resulting from the fact that
the client no longer has a local copy of the data, the next access to that data by any machine in the
system will have to access disk rather than reading the block from thesafiemtiory Therefore,
the system calculates the benefit/cost loss caused by discarding a singlet as the local benefit/cost
(calculated as for a duplicate) plus the global benefit/cost: tfexatite between the latency of

remote disk fetch and a remote memory fetch, divided by the time since the last global reference.

29

The second formula in the table indicates this case. If the last global reference was by the local cli-

. O (Latency, . — Latency,) 0 .
ent, the benefit/cost formula simplifieste— disk local” 17 as it should.
timeSincelLastLocal ReferenceSi ngletl]

Note that the “global” term representing the cost of accessing disk will dominate this equation
when disk latency is Iger than remote memory fetch latenthis term makes it harder for the
system to discard a singlet than to discard a duplicate, because discarding a singlet may result in a
future disk access, while discarding a duplicate can only entail a less expensive future network

access.

Instead of discarding a singlet, a client can forward one to anotherstantie. If the remote
cache has extra space available, theas in the case where a client discards a local dupteate
the client loses local access to the data, but no other clients are hurt. The third formula shows the

impact to the global benefit/cost of the cache in this case.

Finally, as the last two lines of the table indicate, a client can forward a singlet to a remote
cache and displace either a singlet or duplicate from that cache. In these cases, the client loses the

local value of the forwarded singlet, and the remote cache loses the local value of the block it dis-

Option Expected Lost Benefit/Cost to Global Cache System

Blsclardt O (Latency, gmotememory ~ LAENCY, ocqy) E
uplicale | FtimeSinceLastLocal Referencep i catel]

[S)!sciar;j D(Latencyremote,vIemory —Latency, ,..) D+ O (Latencyy;q — LatencyremoteMemory) ad
ingle gtimeSincel astL ocal Referenceg nglet J timeSinceLastGlobal Referencesmgletg

Forward | [)(Latency, oporememory ~ LtENCY; 5ca) E

Elr:glt?/té?ot JtimeSinceLastLocal ReferenceSi nglet O

Forward

Singlet to |](La‘t(:"n(:yremoteMemory B I‘ater](:ylocal) D+ o (LatenCyremoteMemory B I‘ater‘(:yloceﬂ) E
Replace OtimeSinceLastLocal Referencey nglet U timeSincelLastLocal Refer eNCeremoteDuplicatel]
Duplicate

Forward 0 (I‘atencyremo’[eM emory I‘atencyl ocal) E

Singlet to gtimeSinceLastLocal Referenceg 0
Replace o
Singlet O (LatencyremoteMemory_ Latency,cq) D+ g (Latencygg Latencyremmewlemory) E

+ O —
[timeSincelL astL ocal Referenceg, oiesi ngletl CtimeSi ncel astGlobal Referenceg, o iesi nglet(]

TABLE 3-1. Weighted LRU benefit/cost valuesWeighted LRU clients use these values whe
deciding whether to discard a duplicate, discard a singlet, or forward a singlet. The system tak
action with the lowest benefit/cost. Latency and time values are in the same time units (e.g., r
seconds.) The time since the last local reference to a block is the predicted time until the next ref
to the block by the client caching it. The time since the last global reference to a block is the pre:
time until any client in the system next references that block.

30

cards. Additionallyif the discarded remote object is a singlet, the next client in the system to ref-

erence that block will have to go to disk rather than to that remote slcamhe.

Conceptually for each replacement, a client evaluates the cost of discarding or forwarding
each of its local singlets and duplicates and the cost of discarding each of the remote singlets and
duplicates, and it chooses the combination with the least negative impact on thessgkibai’
benefit/cost state. In fact, the system will always discard either a locally-LRU duplicate at some
client or discard the globally-LRU singlet in the system. Therefore, the system needs to consider
only a small subset of the blocks. Locallyonly considers discarding the duplicate that it refer-
enced least recently or discarding or forwarding the singlet that it referenced least recently; evict-
ing any other blocks from the local cache would incur an unnecessagiy“lacal” term in the
benefit/cost calculations. Similaylsemote clients only consider discarding the duplicate they ref-

erenced least recently or the singlet referenced least recently by any machine in the system.

3.1.5.1. Limiting Veighted-LRU Communication Requirements

As described so falWeighted LRU requires considerable communication and computation to
make its replacement decisions. Each time a client replaces a block, for instance, it must contact
the server to determine if any of the blocks it considers for replacement are singlets, and to evalu-
ate the cost of fowarding a block it must contact all other clients to determine the cheapest block to
replace. In addition, whenever a client discards or forwards a block, it must notify the server so
that the server can maintain cache consistency and cooperative cache forwarding information. In
practice, systems usingaighted LRU replacement would reduce communication by maintaining
information to track which local blocks are singlets, by using hints to guess the cost and location
of the best remote block to replace, and by combining messages to theladaheisimulations
described in this chaptailess otherwise noted, | use three sets of optimizations described below

Section3.3.2 examines the performance impact of the hints.

The first set of optimizations reduces the number of messages asking the server if blocks are
singlets when clients evaluate the blocks’ benefit/cost values. Each client maintains three LRU
lists— one for blocks thought to be duplicates, one for blocks thought to be singlets, and one for
blocks of unknown state. Clients add blocks to their singlet LRU lists when singlets are forwarded
to them by other clients. Clients add blocks to their unknown lists when they read blocks during

normal operation. They move blocks from the tail of the unknown list to the singlet and duplicate

31

lists when they search for the LRU singlet and LRU duplicate in their local caches. Each time a
client needs to make space in its local cache, it starts by finding its LRU singlet and LRU dupli-
cate. D do this, it first ensures that the oldest singlet is at the tail of the singlet LRU list and that
the oldest duplicate is at the tail of the duplicate LRU list. If the tail of the unknown list was refer-

enced less recently than the tail of either the singlet list or duplicate list, that item might be the
LRU singlet or LRU duplicate, so the client asks the server which it is and moves the item to the
correct list. It continues to do this until the tails of both the singlet and duplicate LRU lists are

older than the tail of the unknown list. Once that is true, it can proceed with the benefit/cost analy-

Sis.

Note that the singlet/duplicate classification is only a-infor instance, a duplicate could
become a singlet if the other copy is discardetut reducing communication justifies occasional
mistaken benefit/cost calculations. This approach reduces communication because clients never
ask the server about blocks forwarded to them by other clients, and they only ask about blocks that
they read themselves one timewhen the block is about to be replaced because it has not been

referenced for a long time and has therefore reached the end of the unknown-status LRU list.

The second set of optimizations uses hints stored at the server and clients to estimate the bene-
fit/cost impact of forwarding a singlet to a remote machine. By using these hints, clients avoid
polling all of the other clients each time they consider forwarding a singlet. Instead, the server
keeps hints of the benefit/cost impact of forwarding a singlet to each client, and clients keep hints
of the current best client to which to forward data and the expected cost of forwarding to that cli-
ent. Each message from a client to the server includes the current benefit/cost of forwarding a sin-
glet to that client. Each message from the server to a client includes the name of the client that will
be least impacted by accepting forwarded singlets and the last known benefit/cost of forwarding a
singlet to that client. These values are hints because they can become incorrect if clients access the

data that they had planned to sacrifice for the next singlet forwarded to them.

Finally, the system reduces communication costs by combining messages. For instance, the
system can piggy-back hints about client benefit/cost values on regular server requests as
described in the previous paragraph. Second, clients tell the server about changes to their cache
contents in the same message in which they request data. This update indicates what block a client
discarded from its cache to make room for the new data, and it indicates where, if anywhere, it for-
warded that block.

32

3.1.6. N-Chance Forwarding

The final algorithm that | quantitatively evaluai,Chance Forwating, also dynamically
adjusts the fraction of each clientache that is managed cooperativégpending on client activ-
ity. Like Weighted-LRU, the N-Chance algorithm recognizes that singlets are more globally valu-
able to the system than duplicates, so it preferentially caches singlets. N-Chance, ,hiswever
much simpler than dighted-LRU because it uses randomized load balancing rather than global
knowledge to distribute singlets across the global cache. In fact, the N-Chance algorithm is nearly
as simple as the Greedy algorithm: except for singlets, N-Chance works like Greedy Forwarding.
The simple bias towards singlets in the algorithm, howeévenough to give it performance com-

parable to that of the more complexelhted-LRU approach.

Like Greedy Forwarding, a client in the N-Chance algorithm always discards the locally least
recently used object from its cache when it makes space for new blocks. Hafstheediscarded
item is a singlet, the client forwards the singlet to another dieathe rather than allow the last
copy of the block to drop out of the cooperative cache. The client that receives the data adds the

block to its LRU list as if it had recently referenced the block.

To limit the amount of memory consumed by old singlets, each blockreasaulation count
that clients increment when forwarding singlets. Clients discard rather than forward singlets
whose recirculation count reachedf a client references a local singlet, it resets the recirculation
count to zero, and if a client references a remote recirculating singlet, the remote client discards
the singlet after resetting the recirculation count to zero and forwarding it to the client that refer-
enced it. Thus, an unreferenced singlet surviveache lifetimes in the global cooperative cache,
giving the algorithm its name; Greedy Forwarding is simply the degenerate case of this algorithm

with n = 0. Unless otherwise noted, the simulations discussed in this thesisuse

Using the recirculation count, this algorithm provides a dynamic tréddofach client
caches allocation between local data (data being cached because the client referenced it,) and glo-
bal data (singlets being cached for the good of aggregate system performance.) Active clients will
tend to force any global data sent to them out of their caches quickly as local references displace
global data. Idle clients, in contrast, will tend to accumulate global blocks and hold them in mem-
ory for long periods of time. One enhancement that | leave as future work is to forward singlets

preferentially to idle clients, thus avoiding disturbing active clients. For the current sliedys

33

forward singlets uniformly randomly to the other clients in the system. This simple approach is

sufficient to provide good performance for all trace workloads examined.

An implementation of this algorithm must prevent a rippleatfwhere a block forwarded
from one client displaces a block to another client and so on. Note that in the most common case,
the displaced block is not a singlet, so no ripple occurs. Howevguard against the uncommon
case, the simulator in this thesis imposes a policy that prevents deep recursion from ever occur-
ring: a client receiving a recirculating block is not allowed to forward a block to make space.
When a client receives such a block, it uses a modified replacement algorithm, discarding its old-
est duplicate. If the cache contains no duplicates, the client discards the oldest recirculating singlet

with the fewest recirculations remaining.

Like Weighted LRU, N-Chance Forwarding optimizes communication with the server by
using implicit knowledge, hints, and combined messages. In partitdaplies the same knowl-
edge used by ¥ighted LRU to hint at which blocks are singlets without asking the server in the
common case, and it combines updates to cache consistency state with other server messages just
like Weighted LRU does.

3.1.7. Other Algorithms
Although the algorithms discussed above cover a broad range of alternatives, some improve-

ments and variations on those algorithm remain to be studied in detail.

Feeley et al. [Feeley at.,1995] examines a prototype network virtual memory system that
uses a global replacement algorithm similar teightted LRU. It improves upon &ghted LRU
by providing a more practical way to track global age informatiome@uce the amount of global
knowledge needed, the system divides time into epochs and also estimates the fraction of low-
value pages stored at each node. During the epoch, the system forwards global pagesrib dif
nodes with probabilities determined by the fraction of low-value pages at each node. This algo-
rithm also includes a cutHothat turns forwarding éfwhen all machines are active. Feeley found
that this approach out-performed the N-Chance algorithm when the amount of idle memory in the

system was limited and the distribution of idle memory across machines was skewed.

| plan to evaluate this algorithm in detail in the future using the same methodology that | use

for the other algorithms in this chaptehope to understand the importance of three design deci-

34

sions. First, Feeley’algorithm uses global knowledge to skew replacement to idle machines; a
key issue is quantifying the trade-tletween diferent degrees of global knowledge and perfor-
mance. Second, the algorithm includes a ctiteo&void pathological behavior; | will quantify the
importance of this feature. Third, the algorithm presented by Feeley favors replacing global-cache
singlets rather than duplicates; my hypothesis is that this bias is-a& kygtems should value sin-

glets more highly than duplicates because discarding a singlet can cause future disk accesses while

discarding a duplicate can only result in less expensive future network acceskesdlf991].

Once this evaluation is complete, | plan to modify the N-Chance algorithm to take advantage
of any important factors discovered and then evaluate the resulting algorithm. It should be rela-
tively easy to modify the N-Chance algorithm to skew replacement decisions towards idle nodes
or to add code to cut-oforwarding when all machines are active. For instance, Eager et al. [Eager
etal.,1986] and Adler et al. [Adler eil., 1995] demonstrate a randomized load balancing algo-
rithm for allocating jobs to processes that is similar to the N-Chance approach to cache manage-
ment. Howeverwhere the N-Chance algorithm forwards a blo¢knes, this algorithm examines
n machines, and forwards each job only oredo the least loaded of themachines examined.

Just as | find that = 2 works well for N-Chance Forwarding, Adler et al. find that 2 works

well for their algorithm. | hypothesize that Adlerlgorithm could be adapted for forwarding sin-
glets among caches and that it would provide most of the performance benefits oEFdgtey’
rithms for skewed workloads when memory is scarce while retaining much of the simplicity of the

N-Chance algorithm.

Finally, work is needed to enforce global resource allocation so that a single user or process
cannot consume excessive amounts of the systemburces. Although trace-based simulations
studied in this chapter do not encounter this problem, systems should bound the worst-case dam-
age that a resource hog can inflict on other users. The challenge is to balance worst-case fairness

and best-case performance.

3.2. Simulation Methodology

| use trace-driven simulation to evaluate the cooperative caching algorithms. The simulator
tracks the state of all caches in the system and monitors the requests and hit rates seen by each cli-

ent. It assumes a cache block size KB3 and it does not allow partial blocks to be allocated even

35

for files smaller than &B. | verified the simulator by using the synthetic workload described in

[Leff etal., 1993a] as input, and reproducedflefresults.

| calculate response times as the weighted sum of the latencies to local nremotg client
memory server memoryand server disk times the fraction of hits to those levels of the cache hier-
archies. My baseline technology assumptions are similar to those of¢hedumn of Table3-2
on page30, but they assume that the full 18bit/s network bandwidth is achieved. Under these
assumptions, an BB block can be fetched from local memory in 2&) a fetch from remote
memory takes an additional 408 plus 20Qus per network hop, and an average disk access takes
a further 14,80Qus. Table3-2 summarizes access times tdadi#nt resources for the algorithms.
In Section3.3.3 | examine the sensitivity of the results to changes in technatatpyding difer-

ent network speeds.

Note that these simulations do not include any queueing delays in response time results. Since
the most attractive algorithms studied do not increase server load and singia@nhégh-perfor-

mance networks use a switched topolagyeueing would not significantly alter the results.

To maintain data consistency on writes, | assume that modifications to data are written through

to the central server and that the server keeps client caches consistent using a write-invalidate pro-

Remote

Local Client Server Server

Mem. Mem. Mem. Disk
Direct 250ps| 1050ps| 1050ps| 15,850ups
Greedy 250us| 1250ps| 1050ps| 15,850us
Central 250ps| 1250ps| 1050ps| 15,850ps
Hash 250ps| 1050ps| 1250ups| 16,050ups
Weighted LRU 250us| 1250ps| 1050ps| 15,850us
N-Chance 250ps| 1250ps| 1050ps| 15,850ps

TABLE 3-2. Memory hierarchy access timesAccess times for the dérent levels in the memory
hierarchy for diferent cooperative caching algorithms, assuming that transferringlBrfie block
takes 25Qus for local memory400us plus 20Qus per hop for the network, and 14,80for disk as
described in @ble3-2 on pag8&0. A remote client memory hit takes 135 for most algorithms
because it includes a local transfer that costsu85@ network transfer that takes 469 and three
network hops (client request, server forward request, and client supplies data) requifisga6n.
The Direct and Hash algorithms access the cooperative cache inud @Etause they save a
network hop by accessing it directl$imilarly, a server memory hit takes 10%€ for most
algorithms because clients usually access the server difBefyHash algorithm, howeyeequires
an extra network hop to get to the server because it first accesses the client indicated by th
function.

36

tocol [Archibald and Bagf 986]. Since this chapter focuses on read performance, a delayed-write

or write-back policy would not &ct these results.

For most of the results in this chapteuse traces five and six from the Sprite workload,
described in detail by Baker et al. [Bakeak{1991]. The Sprite user community included about
30 full-time and 40 part-time users of the system, among whom were operating systems research-
ers, computer architecture researchers, VLSI designers, and “others,” including administrative
staf and graphics researchers. Baker gathered four two-day traces of about forty client machines
and six servers. For simplicjtyny initial evaluation shows results only for one two-day trace that
follows the activity of 42 client machines and one serVéis part of the trace contains over
700,000 read and write block accesses, and each simulation run uses the first 400,000 accesses (a
little over a day) to warm the caches. Sec8dh4 describes the simulation results for several

other workloads including the rest of the Sprite traces.

When reporting results, | compare them against a set of baseline cache-management assump-
tions and also against an unrealistic best case model. The base case assumes that each client has a
cache and that the central server also has a cache, but that the system does not use cooperative
caching. The unrealizable best case assumes a cooperative caching algorithm that achieves a glo-
bal hit rate as high as if all client memory were managed as a single global cache, but one that
simultaneously achieves local hit rates as if each diemmory were managed as a private, local
cache. This best case provides a lower bound for the response time for cooperative caching algo-
rithms that physically distribute client memory to each client equally and that use LRU replace-
ment. | simulate this algorithm by doubling each cleiidcal cache and allowing the clients to
manage half of it locally and allowing the server to manage half of it glolallit does for the
centrally coordinated case. For the best case, | assume that clients access data found in remote cli-
ent memory with three network hops (request, forward, and reply) for a total ofud25€r

remote memory hit.

3.3. Simulation Results

This section presents the principal results from the simulation studies of cooperative caching.
Section3.3.1 compares the ifent cooperative caching algorithms to the base case, to each
other and to the unrealizable best case. For clatiitig subsection makes this comparison by

assuming a particular set of parameters for each algorithm, a fixed set of technology and memory

37

assumptions, and the use of a single workload. SeBt®R examines the individual algorithms

more closelystudying diferent values for the algorithms’ parameters. Se@i8t8 examines the
sensitivity of these results to technology assumptions such as cache size and hardware perfor-
mance. SectioB.3.4 examines the algorithms under several additional workloads. Finally
Section3.3.5 summarizes the results, highlights key conclusions, and compares cooperative cach-

ing to an alternative strategy moving more of the systesimemory to the server

3.3.1. Comparison of Algorithms

This section compares the algorithms’ response times, hit rates, server loads, and their impact
on individual clients. Initial comparisons of the algorithms fix the client cachesMBger cli-
ent and the server cache at \B for the Sprite workload. For the Direct Cooperation algorithm,
I make the optimistic assumption that clients do not interfere with one another when they use
remote caches; | simulate this assumption by allowing each client to maintain a permanent, remote
cache of a size equal to its local cache, whitdcétely doubles the amount of memory dedicated
to each client. For the Central Coordination algorithm, | assume that each client dedicates 80% of
its local cache memory to the cooperative cache and that each manages 20%loctily N-
Chance algorithm, | choose a recirculation count of two; unreferenced data will be passed to two
random caches before being ged from memorySection3.3.2 examines why these are appropri-

ate parameters.

Figure3-3 illustrates the response times for each of the algorithms being examined and com-
pares these times to the base case on the left and the best case on the right. It can be seen that
Direct Cooperation provides only a small speedup of 1.05 compared to the base case despite opti-
mistic assumptions for this algorithm. Greedy Forwarding shows a modest but significant perfor-
mance gain, with a speedup of 1.22; the remaining algorithms that coordinate cache contents to
reduce redundant cache entries show more impressive gains. Central Coordination provides a
speedup of 1.64, nearly matched by the Hash version of the algorithm with a speedup of 1.63;
Weighted LRU improves upon this result with a speedup of 1.74. The sitdpl&rance Forward-
ing algorithm nearly equals &ghted LRU for this workload with a performance improvement of

1.73. All four coordinated algorithms are within 10% of the unrealistic best case response time.

Two conclusions seem apparent based on the results illustrated in FQufdrst, disk

accesses dominate latency for the base casefosts dike cooperative caching that improve the

38

overall hit rate and reduce disk accesses will be beneficial. Second, the most dramatic improve-
ments in performance come from the coordinated algorithms, where the system mafas tan ef

reduce the duplication among cache entries to improve the overall hit rate. The performance of all
coordinated algorithms is close enough that other factors such as implementation simplicity and

fairness should be considered when selecting among them.

Figure3-4 provides additional insight into the performance of the algorithms by illustrating
the access rates atfdifent levels of the memory hierarcfiyhe total height of each bar represents

the miss rate for each algoritheribcal cache. The base, Direct Cooperation, Gresd/best case

algorithms all manage their local caches greedily and so have identical local miss rates' of 22%.
Central Coordination has a local miss rate of 36%, over 60% higher than the baseline local miss

rate. This algorithm makes up for this deficiency with aggressive coordination of most of the

3ms
Localiaw

Server Memory: J
Remote Clienxax
Server Diskss.

N
3
7

L QNT1.58 ms1.59 ms1.57 ms

AN

?
7,
Base Direct Greedy Coord Hash Weighted N- Best

Algorithm LRU Chance

FIGURE 3-3. Average block read time.Each bar represents the time to complete an average r
for one of the algorithms. The segments of the bars show the fraction of the total read time fo
accesses satisfied hgcal memory Server MemoryRemote Clientnemory or Server Disk

Response Time
=
3
(2]

NN
S\Z

0 ms

35% | Server Memory: -
Remote Clienk xx

o 30% | Server Diskss.
T 25% | 4
ad
a 20% | i
S 15% [7 -
<LE> 10% | 7 % y i

5% | / / / 7/) -

0% % U . % DU

o

Base Direct Greedy Coord Hash Weighted N- Best

. LRU Chance
Algorithm

FIGURE 3-4.Cache and disk access rate3.he bars represent the fraction of requests satisfied
each level of the memory hierarchy forfdient algorithms. The total height of the bar is the loc:
miss rate for each algorithm. The sum of @ver DiskandRemote Cliensegments shows the miss
rate for the combined local and server memories. The bottom segment shows the miss rate o
memories are included, i.e. the disk access rate.

39

memory in the system, which provides global memory miss rates essentially identical to those
achieved in the best case, with just 7.6% of all requests going to disk. In other words, Centrally
Coordinated Caching'disk access rate is less than half of the 15.7% rate for the base caching

scheme; Hash Coordinated Caching performs like Centrally Coordinated Caching.

The two algorithms that dynamically balance singlet and duplicate caching provide local miss
rates only slightly worse than the greedy algorithms and disk access rates nearly as low as the
algorithms that statically devoted 80% of their memory to global caching. Eightad LRU
algorithm achieves a local miss rate of 22% and a disk access rate of 7.6%. The recirculation of the
N-Chance algorithm increases the local miss rate from the greedy 22% rate to 23%, but it reduces

the disk access rate to 7.7%.

A comparison between the algorithms that statically partition men@amtral Coordination
and Hash Coordination, and those that partition it dynamjcaiigighted LRU and N-Chance,
illustrates that both the local and global miss rates must be considered when evaluating these algo-
rithms. Although the static algorithms reduce the disk access rate, this reduction comes at the cost
of diminished local cache performance. In contrast, te@ghted LRU and N-Chance algorithms
interfere less aggressively with local caching, protecting the local cache hit rate but sacrificing

some global hits.

Another important metric of comparison is the load on the server imposed by the algorithms.
If a cooperative caching algorithm significantly increases server load, increased queueing delays
might reduce any gains in performance. Figgseillustrates the relative server loads for the algo-

rithms compared to the base case.

Because | am primarily interested in verifying that the increased server load of cooperative
caching does not also greatly increase server load, | make a number of simplifications when | cal-
culate this load. First, | only include the load associated with servicing read requests; | do not
include the load for write-backs, deletes or file attribute requests in the comparison. These other
sources of server load are likely to be at least g las the load from reads; for instance, in the
SPEC-SFS NFS server benchmarkitfl and Keith,1993], reads account for only about one-

third of the server load. Including the other sources of load would add equally to the load for each

1. The simulated local miss rate is lower than the 40% miss rate measured for the Sprite machines in [Baker
etal.,1991] because | simulate ¢gar caches than the averaglB ones observed in that study and because these
larger caches service requests to only one server

40

algorithm, reducing the relative tifences among them. The results of this simulation can thus be
used in support of the hypothesis that there is littliedihce between the algorithms in terms of
server load, grmore specificallythat none of the algorithms greatly increases the server load. It
should not be used to claim that one algorithm significantly reduces load compared to another

because actual d&rences will be smaller than shown here.

As another simplification, | base the calculations of server load on the network messages and
disk transfers made by the server for each algorithm. | assume that a network message overhead
costs one load unit and that a network data block transfer costs two load units. A small network
message, therefore, costs one unit; a network data transfer costs one for overhead plus two for data
transfer for a total of three units. | also charthe server two load units for transferring a block of

data from disk.

The results in Figurd-5 suggest that the cooperative caching algorithms do not significantly
increase server load, justifying the approximation of ignoring queueing. dédiayCentralized
Coordinated algorithm does, howevappear to increase server load somewhat, at least under
these simple assumptions; the centralized algorithm significantly increases the local miss rate, and
clients send all local misses to the sertore detailed measurements would have to be made to
determine if the centralized algorithm can be implemented without increasing server queueing
delays. The Hash Coordinated version of the static-partition algorithm alleviates the centralized

versions increase because requests that hit in the cooperative cache never go to the server

120%

110% . Other Loadw~

100% 100% Hit Server Memory
100% | == Hit Remote Clienkx;
89% N\ g7yt Disk rrd

82%

NN

o

80%

72%

60% [

Server Load

40%

20% |

N\
N

\\

N\\\%
AN

AN\

7/ /
Base Direct Greedy Coord Hash Weighted N- Best

. LRU Chance
Algorithm

FIGURE 3-5. Server loads.Server loads for the algorithms as a percentage of the baseline,
cooperative-caching server load. THi Disk segment includes both the network and disk load fi
all requests satisfied at the server disk. HiteRemote Cliensegment shows the server load fo
receiving and forwarding requests to remote clients. Hihé&Server Memorysegment includes the
cost of receiving requests and supplying data from the sememoryLocal hits generate no server
load. TheOther Loadsegment includes server overhead for invalidating client cache blocks anc
answering client queries (e.g.eWhted LRU and N-Chance asks, “Is this block the last cach
copy?”).

NN
N

0%

41

A final comparison among the algorithms focuses on individual client performance rather than
the aggregate average performance. Figudllustrates the relative performance for individual
clients under each cooperative caching algorithm compared to thatsglierfdirmance in the base
case. The graph positions data points for the clients so that inactive clients appear on the left of the
graph and active ones on the right. Speedups or slowdowns for inactive clients may not be signifi-
cant, both because they are spending relatively little time waiting for the file system in either case

and because their response times can be significafetterf by adding just a few disk accesses.

One important aspect of individual performance is fairness: are any clients significantly worse
off because they contribute resources to the community rather than managing their local caches
greedily? Fairness is important because even if cooperative caching improves performance aver-
aged across all clients, some clients may refuse to participate in cooperative caching if their indi-

vidual performance worsens.

The data in Figur8-6 suggest that fairness is not a widespread problem for this workload.
Direct Client Cooperation, Centrally Coordinated Caching, and Hash Coordinated Caching slow a
few clients by modest amounts; Greedy Forwardingigiited LRU, and N-Chance Forwarding

do no harm at all.

Direct Client Cooperation | Centrally Coordinated _ Weighted LRU
58 5 8 S
e] e] i)
gé_ ‘21 I gg. g -. ° % é)_gko * + *
0 i ° [%)) K A - 7)) o, - -
I N . -1 |* N S . - 1*2.}_2’—
221 g2} g2
Sa} ERAT 24
o o o
U) 8 L L L w 8 L L L m
0 100002000030000 0 100002000030000 0 100002000030000
Number of Client Reads Number of Client Reads Number of Client Reads
o Greedy Forwarding Hash Coordinated N-Chance
> 8 2g S 8
S 3 9 S
8 4t < -§ 4 N 8 4t ° ®
('%2-%0 ¢ ° (?)-2:09 ¢ (Y *) (%2":‘0 "o *
c1 50 o o o pa - 1 > c 1 & & 2
g2} ¥ 2}
° S °
=4} = =4t
[S] 3 =]
7) 8 L L L 7) 8 U_'J 8 L L 1
0 100002000030000 0 100002000030000 0 100002000030000
Number of Client Reads Number of Client Reads Number of Client Reads

FIGURE 3-6.Performance of each individual client. Each point represents the speedup 1
slowdown seen by one client for a cooperative caching algorithm compared to thas cl
performance in the base case. Speedups are above the line and slowdowns are below is A
slowdown is defined as the inverse of its speedup, if its speedup is less than one. The x-axis ir
the number of read requests made by each client; relatively inactive clients appear near the le
of the graph, and active ones appear on the right.

42

Although one would expect the two algorithms that manage client caches greedily to be con-
sistently fair Direct Client Cooperation causes a few clients’ performance to decline up to 25%
compared to their performance without the additional cooperative cache mdimisryeduction
occurs because Direct Client Cooperation does fettefely exploit sharing among clients. The
clients’ cooperative caches are private, limiting the benefits from cooperative caching, while the
server cache hit rates decline compared to the base case because the correlation among client
access streams to the server is reduced by clients’ accesses to their remote, private caches. The
Greedy algorithm, in contrast, is always fair because the cooperative cache exploits sharing among

clients just as the central server cache does.

Although the Centrally Coordinated, Hash Coordinateeigitted LRU, and N-Chance algo-
rithms disturb local, greedy caching to some degree, the significant improvements they yield in
global caching provide a net benefit to almost all clients. This trend of widespread improvement is
dominant for Véighted LRU and N-Chance Forwarding, which hurt no clients for this workload.
Centrally Coordinated Caching damages the response of one client by 14% and Hash Coordinated
Caching hurts the same client by 29%. None of these algorithms helps a client whose working set
fits completely into its local cache, but such a client can sometimes be hurt by interference with its
local cache contents. Because the dynamic algorithreightéd LRU and N-Chance Forwarding,
interfere with local caching less than the algorithms that partition client caches statically (as was
indicated in Figure3-4), they are less likely to be unfair to individual clients. Note that the current,
central server caching approach, whereby cache memory is physically moved from the clients to

the serverwould sufer from the same vulnerability as the static division algorithms.

The measurements presented in this section suggest that any of the four coordinated algo-
rithms can significantly improve response time but that the dynamic algorithms are superior to the
static algorithms by other measures. In particutee dynamic algorithms are more likely to be
fair across all clients because they interfere with local caching less. Likewise, whileitidad-

LRU and N-Chance algorithms provide similar performance, the N-Chance algorithm is signifi-

cantly simpler to implement because it relies less on global knowledge.

3.3.2. Detailed Analysis of the Algorithms

This subsection examines the cooperative caching algorithms in more detail and evaluates

their sensitivity to algorithm-specific parameters.

43

3.3.2.1. Direct Client Cooperation

Although Direct Client Cooperation is appealingly simple, its performance gains are limited
for two reasons. First, clients do not benefit from sharing client must access disk even if
another client is caching the data it needs. Second, many clients need moreMiaofl&ddi-

tional cache to get any advantage.

Furthermore, achieving even the modest 5% improvement in the response time seen above
may be dificult. The above results were based on the optimistic assumption that clients could
recruit suficient remote cache memory to double their caches without interfering with one

another In reality the algorithm must meet three challenges to provide even these modest gains.

First, clients may not be able to find enough remote memory to significafety pérfor-
mance. Figur@-7 plots Direct Cooperationimprovement in response time as a function of the
amount of remote memory recruited by each client. If, for instance, clients can only recruit enough
memory to increase their cache size by 25%1B), the improvement in response time drops to
under 1%. Significant speedups of 40% are achieved only if each client is able to recruit about

64 MBs — four times the size of its local cache.

Interference from other clients may further limit the benefits of Direct Client Cooperation. For
instance, when a client donating memory becomes active, it will flush any othes digtat from
its memory Another client trying to take advantage of remote memaory thus sees a series of tempo-
rary caches, which reduces its hit rate because a new cache will not be warmed with its data. Stud-

ies of workstation activity [Nicholg,987, Theimer and Lant2989, Douglis and

14+ Direct Client Cooperati '
1.2} E
m 1.0

> 08|
0.6}
0.4]
0.2}

0
2MB 4MB 8MB 16 MB 32 MB 64 MB 128 MB
Remote Cache Size (Per Client)

ase

Speedu

FIGURE 3-7. Direct Client Cooperation speedupThe top line indicates the speedup compared !
the base case as a function of each cBemtnote cache size. The circle indicates the result for t
16 MB per client remote cache assumed for this algorithm in the previous section.

44

Ousterhout1991, Mutka and Livnyl991, Arpaci eal., 1995] suggest that although many idle
machines are usually available, the length of their idle periods can be relatively short. For instance,
Arpaci et al. found that 70% of idle periods during the working day lasted ten minutes opless. T
evaluate the potential impact of periodically vacating remote caches, | ran a simulation in which
clients were forced to give up remote client memory after a random period of time that averaged
ten minutes; when remote caches werdMB; performance declined by about 10% compared to

the permanent remote caches illustrated in the figurechieve performance equivalent to the
permanent remote caches simulated, clients could send evicted data (adéerdi@nt rather than

discarding it, although doing so would increase the systeamplexity

Finally, Direct Client Cooperation must dynamically select which clients should donate mem-
ory and which should use remote memdtyis problem appears solvable; if only the most active
10% of clients are able to recruit a cooperative cache, they would achieve 85% of the maximum
benefits available to Direct Client Cooperation for this trace. On the other hand, the implementa-
tion of a recruiting mechanism detracts from the algorishsimplicity and may require server

involvement.

3.3.2.2. Greedy Forwarding

The greedy algorithm provides modest gains in performance, and it is particularly attractive
because of its simplicifypecause it does not increase server load, and because itlis daiver
words, this 22% improvement in performance comes essentially for free once the clients and
server have been modified to forward requests and the 'secedlback state is expanded to track

individual blocks.

3.3.2.3. Centrally Coordinated and Hash Coordinated Caching

Centrally Coordinated Caching can provide significant speedups and very high global hit
rates. Unfortunatelydevoting a lage fraction of each cliest’cache to Centrally Coordinated
Caching reduces the local hit rate, potentially increasing the load on the server and reducing over-
all performance for some clients. This section provides detailed measurements of Centrally Coor-
dinated Caching to examine what fraction of each clerdtche to dedicate to the global cache.

These measurements also apply to the Hash Coordinated algorithm.

45

The fraction of cache that each client dedicates to central coordination determindscthe ef
tiveness of the algorithm. FiguBe8 plots the overall response time against the fraction of cache
devoted to global caching. Increasing the fraction improves the global hit rate and reduces the time
spent fetching data from disk. At the same time, the local hit rate decreases, driving up the time
spent fetching from remote caches. These two trends create a response time plateau when 40% to
90% of each cliend’'local cache is managed as a global resource. Note that these measurements do
not take increased server load into account; devoting more space to the global cache also increases
the load on the central server because local caches satisfy fewer requestfed@hizagfincrease
gueueing delays at the serveeducing overall speedups, and pushing the “break-even” point

towards smaller centrally-managed fractions.

| chose to use 80% as the default centrally managed fraction because, a8-Biguggests,
that appears to be the more “stable” part of the plateau unteredifworkloads and cache sizes.
For instance, the plateau runs from 60% to 90% witkBSclient caches for the same workload.
For lage caches, low centrally managed fractions work well because even a small percentage of a
large cache can provide a d@r cooperative cache. A high centrally managed fraction tends to
achieve good performance regardless of client cache size because ajdhdidparity between
disk and network memory access times compared to the gap between network and local memory

If the network were slowen smaller percentage would be appropriate.

3ms

o)

=

|_

o)

= Disk

S N is 1

2 1 ms o e

o Other\ A

R .- - - = @- NG

0 ms

0% 20% 40% 60% 80% 100%
Centrally Coordinated Percent

FIGURE 3-8. Response time for Centrally Coordinated CachingResponse time varies with the
percent of the cache that is centrally coordinated. Zero percent corresponds to the baselir
cooperative-caching case. Thetdl time is the sum of the time for requests that are satisfied by
Disk and the time for Other requests that are satisfied by a local or remote niEneorgst of this

study uses a centrally coordinated fraction of 80% for this algorithm, indicated by the circled pc

46

3.3.2.4. ¢ighted LRU

The Weighted LRU algorithm | simulate elsewhere in this chapter approximates the ideal
Weighted LRU algorithm, but it uses two sets of hints to reduce communication. First, once a cli-
ent finds out whether a block is a singlet or a duplicate, it assumes that the information remains
valid until it evicts the block from the cache or until it forwards a singlet to another client. If
another client reads a “singlet” from the server cache or if another client discards its copy of a
“duplicate”, the local hint can be wrong. HoweMeecause clients ask about the singlet/duplicate
status only for blocks near the end of their LRU lists, they tend to discard blocks soon after discov-

ering their status.

The second set of hints avoids computing a global minimum benefit/cost value over all clients’
cache entries. Each time a client asks the server for a block, it also tells the server the current value
of its minimum benefit/cost item; the server maintains a table containing hints about all clients’
minimums. The server then informs clients of the current global-minimum hint, including both the
lowest benefit/cost value and the client currently caching that item, in its reply to each cdiadt’
request. Clients use this global minimum value hint when evaluating the cost of forwarding a sin-

glet, and, if they do forward a block, they use the hint to decide which client to victimize.

Table3-3 summarizes the impact of those hints on cache performance. Even using the simple
simulation model that ignores queuing delays, the option that reduce network communication by
utilizing hints provides nearly the same performance as those systems that use more precise, glo-

bal knowledge.

3.5ms
o 3Mse T 4 MB/Client
-§2.5ms-\‘s\ X _ -
° x s, N /8 MB/Client
2 2mst . \ 16 MB/Client
) N)_/_\fa"- T e T
2 15msf = ‘k 2 * B
& \ 32 MB/Client
1mst 64 MB/Client
0.5 mst
0O ms

0% 20% 40% 60% 80% 100%
Centrally Coordinated Percent

FIGURE 3-9. Response time plateaul-or Centrally Coordinated Caching the plateau varies as 1
size of a cliens cache changes.

47

3.3.2.5. N-Chance Forwarding

N-Chance Forwarding also provides very good overall performance by improving overall hit
rates without significantly reducing local hit rates. This algorithm also has good server load and

fairness characteristics.

Figure3-10 plots response time against the recirculation count paramefer this algo-
rithm. The lagest improvement comes wharis increased from zero (the Greedy algorithm) to
one. Increasing the count from one to two also provides a modest improvement of about 5%;
larger values make little ddrence. Relatively low values farare efective since data blocks that
are recirculated through a random cache often land in a relatively idle cache and thus remain in
memory for a significant period of time before being flushed. When the parameter is two, the ran-

dom forwarding almost always gives a block at least one relatively long period of time in a mostly

Weighted LRU Version Response Tme

Global Knowledge 1.57 ms
Singlet Hints 1.57 ms
Singlet Hints + Benefit/Cost Hints 1.58 ms

TABLE 3-3. Impact of hints on Weighted LRU performance and communicationThe first line
shows the characteristics of the algorithm that uses global knowledge for all decisions, the st
line shows the performance when clients keep track of which blocks they believe to be singlets
the final line shows the impact of client and server hints that estimate the benefit/cost and locat
the cheapest item to replace if the system forwards a singlet. All other simulatioagbféadf LRU

in this chapter use the algorithm described in the third line because it significantly red
communication and without significantly reducing performance.

3ms
2msi
N Total
AN © -
h—\@——e-——e——Dl—Sa!(—-(
1mst
Other i
_*————@----*----*----*----
0Oms

0 1 2 3 4 5 6

Recirculation Countn
FIGURE 3-10.Response time for N-ChanceThe performance of the algorithm depends on tF
number of times unreferenced blocks are recirculated through random caches. Zero correspc
the Greedy algorithm (no recirculation). Thetdl time is the sum of the time for requests that al
satisfied by going to Disk and Other requests that are satisfied by a local or remote. Moyt
of this study uses a recirculation count of two for this algorithm, indicated by the circled points.

48

idle cache. Higher values make little additionalaetiénce both because few blocks need a third try
to find an idle cache and because the algorithm sometimes discards old cache items without recir-

culating them alh times to avoid a “ripple” éct among caches.

3.3.3. Sensitivity to Hardware Parameters

This subsection investigates how sensitive the above results are to assumptions about hard-
ware technologyit first examines the performance of the algorithms fdeifit cache sizes, and

then examines the performance as hardware performance changes.

3.3.3.1. Client Cache Size

Figure3-11 plots the performance of the algorithms as a function of the size of eachsclient’
local cache. The graph shows that the four coordinated algorithms, Centralized Coordination,
Hash Coordination, Bighted LRU, and N-Chance Forwarding, perform well as long as caches
are reasonably lge. If caches are too small, howewesordinating the contents of client caches
provides little benefit, because borrowing any client memory causegeifarease in local
misses with little aggregate reduction in disk accesses. The simple Greedy algorithm also performs

relatively well over the range of cache sizes.

3ms | -
- -~ Direct |

g \\/ irec
S 2mst : ~_Greedy.|
= C /Welghted LRU e -‘-E/Hash
3 -~ - ———Coord
c L .
5!.) \ N-Chance
& 1ms L Best |

0 ms 1 1 1 1 1 1 1 1

4 MB 8 MB 16 MB 32 MB 64 MB

Client Cache Size

FIGURE 3-11.Response time as a function of client cache memory for the algorithnrevious
graphs in this chapter have assumed a client cache sizevi {&rcled).

49

3.3.3.2. Dynamic Cache Sizing

Many modern file systems dynamically adjust the size of each slEatthe in response to the
demands of virtual memory [Nelsonadt, 1988]. Although the simulations examined earlier in
this chapter did not dynamically change cache sizes, cooperative caching may be even more

attractive for systems that do so.

Current systems’ dynamic cache sizinfgefively reduces the size of the most active clients’
caches: clients will have their smallest caches exactly when they need their caches the most! This
effect reduces clients’ local hit rates and makes them even more dependant on the improved global
hit rates provided by cooperative caching. At the same time, dynamic cache sizing allows idle cli-
ents to supply very lge amounts of cache memory to the global cooperative cache, improving the

global cooperative cache hit rate.

To verify these décts experimentallyl simulated a system assuming that the cache sizes of
the ten most active clients were halved, while those of the ten least active clients were doubled.
This assumption may be conservative; in many systems, most clients are idle most of the time

[Arpaci etal., 1995].

Table3-4 summarizes response times, comparing N-Chance Forwarding to the base case.
Although smaller local caches hurt the performance of the most active clients and thus hurt overall
performance, cooperative caching reduces tliecefN-Chance Forwarding’speedup compared
to the base case was 83% under this simple simulation of dynamic cache sizing, compared to 73%

for the system with client cache sizes that were static.

3.3.3.3. Server Cache Size

Because cooperative caching attacks the same problem that central server cachgs do, lar
central server caches reduce the benefits of cooperative caching.3Fifuikustrates the &fct

of varying the size of the central server cache. Increasing its size significantly improves the base,

Base N-Chance | Speedup
Static Cache 275ms [1.59ms |1.73
Dynamic Cache | 3.05ms | 1.66 ms | 1.83

TABLE 3-4. Read response timeThese results are for the Base and N-Chance algorithms un
both the default Static Cache assumptions and simple assumptions meant to repregeatstiof ef
Dynamic Cache sizing. Dynamic cache sizing was simulated by halving the cache size of tr
most active clients and doubling the cache size of the ten least active clients.

50

no-cooperative-caching case, while only modestly improving the performance of the cooperative
algorithms that already have good global hit rates. Féicmiftly laige server caches, cooperative
caching provides no benefit once the server cache is aboug@asi$athe aggregate client caches.
Such a lage cache, howevewould double the cost of the systenmemory compared to using
cooperative caching. Note that when the server cache is vgey @Gentrally Coordinated Caching

and Hash Coordinated Caching perform poorly because their local hit rates are degraded.

Although it would appear that server memories would increase in size and make cooperative
caching less attractive over time, Fig@r&2 showed performance for a workload that was gener-
ated in 1991. The technology trends discussed in Chapmaggested that workloads tend to
increase in size nearly as quickly as memories. Thus, | expect the performance advantage of coop-

erative caching to remain significant in the future.

3.3.3.4. Network Speed

One of the motivations for cooperative caching is the gemme of fast, switched networks.
10 Mbit/s Ethernet-speed networks, even if switched, are too slow to dereldanefits from
cooperative caching because transferring a block from remote memory takes almost as long as a
disk transferFortunatelyemeging high speed networks, such aBVi Myrinet, and 10Mbit/s
Ethernet, promise to be fast enough to see significant improvements. FiRinglots response
time as a function of the network time to fetch a remote block. For an Ethernet-speed network,

where a remote data access can take neantysl@he maximum speedup seen for a cooperative

3ms ¢ B i
= — ase
-~ éDirect
- <~ Greedy T
GE) - “ - - - -A/_<_ _E\
£ 2ms | Hash -~ -
[Coord ™
9] * ')// 4 \\ £ £
0 S— R o~
T\ = -
o \Wei hted LRU
a N-Chance
o 1lmst Best g
o ms ! ! ! ! ! ! ! !
64 MB 128 MB 256 MB 512 MB 1024 MB

Server Cache Size

FIGURE 3-12.Response time as a function of size of central server cachee circled points
highlight the results for the default 1R server

51

caching algorithm is 20%. If, howevyeretwork fetch times were reduced tm§, for instance by

using an AM network, the peak speedup increases to over 70%. This graph shows little benefit
from reducing a network’block fetch time below 10@s because once the network is that fast, it

is not a significant source of delay compared to the constant memory and disk times assumed in

the graph.

Although any of the coordinated algorithms used in this study can provide nearly ideal perfor-
mance when the network is fast, the dynamiighted LRU and N-Chance Forwarding algo-
rithms appear to be much less sensitive to network speed than the static Centrally Coordinated and
Hash Coordinated algorithms. Static partitioning of client memory only makes sense in environ-
ments where accessing remote data is much closer in speed to accessing local data than going to

disk. Otherwise, the reduced local hit rate outweighs increased global hit rate.

3.3.3.5. Future Projections

Figure3-14 projects the performance of cooperative caching in the future, assuming the trends
in technology outlined in Chapt@rand summarized inable3-5 continue. Since cooperative
caching replaces disk transfers with network transfers, and since network speeds are improving
more rapidly than disk speeds, cooperative caching performance improves relative to the base case
over time. Howeverthis relative improvement is a modest one because, as Biuseiggests,

disk access time dominates response time even under cooperative caching; improvements to other

6ms T T T T T T

&

5ms

(O]

£

'_

o 4ms i
2]

c

5]

2 3ms Base

g : Direct

e — + — — — —=Greedy

Zomst 0 N0 T B e |
3]

x

Weighted LR e/
Imst N-Chanc 7
Bes

0Oms 1 1 |

10 ms 1ms 100pus | 10us
Remote-Memory Accessme

FIGURE 3-13.Response time as function of network speedhe x axis is the round trip time it
takes to request and receive akBB packet. Disk access time is held constant an&5and the
memory access time is held constant at[2&0For the rest of this study | have assumed|Z0per
hop plus 40Qus per block transfer for a total remote fetch time of @9@request-reply excluding
memory copy time), indicated by the vertical.bar

52

technologies do not change total response time significantly once networks are “fast enough.” For
instance, the speedup for N-Chance Forwarding increases from 73% in 1994 to 87% in 1999 under

these assumptions.

Note that this projection accounts for neither the increase in memory sizes expected in the
future nor the expected increase in disk and workload sizes. These trgetisdéiset each other
[Baker etal., 1991], resulting in little increase infettive cache size. Figur8sll and 3-12 sug-
gest that significant increases ifeetive cache sizes would reduce the need for cooperative cach-

ing slightly because they would reduce the need to manage memory carefully

3ms T T T T T T T T T

2ms

1ms

Read Response Time

0O ms 1 1 1 1 1 1 1 1 1
1994 1995 1996 1997 1998 1999

Year of Projected Technology

FIGURE 3-14.Cooperative caching esponse time under assumed technologyetrds. Note that
while the absolute diérence (measured in milliseconds) between cooperative caching and the
case falls over time, the relative fdifence (e.g. the speedup) increases, suggesting that cooper
caching will become more valuable in the future.

Coop. Cache Performance

Parameter Trend 1994 1995 1996 1997 1998 1999

Memory Copy 40% 250us 179us 128us 91us 65us 46us

Net Overhead 20% 200us 167us 139us 116us 96 us 80us
Bandwidth 45% 400us 276us 190us 131us 90us 62us

Disk Overhead 10% 11,000us| 10,000us| 9,091us| 8,264us| 7,513us| 6,830us
Bandwidth 20% 4,000us 3,333us| 2,778us| 2,314us| 1,929us| 1,608us

TABLE 3-5. Technological tends.Summary of technological trends relevant to the performance
cooperative caching. For more detail, see Chaptatthough this table assumes that performance «
all aspects of the system continuously improve, in facferdifit parts of systems improve
discontinuously as users upgraddeatiént pieces of their systems atfeliént times. Howeveover
the long term, performance upgrades should resemble the trends outlined here.

53

3.3.4. Other Wrkloads

To evaluate the performance of cooperative caching over a wider range of environments, the
next three subsections simulate the algorithms using several additional workloads. The first sub-
section uses several other Sprite traces, and the next subsection looks at cooperative caching per-
formance for a system with more clients than Sprite had. Firiadlgtion3.3.4.3 uses synthetic

workloads to bound the worst-case performance of the algorithms.

3.3.4.1. Other Spriteraces

Figure3-15 illustrates the response time for the algorithms under four additional Sprite traces
gathered by Baker et al. [Bakeradt, 1991]. Each trace covers a two-day period and includes the
activity from all Sprite servers. The third graph, labeledc&s5 and6, covers the same time
period examined in the previous sections, but it includes the activity of file systems exported by all

servers as opposed to the single file server trace examined previously

Traces 1 and 2 Traces 3 and 4
amst 388 549 Local max- 10ms 40 Local S
N\ Server Memory: 9.12 917 Server Memory
Vo4 3.1 Remote Clienkxx 7 / 77877 Remote Clientxxx
3ms / A Server Diskooa | 8m

i % ? /% Server DiS|<IIL:

)
3
b
¢

Response Time
N
3

NN

1ms % % % ? om
Base DirectGreedyCoord Hash Wght. N Best ome !
Algorithm LRU Chance Algorithm LRU Chance
5 me Traces 5 and 6 Lemer Traces 7 and 8 ,
TOUPE 1t Sl NN >
L 7 Server Diskese ¢ 1.4ms|
S s
0 S . L
AR
6mst
A
55555 -
| DODOADDOCL Y. | " 7
Base DirectGreedyCoord Hash Wght. N- Best Base BuddyGreedyCoord Hash Wght. N- Best

A|gor|thm LRU Chance Algorlthm LRU Chance

FIGURE 3-15.Response time for four two-day Sprite traces.The traces are labeled by their
names in [Baker &l., 1991], which analyzed each day separafBhe graph labeledrdicess and6,
covers the same time period examined in the previous sections, but it includes activity to file sy
exported by all servers as opposed to the single file server trace examined preNimtestiiat the
graphs have diérent scales for their y-axis.

54

The results for these traces follow the previous results in most respects. Cooperative caching
provides significant speedups for all of the traces, with the best performance coming from the
coordinated algorithms in general and the dynamic, coordinated algorithms in parfiCidar
numerical speedups observed, howgvary significantly from trace to trace. The first, third, and
fourth pairs of traces (traces 1 and 2, 5 and 6, 7 and 8) show results qualitatively similar to the ear-
lier ones. For instance, N-Chance Forwarding provides speedups of 2.51, 1.38, and 1.27 for these
traces. The diérences among these traces relates to the amount of data touched by the workloads.
In traces 7 and 8, the workload touches relatively little data, so all of the algorithms that share cli-
ent caches work well.rices 5 and 6 access more data than will fit in the syst@@rmory so
even the unrealistic best case algorithm has a relatively high response time ras2f0d this
trace, the dynamic coordinated algorithms manage memory better than the less sophisticated algo-
rithms. For traces 1 and 2, the working set just barely fits in the sgsteemiory; the unrealistic
best-case algorithm has no capacity misses, but all of the other algorithms do. Again, coordination

of memory proves to be important for achieving good results.

For traces 3 and 4, N-Chance Forwarding achieves a remarkable speedup of 9.29, and the
other coordinated algorithms perform similaflyhe dominant activity during this trace is a single
user processing lge, trace files [Baker al., 1991]. Because that usemworking set does not fit
in a machines local memorythe base, Direct, and Greedy algorithms ardeat¥e. The remain-
ing algorithms that coordinate client memories do quite well, and dynamic coordination is not vital
because, although the useworking set is too lge for a single machine, it is small compared to

the systens total memory resources.

Figure3-16 shows the server load for the four sets of Sprite traces; cooperative caching does
not appear to significantly increase load compared to central server cachiragds T and 2 and
in Traces 3 and 4, cooperative caching may reduce server load skgiulin Taces 5 and 6 and
Traces 7 and 8, it increases load by at most 20%. As noted daeltiause there are several other
significant sources of server load, the impact of cooperative caching on total server load may be
even less than indicated in the graphs. Also note that the Direct algorithm sometimrasdm Il
and 2) reduces load compared to the base case because clients can cooperate without accessing the
server Similarly, for all of the traces, the Hash Coordinated algorithm reduces load compared to
the Centrally Coordinated algorithm because clients access the cooperative cache without access-

ing the server

55

3.3.4.2. Berkeley Auspex &kload

The Berkeley Auspex workload provides another set of data points to evaluate cooperative
caching. This workload traces the NFS file system network requests foli®% in the U.C.
Berkeley Computer Science Division that were serviced by an Auspex file server during one week
of Octobey 1993. As in the Sprite traces, the users consist primarily of computer science research-
ers and stéf At the time this trace was gathered, the departméntspex file server had 64B
of file cache and most clients had betweetM®and 64MB of DRAM. The simulations, how-
ever use the same parameters as they do for the Sprite traddB dbfile cache per client and

128 MB of server cache.

This trace difiers from the Sprite traces in three ways. First, it is more recent; this traces was

gathered in late 1993, while the Sprite traces were gathered in 1991. Second, it includes the activ-

Traces 1 and 2

Traces 3and 4

120% 120%
° T Oter oot
100% . ! | 100% Hit Server Memory: |
P FiRemete Qe
T 80% & 19% ooy, 80% 18 80% v
NS wL AR m
o 60% \ \ R XX 540 |3 60% 60% 61%
c] NN N R : o
= NNNNNE e
X KU §xes
N N 20% -
ede
0% X4 XX
B 0 DirectGreedyCood Hash R'ChN- Best
n
Algorithm -RY Chance Algorithm e
120% Traces 5 and 6 Traces 7 and 8
114%
0 100% 2% 10106 5% V 120% = 1099 L12%
100% | == o920 92% 77. / % 1 100%| 200% 7/ V
g son Y Q & ‘ . o i % 90% A A 87%
o V7P N &R bl 75% — —
- \ \ N KR (XX (XX | | g 80%
3 60% \ \ \ NN QA{ RN (XX Iz 609
T NN N N B NN b | b b
0 0 \ \ \ \ \ \ \ \ o) \ \ AP %% RS R R
40% \\\\‘\‘\\‘\‘
- DNANANRN |~ NNIINNNN
NIRRT g N N
- NNNNNNNN | .. NNNNNNNN

yCoord Hash Wght. N-
. LR
Algorithm

Base DirectGreedyCoord Hash Wght. N-

. LRU Ch
Algorithm ance

FIGURE 3-16.Server loads for the algorithms.Loads are expressed as a percentage of 1
baseline, no-cooperative-caching server load for the, fowo-day Sprite traces. The traces ar
labeled by their names in [Bakeradt, 1991], which analyzed each day separafeie graph labeled

Tracesb and6 covers the same time period examined in the previous sections, but it includes ac
to file systems exported by all servers, as opposed to the single file server trace examined prev

56

ity of a much lager number of clients; the Berkeley Auspex workload tracks the activity of 237
active clients while Sprite had fewer than 50. Thgdanumber of clients provides an extremely
large pool of memory for cooperative caching to exploit. Third, this seven-day workload covers a
longer period of contiguous time than any of the two-day Sprite traces; this reduces the impact of
start-up efiects. The simulator uses the first one million read and write events to warm the caches

and gathers statistics during the remaining four million events.

The trace has one major limitation, howevémwas gathered by snooping on the network;
because of this, it does not include clients’ local hitsapproximate the response time results
based on this incomplete trace, | use Smitack Deletion method [Smith977]. Smith found
that omitting references that hit in a small cache made litfierdifce in the number of faults seen
when simulating a lger cache. The actual miss rate can be accurately approximated by dividing

the number of faults seen when simulating the reduced trace by the actual number of references in

the full trace! As a further refinement, | used thead attribué requests present in the trace to

more accurately model the local client LRU lists. NFS uses read-attribute requests to validate
cached blocks before referencing them. The simulator can, therefore, use read-attribute requests as
a hint that a cached block is being referenced even though the block requests do not appear in the
trace. The attribute requests still provide only an approximation — an attribute cache hides
attribute requests validated in the previous three seconds, and not all read-attribute requests really
signify that a files cached blocks are about to be referenced — but they do allow the simulator to

infer some of the “missing” block hits.

Although the results for the Auspex workload are only approximate, they support the results
seen for the Sprite workloads as Fig8¢&7 indicates. The relative ranking of the algorithms
under the Auspex workload follows the results for the Sprite workload: Centrally Coordinated
Caching, Hash Coordinated Cachingeigted LRU, and N-Chance Forwarding work nearly as
well as the best case, and the Greedy algorithm also provides significant speedups; Direct Cooper-

ation provides more modest gains. This result is insensitive to the “inferred” hit rate; the exact

1. Unfortunately the Auspex trace does not indicate the total number of references. For the results i8-Efgure
assume a “hidden” hit rate of 80% (to approximate the 78% rate simulated for the Sprite trace), giving a maximum
speedup of 2.02 for cooperative caching. If the local hit rate were hahef the bars would have a slightlyder
constant added and thefdiiences among the algorithms would be smaller (e.g. a 90% local hit rate reduces the best
case speedup to 1.68). If the local hit rate were |otverdiferences would be magnified (e.g. a 70% local hit rate
gives a best case speedup of 2.22).

57

speedup predicted for the Auspex workload depends on the inferred hit rate, but cooperative cach-

ing provides significant advantages over a wide range of assumed local hit rates.

Figure3-18 shows the impact cooperative caching has on server load for the Auspex work-
load, and the results generally follow the same pattern as for the other workloads. Héveever
Hash Distributed Caching has a higher load than the Centrally Coordinated algorithm. Because of
the lage number of clients for this workload, the static hash function reducedabtvehess of
the global cooperative cache compared to the centrally coordinated version. As a result, more
requests are satisfied by the server cache in the Hash algorithm than in the Centrally Coordinated

one.

Inferred Local Hitsx\x\~
1ms | Local
Server Memory:
GE) 0.8ms L Remote Clientaxx
= 0.70 ms Server Disk-sreres.
Q 0.6 ms - Q .
@ : §\ 0.55 m50-5%n5 0.52 ms0.52 ms 0.51 ms
o
o 0.4 ms + V \ 4
0 NN
o5}
o 0.2ms | / E
9% %%
oms) T4 70 70 4 7/

Base Direct Greedy Coord HashWeighted N- Best
Algorithm LRU Chance
FIGURE 3-17.Response time for algorithms under the Auspex workloadThe Inferred Local

Hits segment indicates an estimate of the amount of time spent processing local hits that do not
in the incomplete Auspex traces, assuming that the traced system had an 80% local hit rate.

120%
100% Hit Ser\gtrhlslrelﬁgc?rd -
100% 0 94% Hit Remote Clien){(xxx?
T 80% 76% 86% \\\ Hit Disk soros
g U g 0 74% ’
2 60w / V 63% N
g 20T % / NN\ 55% -
B 40% |- / 8/88 |
20% | / / / % o 55 -
0% 7. A A % /A /A %

Base Direct Greedy Coord Hash Weighted N- Best
Algorithm LRU Chance

FIGURE 3-18.Server load for the algorithms.Load is expressed as a percentage of the baseli
no-cooperative-caching load for the Auspex trace.

58

3.3.4.3. \Mrst-case \Wbrkloads

Although the above results suggest that cooperative caching can provide significant speedups
compared to central server caching, the algorithms can interfere with clients’ local caching. Coop-
erative caching can therefore conceivably hurt performance for some workloads. This section
bounds the worst case performance of cooperative caching and finds that (1) cooperative caching
degrades the performance of very few workloads, and (2) even in the worst cases, cooperative
caching hurts performance only slightly compared to the base case. Thus, it appears that coopera-

tive caching is worth the risk for most types of workloads.

The coordinated algorithms- Centrally Coordinated Caching, Hash Coordinated Caching,
Weighted LRU, and N-Chance Forwardirg can potentially hurt a systesnperformance com-
pared to greedy algorithms. Three factors determine when these algorithms hurt performance: the
working set size of the clients, the load imbalance among the clients, and the degree of data shar-
ing among clients. This section uses a synthetic workload to control these key factors and examine
their impact on the performance of the coordinated algorithms compared to the greedy algorithm

as well as to the base case.

The synthetic workload controls the three criteria independdtaish client has a set of “pri-
vate” data, the size of which determines the clefworking set size.” Clients access data in
bursts that are on average much longer than their local cache size; the simulator randomly deter-
mines the number of requests in each string of accesses by generating a uniform random number
between 0.1 and ten times the cache size. The length of time between s lwliest§ controls the
systems load balance. If the interval between bursts is short (i.e. 0), then all clients are constantly
active, and there is never even a temporary load imbalance to exploit. On the other hand, if the
inter-burst time is long, then during a clienburst, it is likely that most other clients are inactive,
which means that the active clients can exploit the resources of idle ones., Feallyorkload
controls the degree of sharing by allowing a fraction of each diesguests to go randomly to
other clients’ private data. If 100% of requests go to a clignivate data, there is no sharing,

while if 0% of a client$ requests go to private data then all data are shared equally

The simulations in this section fix the number of clients at ten and the size of client caches at
ten elements per client. Furthéturn of server caching and use the same base assumptions about
technology as in the previous sections: a local hit takesu258 server hit takes 1,088, a
remote client hit takes 1,258, and a disk hit takes 15,8886.

59

Based on these simulations, it appears that the dynamic, coordinated algoritigigetlv
LRU and N-Chance Forwarding, can only hurt performance in a restricted set of casesdlwhen
three parameters take “bad” values: when clients are accessing a working set sliggtlyhkar
their local caches, when load is almost completely balanced across machines, and when there is
virtually no sharing of data among machines. Furthecause the local miss penalty is relatively
small when data are found in remote memtrg worst-case degradation is limited to about 20%.
However the static Centrally Coordinated Caching and Hash Coordinated Caching algorithms
degrade performance compared to the base case under a wider set of conditions and can hurt per-
formance more than the other algorithms because they can hurt both local and global hit rates in

degenerate cases.

Working Set Size

The sizes of clients’ working sets determine the degree to which cooperative caching can hurt
performance in the rare cases when it degrades performance compared to the base case. If working
sets are small enough to fit into local client caches, then cooperative caching is not be invoked, and
it cannot hurt performance. If, on the other hand, clients have extrengdywarking sets, then
they spend most of their time going to disk with or without cooperative caching. In that case, the
additional network latencies imposed by incorrect cooperative caching coordination decisions

make little diference to average performance.

Figure3-19 illustrates the performance of the cooperative caching algorithms and the base
case as a function of working set size. Note that the other synthetic load parameters are set to the
worst case for cooperative caching: 100% of each dietttesses go to its local data set, so no
data are shared, and all clients are always active, so there is no idle memory to exploit. As a result,
as the working set size increases above 100% of the local cache size, an increasing number of

requests have to go to disk, regardless of the algorithm used.

For this workload, the base and Greedy algorithms provide the best performance over the
entire range of working set sizes; because there is no sharing and no idle nleengygtem does
best when clients do not interfere with one andtheaches. The ®ighted LRU and N-Chance
algorithms provide slightly inferior performance when the working set sizegierldran the cache
size because clients forward data to one anotbducing their local hit rates without improving

the systens global hit rate.

60

Despite the fact that cooperative caching cannot possibly help this workload, the worst-case
degradation is small for N-Chance aneighted LRU. At worst, their performance is 20% worse
than the base case when the working set size is 1@f#r ldran local caches. For small working
set sizes, the system does not invoke cooperative caching &ac suf degradation. For &
working set sizes, disk accesses dominate the response time, but the algorithms Haeée o ef

the time spent accessing disk because they do not change the global hit rate.

Centrally Coordinated Caching $eifs poor performance over a wider range of working set
sizes. Because this static algorithm uses only 20% of each<ligcdl! cache for local data, client
performance begins to degrade when the size of the working set grgesstlean 20% of a cli-
ent’s local cache. Furthebecause this version of the algorithm allows duplication between the
local and centrally coordinated portions of the caches, thetiok size of the global cache is just
80% of the sum of the client caches. Therefore, disk access rates begin to rise sharply once the
working set size is lger than 80% of a clierst’cache size. Although not shown in the graph, the
performance of Hash Coordinated Caching or traditional, central server caching is comparable to

that of Centrally Coordinated Caching.

12 msl Centrally Coordinated>_ -7
Weighted LRU

mlo ms} N-Chance
c Greedy
= Base
= 8 ms}
(5]
D)
c
8_ 6 ms}
0
i

4 ms| .

2 ms} !

0 ms
0% 50% 100% 150% 200% 250% 300% 350% 400% 450% 500%
Working Set Size (% of Local Cache Size)

FIGURE 3-19.Effect of working set size.The efect of working set size on cooperative caching
performance when sharing and burst-size are set to their worst case values -- no sharing and 1
between bursts. The x axis indicates the amount of private data from which clients randomly :
their accesses as a percentage of their local cache size, and the y axis indicates the response 1
instance the data points atx200% show the response time when each client touches twice as r
data as will fit in its local cache.

61

Load Balance

Coordinated cooperative caching algorithms exploit load imbalances by using idle clients to
supply data to active clients. Figu8€20 illustrates the &fct of varying the load balance in the
otherwise worst-case situation where clients touch strictly private data with a working set 1.1
times the size of their local caches. When there is little or no load imbalance to exploit, the base
case and Greedy algorithm do the best. Howeasthe inteburst time increases, active clients
can exploit the resources of idle clients, increasing the benefit of both the static and dynamic coor-
dinated algorithms. Once the igurst time is equal to the burst time, the dynamic coordinated
algorithms outperform the base and Greedy algorithms, even for what is otherwise the worst case

scenario for those algorithms.

Sharing

Both the Greedy and coordinated algorithms exploit client sharing by allowing clients to
access data from one anotlseraches. Figurg-21 illustrates this &ct by varying the fraction of
requests that go to local data from 0% (no locality) to 100% (no sharing) with all machines active
all of the time and with the workings set 1.1 times the size of a sliltial cache. Near the left
edge of the graph, widespread sharing allows all varieties of cooperative caching to outperform the

base algorithm despite the lack of load imbalance and the awkward working set size. As locality

6 ms

S5mst """ cro----a .
g 4 mst . .
= . /Centrally Coordinated
() Se L
0 3 mst
c
o
Q
8 2 : Base

mst N
na ‘/‘/Greedy
Weighted LRU—"_
1 msy N-Chancé
0 mslLL€SS Load Imbalance . _More Load Imbalande
0.01 0.1 1.0 10

Inter-Burst Time (Fraction of Cache Size)

FIGURE 3-20.Effect of load imbalance.Each client waits for a random intearst time between

0.01 and 10 times the average cache size and then fieebuft of requests. The size of the bursts
a random, uniform number between 0.1 and 10x the local cache size. Clients do not share d¢
the working set size is 1.1 times the local cache size. Note that when the average bgesttisalar

the working set size, clients tend to revisit data during a burst.

62

increases towards the right of the graph, all algorithms except the Centrally Coordinated one show
significant improvements in performance. When there is no sharing, the base and Greedy algo-
rithms perform best; howeveahe Weighted LRU and N-Chance algorithms outperform them for

all but the most insular workloads.

3.3.5. Summary of Simulation Results

N-Chance Forwarding is a relatively simple algorithm that appears to provide very good per-
formance over a wide range of conditionsigtited LRU provides similar performance but may
be more complex to implement. Centrally Coordinated and Hash Distributed Caching can also
provide very good performance, but they are more likely to degrade the performance of individual
clients, they depend heavily on fast network performance to make up for the reduced local hit rates

they impose, and they increase server load compared to the dynamic algorithms.

The Greedy Forwarding algorithm appears to be the algorithm of choice if simplicity is para-
mount. Although the Direct Cooperation algorithm is also simple, it is much festief because

it does not exploit the fact that clients share data.

10 ms

8 ms

Response Time
(o)}
3
[%2)

4 MSIN_Chance—> * . ~

2ms

Xy

m No Locality . . ~ No Sharing
0% 20% 40% 60% 80% 100%

% of Requests to “Private” Data

FIGURE 3-21.Effect of sharing. Each client accesses the indicated percentage of data from
private working set and randomly accesses blocks from all other clients’ private sets. In
respects the workload represents the worst case for the coordinated algorithms with no intel
interval (all clients are always active) and with working set sizes 1.1 times the size of each cl
local cache.

0

63

Finally, consider the alternative to cooperative caching: physically moving more memory
from clients to a traditional, central server cache. The results of this section show that distributed,
dynamic cooperative caching is a morteetive way to oganize memory than static, traditional

central server caching for at least six reasons.

» Cooperative caching provides better performance.

Central server caching is equivalent to the Centrally Coordinated algorithm and provides sim-
ilar performance: moving 80% of client cache memory to the server yields improvements of 66%
and 93% for the Sprite and Auspex workloads compared to the standard distribution of. memory
These speedups are good, but they fall short of equalling the N-Chance algorithm because of their
lower local hit rates of 64% and 44% (compared to 77% and 66% for N-Chance) resulting from

smaller local caches.
» Dynamic cooperative caching is more fair to individual clients.
Static allocation of the global/local caches is more likely to provide bad performance for some
individual clients as was seen in Figa® for Centrally Coordinated Caching.
» Dynamic cooperative caching provides better worst-case performance.
As indicated by the Centrally Coordinated algorithiimies in Figure8-19 through 3-21, cen-
tral server caching can perform poorly for a relatively wide range of workloads.
» Dynamic coordination is less sensitive to network speed.
A system with more cache memory at the server and less at the clients is sensitive to network
speed as was seen in FigBr&3 for Centrally Coordinated Caching. If the performance of net-

works falls compared to the performance of local mepmagrving memory to the server becomes

less attractive.

 Central server caching increases server load.

Reducing the size of local client caches can increase server load because the server then trans-
fers more data from its memory to clients. The load for reads under a traditional caching system
with the enlaged central cache is 50% higher than for N-Chance Forwarding under the Sprite

workload.

- Large, central server caches stress server memory capacity

64

Configuring servers with lge amounts of memory may be less cofetifve than spreading
the same amount of memory among the clients. For instance, 80% ofNti& dficache memory
for the 237 clients in the Auspex trace would b&E of memory which would demand an

extremely expandable and potentially expensive server

3.4. Related \&rk

This chapter evaluates the performance benefits and implementation issues of cooperative
caching. Its primary contributions are evaluating realistic management algorithms under real file

system workloads and a systematic exploration of implementation options.

Leff et al. [Lef etal., 1991, Lef etal.,1993b, Lef etal., 1993a] investigate remote caching
architectures, a form of cooperative caching, using analytic and simulation-based models under a
synthetic workload. Wo important characteristics of their workload were that the access probabil-
ities for each object by each client were fixed over time and that each client knew what these dis-
tributions were. Ldffound that if clients base their caching decisions on global knowledge of
what other clients are caching, they could achieve nearly ideal performance, but that if clients

made decisions on a strictly local basis, performandersat

The studies in this chapter f@if from Lef’s studies in a number of important ways. First, this
chapter includes actual file system reference traces as a workload, allowing it to quantify the bene-
fits of cooperative caching achievable under real workloads. A second major feature of this study
is that it has focused on getting good performance while controlling the amount of central coordi-
nation and knowledge required by the clients rather than focusing on optimal replacement algo-

rithms.

Franklin et al. [Franklin edl.,1992] examined cooperative caching in the context of client-
server data bases where clients were allowed to forward data to each other to avoid disk accesses.
The study used synthetic workloads and focused on techniques to reduce replication between the
clients’ caches and the server cache. The server did not attempt to coordinate the contents of the
clients’ caches to reduce replication of data among the clients. Their “Forwarding—Sending
Dropped Pages” algorithm is similar to my N-Chance Forwarding algorithm, but they send the last

copy of a block to the server cache rather than to another client.

65

Feeley et al. [Feeley at., 1995] implemented unified bief cache that implemented coopera-

tive caching for both file system and virtual memory pages. They implemented a global, coordi-
nated, dynamic algorithm similar toaighted LRU, but used epochs to limit the amount of global
knowledge required by the implementation. One set of microbenchmarks indicated that this algo-
rithm provided better performance than N-Chance Forwarding when free memory was scarce and
distributed unevenly across machines. Future work is needed to determine if a small amount of
global knowledge can be added to N-Chamcahdomized load balancing to retain the simplicity

of the N-Chance algorithm while providing good performance in memory-constrained environ-

ments.

Blaze [Blaze1993] proposed allowing file system clients to supply hot data to each other
from their local on-disk file caches. The focus of this work was on reducing server load rather than
improving responsiveness. He found that the use of client-to-client data transfers diyoarTic
hierarchical cachingand avoided the store and forward delays experienced by static hierarchical

caching systems [Muntz and Honeyma@92].

The idea of forwarding data from one cache to another has also been used to build scalable
shared memory multiprocessors. DASH hardware implements a scheme similar to Greedy For-
warding for dirty cache lines [Lenoski&t, 1990]. This policy avoids the latency of writing dirty
data back to the server when it is shared. The same optimization could be used for a cooperative
caching file system that uses delayed writes. Several “Cache Only Memory Architecture”
(COMA) designs have also relied on cache-to-cache data transfers [Hageedtgd98P, Rosti
etal., 1993].

Other researchers have examined the idea of using remote client memory rather than disk for
virtual memory paging. Felten and Zahorjan [Felten and Zahdrg#®1,] examined this idea in the
context of traditional LANs. Schilit and Duchamp [Schilit and Duchat®@1] scrutinized using
remote memory paging to allow diskless portable computers, and Iftode et al. [Ifedd4&$33]
explored using memory servers in parallel supercomputers. Comer afige@nifroposed a com-

munications protocol for remote paging [Comer andfiegh,1992].

66

3.5. Conclusions

The advent of high-speed networks provides the opportunity for clients to work closely
together to significantly improve the performance of file systems. This chapter examined the tech-
nique of cooperative caching and concluded that it can reduce read response times by nearly a fac-
tor of two for several of the workloads studied and that a relatively simple algorithm allows clients

to efficiently manage their shared cache.

This analysis of cooperative caching algorithms suggests that coordinating the contents of cli-
ent caches is vital to providing good global hit rates as well as good overall performance. This
analysis further suggests that the N-Chance algorithm proposed here achieves such hit rates with-

out hurting local hit rates and without requiring excessive server coordination.

67

4Distributed Disk Storage

The serverless systesndistributed disk storage subsystem stores all of the sygsthmrable
state, including file data blocks, metadata blocks, and data structures used internally by other parts
of the system. The performance, availahilitgd scalability of the storage system is therefore cru-
cial to the goals of the file system as a whotepiiovide high performance, the disks must allow
high bandwidth access to a single file or to multiple files by one or more clients, but the disks
should also handle small file writedieiently [Baker etal.,1991]. The system should therefore
distribute data across multiple disks and machines for parallelism, but it should still sufyport ef
cient small writes. @ provide high availabilitythe system must allow continued access to the data
when some machines fail, and it must provide support to help higher levels of the system recover
after crashes.drdo this, the system should store data redundamtty/it should provide some sort
of reliable logging mechanismoTmeet the scalability goals, the system shodldiefitly support
hundreds or thousands of disks. It should therefore control the parallelism of disk striping indepen-
dently from the number of disks, and it should allow the amount of redundant data in the system to

increase as more disks are added.

Fast, scalable networks enable scalable, distributed storage systems by making it possible to
harness disks from d&rent machines in parallel, using the network as an 1/O backplane. When
disks are distributed across multiple machines connected by a fast network, a single client can
write to the disks at a rate limited only by that clism&twork link, and multiple clients can access
the systens disks at a rate limited only by the sum of the disks’ bandwidths or the aggregate net-
work bandwidth of the system. Also, by distributing disk storage across multiple machines and by
storing data redundantlthe system can ensure that all data blocks are available, even if some of
the machines or disks crash. Finathst networks make distributed disk storage scalable. Because
the disks are located on multiple machines, no single maslpnacessomemory network link,

or I/O bus limits the systemthroughput. Even if all of the machines’ I/O busses are saturated, for

68

instance, the system can increase its raw disk bandwidth by connecting new machines and disks to

the network.

Several disk storage systems that support subsets of the serverless storage gyaleimave
been built. As | discuss in Sectidr6, howeverwhile these systems provide parallel disk storage,

few provide scalabilityhigh availability or support for small writes.

One system, Zebra [Hartman and Ousterht@®5] does meet many of the serverless storage
system$ goals. Zebra’ log-based, network striping combines the ideas of Redundant Array of
Inexpensive Disks (RAID) [Pattersonadt, 1988, Chen edl., 1994] and Log-structured File Sys-
tems (LFS) [Rosenblum and Ousterhdi#t92, Seltzer adl.,1993] and adapts them for distrib-
uted storage. The combination of redundant storage and log structured storage provides the high
bandwidth and high availability of RAID with the straightforward crash recovery and good small-
write performance of LFS. Howevetebras scalability falls short of that needed by a serverless
system because all client writes involve all of the systatisks, because Zebra relies on a single,
sequential log cleaner to garbage collect free disk space to use for logging writes, and because

Zebra relies on a single, sequential metadata manager

This chapter describes a design that addresses the limitations of the Zebra system to make
large-scale, log-based striping practicab improve performance and availability employs
stripe groups like those proposed fogaRAIDs, and to prevent the log cleaner from throttling
throughput it exploits distributed cleaning. Furthermore, the next chapter will describe thgy syner
between this design and the distributed manafez distributed manager coordinates metadata
without limiting the throughput of the disk storage system, and the distributed storage system’

redundant, log-structured storage system enables distributed manager crash.recovery

The rest of the chapter proceeds as follows. First, Se¢tloexamines how HartmanZebra
system combines RAID and LFS for distributed, log-based storage, and it compares log-based,
network striping to alternative network disk architectures. The next two sections describe
enhancements to Zebra to make that design scale well: Sé@iaescribes stripe groups, and
Sectiord.3 presents the design of a distributed cleah®e next section investigates how to use
the serverless systeslaige, cooperative cache to reduce cleaning overhead. Then, Skbtion

focuses on issues related to fault tolerance. Then Sec@otescribes previous work related to

69

the disk subsystem design presented here. Fir&digtiordd.7 highlights the key ideas behind the

design and summarizes my conclusions.

4.1. Log-based Network Striping

This section describes the basic design of a log-based, striped storage system. It first reviews
the concepts introduced by RAID and LFS, after which it outlines the Zebra design that combines
these ideas and extends them to distributed systems. Next, it outlines the limitations of the basic
Zebra design, and then it considers alternative designs of storage systems that do not use log-based
storage. Based on this evaluation, | conclude that a modified Zebra approach provides a superior

basis for scalable storage.

4.1.1. RAID

The serverless storage system exploits RAID-style disk striping to provide high performance
disk storage that is highly available. As Figdré illustrates, a RAID partitions stripe of data
into N-1 data blocks and a parity bloek the exclusive-OR of the corresponding bits of the data
blocks; it then stores each data and parity block onferelift disk. The parallelism of a RAI®’
multiple disks provides high bandwidth, while its parity storage provides fault tolerariicean
reconstruct the contents of a failed disk by taking the exclusive-OR of the remaining data blocks
and the parity block. A generalization of this approach can withstand multiple-disk failures by

using multiple-parity disks for each stripe [Blaumakt1994].

RAIDs, however sufer from two limitations. First, the overhead of parity management can
hurt performance for small writes; if the system does not simultaneously overwrite all N-1 data
blocks of a stripe, it must first read the old parity and the old data from the disks to compute the

new parity Each small write thus requires four disk accesses: two to read the old data and old par-

Data Blocks Parity Block

Stripe—» S —»\\\\\\§

£ s &

FIGURE 4-1.RAID striping with parity . The system stores each data stag#ock on a separate
disk and stores the stripgdarity block on one additional disk.

70

ity and two to write the new data and new patfitgfortunately small writes are common in many
environments [Baker efl.,1991], and lager caches increase the percentage of writes in disk
workload mixes over time. | would also expect cooperative cachinging workstation memory

as a global cache as described in Chepterto further this workload trend by reducing the num-

ber of reads that access a disk. A second drawback of commercially-available, hardware RAID
systems is that they are 2.5 to 10 times more expensive per megabyte than non-RAID commodity
disks [Myllymaki,1994]. RAIDs command this cost premium because they add special-purpose
hardware to compute parjtecause they have low sales volumes over which to amortize the
added development costs to build this hardware, and because they are marketed at the high-end

server market rather than the more cost-sensitive desktop market.

4.1.2. LFS

Distributed disk striping incorporates LFS because doing so addresses the problems of small
writes in RAID systems while providing a flexible index to locate data for reads. UES of
another advantage of particular value for scalable, distributed systems: it simplifies recovery com-
pared to traditional disk ganizations. HowevetFS’s log cleaner potentially limits the through-

put of log-structured storage.

LFS provides high-performance writes by fietihg many of them in memory and then com-
mitting them to disk in laye, contiguous, fixed-sized groups callegl segmentsBatching writes
into segments makes disk writegsi@ént by amortizing a single-disk seek and rotational latency
over all of the writes in a segment. Thus, by relying ogelavrites, LFS exploits the technology
trend whereby disk bandwidths are improving more rapidly than seek times or rotational latencies
(see Bble2-1 on page.) LFSSs log segments also address the RAID small-write problem by
eliminating small writes; when LFS is used with a RAID, each segment of the log spans a RAID

stripe and is committed as a unit.

Although log-based storage simplifies writes, it may complicate reads because a block could
be located anywhere in the log, depending on when it was writtens kBlstion to this problem,
illustrated in Figuret-2, provides a general mechanism by which to handle location-independent
data storage. LFS uses {fige inodes(index nodes)similar to those of the Fast File System (FFS)
[McKusick etal.,1984], to store pointers to the systerdata blocks. Howevewhereas FFS’

inodes reside in fixed locations, LEShodes move to the end of the log each time they are modi-

71

Data Block

NN

Inode (Contains pointers to data blocks)

Ifile (On-disk version of Imap)

Imap —

file 1 |— Checkpoint (Contains pointers to ifile)

file 2 . . .
Hole (Overwritten Data, Inode, Ifile, or Checkpoil

file 1 file 2 . | n:ore modi‘ied |fi| s\.
A s oV Ve Vi 5o x4 selVelse] < B8
(a)ﬁ/ ég %%gé‘é é% /ég /yég %% %E_ ... unused blocks ...
Y J J L

L

imap
file 1
file 2
file 3

. block 2) more of
pre modified f|| A filez2y file3 file 1
4 T
sel&lselos sell s sl s Ge
e Syt s eslEs
A=A S SEVAAE NI A2 [5
I I A J J A A
imap
file 1
file 2
file 3
. block) more of :
pre modified f| A file 24y file 3 file 1 file 3 !
7 ZE I 58 0 ssloslee el ss
LR 8 = 7
ikl 274 ikl s = ot ssyIyY s
J A A

FIGURE 4-2. A log-structured file systemln figure (a), the log contains two new files, file 1 an
file 2, as well as other modified files. The index node block following each file contains pointe
the file's data blocks, the imap contains pointers to the index nodes, and the ifile is an on-disk ci
the imap. The checkpoint contains pointers to the blocks of the ifile. In figure (b), the middle blo
file 2 has been modified. A new version of it is added to the log, as well as a new version of its
node. Then file 3 is created, causing its blocks and metadata to be appended to the log. Nex
has two more blocks appended to it. These two blocks and a new version & ifildekX node are
appended to the log along with part of the ifile and a checkpoint. Fimalfigure (c), file 3 is
overwritten; although this has occurred after the most recent checkpoint, if a crash occurre
modification could be recovered during roll-forward from the previous checkpoint. When a
block, index node, or checkpoint is overwritten, the old version becomes obsolete, which cre
hole in the log that must be garbage collected.later

72

fied. When LFS writes a filg’data block, moving it to the end of the log, the file system updates
the file’s inode so that it points to the new location of the data block; it then writes the modified
inode to the end of the log as well. LFS locates the mobile inodes by adding a level of indirection,
called animap in the next chaptet will describe how to modify LFS’imap to distribute disk
metadata across multiple managers. LFS stores the imap, containing the current log pointers to the
systems inodes, in memory and periodically writes modified portions of the imap to disk in a file
called theifile. To support recoventFS occasionally writesheckpointdo the disk; the check-

points contain pointers to the blocks of the fifile.

Checkpoints form a basis for LFsSeficient crash-recovery procedure because they allow
LFS to recover by reading just the last few segments it wrote. After a crash, LFS reads backwards
from the end of the log until it reaches the last checkpoint, and then it uses the checkpoint to read
the ifile and recover the imapo Tind the new location of inodes that were written since the last
checkpoint, the system thealls forward, reading the segments in the log after the checkpoint.
When recovery is complete, the imap contains pointers to all of the systedes, and the
inodes contain pointers to all of the data blocks. In contrast tesléffgient recovery procedure,
traditional systems like FFS must scan the entire disk to ensure consistency after a crash because

they have no way to isolate which areas of the disk were being modified at the time of the crash.

Another important aspect of LFS is itgy cleanerwhich creates free disk space for new log
segments using a form of generational garbage collection [Lieberman and H@83it, When
the system overwrites a block, it adds the new version of the block to the newest log segment, cre-
ating a “hole” in the segment where the data used to reside. The cleaner then coalesces old, par-
tially-empty segments into a smaller number of full segments to create contiguous space in which

to store new segments.

The overhead associated with log cleaning is the primary drawback of LFS. Although Rosen-
blum’s original measurements found relatively low cleaner overheads, even a small overhead can
make the cleaner a bottleneck in a distributed environment. Fusthrme workloads, such as

transaction processing, incurdaer cleaning overheads [Seltzeabf1993, Seltzer edl., 1995].

4.1.3. Zebra

Zebra provides a way to combine LFS and RAID so that both work well in a distributed envi-

ronment: LFSS lage writes make Zebra'writes to the network RAID fifient; Zebras imple-
73

mentation of a software RAID on commodity hardware (workstation, disks, and networks)
addresses RAIR cost disadvantage; and the reliability of both LFS and RAID allows Zebra to

safely distribute data over the network.

LFS’s solution to the small write problem is particularly important for Zebmatwork strip-
ing because reading old data to recalculate RAID parity requires network communication in a dis-
tributed system. As Figuee-3 illustrates, each Zebra client coalesces its writes into a ppegate
client log It then commits the log to the disks using fixed-simgdsegmentseach made up of
severalog fragmentdhat it sends to diérent storage server disks over the LAN. Log-based strip-
ing allows clients to calculate parity fragmentogdntly using entirely local operations, and then

to store parity fragments on an additional storage server to provide high data availability

Zebras log-structured architecture simplifies its failure recovery significantly because, like
LFS, Zebra provides #&¢ient recovery using checkpoint and roll forward.roll the log forward,
Zebra relies ordeltasstored in the log. d allow the system to replay the modification during
recovery each delta describes a modification to a file system block, including the ID of the modi-
fied block and pointers to the old and new versions of the block. Deltas greatly simplify recovery
by providing an atomic commit for actions that modify distributed state: each delta encapsulates a
set of changes to a file systenstate that must occur as a unit. Deltas also allow the system to

chronologically order modifications to the same data degrifit clients.

Client Memories

*:?

/
_One Client's Write Log _One Client's Write Log
Log Segment Log Segment
e — ———
BREm [ale]c]..
Log Fragments Fra ment Log Fragments Fr%)ént
(2| —wms [a][B][c] /- nnsoc

Network

[E=~ Y
(ErDw
limis
PNy < "M

Storage Server Disks
FIGURE 4-3. Log-based striping used by ZebraEach client writes its new file data into a single
append-only log and stripes this log across the storage servers. As a result, clients compute pe
segments, not for individual files.

74

4.1.4. Limits to Zebra Scalability

Although Zebra points the way towards environments without servers, several factors limit
Zebras scalability First, Zebra stripes all log segments over all storage servers. This restriction
limits both performance and availability; Secti2 describes how to ustripe gioupsto address
this problem. Second, Zebra, like LFS, relies on a single cleaner to create contiguous free disk
space for new segments; as with LFS, a single cleaner limits Zelite throughput. Sectioh3
presents the design of a distributed cleaner that avoids this limit. Fiaadinglefile manager
tracks where clients store data blocks in Zeblag; the manager also handles all cache consis-
tency operations. Chapt&rdescribes how to adapt LESmap to distribute management duties
across multiple machines and how to scale Zslmetovery approach to handle this distributed

management.

4.1.5. Alternatives to Log-based Striping

The earlier parts of this section suggested that log-based, redundant striping has two primary
advantages over traditional striped-disk layout strategies that overwrite data in place. First, log-
based striping provides superior small-write performance by coalescing writes; second, log-based
striping simplifies recovery by restricting modifications to the end of the logs. Other approaches to
solving these problems are possible; for instance, mirroring writes (RAID level 1) avoids the
small-write problem encountered by parity striping (RAID level 5) because it duplicates data
rather than calculate parity [Pattersomlet1988]. Also, journaling file systems [Hagmad®g7,
Kazar efal., 1990] maintain some of the recovery advantages of LFS file systems while still over-
writing data in place; journaling techniques might be extended to enable recovery for distributed

striping.

4.1.5.1. RAID Level 1 Mirroring

A RAID level 1 storage ganizationmirrors duplicate data to two disks rather than comput-
ing parity over a layer numbers of disks. This approach avoids RAID lev&kBiall-write prob-
lem because it never needs to read the old data or the old parity to calculate the new parity
RAID level 1 can also improve “degraded” read performance (when a disk fails). Hotineser
improvements come at the price of increased storage cost. Thusblagl-T indicates, the
cost/performance ratio of RAID level 1 is worse than an LFS-based RAID level 5 for writes, equal

for standard reads, and equal fogkareads when a disk has failed. Although RAID level 1 pro-

75

vides an advantage for small reads when a disk has failed [Hsiao aritt, D888, Lee1995],

for many systems | would expect cooperative caching to satisfy most small-read requests, making
small-read disk bandwidth under failure a relatively unimportant metric. Thus, the approach taken
by RAID level 5 will usually be superior to a RAID level 1 approach. For systems that depend on
small reads and that require real-time guarantees or for which cachindéstinef a RAID level

1 approach may be worth considering.

4.1.5.2. AutoRAID

The primary drawback of a RAID level 1 system is the overhead, both in terms of capacity and
bandwidth, to duplicate all data. AutoRAID [Més etal., 1995] attempts to retain the small-write
performance of RAID level 1 while reducing its space overhead. AutoRAID duplicates data that
are actively being written using RAID level 1, but it automatically migrates less-active data to

RAID level 5 to improve the systemstorage capacity

For systems with a high degree of write local&ytoRAID can reduce storage overhead to
approximate that of RAID level 5 while retaining the small-write performance of RAID level 1.

Also, it retains the small-read failure-mode advantage of RAID level 1 for the subset of data that is

RAID Level 1 AutoRAID (Best Case) RAID Level 5 (LFS)
2N Disks N + (N/G) Disks N+(N/G) Disks
Performance Performance/ Performance

Performance| Cost Performance Cost Performance Cost Advantage
Capacity N 1/2 N G/(G+1) N G/(G+1) |Auto/RAID 5
Large-Wite Bandwidth N 1/2 (N+N/G)/2 1/2 N G/(G+1) RAID 5
Small-Wite Bandwidth eN €2 e(N+N/G)/2 €2 N* G/(G+1)* RAID 5*
Large-Read Bandwidth 2N 1 N+N/G 1 N + N/G 1 =
Small-Read Bandwidth 2N € g(N+ N/G) € g(N+ N/G) € =
Large-Read BW (1 disk failed 2N-1 1-1/(2N) N+N/G-1 | 1-1/(N+N/G) N G/(G+1) =
Small-Read BW (1 disk failed) €(2N-1) €(1-1/(2N)) | e(N+N/G-1) |g(1-1/(N+N/G) eN/2 €(G/(G+1))/2| RAID 1/Auto

TABLE 4-1. Performance and cost/performanceThis table indicates the relative performance and

cost/performance of RAID level 1, AutoRAID, and RAID level 5 systems. This figure compares
systems of constant capacity (each of the systems can store N disks worth of data plus redunda
data.) The RAID level 1 system duplicates data while the LFS-based RAID level 5 system stores on
parity fragment for each stripe group of G data fragments. The comparison for AutoRAID assumes
the best case: that most of the sysgedata are stored in RAID level 5 to conserve space while most
writes go to the RAID level 1 portion of the storage and that most small reads with one failed disk
access RAID level 1 data. For small reads and watespresents the fafiency of small accesses to

disk: the small-access bandwidth (including seek and rotation overheads) divided hyetaetass
bandwidth. The asterisk (*) indicates that the results for the RAID Level 5 system assume that it is
running LFS; without LFS, each small write in the RAID level 5 system requires four disk accesses,
reducing the performance to N/4, the performance/cosfltd/G)/4, and giving the advantage to
RAID level 1 and AutoRAID.

76

mirrored. Howeverbecause AutoRAID duplicates all writes, its total write bandwidth is less than
that of a RAID level 5. Also note that AutoRAID is currently implemented as a traditional, cen-
tralized RAID controllerAdapting its data structures to a distributed system would require signif-

icant efort.

4.1.5.3. Journaling File Systems

Just as mirroring provides an alternative to RAID level 5 striping to provide data redundancy
journaling file systems [Hagmant987, Kazar eal., 1990] provide an alternative to LFS deltas
for metadata recoveryournaling file systems maintain the update-in-place strategy used by tradi-
tional file systems, but they add an auxiliary data structure, called a journal, for logging changes
before they are committed to the primary disk data structures. Before beginning to modify the file
system$ main data structures, the system atomically logs a list the changes it is about to make into
the journal. If an operation that modifies multiple disk blocks in place is interrupted midway by a
machine crash, it may leave the on-disk data structures in an inconsistent state. During, recovery
however the system can put the file system back in to a consistent state by comparing the main file
system state with the modifications indicated in the jowshadj and then completing any changes

that were interrupted by the crash.

A journaling file system could thus be combined with RAID level 1 or AutoRAID to provide a
serverless storage system with acceptable small write performance, high avaikadigrash
recovery The main advantage of such a design would be the elimination of the LFS.di&amer
ever a number of research issues must be addressed to make such an approach viable. First, the
system would have to provide a method to introduce location-independence so that data could be
moved between disks to balance load or when disks are added to or removed from the system. Sec-
ond, the system should provide a distributed mechanism to locate and manage free disk space in
the distributed system. Third, the system should provide policies for distributing files and directo-
ries across the disks to exploit locality and balance load. Developing these layout policies is likely

to require substantial researcloefs.

4.2. Stripe Groups

When using lage numbers of storage servers, rather than stripe each segment to every storage

server as in Zebra, scalable systems should implestgpé goupsas have been proposed for

77

large RAIDs [Chen eal., 1994] to improve performance and availabilidystripe group consists
of a subset of the systesnstorage servers, and clients write their segments across stripe groups
rather than across all storage servers. This section expands on the motivation for stripe groups, and

then describes how the serverless design implements them.

4.2.1. Motivation for Stripe Groups
Stripe groups are essential to suppogdanumbers of storage servers for at least four reasons.
1. Stripe groups allow lge, eficient writes to disk.

By allowing clients to distribute each log segment to a limited set of storage servers, stripe
groups allow clients to write lger fragments for a given segment size. By favoringglarrites to
each disk, stripe groups leverage the disk seek time and bandwidth technology trends that favor

large disk accesses over small ones.

The alternative approach for providingdardisk writes to many storage serversncreasing
the segment size- is less desirable. First, this approach would increase the memory demands for
file systems with many storage servers to allow clients ttebtliese lage segments. Further
because file systems periodically force data to disk Uss#yqic() calls, clients would seldom
fill larger segments before writing them to disk. For instance, Baker et al. [Baderl892]
found that for eight production file systems, only 3% to 35% of allkBZegments were full
when written to disk. Partial segment writes reduce thi@earicy of writes by reducing thefet-

tive fragment size and by requiring expensive parity updates when segments are later filled.
2. Stripe groups reduce cleaning cost.

By limiting segment size, stripe groups make cleaning mdieegit. This eficiency arises
because when cleaners extract live data from a segment, they can skip completely empty seg-
ments, but they typically must read partially-full segments in their entlratye segments linger

in the partially-full state longer than small segments, significantly increasing cleaning costs.

Table4-2 illustrates this é&kct for a simulation using the Auspex trace described in
Section3.3.4.2 on pagB6. Sectior.4, later in this chaptedescribes my methodology for simu-

lating cleaning.

78

As the table indicates, increasing the segment size frokkBaé 512KB increases the write
cost by 56% for the Auspex trace because withelasegments the cleaner must read 47% of those
segments cleaned while with smaller sizes only 7% of the segments cleaned must be read. Since
the amount of data is the same no matter what the segment size, small segments mean less data

need to be cleaned.
3. Stripe groups match network bandwidth to disk bandwidth.

Stripe groups match the aggregate bandwidth of the groups’ disks to the network bandwidth of
a client, using both resourcesigently. Thus, while one client writes to or reads form one stripe
group at its full network bandwidth, another client can accesseaafif group, also at the cliemt’

full network bandwidth.
4. Stripe groups improve availability

Finally, stripe groups improve availabilitBecause each group stores its own patfity sys-
tem can survive multiple server failures if they happen to strikerdift groups, which is the most
likely case in a lgge system with random failures. For instance, Figeeshows the amount of
time that some data in a system are unavailable undaniagations with zero, one, or two parity
fragments per stripe as well as with or without stripe groups. Striping with a single parity fragment
but without groups provides better availability than a single server system as long as there are
fewer than 40 storage servers in the striped system. Fgerlaystems, howevedowntime
increases rapidlyUsing two parity fragments without stripe groups or one parity fragment with
stripe groups allows the system to scale to approximately 150 storage semermarity frag-

ments per stripe group givedeaatively unlimited scalabilitysufering less than two minutes of

Segments
Segments Segments| Written Empty
Written by | Segments| Read by by Segments| Write
Segment Size File System | Cleaned | Cleaner | Cleaner | Cleaned Cost
64 KB 61370 63357 4383 960 58974 1.087
512 KB 7671 8844 4166 1142 4678 1.693

TABLE 4-2. Comparison of cleaning cost as segment size is vari€simaller segments are les
expensive to clean because they are more likely to become completely Emptsimulation used
the seven-day Auspex trace, and assumed that the disk was 80% full. The write cost [Rosenb
Ousterhout1992] compares the overhead from the cleandisk accesses to the amount of d¢
written by the system. A write cost of 1.0 is perfect, indicating no cleaner overhead, while a
cost of 2.0, for instance, indicates that the cleaner is responsible for as much disk activity
system writes.

79

downtime per month with 1000 storage servers and less than 14 minutes per month with 10,000

storage servers.

4.2.2. Implementing Stripe Groups
The key data structure for implementing stripe groups is the stripe group map. As4Figure

illustrates, this map provides a translation between a group identifier and the list of servers storing
that groups fragments. When a client writes a segment, it selects one group from the map and dis-
tributes the segment and its parity to the members of the group indicated by theomegd &
segment, a client extracts the stripe group ID field from the segment ID and uses the stripe group
ID to identify the machines storing the data. If a storage server is down when a client tries to read
data from it, the client uses the stripe group map to identify the other storage servers in the group

to reconstruct the data using parity

10 Hours — .
No Parity One Parity

8 Hourst
e
=
o
=
& 6 Hours|
()
£
€
2
o
a
% 4 Hourst
2
>
o
I

2 Hours} Two Parity\

One Parity Per Group of
One Server oo
OHoursl——==2 o277 77 . Two Parity Per Group of 10

0 20 40 60 80 100 120 140 160 180 200
Number of Storage Servers

FIGURE 4-4.Hours of downtime per month under different parity organizations. This graph
assumes that each storage server fails randomly for an average of one hour per month, and it ¢
that the system is down when any data block is unavailableN®Hearity line shows the systes’
availability, assuming data are stored without redundancyQtiee ParityandTwo Paritylines show
the systens availability assuming no stripe groups and one or two parity fragments protecting ¢
the systens disks. TheOne Parity Per Goup of 10andTwo Parity Per Goup of 10lines assume
that the system uses stripe groups of 10 machines with one or two parity fragments per grou
reference, th®©ne Serveline shows the availability of a single server under these assumptions.

80

The system replicates the stripe group map globally among clients so that any client can con-
tact the storage servers that belong to any given stripe group. Global replication is reasonable
because the stripe group map is small and because it seldom changes; the map contains a list of
stripe groups and the groups’ members, and it changes only when a machine enters or leaves the

system— for instance, if a machine crashes.

Each storage server typically belongs to exactly one stripe group, but to handle map reconfig-
uration, storage servers can belong to multiple groupscment stripe group and zero or more
obsoletestripe groups. The current stripe groups listed in the map represent the groups of storage
servers for the current configuration of machines; clients write only to current stripe groups. Obso-
lete stripe groups indicate mappings that existed at some time in the past, before the last reconfig-
uration of the stripe group map; clients read from both current and obsolete stripe groups. Leaving
obsolete entries in the map allows clients to read data previously written to the obsolete groups
without first transferring the live data from obsolete groups to current ones. Over time, the cleaner
will move data from obsolete to current groups [Hartman and Oustefl®®g]; when the cleaner
removes the last block of live data from an obsolete group, the system deletes the obsolete entry

from the stripe group map to keep the map small.

When one or more storage servers enter or leave the system, the system must regenerate the
stripe group map.ddo so, it uses a global-consensus algorithm to identify storage servers that are

active, to assign these servers to current stripe groups, and to distribute the resulting stripe group

Stripe Group Map Current Groups

SS1 S§S2 SS3 SS4

Stripe Group 98@ g g g

Group SSsin Curr ent/ SS5 SS6 SS7 SS8
ID Grou Obsolete

P Group 99 @ % @ %
98 1,234 Current
99 5,6,7,8 Current Obsolete Groups

96 2801 Obsol SS7 SS8RSSY SS1
8,0, t
solete Group 96@%

97 23456 Obsolete SS2 SS3°SS4 SS5 SS6

Group97@g@gg

FIGURE 4-5. A stripe group map. The table on the left shows the contents of a stripe group m
and the figure on the right shows the resulting logical relationships among disks. The systen
write or read either of the current stripe groups, but it can only read the obsolete stripe grou,
storage server in one of the obsolete groups, Group 96, has failed. If a client were to read a
stored on the third storage server of Group 96, it would find that storage server 0 (SSO0) is dowr
it would then read the corresponding blocks from the other storage servers in the group to recor
the lost data from parity

81

map of current groups; Sectidrb.2 discusses this process.generate a map of obsolete groups,
each storage server uses a local checkpoint to assemble a list of groups for which it stores frag-
ments. The system combines the storage servers’ lists and distributes the result to complete the

stripe group map.

4.3. Cleaning

When a log-structured storage system appends data to its logs, it invalidates blocks in old seg-
ments, leaving “holes” that contain no live data. LFS systems lage @deanerto coalesce live
data from old segments into a smaller number of new ones, creating completely empty segments
that can be used for full segment writes. Since the cleaner must create empty segments at least as
quickly as the system writes new ones, a single, sequential cleaner would act as a bottleneck in a

distributed system. A scalable architecture, therefore, must provide for a distributed cleaner

An LFS cleanerwhether centralized or distributed, has three main tasks. First, the system
monitors old segments’ utilization statdshow many holes they contain and how recently these
holes appeared- to make wise decisions about which segments to clean [Rosenblum and
Ousterhout1992]. Second, the system monitors the number of free segments and the level of sys-
tem activity so that it can begin cleaning when space is needed or when the system is idle. Third,
when the system does begin to clean, it proceeds in two steps: the cleaner examines the utilization
information to select which segments to clean, and then, for segments that are not completely
empty it reads the live blocks from the old segments and writes those blocks ,tacampact

ones.

The rest of this section describes how to distribute cleaning across multiple machines. It first
describes how to distribute the task of tracking segment utilization. It then outlines how the system
monitors free space and system activity to activate the cleaners. Finddlgcribes how the sys-
tem distributes the tasks of selecting segments and moving live data from old segments to new
ones. This section describes the mechanisms necessary to support distributed cleaning, and it
explains why these mechanisms should provide good performance through.lbtahityver

future work is needed to identify specific policies for activating cleaners.

82

4.3.1.Monitoring Segment Utilization

The distributed cleaner assigns the burden of maintaining each segutiinéition to the cli-
ent that wrote that segment. The system stores this information in standard filess-Gidketb
allow any machine to access any segnsestiitus. Distributing bookkeeping to the writers of each
segment provides parallelism and localiynd because clients seldom write-share data [Baker
etal., 1991, Kistler and Satyanarayandf92, Blaze1993], a client writes usually déct the
utilization status of local segments anit the same time, s-files provide a globally accessible
view of segment use by means of the file sharing mechanisms already in place in the system. The
rest of this section examines the locality provided by distributing bookkeeping, and then it

describes s-files in more detail.

4.3.1.1. Distributed Bookkeeping

To examine how well this distributed bookkeeping policy reduces the overhead of maintaining
utilization information, | simulate its behavior on Auspex trace described in S8c8d@dn2 on
pageb6. Because this simulation only considers blocks that are written multiple times, caching is
not an issue, so | gather statistics for the full seven-day trace rather than using some of that time to
warm caches. These simulations suggest that distributed cleaning reduces the total load to monitor
segment utilization by over an order of magnitude, assuming that the load for network protocol
processing dominates data structure manipulation. This approach further benefits scalability by

distributing this reduced load across multiple machines.

Figure4-6 shows the results of the simulation in more detail. The bars summarize the network
communication necessary to monitor the segments’ state under three policies: Centralized Pessi-
mistic, Centralized Optimistic, and Distributed. Under the Centralized Pessimistic, ptibeys
notify a centralized, remote cleaner every time they modify an existing block. The Centralized
Optimistic policy also uses a cleaner that is remote from the clients, but to account fteahef ef
the 30-second write delay Bef used by many systems, clients do not have to send messages
when they modify blocks that were recently written. Becdusencs() are not visible in the
Auspex trace, the simulator optimistically assumes that all writes derdulifor 30seconds, and
it does not chage the Optimistic policy for local overwrites of data less thase®®nds old.

Finally, under the Distributed policyeach client tracks the status of blocks that it writes, so it

needs no network messages when modifying a block for which it was the last writer

83

During the seven days of the trace, roughly one million blocks were written by clients and
then later overwritten or deleted. 33% of these were modified withse&ihds by the same client
and therefore require no network communication under the optimistic assumption. Nevertheless,
the Distributed scheme reduces communication by a factor of eighteen for this workload compared
to even the Centralized Optimistic policy

4.3.1.2. S-Files

Although the system distributes the task of tracking segment utilization to the clients that
wrote each segment, it allows any cleaner to clean segments written any client. Thisvwhy
ent is busy while another machine is idle, the second machine may clean segments written by the
first. To allow universal access to utilization information, clients periodically write their book-

keeping information te-files standard files that may be read by any machine in the system.

For locality each s-file contains utilization information for segments written by one client to
one stripe group: clients write their s-files into-pkent directories, and they write separate s-files

in their directories for segments stored tdedint stripe groups.

The s-files not only localize information for segments written by each client to each group,

they also provide a method by whichfdient cleaners can concurrently work on segments stored

0100%
N
=2 Modified By
- 80% | \ KN\J Same Client]
g >\ (< 30s)
Be0%l 7 1
% / / Modified By
7/ Same Client
5 40% ¢t / / (>30s) 1
5 / /
S 20% / / Modified By]|
/ | Different
) Client
0% ol 11
NG Nz 2
SE BE 2
oa 0O [

FIGURE 4-6. Simulated network communication between clients and cleanefhe distributed
algorithm exploits locality to reduce the cleaner workload. Each bar shows the fraction of all b
modified or deleted in the Auspex trace, based on the time and client that modified the block. |
can be modified by a client other than the original data whiethe same client within 30 seconds ¢
the previous write, or by the same client after more than 30 seconds have passeentidlzed
Pessimisticpolicy assumes every modification requires networKi¢rafhe Centralized Optimistic
scheme avoids network communication when the same client modifies a block it wrote withi
previous 3Gseconds, while th@®istributed scheme avoids communication whenever a block
modified by its previous writer

84

in the same stripe group: the system assigns each cleaner to a distinct set of s-files for that stripe

group.

4.3.2. When to Activate Cleaners

The system clearen demandwhen the number of free segments in a stripe group of storage
servers runs loyorin the backgound when cleaning can take advantage of idle resources to reor-
ganize data without delaying other requests to the file system [Blackvatl) 1£195]. Stripe

groups can independently (and thus scalably) determine when to start cleaning.

To determine when to clean on demand, each storage server maintains a local count of free
segments. If this count falls below a low-water mark, that storage server can initiate cleaning for
the entire stripe group by informing its other members of the decision (so that they do not simulta-
neously initiate cleaning) and then activating cleaners by assigning to each a subset of the s-files

from the stripe group.

Similarly, if a storage server is idle, it can initiate background cleaning by first asking the other
members of the group if they are idle and then locating an idle clébo#rer members are busy

or if no idle cleaner can be found, the storage server aborts background cleaning.

A key question during this process is: which machines should clean? One simple policy
assigns each client to clean the segments that it writes. An attractive alternative is to assign clean-
ing responsibilities to idle machines. Detailed policies for assigning s-files to cleaners should be

investigated in the future.

4.3.3. Distributing Cleaning

The system activates a cleaner by assigning it a subset of s-files to examine and clean. Given
this subset of segments, each of the distributed cleaners proceeds almost exactly as it would if it
were the only cleaner in the system. The cleaning decisions, howifearslightly from those of
a global cleanern particulay because each member of the distributed cleaner examines only a
subset of the segments, the ones that they choose to clean may not be globally optimal; by the

same token, this approach allows the cleaners to make their decisions without a central bottleneck.

To clean the segments associated with a subset of s-files, the cleaner first reads the segment

utilization state from those s-files. The second step is to choose segments to clean based on this

85

utilization information. Cleaners choose segments based on a cost/benefit analysis that considers
their utilizations and modification histories [Rosenblum and Ousterh®®®]. Finally the
cleaner reads the live data from the segments it is cleaning and writes that data to new segments,

marking the old segments as clean.

4.3.4. Coordinating Cleaners

Like BSD LFS and Zebra centralized cleaners, a distributed cleaner uses optimistic concur-
rency control to resolve conflicts between cleaner updates and normal file system writes. Cleaners
do not lock files that are being cleaned, nor do they invoke cache consistency actions. Instead,
cleaners just copy the blocks from their old segments to their new ones, optimistically assuming
that the blocks are not in the process of being updated somewhere else. If there is a conflict
because a client is writing a block as it is cleaned, the manager will ensure that the ugidait
takes precedence over that of the cleaner [Hartman and Ousta@tihit, Although the algorithm
described here that distributes cleaning responsibilities never simultaneously asks multiple clean-
ers to clean the same segment, the same mechanism could be used to allow less strict (e.g. proba-

bilistic) divisions of labor by optimistically resolving conflicts between cleaners.

4.4. Cleaning and Cooperative Caching

This section describes the sygebetween cleaning and cooperative caching. Tlge leache
provided by cooperative caching in a serverless file system significantly reduces cleaning costs by

allowing a cleaner to read data from a cooperative cache rather than from disk.

Cooperative caching allows a serverless system to reduce the cost of log cleaning by reducing
the need to read live data for segments being cleaned from disk. Reading live data blocks from
disk is more expensive than reading them from cache for three reasons. First, the overhead for set-
ting up a disk access is higher than for accessing cache me®eoond, disks, themselves, are
much slower than main memory (se&ble2-1 on page.) Finally caches support fedient ran-
dom access, so the cleaner pays to read only the live data that it needs. In contrast, when reading a
segmens live data from disk, the cleaner seeks to the segment, and then must often wait for the
entire segment to rotate under the disk head, even if there are only a few live blocks scattered
throughout the segment. Because cleaners typically clean segments that are mostlyhsmpty

case happens frequently

86

To quantify caching efect on cleaning costs, | modify Rosenblsntleaning simulator
[Rosenblum and Ousterhot992] to accept input from a trace file and to track cache information.
For the sake of simplicifyf simulate a single, sequential clearigsch client appends data to its
own, private 51XB segment until the segment fills, but clients never overwrite data in pace, even
when overwriting data from the current segment; this simplification increases the write cost by

requiring the system to clean more data.

The simulation assumes that each client haMB6of cache, accessed and coordinated via
cooperative caching using the N-Chance algorithm. The caching cleaner is allowed to read a seg-
ment from memory rather than disk only if all live blocks are cached; if even one live block is not
cached, the cleaner reads the entire segment from disk just as the standard cleaner normally does.

Both the caching and non-caching cleaners skip completely empty segments. entirely

For input, | use the seven-day Auspex trace described in S8c3idn2 on pagb6. | warm
the simulators state in two steps. First, to create a realistic layout of data in segments, the simula-
tor runs through the entire trace with reads and caching turfigolubfvith writes and cleaning
turned on. This pass gives all data an initial storage location, a pessimistic assumption since some
writes in the trace would normally create new blocks rather than overwriting old ones. This
assumption increases the cleaning cost because it creates more holes that must be cleaned than
would occur in realityThe first pass also allows the rest of the simulation to run with an approxi-
mately stable disk utilization. In the second pass, | enable reads and caching (in addition to writes
and cleaning), but, to ensure that the read caches were warm, | do not begin to gather statistics

until the last half of the trace.

Figure4-7 compares therite costfor two cleaning policies, one that always reads live seg-
ments from disk and a second that may read data from the client cooperative caches. | use Rosen-

blum’s definition of write cost [Rosenblum and Ousterhd882]:

WriteCost = (BytesWritten,,, + BytesRead + BytesWritteng .ner) 7/ (BytesWritteny .)

Cleaner

In other words, the write cost expresses the average cost of writing new data as the total amount of
new data written plus the amount of data read and written by the ¢ldiaad by the amount of

new data written to disk. If there were no cleaning overhead, the (ideal) write cost would be 1.0.

87

When the disk is 90% full, cleaning from the cache improves the write cost by 20% and
reduces the cleaning overhead by 40% for this workload. At lower disk utilizations, the improve-
ment is lower because longer segment lifetimes allow the segments to empty more completely
before they are cleaned. When the disk is 60% full, caching reduces the write cost by 7% (a 40%

improvement in the cleaning cost portion of the write cost).

Finally, note that even with the pessimistic assumptions about cleaning noted above, the write
cost for this workload is lowsupporting the decision to use LFS for file storage. The caching
cleaners write cost is less than 2.0, even when disk utilization reaches 90%. In contrast, Rosen-
blum estimates FFS'write cost to be between 4.0 and 10.0 [Rosenblum and Ousterd@?i,

This comparison suggests that LFS reduces write overheads by at least a factor of two for this

workload compared to standard file system layouts.

25 T T T T
No Cleaner Caching\

2 b Cleaner Cachin -
+— 15 I~ -
[%2]

o
o
2
= 1 — - - e No Cleaner (Ideal)
05 | i
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Disk Utilization

FIGURE 4-7. Cooperative Caching and CleaningThe y-axis of this graph shows the write co
with and without the improvement of reading from the cache when cleaning. The x-axis indicat
peak disk utilization (the peak amount of live data divided by the total size of the disk) for the At
trace used for this simulation.

88

4.5. Availability

The storage system is a key building block for a serverless sgstiability and availability
The rest of this section outlines how storage servers recover their local state after a crash, how they
reconfigure the stripe group map in response to changing storage server status, how cleaners
recover their state after a crash, and how storage servers generate data from parity to allow contin-
ued operation when a storage server fails. Sebtibron pagd 09 provides a more complete
description of the serverless systemecovery by discussing how the storage servers and manag-

ers interact to recover the systeamietadata.

4.5.1. Local Storage Server State

When a storage server boots, it first restores its internal data structures so that the rest of the
system can access its on-disk logs. Each storage server maintains a local checkpoint that includes
the mappings from logical fragment IDs to the fragments’ physical disk addresses, maps of local
free disk space, and lists of the stripe groups for which the machine stores fragments. Each server
also rolls forward from its local checkpoint to update its data to reflect fragments written after the
checkpoint. During roll-forward, storage servers verify the checksums of any fragments that they
wrote at about the time of the crash, discarding incomplete fragments. Each storage server recov-
ers this information from data stored on its local disk, so this stage can proceed in parallel across

all storage servers.

4.5.2. Stripe Group Map Reconfiguration
Whenever the number of storage servers in a system changes, either because a machine has

been added, because a machine has failed, or because the system is booting, the system generates a
new stripe group map and distributes it to all active storage servers, clients, and managers. Stripe

group map generation proceeds in three steps.

In the first step, the storage servers use a consensus algorithm to identify all of the active stor-
age servers and elect a leader from among those machines. The global consensus algorithm used
can be one of several known algorithms [Bend®B0, Cristian eal.,1990, Cristian1991,
Schroeder edl., 1991]. When a machine notices that another machine has left or wants to join the
system, it initiates the consensus algorithm. When the algorithm completes, all of the machines
will know the identities of all of the other machines, and they will agree on a machine to lead the

next step.

89

Second, each storage server sends a list all of the stripe groups for which that storage server is
currently storing fragments to the leadand the leader assembles a full list of the stripe groups
with live data. After recoverythe system will be able to read data from these potentially obsolete

stripe groups, but it will not write data to them.

Third, the leader partitions the live storage servers into current stripe groups that the system
will use for new writes after recovemeusing as many old stripe groups as feasible. It combines
the lists of current and obsolete stripe groups to form the complete stripe group map, and it distrib-

utes this stripe group map to all of the active storage servers.

4.5.3. Cleaner Recovery

The last piece of state that must be recovered for the storage subsystem is the cleaners’ seg-
ment utilization information checkpointed in the s-files. Because the cleaners store this state in
standard files, the same procedures that recover the rest of the systems standard files recover the s-

files. Sectiorb.4 on pagd 09 describes these higHevel recover procedures.

4.5.4. Parity Reconstruction

Redundant data storage across storage servers allows the systgs1to be available even
when one or more [Blaum at., 1994] storage servers in a stripe group have crashed. When a cli-
ent realizes that a storage server that it tries to access has failed, it looks at the stripe group map to
find the list of storage servers in the same stripe group. The client then reads the data and parity

fragments from those storage servers to reconstruct the fragment it was initially trying to read.

4.6. Related \4rk

Sectiord.1 discussed several technologies that provide an important basis for the scalable,
log-based, network striping described in this chagRedundant Arrays of Inexpensive Disks
(RAID) [Patterson eal., 1988, Chen edl., 1994] demonstrate how to stripe data across multiple
disks to get performance and availabilibog-structured File Systems (LFS) [Rosenblum and
Ousterhout1992, Seltzer atl., 1993] provide a way to batch writes to improve performance and
provide fast, simple recovergebra [Hartman and Ousterholi®95] combines the ideas of RAID
and LFS to provide &€ient network striping. This section describes several otlfieteto build
decentralized storage systems and then describes sef@ntsl tef provide dicient writes in non-

LFS systems.
90

4.6.1. Striped Disks

In contrast with Zebra'log-based striping, mostfefts to distribute disk storage have used
perfile striping in which each file is striped across multiple disks and parity is calculated en a per
file basis. This approach has two disadvantages compared to log-based striping. First, the update-
in-place disk layout associated with {fige striping makes crash recoveryftitilt unless the sys-
tem also supports journaling (see Sectddh5.3). Second, pdite striping with update-in-place
makes parity calculation expensive for small files, small writes ¢e [dlles, or concurrent writes

to different parts of the same file.

As a result, many parallel disk file systems, such as CFS [P198@], Bridge [Dibble and
Scott,1989], and ¥sta [Corbett edl., 1993], distribute data over multiple storage servers, but do
not attempt to provide availability across component failures. Such systems are typically used for
parallel, scientific workloads where data availability is considered less important than maximum

bandwidth for a given system cost.

Other parallel systems have implemented redundant data storage but restrict their workloads
to lamge file accesses, where {fige striping is appropriate and wheredarfile accesses reduce
stress on their centralized manager architectures. For instance, Swift [Cabrera artB@bhg,
and SFS [Lo¥rso etal.,1993] provide redundant distributed data storage for parallel environ-

ments, and iger [Rashid,1994] services multimedia workloads.

4.6.2. Delayed \\tes

In addition to batching writes into &, contiguous segment writes, LFS exploittayed
writes to eliminate disk accesses for writes that are overwritten while still in the wrifer. buf
Many other file systems, such as FFS [McKusic&let.984], Andrew [Howard edl., 1988], and
Sprite [Nelson eal., 1988] use delayed writes to gain this benefit. Studies of such systems have
shown that for dice and engineering workloads, 35-50% of all bytes “die&re overwritten or
deleted— within 30 seconds [Srinivasan and Modl®89, Baker edl., 1992, Ruemmler and
Wilkes, 1993].

A disadvantage of delayed writes is that if a machine crashes, systems can lose data that has
been written to the write bigf but not to disk. LFS limits the damage to the system by atomically
committing groups of modifications to file system state when it writes each segment. In LFS, if a

machine crashes before committing a segment in its writerptife modifications in the segment

91

are lost, but the rest of the file systendata structures remain consistent. Echo [Birrell
etal.,1993] and Quicksilver [Schmuck andyllie, 1991] also commit writes carefully to main-

tain consistency across crashes. In contrast, traditional file systems like FFS must scan all of the
file systems on-disk data structures after a crash to fix any inconsistencies arising from partially-
complete writes. As noted in Sectiérl.5.3, journaling supplements such systems with auxiliary
logs to assist recovery [Hagmari®87, Kazar eal., 1990]. Other techniques attempt to avoid los-

ing any of the write bdiér's data when a machine crashes [Liskoal 1991, Baker eal., 1992,

Baker 1994]; these techniques could be applied to the serverless sy&tgrstructured file sys-

tem to further reduce the risks of delayed writes.

4.7. Conclusions

This chapter described how log based striping provides a solid basis for a scalable, distributed
storage system. It presented several techniques to allow such a system to scgentoribers of
storage servers. In particulatripe groups seem essential for providing availability and perfor-
mance for lage systems; the stripe group map abstraction provides a basis for implementing scal-
able stripe groups. Similarlydistributed cleaning and, when possible, cleaning from the
cooperative cache prevent the cleaner from becoming a bottleneck.,Rowlhased, redundant
striping combines the high availability of RAID with the simple, fast recovery of LFS to provide a

solid basis for the rest of the serverless systeatovery procedures.

92

5Distributed Management

A key design principle of the serverless file system is location independence: cooperative
caching and network disk striping allow any block of data to be stored on any machine in the sys-
tem, and they allow blocks’ positions to change over time. As a result, tracking the locations of the
systems$ data is a critical task. Furthermore, the location service, itself, must be dynamically dis-
tributed across the systesithachines to provide scalable performance, to improve network local-
ity, and to provide high availabilityThe serverless systesrdistributed manageprovides this

scalable, distributed location service.

Each manager machine in the system tracks the disk and cache storage locations of the blocks
of some subset of the systanfiles. Using this location information, a manager can direct client

requests to the correct storage locations and coordinate multiple clients’ accesses to the same data.

The system distributes management across manager machineswettager mapan array
of machine identifiers that indicate which machines manage which portions of the file system. The
system locates a fie'manager by first hashing on the ilehique index number and then using
the result as an index into the manager map. The manager map thus provides a level of indirection

so that the management service, itself, is location independent; any manager can manage any file.

The distributed management design assumes a log-based, highly-available, distributed storage
system as described in the previous chapigrarticularthe design distributes disk location infor-
mation by distributing the LFS imap data structure. Additiondtilg crash recovery design out-
lined here depends on two properties of the storage system. First, it requires that the storage
system include a log to allow recovery based on checkpoint and roll forward. Second, it assumes
that the storage system is redundant and highly available. If either of these assumptions were not

met, building a reliable, distributed manager would be mofiewif

93

The rest of this chapter describes the distributed manager architecture in detail. SS&ction
presents the distributed manager design and explains how the system fulfills the fmanager
primary duties: tracking where data blocks are stored on disk and where data blocks are cached.
Section5.2 illustrates the operation of the system for reads and writes, and it explains how the sys-
tem’s cache consistency protocol works. Seclighconsiders the performance impact of distrib-
uted management and, using simulation studies, examirfesedif policies’ impact on locality
Section5.4 describes how crash recovery works, considering both how the system redistributes
management duties when one or a few managers fail and how the system avoids bottlenecks when
many machines must recover simultaneausgctions.5 discusses related work; although few file
systems have implemented distributed management, several distributed shared memory computers
have used related approaches to distribute their cache consistency state.S&nadys.6 sum-

marizes the chaptermain conclusions.

5.1. Distributed Management Design

The manageés primary task is to track the location of every block of data in the system,
including copies stored in client caches and on storage server disks. Using this information, man-
agers forward client read requests to storage locations that can satisfy them, and managers invali-

date stale copies when clients overwrite or delete data.

A distributed manager partitions these tasks across multiple machines by assigning a portion
of the index number space to each machine as Figlirdlustrates. @ locate a files managera
client hashes on the fikeindex number to generate a virtual manager nurittiben uses the vir-
tual manager number as an index into the manager map to determine which physical machine con-
trols the files cache consistency metadata and disk location metadata (the imap and cache of index

nodes and indirect nodes.)

The manager map provides a level of indirection for the hash function, allowing the system to
control the mapping from virtual managers to physical machines. For instance, if a manager
crashes, the system can assign new physical machines to handiediee airtual managers, or if
a new machine joins the system, the system can assign that machine to manage some of the entries
in the manager map. The manager map thus limits changes in management to isolated portions of

the index number space, reducing service disruptions and preventing changes to one virtual man-

94

ager mapping from interfering with the load distribution and localityresf made for other map-

pings.

To support reconfiguration, the manager map should have at least an order of magnitude more
entries than there are physical managers. This rule of thumb allows the system to balance load by
assigning roughly equal portions of the index number space to each mamsager numbers of
map entries allow the system to assign management on a more fine-grained basis and reduce load

imbalance; howevetarger tables increase the space overhead of storing the manager map.

The system globally replicates the manager map so that each manager and client has a local
copy. This replication allows managers to know their responsibilities, and it allows clients to con-
tact the correct manager directly given a $ileidex numberEven though the system distributes
management over multiple machines, it requires no additional network latencies compared to a
centralized manager; in fact, as Secta® will show distributed management can actually reduce
average network latency per request by increasing lacilisyreasonable to globally replicate the
manager map because (i) it is relatively smaleven with hundreds of machines, the map with
thousands of entries would be only tens of kilobytes in-sizand (ii) because it changes

infrequently— only to correct a load imbalance or when a machine enters or leaves the system.

Manager
Map
g\
Q\g“age(& Physical Machine ID
W e ysical Machine
W -f’/?_/, —
Hash(Index Number)/V' =

Metadata at Wtual Manager
Part of Global Cache

Part of Global Imap Consistency State
Index Disk Address Index Clients Caching
Number of Index Node Number Blocks

Cache of Index Nodes
and Indirect Nodes

FIGURE 5-1.The Manager Map. The map specifies which physical machines manage which h:
buckets of the index number space. The manager specified by the manager map controls the
of the imap that lists the disk location of index nodes for the files managed by that virtual man
and that manager keeps a cache of index nodes for those files. It also controls the cache cons
state (the list of all clients caching a fidlocks or with write ownership of the fdeblocks) for
those files.

95

5.1.1. Disk Storage Location Metadata

The system distributes the disk location metadata to managers by distributing the LFS imap.
In LFS, the imap provides a mapping from eachdfiletlex number to the disk log address where
the file's index node was last written. For a distributed man#geimap contains the same trans-
lation, but rather than implement the imap as a single, centralized thgaystem implements it
as several, smaller arrays one per virtual manager entry in the manager map. Each manager
stores and controls the portion(s) of the imap indicated by the manager map, allowing that man-
ager to read and write index nodes and indirect blocks for its files. The managers also cache

recently accessed index nodes and indirect blocks.

As Figure5-2 illustrates, the disk storage for each file can be thought of as a tree whose root is
the imap entry for the fils'index number and whose leaves are the data blocks.sArilap entry
contains the log address of the l@dex node. xFS index nodes, like those of LFS and FFS, con-

tain the disk addresses of the Blglata blocks; for Ige files the index node can also contain log

Logical Relationship of Disk Location Metadata for One File

imap| db 8
entry| ndr ndr E

Physical Layout of Disk Location Metadata for One File in On-Disk Log

imap
entry

dbl sgl. ljinde:
data data data data data data |ndr indr. data data indr. data|nod

<t—— Older Entries in Log Newer Entries in Log—————>
FIGURE 5-2. The disk location metadata form a tee oted in the imap.The nodes of the tree
are index nodes, data blocks, single-indirect blocks, double-indirect blocks, and (not shown) t
indirect blocks. In the figure, the blocks are numbered to show the sequential order of the bl
however in a real system there are more blocks of each type than shown in this illustration, an
numbering would be correspondingly changed. This figure shows the simple case where a clier
single machine writes a fiedata blocks, and a manager on the same machine writes thimdiest
node and indirect nodes. If the client and manager are fanatif machines, the index nodes ant
indirect nodes will be in diérent logs than the data blocks, but the nodes in the masidggmwill
still contain pointers to the data in the clisftg.

96

addresses of indirect blocks that contain more data block addresses, double indirect blocks that
contain addresses of indirect blocks, and so on. The manager stores the imap in its memory and
periodically checkpoints it to the storage system to speed recdVveryower levels of the tree are

stored on storage server disks, although managers cache index nodes and (all levels of) indirect

blocks, and clients cache data blocks.

5.1.2. Cache Consistency State

The same machine that handles adilisk metadata also handles cache consistency state for
the blocks of that file. For each block, this cache consistency state consists of a list of clients cach-
ing that block and a flag indicating whether that block is write-owned [Archibald and1B38ét.

Using this information, the manager forwards client read requests to other clients caching the
blocks, and the manager maintains cache consistency by invalidating stale cached copies when a

client writes or deletes a file.

5.2. System Operation

This section describes how distributed management works in conjunction with the log-based,
distributed storage system described in the previous chagdescribe the operation of the system

for reads and writes and then detail how it manages index nodes and index numbers.

5.2.1. Reads and Caching
Figure5-3 illustrates how the serverless system reads a block given a file name and an offset

within that file. Although the figure is complex, the complexity in the architecture is designed to
provide good performance. On a fast LAN, fetching a block out of local memory is much faster than

fetching it from remote memory, which, in turn, is much faster than fetching it from disk.

To open a file, the client first reads the file’s parent directory (labkledthe diagram) to
determine its index number. Note that the parent directory is, itself, a data file that must be read
using the procedure described here. As with FFS, the serverless system breaks this recursion at the

root; the kernel learns the index number of the root when it mounts the file system.

As the top left path in the figure indicates, the client first checks its local UNIX block cache for
the block Ra); if the block is present, the request is done. Otherwise it follows the lower path to

fetch the data over the network. The system first uses the manager map to locate the correct

97

1an18g abel0ls, 10} uonelnaiqae ue Si ,SS, ‘sdoy YI0M13U 8y} JO SWOS PIOAR 0]
3|11 8Y1 asn 01 Ajay1| 1SOW 1UBI|D BY) Sk aulydew awes ay1 Uo |1 e Jo Jabeuew ay) 81ed0|-02 0] Sall) walsAs ay] ‘ajdwexa
104 "saulyoew awWes 8yl Uo uni ued sidAIas abelols pue ‘sisbeuew ‘sjusid asnessq .9|qissod, se psjjage| ate sdoy
3IoMI1aU 8yl ‘PJE@IGRS Ul paquosap sdals 0] Jajal Ssiaquinu pajolid 8yl 4o0|g B peal 0] ainpadoid ‘S-S 34NOI4

3 Frire e [eqo| Jo uoniod [e207
. XXX -
u 2 ,@. wv_ﬁ%_m e paresiday Alreqolo
alseor e eea Sy m_ll ereq a 2B 10) %20|g elepela 10 ereq
eq 0 Sg B a:m“,_ < doH I0MBN 8|qIssod
SS mgﬂ% «—34N1oNAS BlRQ [2207 SS800Y
_f LIS FEFCE
419S10 A=y IPPY. wﬁ "1ppy JE (G
9 20 iz Al et - 19S1O al 19S. 19SHO
»@memmw__ SSSS ™ R opu) xopu BTN~ R~ T xept ~ O ouen
SPON o sl 01 den dew 01 den Aioaing
xepul |gg SS B mmo 19 i@ walD 1B .
1y] 5
) Y o
< -« 1OSHO <=z a4l | al »ooig sysed
IDElle) # Xapul jusl|D uslD ele XINN
led
0019 o1 syoe) 0l arels

eleg uald XINN BN

Aduaisisuo)
ayoed

98

manager for the index numb@&bj and then sends the request to the manager. If the manager is not

co-located with the client, this message requires a network hop.

The manager then tries to satisfy the request by fetching the data from some other client’s cache.
The manager checks its cache consistency 2ajednd, if possible, forwards the request to a
client caching the data. That client reads the block from its UNIX block cache and forwards the data
directly to the client that originated the request. The manager also adds the new client to its list of

clients caching the block.

If no other client can supply the data from memory, the manager routes the read request to disk
by first examining the imap to locate the block’s index n&i® (The manager may find the index
node in its local cacheg) or it may have to read the index node from disk. If the manager has to
read the index node from disk, it uses the index node’s disk log address and the stripe group map
(4b) to determine which storage server to contact. The manager then requests the index block from
the storage server, who then reads the block from its disk and sends it back to the rBariduer (
manager then uses the index nd)dd identify the log address of the data block. (I have not shown
a detail: if the file is large, the manager may have to read several levels of indirect blocks to find
the data block’s address; the manager follows the same procedure in reading indirect blocks as in

reading the index node.)

The manager uses the data block’s log address and the stripe grouf) toaged the request
to the storage server keeping the block. The storage server reads the data fron8jtauliskgnds

the data directly to the client that originally asked for it.

5.2.2. Wites

When a client writes a block, it interacts with the manager twice. First, to maintain cache con-
sistency it acquires write ownership of the block if it has not already done so. Second, when a cli-
ent commits the block to a storage seriteinforms the blocks manager of the blocdknew log
address so that the manager can update theifildex node and, if the file is tg, the files indi-
rect blocks. The consistency protocol and commit protocol interact when blocks are shared. T
preserve consistency across failures, clients with exclusive access to modified data must flush all
logged changes to stable storage before allowing other clients to read the data. This subsection

details the activity related to cache consistenoynmits, and ownership-loss writes.

99

5.2.2.1. Cache Consistency

The managers implement a token-based cache consistency scheme similar to Sprite [Nelson
etal.,1988], Andrew [Howard edl.,1988], Spritely NFS [Srinivasan and Mogli§89], Coda
[Kistler and SatyanarayanatQ92], and Echo [Birrell al.,1993] except that they manage
consistency on a per-block rather than per-file basis to allow more efficient data sharing
[Burrows,1988]. Before a client modifies a block, it must acquire write ownership of that block, so
the client sends a message to the block’s manager. The manager then invalidates any other cached
copies of the block, updates its cache consistency information to indicate the new owner, and replies
to the client, giving permission to write. Once a client owns a block, the client may write the block
repeatedly without having to ask the manager for ownership each time. The client maintains write
ownership until some other client reads or writes the data, at which point the manager revokes
ownership, forcing the client to stop writing the block, flush the current segment to the storage

servers if it contains changes to the block, and forward the data to the new client.

The managers use the same state for both cache consistency and cooperative caching. The list
of clients caching each block allows managers to invalidate stale cached copies in the first case and

to forward read requests to clients with valid cached copies in the second.

5.2.2.2. Commit of Wites to Log

Clients bufer writes in their local memory until committed to a stripe group of storage serv-
ers. Because the storage system uses log-based striping, every write changes the disk address of
the modified block. Therefore, after a client commits a segment to a storagetberebent noti-
fies the modified blocks’ managers; the managers then update their imaps, index nodes, and indi-
rect blocks and periodically log these changes to stable storage. As with Zebra, the system does
not need to “simultaneously” commit index and indirect nodes with their associated data blocks
because the cliestlog includes deltathat allows reconstruction of the mandgefata structures

in the event of a client or manager crash. | discuss deltas in more detail in Sektion

As in BSD LFS [Seltzer atl., 1993], each manager stores its portion of the imap in memory
checkpointing it to disk in a special file called tfile. The system treats the ifile like any other file
with one exception: the ifile has no index nodes. Instead, when managers boot, they locate the

blocks of the ifile using manager checkpoints described in Sécdon

100

5.2.2.3. Wites Due to Loss of Ownership

To facilitate recoverythe protocol requires clients to commit modified data to disk before
releasing ownership. By guaranteeing that clients commit modified data before allowing other cli-
ents to observe that data, the system ensures that a modification that depends on another modifica-
tion will not be committed before the state change on which it depends. For instance, if client A
makes directory “foo,” and then client B tries to modify directory “foo” to write file “foq/tzard

then one or both clients crash, upon recovery the system should be in one of three states

1. Neither “foo” nor “foo/bar” exist.
2. “Foo” exists but “foo/bar” does not.
3. Both “foo” and “foo/bar” exist.

The system would be inconsistent if, after recovdop/bar” exists, but “foo” does not. By forc-
ing “foo” to stable, reliable storage before allowing client B to modify “foo” to create “fod/bar

the protocol guarantees that either case 2 or case 3 prevails after recovery

Writing data to disk before releasing ownership will hurt performance if there is significant
write sharing. Each time a client loses write ownership of a block, it may have to write a partial
segment to disk, reducing diskfiefency [Baker eal.,1992]. Additionally the client that is
attempting to access the new data must endure the latency of a synchronous disk write before it
can begin writing. For many workloads, little write sharing occurs, so this delay in revoking own-
ership will have little gkct on performance [Thompsd987, Baker e#l., 1991, Blaze1993].

Further by maintaining consistency on a fidock rather than a pdite basis, the consistency pro-

tocol reduces ownership-loss writes caused by false sharing. On the other hand, ownership-loss
writes could delay parallel workloads that have fine-grained write sharing; | have not yet deter-
mined how significant such delays will be. If they are significant, a number of techniques could
reduce the delay while maintaining acceptable crash-recovery semantics. For instance, rather than
commit pending changes to disk when losing ownership, a client could send those changes over
the network to the client whose access caused write ownership to be revoked [Lalkdo6td];

that client would add those changes to its log, guaranteeing that those changes make it to disk
before any modifications that depend on them, even if the first client crashes. As an optimization,
once either client successfully commits the duplicated part of the log to disk, it could “cancel” the

duplicate writes at the other client.

101

5.2.3. Index Node and Indirect Node Access

One important design decision was to cache index nodes and indirect nodes only at managers
and not at clients. Although caching these nodes at clients would allow them to read multiple
blocks from storage servers without sending a request through the manager for each one, doing so
has four significant drawbacks. First, by reading blocks from disk without first contacting the man-
ager clients would lose the opportunity to use cooperative caching to avoid disk accesses. Second,
although clients could sometimes read a data block direbty would still need to notify the
manager of the fact that they are now caching the block so that the manager knows to invalidate
the block if it is later modified. Third, routing all read requests through a manager allows manag-
ers to enforce security rather than relying on clients; in contrast with gelasign, where clients
can access any block stored on a storage server by constructing the proper block pointer [Hartman
and Ousterhout,995], clients never read data directly from storage servers, allowing managers to
enforce security on client reads. Similamganagers can enforce security on client writes; even
though the clients write directly to storage servers, the system will ignore the writes unless the
manager accepts the new location of the blocks as legitimate. Fthalgpproach simplifies the
design by eliminating client caching and cache consistency for index nodes and indireet-nodes

only the manager handling an index number directly accesses these structures.

5.2.4. Assigning Files to Managers

The system can control how files are assigned to managers in two ways, by manipulating files’
index numbers or by manipulating the manager map. Controlling index numbers allows fine-
grained control while manipulating the manager map provides a method to simultaneously change

many files’ managers.

5.2.4.1. Assigning and Changing Index Numbers

Because a filg'index number determines its managjee system can control the assignment
of files to managers by controlling the use of index numbers. The simplest mechanism for doing
this is to control the choice of index numbers when files are created; systems must already choose
an index number for every file they create, so modifying this choice to control management
assignments is straightforward. A more complicated, but more flexible, mechanism is to change
file index numbers after the files have been created. Sé&c8aquantifies the benefits of algo-

rithms that use each approach.

102

Although assigning index numbers when creating files requires little or no modification of file
system interfaces, allowing the systems to dynamically change file index numbers complicates
matters. As Figuré-4 shows, to change a féeindex numbera system changes the fialirec-
tory to reflect the new mapping from name to index nupibe¥moves the old imap entry for that
file, and it adds a new imap entry that contains a pointer to theifigéx node. Because these
three changes must be atomic, the system must support a new type of log delta to encapsulate these
changes. Furthebecause this functionality requires the system to change the directory entry for
the file, it does not support multiple hard links to a single file (soft links must be used instead).
Multiple hard links would mean that several directory entries all contain references to the same
imap entry but the system does not provide a mechanism to locate all of the aliases to the same

file.

5.2.4.2. Changing the Manager Map

The system can assign groups of files to new managers by changing the manager map. This
mechanism allows the system to remap many files with a single action and without accessing each
file individually. It is thus suited for relatively coarse-grained adjustments such as assigning all of
the files previously managed by one machine to other machines when the first machine crashes. In
that case, fast recovery is more important than precise control over where the system assigns indi-

vidual files.

The system might also use this mechanism for balancing load when no machines have

crashed. For instance, if one machine becomes heavily loaded, this mechanism would allow the

Index Index

Directory Imap Node Data Blocks Directory Imap Node Data Blocks
Jen W=
] 3 I] 3 1~
]] | o — l |
—] I]
Before Changing Index Number After Changing Index Number

FIGURE 5-4.Changing a file's index number Changing a files index number requires three
simultaneous modifications to the file systenstate. First, that file’ directory entry must be

modified to map the file’name to its new index humb&econd, the imap entry for the old index
number must be released. Third, the imap entry for the new index number must be updated to i
a pointer to the fils' index node and data blocks. Note that thesfiledex node and data blocks are
not changed.

103

system to quickly distribute a portion of that maclsriead to other machines. Unfortunatehe

coarse control provided by this mechanism forces the system to reassign many files at once, so
while the system may benefit from improved load balance, it is also likelyfey sedluced local-

ity as “private” files managed by the overloaded machine are reassigned along with the rest of the

files. Studying policies that balance locality against load distribution remains future work.

5.3. Management Locality

The previous sections described mechanisms to distribute management across multiple
machines, but the policies used to do so will determine distributed manageimgattt on per-
formance. Distributing management can improve performance in two ways: by improving locality
and by distributing load. This section examines the issue of locality by using trace-driven simula-
tion studies to examine the impact of several distributed management policies on Beabtyse
the file system traces to which | have access have relatively little concurreleégr a quantita-
tive evaluation of load distribution until Secti@®2.8 on pagé&44, where | examine the perfor-

mance of distributed management in the prototype implementation using a synthetic workload.

This section compares three policies. The Centralized policy uses a single, centralized man-
ager that is not co-located with any of the clients to provide a baseline for comparison. Under the
First Writer policy, when a client creates a file, the system chooses an index number that assigns
the file's management to the manager co-located with that client. Finalier the Last Viter
policy, the system dynamically assigns files to be managed by the manager co-located with the last

client to begin writing the files’ first blocks.

Based on the simulation studies, | conclude that co-locating arfil@hagement with the cli-
ent using that file can significantly improve locality and reduce network communication, particu-
larly for writes. For the workloads | looked at, the Firgité/ policy is suficient to reap most of
the performance gains. The more complicated La#teY\policy provides only a small additional
improvement. Although these workloads do not appear to justify the added complexity of the Last
Writer policy, other workloads might. For instance, in a NQMrallel programs, process migra-
tion, and batch jobs may increase the amount of data that are written and shared by multiple clients
and that would benefit from this policks NOW workloads become available, this policy should

be evaluated in that context.

104

5.3.1. Methodology

| simulate the systemm’behavior under two sets of traces. The first set consists of four two-day
traces gathered by Baker from the Sprite file system. This set of traces was described in more
detail in Sectior8.2 on pag&5, and is analyzed in detail elsewhere [Baked.e1991]. The sec-
ond workload consists of a seven-day trace of@igdits’ NFS accesses to an Auspex file server
in the Berkeley Computer Science Division. Sec8dh4.2 on pagb6 described this trace in
more detail. For each trace, the simulator warms the simulated caches through the first day of the

trace and gathers statistics through the remainder

The finite length of the traces introduces a bias into the simulation which may reduce the
apparent benefits of distributed management. The finite trace length does not allow the simulator
to determine a file' “First Writer” with certainty for references to files created before the begin-
ning of the trace. For files that are read or deleted in the trace before being written, | assign man-
agement to random managers at the start of the trace; when and if such a file is written for the first
time in the trace, | move its management to the first wBtecause write sharing is rare 96% of
all block overwrites or deletes are by the blgcitrevious writer— this heuristic should yield
results close to a true “First itér” policy for writes, although it will give pessimistic locality

results for “cold-start” read and write misses.

The simulator counts the network messages needed to satisfy client requests, assuming that
each client has 181B of local cache and that there is a manager co-located with each client, but

that storage servers are always remote.

An artifact of the Auspex tracefatts read caching for that trace. Because the trace was gath-
ered by snooping the network, it does not include reads that resulted in local cache hits. By omit-
ting requests that resulted in local hits, the trace inflates the average number of network hops
needed to satisfy a read request. | therefore report the number of network hops per read miss rather
than per read when reporting results for this trace. Because | simuigtiedaches than those of
the traced system, this factor does not significantly alter the total number of network requests for

each policy [Smith1977], which is the relative metric used for comparing policies.

105

5.3.2. Results

Figure5-5 and Figur&-6 show the impact of the simulated policies on locality for the Sprite
traces and the Auspex trace. The Firsit®¥ policy reduces the total number of network hops
needed to satisfy client requests lhydto 50% for the di€rent traces compared to the centralized
policy. Most of the diference comes from improving write locality; the algorithm does little to
improve locality for reads, and deletes account for only a small fraction of the sysietmbrk
traffic. The dynamic Last Viter policy improves locality only slightly compared to the First

Writer policy for all of the traces.

Figure5-7 and Figuré-8 illustrate the average number of network messages to satisfy a read
block request, write block request, or delete file request. Despitedkrenlamber of network hops
that can be incurred by some requests (see Fig8ren pag®8), the average per request is quite
low. For instance, in the first two-day Sprite trace under the FirgeMpolicy, 65% of read

requests in the trace are satisfied by the local cache, requiring zero network hops. An average local

) Days 1 and 2 g Days 3 and 4

N N

'S 100% | N 1 ©100%}

g N Delete Hopsh\ [

o &\\ Write Hopst,//) s /.

O 80% 7 Read Hops 1 O 80%

S) ©

S 60%} / N \ & 60%

e ZENNNNEINNNN >

(&) (0]

& 40%| g 40%

g g

E 20% | = 20%

5 =<

o o

2 0% 2 0%

2 Centralized First Last 2 Centralized First Last
Writer Writer Writer Writer

=) Days 5 and 6 =) Days 7 and 8

(9] (0]

N N

T 100%} N\ Delete Hopf\\Y 1 ‘@ 100% N Delete HOpS\\Y 1

I &\ Write Hopsl/// |5 \\\ Write Hops[///

O 80%} 7 Read Hops 1 O 80% % Read Hops

© ©

S 0% / N S 60%

s Y Y | g e /

() 4 [0 N N

2 40%| 2 40% A NN NN

n 0 7 77 7 7 7 7 7

o 3

=S 20% ¢t > 20%

X 4

S % S o

% Centralized First Last 2 Centralized First Last
Writer Writer Writer Writer

FIGURE 5-5. Comparison of locality. Locality for the four two-days Sprite traces is indicated k
the reduced network tifed of the First Witer and Last Witer policies compared to the Centralizec
policy. The y axis indicates the total number of network messages sent under each policy as a f
of the messages sent by the Centralized policy

106

© 100% | s Delete HopRN -
g 7/ Write Hops
S Read Hop
S 80% | -
O
©
S 60% | // 1
> 7 T)
@ 40% |]
=
X
% 20% | -
[}
zZ

0%

Centralized First Writer Last Writer
FIGURE 5-6. Comparison of locality. Locality for the seven-day Auspex trace is indicated by tt
reduced network tréi€ of the First Witer and Last Witer policies compared to the Centralizec
policy. The y axis indicates the total number of network messages sent under each policy as a f
of the messages sent by the Centralized policy

Days 1 and 2

3 Days 3and 4

&S

S

Last Writer

|Centralizeg

7//////////First Writel
S S

Ve

S

KRK

S

v
A

Q

First Writer
Last Writer
KRR

Centralized

'—\
o dede

X

X

X

Ve

o

Network Hops Per Request
N

S

A

Network Hops Per Request
%

X

Ve

0 el 0 SNXN
Hops Per Hops Per Hops Per Hops Per Hops Per Hops Per
Read Write Delete Read Write Delete

Days 5 and 6 Days 7 and 8

%%

S

Ve

Ve

o

First Writer
Last Writer
R

Centralized

X

Q

H
0%

A

O
First Writer
Last Writer

Centralized

S

XD

Q

Network Hops Per Request
O

&K
Network Hops Per Request
N

ANNNNNNNNN

A 7% 1078 s

Hops Per Hops Per Hops Per Hops Per Hops Per Hops Per
Read Write Delete Read Write Delete

FIGURE 5-7. Network messages pereaquest. Average number of network messages needed
satisfy a read block, write block, or delete file request under the Centralized andriaspdlicies.
The Hops Per Wte column does not include a cbarfor writing the segment containing block
writes to disk because the segment write is asynchronous to the block write request and beca
large segment amortizes the per block write cost.

107

read miss costs 2.85 hops; a local miss normally requires three hops (the client asks the manager
the manager forwards the request, and the storage server or client supplies the data), but 16% of
the time it can avoid one hop because the manager is co-located with the client making the request
or the client supplying the data. Under all of the policies, a read miss will occasionally incur a few
additional hops to read an index node or indirect block from a storage Jdr@erther traces and

the Last Witer policy have similar characteristics.

Writes benefit more dramatically from localiyor the first Sprite trace under the Firgtitéy
policy, of the 37% of write requests that require the client to contact the manager to establish write
ownership, the manager is co-located with the client 96% of the time. When a manager invalidates
stale cached data, one-third of the invalidated caches are local. Rivfadly clients flush data to
disk, they must inform the manager of the dateéw storage location, a local operation 97% of
the time in this trace. Again, the other traces and the Lagtngolicies are similarmlthough the

Last Witer policy provides slightly more locality for writes.

Deletes, though rare, benefit modestly from locakiyr the first Sprite trace and the First
Writer policy, 29% of file delete requests go to a local managet 83% of the clients notified to
stop caching deleted files are local to the manddper other Sprite traces have similar characteris-

tics, and the Auspex trace has somewhat better delete locality

CentralizedT1 First Writer t.Z4 Last Writer &

T
X KK XA
202624
elelede
1

{

Q

X
X

O
O

X

XXX

Network Hops Per Request
D
XX

X
0,
<
030,
o,
D
0,
<
b5
o,
QD

XXX XX
02024,
KKK

X

2k

Hops Per Hops Per Hops Per
Remote Read Write Delete

FIGURE 5-8. Network messages peraquest.Average number of network messages needed to ¢
read block (considering only reads that miss in the local cache), write block, or delete file req
the Centralized and First Nier policies. The Hops Per M& column does not include a cbarft
writing the segment containing block writes to disk because the segment write is asynchron
block write request and because thgdasegment amortizes the per block write cost.

108

5.4. Recovery and Reconfiguration

Because there can bedarnumbers of managers in a serverless system, the system must con-
tinue to function if some of the managers fail, and it must adjust when managers are added. T
accomplish this, managers implement a reconfiguration algorithm that allows one manager to take
over anothés functions. If there is a crash, one of the remaining managers recovers the lost man-
agers state and then performs its duties. Simiaflg new manager joins the system, it takes over
some of the established managers’ state using the recovery procedures. When the system as a
whole reboots, all of the managers take part in recovery to rebuild the $ysteiré management

state.

As the rest of this section describes, manager recovery proceeds in three stages to assemble
three sets of state. First, all active managers participate in a global consensus algorithm to agree on
a new manager map. This step happens first because it asdigmestigarts of the index number
space to ditrent managers for the later steps. Second, managers recover their disk-location meta-
data for the files they manage. This step exploits the redundant, log-structured storage system
described in the previous chapt&hird, managers recover the cache consistency state for their
files by polling clients to determine which clients are caching which files. After describing these
three phases of recoverthis section reviews cleaner recovewhich relies on file metadata

recovery and then it evaluates the scalability of these recovery procedures.

5.4.1. Manager Map Reconfiguration

When the number of managers in the system changes, either because a machine has been
added, because a machine has failed, or because multiple machines have rebooted, the system gen-
erates a new manager map and distributes it to all active manager machines. The system builds and
distributes the manager map using a distributed consensus algorithm that both identifies all of the
machines that will act as managers under the new mapping and elects a leader from among those
machines. Fortunatelgeveral distributed consensus algorithms are known [Bet990, Cris-
tian etal., 1990, Cristian1991, Schroeder el., 1991].

Once the system chooses a leatter leader creates the new manager magbalance load
across managers, it assigns roughly equal numbers of manager map entries to each active manager
machine. As an optimization, it may use the old map as a starting point when generating the new
map; this approach allows the system to limit the number of manager map entries changed and
109

thus maintains most of the locality between managers and the files that they manage. Once the

manager has generated a map, it distributes it to the active manager machines.

5.4.2. Recovery of Disk Location Metadata

The managers then recover the disk location metadata so that they can locate all of the data
blocks stored in the systesrstorage serversoTecover this information, the managers build their
global, distributed imap. This imap contains pointers to on-disk copies of the Systelax
nodes, which, in turn, point to the data blocks on disk. The system recovers this information using
the same approach as other LFS systems [Rosenblum and Ouste9B8utSelizer «dl., 1993,
Hartman and Ousterhout995]: first it recovers a checkpoint of the imap from the logs stored on
storage server disks and then it rolls forward the logs to account for blocks that were written to the

log since the last checkpoint.

The recovery design relies on two facets of the storage server architecture described in the pre-
vious chapterFirst, it takes advantage of the high availability provided by redundant, striped stor-
age. Thus, the procedures described here assume that the underlying storage system is highly
reliable, and they do not have to explicitly deal with lost data; lower levels of the recovery proto-
col do that. As long as no more than one storage server per stripe group has failed, manager recov-
ery can proceed. If more than one storage server in a stripe group is down, manager recovery is
stalled until it can proceed (multiple parity fragments per group [Blawah,&994] would allow
recovery to continue in the face of multiple storage server failures.) Second, disk metadata recov-
ery uses the systemlog-structured storage to focus recovefgres on only the segments written
at about the time of the crash, and it uses log records, called deltas, that make it easy to determine
what operations were in progress at the time of the crash. In contrast, without a log, the system
would have to scan all disk storage to discover any partially-completed operations that were in
progress at the time of the crashitWut reliable, log-structured storage, it would be much more

difficult to build a reliable, distributed manager

The procedure described here draws heavily on the recovery design used in Zebra [Hartman
and Ousterhout,995]. Zebra demonstrates how a single manager can recover all of a system’
disk location metadata from multiple clients’ logs. 8dapt this approach to handle multiple man-
agers, | divide recovery so thatfdifent machines recover fiifent parts of the disk location meta-
data by reading dirent parts of the systems’ logs. This approach works because the disk location

metadata for di€rent files are laely independent. The following subsections discuss distributed

110

checkpoint recoverydistributed roll-forward, and consistency issues that arise from independent

manager checkpoints.

5.4.2.1. Distributed Checkpoint Recovery

The managers’ checkpoints allow the system to recover the state of the disk storage as it
existed a short time before the reconfiguration without scanning the logs from beginning to end.
The system stores important disk metadata in its logs and stores pointers to this metadata in log
checkpoints that it can locate and read quickly during recolveryscalabilitymanagers write and

recover their checkpoints independently

During normal operation, managers keep the systamap, which contains the log addresses
of the index nodes, in memorkeriodically however they write modified parts of the imap to
their logs so that the on-disk ifile contains a nearly up-to-date copy of the imap. Managers also
write checkpoints to their logs. A checkpoint is, ifeet, the index node of the ifile in that it con-
tains pointers to the on-disk blocks of the ifile [Seltzeal @1993]. Each manager writes check-
points for the portion of the imap that it manages, and collectively the checkpoints contain the disk
addresses of all of the blocks of the ifile. Checkpoinferdifom standard index nodes in that they
are tagged in the log so that they may be easily located when the ends of the logs are scanned dur-

ing recovery

Figure4-2 on pag€? illustrates the logical relationship among data blocks, index nodes, the
imap, the ifile, and checkpoints and shows how they might be arranged in the log. This figure illus-
trates two important things about the checkpoints. First, checkpoints refer only to ifile blocks that
were written to the log before the checkpoint. Second, checkpoints do not always reflect the most
recent modifications to the file system; the system updates the imap to reflect more recent changes
during roll forward, as the next section describes. Checkpoints thus provide a snapshot of the sys-

tem’s state, although the picture may not be completely current.

During recovery, managers read their checkpoints independently and in parallel. Each manager
locates its checkpoint by first querying storage servers to locate the newest segment written to its
log before the crash and then reading backwards in the log until it finds the segment with the most
recent checkpoint. Next, managers use this checkpoint to recover their portions of the imap.
Although the managers’ checkpoints were written at different times and therefore do not reflect a

globally consistent view of the file system, the next phase of recovery, roll-forward, brings all of

111

the managers’ disk-location metadata to a consistent state corresponding to the end of the clients’

logs.

5.4.2.2. Distributed Roll Forward

To account for modifications since the time of the most recent checkpoint, the syliddor-
ward the clients’ logs. @ roll a log forward, a client reads forward in time, using deltas [Hartman
and Ousterhout,995] to replay the operations that occurred between the time of the checkpoint

and the time of the crash.

Each delta contains enough information to identify the changes to the blocks of a file. A delta

contains five pieces of information:

1. Theindex numbebf the modified file.
2. Thefile offsetof the block that was modified in the file.

3. Theblock version numbehat indicates when the client that wrote the block acquired owner-
ship of it. \ersion numbers allow ordering of deltas fronfadiént clients’ logs that modify the
same block.

4. Theold block addessgives the blocls previous log address. After a crash, the system uses the
old block pointers to recover the segment utilization information used by cleaners, and the
managers use this field to detect and correct races caused by the simultaneous cleaning and
modification of a file.

5. Thenew block addrssis the blocks new log address.

These fields are like those used in Zebideltas with one exceptiono Bupport peblock
cache consistency and write sharing, these deltas uddop&rversion numbers rather thanper
file versions. If the system implemented-fikr version numbers like those of Zebra, the system
could allow only one client to write a file at any time; in contrastppmrk version numbers allow
different clients to simultaneously modify a file, as long as they are access$argndiblocks.
Managers supply block version numbers to clients when they grant write ownersh@version

number is simply the time stamp when the client acquired write ownership from the manager

A simple, though indicient, way for managers to roll forward from their checkpoints is for
each manager to begin scanning each ctidag starting from the time of the mandgecheck-
point. A manager would ignore deltas pertaining to files managed by other managers, but it would
apply the deltas that refer to its files to its imap. This approach fiieef because it reads each

client’s log from disk multiple times. The problem with having managers read the clients’ logs is

12

that each log can contain modifications to any file managed by any maswmgkmanagers must

inspect all clients’ logs.

A small change restoresfiefency Instead of having managers read client logs from disk, cli-
ents read the logs and send the deltas to the managers that need them. When recovery starts, the
system assigns clients to roll forward each log using the consensus procedure described in
Section5.4.1. Normallyeach client recovers the log that it wrote before the crash, but if a client is
down when the system starts roll forward, the system can assigeramtifclient to roll forward
that log. D initiate roll forward, the recovering managers use information in their checkpoints to
determine the earliest segment that each client must roll forward, and they transmit this informa-
tion to the clients. Each client then reads backwards in time from the tail of its log until it locates
the earliest segment requested by any man&jents then begin reading forward in the log,

sending each delta to the manager indicated by the index number in the delta.

5.4.2.3. Consistency of Disk Location Metadata

Distributing management across multiple machines raises the issue of consistency across
checkpoints written by diérent managers. Checkpoints written byat#nt managers at tlifent
times do not generally correspond to the same point in a sliegt’ Therefore, after checkpoint
recovery different portions of the index number space will refledediht moments in time, pos-
sibly leading to inconsistencies. For instance, the directory entry for a newly created file might
exist, but the file itself might not if the directory index number was recently checkpointed but the

file’s part of the index number space was not checkpointed since the file was created.

Two solutions are possible. First, the system can allow inconsistent manager checkpoints and
use roll-forward to restore consisten8econd, the system can synchronize checkpoints across

managers so that they reflect a consistent view of the world.

Allowing inconsistent checkpoints but then rolling forward to a consistent state is the more
efficient solution to this problem because managers can then write checkpoints independently
Roll-forward results in a consistent global state because it brings all managers’ metadata to the
same state corresponding to the end of each dikg’ Note that the state reflected by the clients’
logs must be consistent, even if the clients’ logs end at slighterelift times, because each seg-

ment can only depend on segments already written to disk. As SB@iar8 explained, before a

113

client reads data that another client wrote, the client that wrote the data forces its dirty data to disk

as it loses write ownership.

Another approach to consistent recovery is to synchronize checkpoints so that they reflect a
globally consistent state. The advantage of this strategy is that it does not require roll forward,
potentially simplifying implementation. The disadvantage of this approach is that it requires a glo-
bal barrier at the time of a checkpoint, limiting scalability: the system must designate the point in
all of the clients’ logs at which the checkpoint will ogcamd it cannot allow managers to modify

their state to reflect any later client modifications until after the managers write their checkpoints.

5.4.3. Cache Consistency State

After the managers have recovered and rolled forward the imap, they must recover the cache
consistency state associated with the blocks that they manage. This state consists of lists of clients
caching each data block plus a flag indicating whether the client caching a block holds write own-
ership for that block. The Sprite file system demonstrates how the managers can recover this infor-
mation by polling clients for the state of their caches [Nelsal. gt988]. With a distributed
managereach manager can recover its portion of the index number space by polling the clients.
The parallelism across managers actually reduces the risk of recovery storms possible in the Sprite
system [Bakerl994] because the managers are less likely to overwhelmed by the clients. How-
ever the reverse problem can occur if the multiple managers all ask a single client foietteadif
parts of its cache state; to avoid this problem, managers randomize the order in which they poll cli-

ents.

5.4.4. Cleaner Recovery Revisited

As Sectiord.5.3 on pag80 indicated, the storage servers’ cleaners store their persistent state
in standard files called s-files. The procedures described earlier in this section recover the s-files
along with all of the other data files in the system. Howeher s-files may not reflect the most
recent changes to segment utilizations at the time of the crash, so s-file recovery also includes a
roll forward phase. Each client rolls forward the utilization state of the segments tracked in its s-
files by asking the other clients for summaries of their modifications to those segments that are
more recent than the s-files’ checkpoints avoid scanning their logs twice, clients can gather this
segment utilization summary information during the roll-forward phase for manager disk location

metadata.

114

5.4.4.1. Scalability of Recovery

Two facets of the recovery design allow it to scale tgeamounts of storage and togkar
numbers of clients, storage servers, and managers. First, log-structured storage allows the system
to examine only the most recently written segments; in contrast, after a crash other disk layouts,
such as FFS, scan all blocks stored on disk because any writdezdirmay area of the disk (aux-
iliary journals [Hagmannl987, Kazar e#l., 1990] could be employed by these systems to avoid
scanning the disk during recovery). Second, the system distributes recovery so that each client or
manager log is read only once, allowingeliént machines to recover f@ifent portions of the sys-
tem’s state in parallel. While these properties of the architecture suggest that it will scale well,

future work is required to measure the performance of recovery in practice.

The systens log-structured storage provides the basis for scalable recovery by restricting
modifications to the tails of the systentdgs. During recoveryhe system examines only the most
recently written segments; managers read their logs back to the most recent checkpoint, and clients
read the segments written since the manager checkpoints. The system can reduce recovery time by
reducing the interval between checkpoints, although this increases the overhead for writing check-

points during normal operation.

Distributing recovery across managers and clients provides scalability by parallelizing recov-
ery; although increasing the size of a system may increase the amount of state to recover after a
crash, diferent clients and managers can independently recover their own state so that recovery
time is proportional to the amount of state recovered per client or manager rather than to the total

amount of state recovered.

Disk metadata recovery proceeds in four steps, each of which progresses in parallel. First, cli-
ents and managers locate the tails of their logseriable machines to locate the end of the logs
they are to recoveeach storage server tracks the newest segment that it stores for each client or

manager A machine can locate the end of the log it is recovering by asking all of the storage

server groups and then choosing the newest segment. While this procedure requfiyened®¢N

sages (where N corresponds to the number of clients, managers, or storage servers) to allow each
client or manager to contact each storage server group, each client or manager only needs to con-
tact N storage server groups, and all of the clients and managers can proceed in parallel, provided

that they take steps to avoid recovery storms where many machines simultaneously contact a sin-

115

gle storage server [Baker994]; randomizing the order that machines contact one another accom-

plishes this goal.

The second step of disk metadata recovery also proceeds in parallel. Each manager scans its
log backwards from the tail until it locates and reads the segment that contains its last checkpoint.
Because managers can scan their logs independtnglyime for this step depends primarily on
the interval between checkpoints, assuming that there are enough storage servers relative to man-

agers so that manager requests to read segments do not significantly interfere with one another

In the third step of recoverynanagers inform clients of where to start roll forward. Each man-
ager sends each client a message that indicates the last segment in tratagieh#it manager
had processed at the time of the checkpoint; each client begins roll forward from the earliest seg-
ment requested by any managigain, managers contact clients independently and in parallel, so

that this phase requires N steps, assuming that it avoids recovery storms.

Next, clients roll forward their logs by reading segments written since the manager check-
points and sending information from the deltas to the managers. The time for this phase depends
primarily on the amount of data scanned per client, which is determined by the checkpoint interval

rather than the size of the system.

Finally, managers recover their cache consistency state by polling the clients. As in the other

phases of recoverthe managers proceed in parallel to make this phiseef.

5.5. Related \&rk

This chapter describes a distributed metadata management system that implements manage-
ment as a separate module from data storage. This separation of function leads to a clean manager
interface that may easily be distributed across multiple machines. The Mass Storage Systems Ref-
erence Model [Coyne and Hulet993] also recommends separate data and control paths for file
systems, and Zebra implements file systems using modules with similar functions to those
described here [Hartman and Ousterh@&885], although Zebra’ manager ran on a single

machine.

A small number of file systems have distributed their metadata across multiple machines.

However a lager number of massively parallel, distributed shared memory machines have distrib-

116

uted their cache consistency metadata using related techniques. In either case, the approaches are
based on one of two basic data structures. The first set of approaches, which distribute data by
hashing, are similar to the architecture described in this chdpesecond set of approaches base

their distribution on hierarchical trees.

5.5.1. Hash-based Metadata Distribution
This chapter described an approach to metadata distribution built around a distributed hash
table. Similar approaches have been taken by a network virtual memory system, by multiprocessor

cache consistency systems, and by one other file system that | know of.

Most of these previous systems have used a fixed mapping from data address to. tmanager
such systems, if one machine fails, a fraction of the systeratadata becomes unavailable until
the machine recovers. Furthermore, it ididift to add new machines to such systems or to
change the mapping of addresses to machines to balance load, because doing so requires all meta-
data to be redistributed according to a new hash function. In contrast, Eeweybrk virtual
memory system [Feeley ak., 1995] uses a level of indirection similar to the serverless file sys-

tem’s manager map to allow reconfiguration of management responsibilities.

The \esta file system [Corbett &k, 1993] distributes metadata by hashing on asfifgth
name to locate the machine that controls thesfilétadata. Howevemetadata in &sta is much
simpler than in the serverless system described in this chagstas\file layout on disk is
restricted to variations of round-robin mappings across storage servers. Additidestityuses a
fixed mapping from file names to manager addresses, so it cannot easily reconfigure management

responsibilities.

File systems’ cache consistency protocols resemble the directory-based multiprocessor mem-
ory schemes [@ng,1976, Censier and Feautti@B78, Archibald and Bagt984, ¥n etal., 1985,
Agarwal etal., 1988]. In both cases, the cache consistency state allows the consistency manager to
prevent nodes from caching stale data. The DASH multiprocessor demonstrates how to provide
scalability by distributing the consistency directory [Lenoskilgetl990]; each DASH node man-
ages a subset of the systeroache consistency state. Unfortunat@yDASH and related, distrib-
uted, multiprocessor cache consistency schemes [Chailkeénl1&91, Kuskin etl.,1994], the

distribution of state across managers is fixed, limiting their availability and ability to reconfigure.

117

5.5.2. Hierarchical Metadata Distribution

Several MPP designs have used dynamic hierarchies to avoid the fixed-home approach used in
traditional directory-based MPPs. The KSR1 [Rostilgtl993] machine, based on the DDM pro-
posal [Hagersten etl., 1992], avoids associating data with fixed home nodes. Instead, data may be
stored in any cache, and a hierarchy of directories allows any node to locate any data by searching
successively higher and more globally-complete directories. Although this approach could be
adapted to file systems [BlaZg993, Dahlin etl., 1994], a managenap-based approach to dis-
tribution is superior for three reasons. First, it eliminates the “root” manager that must track all
data; such a root would bottleneck performance and reduce avail&gitynd, the manager map
allows a client to locate a fiemanager with at most one network hop. Findfig manager map
approach can be integrated more readily with the imap data structure that tracks disk location

metadata.

5.6. Conclusions

This chapter described the design of a distributed management policy in which each manager
controls the metadata and cache consistency state for a subset of thesdileterA’level of indi-
rection called the manager map provides flexibility to reassign files to managers as thes system’
configuration changes, and on-disk checkpoints and deltas allow the system to be resilient to fail-
ures when used in conjunction with the redundant, log-structured storage architecture described in
Chapterd.

Surprisingly this distribution and indirection does not increase the number of network hops
needed to contact the manager compared to a central-server approach. In fact, by co-locating a

file’s manager with the client using that file, distributed management actually increases locality

118

6Security

A serverless system derives its scalability from distributing a central seresponsibilities
among a lage number of machines. This approach raises security issues. If any of a serverless sys-
tem’s machines are compromised, the intruder may be able to read or modify the filessglatam’
without authorization. Although similar security issues arise in client-server architectures, trust is
a particular concern in a serverless system because serverless systems place more responsibility
and trust on more nodes than do traditional, central-server protocols. Distributing responsibilities
improves performance, but it may increase the opportunity for a mischievous machine to interfere

with the system.

The serverless design presented in this dissertation was designed for uniform security environ-
ments where all machines are administered as a unit. The serverless design will work best in such
an environment, where the system can take full advantage of all of the machines’ resources by

using all machines as clients, managers, and storage servers.

One example of such an environment is a Network ofkétations (NOW) [Anderson
etal., 1995]. Another is a non-NOW cluster of workstations that is administered unifoFms/
level of trust might physically span arfio&, lab, flooy or building or might follow an ganiza-
tion’s functional divisions, existing within groups, departments, or across an entire copany
serverless file system can also be used within a massively parallel processor (MPP) such as a
Thinking Machines CM-5, Cray T3D, Intel Paragon, or IBM SP-2. Each node of these machines
resembles a workstation in a NOWith a processor and a significant amount of memory; some
nodes also have disks and can be used as storage servers, thatlemel of trust among these
nodes is typically even higher than among NOW workstations. A serverless design may also be an
effective way to supply file service across the “scalable servers” currently being researched
[Lenoski etal., 1990, Kubiatowicz and Agarwal993, Kuskin eal., 1994]. Although these scal-

able servers try to bridge the gap between MPPs and bus-based shared-memory multiprocessors

119

by adding hardware to support directory-based shared memory abstractions, their nodes otherwise

resemble the nodes of an MPP or NOW in both capabilities and trust.

Note that while serverless systems place a high level of trust on the kernels of all of their
nodes, they do not need to trust all users. Like traditional systems, a serverless system trusts the
kernel to enforce a firewall between untrusted user processes and kernel subsystems such as the
file system, allowing user processes to communicate with kernel subsystems only through well-
defined and protected interfaces. The systestorage servers, managers, and clients can then
enforce standard file system security semantics. Examples of operating systems that provide this
type of protection include Unix, VMS, andifdows NT This approach, howevewould not
work for operating systems such as DOS anddaivs95 that do not provide address space pro-

tection.

Although the complete serverless system can be used in many environments, some environ-
ments do not trust all of their machines. For instance, in a file system serving students’ personal
computers in a dormitoyypecause users have complete control over the administration of their
personal machines, they might trust only their own machines and a set of secure file servers
administered by the universit€entral server architectures deal with such environments by trust-

ing servers and distrusting client machines.

By altering the serverless protocol, a serverless architecture can also be used in these mixed-
trust environments. Howeveas machines trust one another less, it becomes mdicailtifor
them to share their resources, and performance is reduced. This chapter describes how to extend
the serverless protocol to allow untrusted clients; howdverdesign still requires trusted manag-
ers and storage servers. The “core” of managers and storage servers act as a scalable, high-perfor-

mance, and highly-available file server for the “fringe” untrusted clients.

The rest of this chapter examines the security issues that arise when using the serverless
design to provide file system service to untrusted machines. First, it discusses the security assump-
tions made in the serverless design and compares those assumptions to those of two central-server
network file systems, NFS [Sandpeetal.,1985] and AFS [Howard etl.,1988]. Then, it
describes modifications of the basic serverless design that allow the approach to be used in settings

where some machines are trusted and some are not.

120

6.1. Security Assumptions

Security is a complex issue involving tradésdietween usability and securignd no system
can be completely secure [Denning and Denrli8g9]. Rather than try to address all aspects of
security in this chaptet compare the security assumptions of the serverless design to those of two

traditional, centralized network file systems, NFS and AFS.

Table6-1 compares the security assumptions of a serverless system with those of NFS and
AFS. There are three basic resources that can be compromised in any of these systems. If a user
circumvents the kernal’protection model on a machine (for instance, by learning the root pass-
word), that user gains complete control over that machine. If a user compromises the network (for
instance, by compromising the kernel of a machine on the network or attaching an unauthorized
machine to the network), that user may be able to read or even change any unencrypted network
packets. The impact of a compromised network depends on the network topelogs-based
networks such as Ethernet are more vulnerable than switch-based networks stigh Emally,

users with physical access to a machine may be able to compromise its sectoityrizyance,

Network Link Broadcast Network Physical Security
Kernel Compromised Compromised Compromised Compromised
Local | Remote|Remote| Local | Remote|Remote| Local | Remote|Remote| Local | Remote|Remote
Users| Users | Root ||Users| Users | Root ||Users| Users | Root ||Users| Users | Root
NFS Client |:| |:| |:| |:| |:| |:| |:|
Server O 0 (g oo [0 jg OO0 (4
AFS Client |:| |:| |:| |:| |:|
Server O g (oo o (oo g g0 jg
ServerlessClient |:| |:| D |:| |:| |:| |:| |:| |:|
Manager OO (g g o (oo g (0
soaesene [1] [0 |0 |0 |0 O[]0 [0 |00 |O
Untrusted Clien |:| |:| D |:| |:|

TABLE 6-1. Direct security impact. Summary of direct security impact of cracking the kernel,
network link, broadcast network, or physically accessing the machingl iira column indicates

that the specified entity is compromised if the resource is compromised. For instance, if an NFS
client's kernel is compromised, then all non-root users’ files in the exported file system are
compromised, but the remote root files are not. Note that compromising one of these resources oftel
makes it easy to compromise others. The Serverless Untrusted Client line indicates the vulnerability
assuming the modifications described in Seddién

121

physically removing the disk that stores file system data and attaching that disk to another machine

for unrestricted access.

Although | have listed the three resources separdtedy are closely related; compromising
one often makes it easy to compromise others. For instance, if | can physically access a,computer
| can often compromise its kernel by attaching a new disk and booting my kernel or compromise
its network by attaching a new computer to its network tap. If | can compromise a nsakbine’
nel, I can compromise its network by snooping or inserting packets. If | compromise a nsachine’
network, | can compromise its kernel by supplying modified executables over the network
[Brewer etal., 1995].

Table6-1 summarizes the direct impacts ofeliént types of break-in. First, some attacks gain
no advantage; for instance, physically removing an NFS dielitk does not directly compro-
mise NFS data, because the system does not store data on client disks. Second, attacks on client
machines often compromise data accessed by that client or the data of any user that logs onto that
client machine because that machine can issue commands to the rest of the system using those
users’ credentials. Third, an attack can compromise all but a privileged subset of the filessystem’
data. For instance, NFS can be configured so that client machines cannot access files owned by the
servefs root account, so compromising an NFS client compromises all files except those owned
by root. Finally some attacks such as compromising the kernel on an NFS, gdreserveror

serverless manager lay essentially the entire file system open for abuse.

6.1.1. Compromising the Kernel

Most operating systems enforce a protection “firewall” between users’ processes and privi-
leged subsystems such as the file system, allowing the kernel to control users’ access to system
resources. A broad range of attacks designed to circumvent this barrier exist, including password
guessing, trojan horses, modifying the kernel by compromising the network or disk, and taking
advantage of kernel bugs. Denning and Denning [Denning and Defir@j, and Bellovin
[Bellovin, 1992] provide overviews of some general techniques, and Haynes and Kelly [Haynes

and Kelly 1992] examine the issues in the context of file system security

122

6.1.1.1. Compromising Client Kernels

If the kernel on a client machine is compromised in any of the file systems, the data of any
user that runs processes on that machine are at risk because the malicious kernel can issue spurious

commands using the credentials provided by the user

AFS limits vulnerability to users that access the compromised machine by preventing a com-
promised client from issuing file system requests in the name of users who have not logged on to
that system. The file server only honors requests made abthenticated users
[Satyanarayanari,989]. In an NFS or serverless system, in contrast, a compromised client can
issue requests in the name of any user in the system, although NFS protects files owned by root
from this type of attack by remapping root identifiers at clients to an unprivileged account at the
servers. Both NFS and serverless protocols can be modified to incorporate AFS-style authentica-

tion to improve security [Steiner ak, 1988, Haynes and Ke]l{992].

The serverless client architecture raises three additional security concerns because clients
write data to storage servers, read data from storage servers, and participate in cooperative cach-
ing. Sectiorb.2.2 discusses the impact of these aspects of the architecture and explains how to

make the serverless clients’ security properties as good as those of traditional clients.

6.1.2. Compromising Servevlanagerand Storage Server Kernels

The correct operation of the kernels of the NFS and AFS servers as well as the kernels of the
serverless managers and storage servers are critical to sdfwiternel is compromised, the

intruder gains essentially unlimited access to all file system state.

In NFS and AFS the central server controls all of the file systdata and all client accesses
to data. Therefore, if the central sefgekernel is compromised, the entire file system is jeopar-
dized.

In a serverless system the managers and storage servers play roles similar to the NFS and AFS
servers. The managers control the file systengétadata and enforce access restrictions on clients.
A damaged manager might therefore allow anyone to read or write any data in the system. The
storage servers store the systepérsistent state on their disks, so a modified storage server can

read or write any data stored on its disks.

123

A potential advantage of NFS and AFS is that only one machine (the central server) must be
trusted, while in a serverless system all managers and storage servers must run on trusted
machines. Howevenr serverless system allows installations to vary the number of machines with
this level of trust and thereby vary the level of performance in the system; as a serverless system
trusts more machines to act as storage servers and managers, its performance increases. Con-
versely if only a few machines can be trusted, the system can use only those machines to act as

storage servers and managers.

6.1.3. Compromising the Network

Attacking the network is an fefctive way to compromise all three network file systems. The
impact of such an attack depends on the network topoldggh determines which machines are
compromised when d#rent portions of the network are compromised. If a link is compromised
in a point-to-point, switched network such aBMAor Myrinet, packets to or from the machines
that use that link are vulnerable. In a broadcast network such as Ethernet, all packets are in danger
if an intruder has access to the broadcast medium. The simplest way for an intruder to gain access
to a network is to compromise a machine attached to the network; another approach is to attach a

new machine to the network.

An intruder that has compromised the network can passively read the packets sent across the
network. Because none of the file systems examined encrypts data sent across the network, all data

crossing the compromised section of the network are vulnerable.

A more active intruder can fge file system requests or replies to actively read data from the
system or to modify data. By fging client requests, the intruder can read or write any data to
which that client has access. Byduong server replies, the intruder can falsify any data accessed

by clients.

Although AFS and Kerberized NFS attempt to solve these problems, for performance reasons
their authentication schemes do not protect the contents of packets. They do not encrypt data
blocks sent over the network, so network snooping can still read all data sent over the network.
They do not encrypt the contents of RPC requests or replies, so a compromised network can still
forge requests or replies. They do, howgveduce the range of requests that can bgetbr
because their servers verify that the user sending a request from a particular machine is actually

logged onto that machine. @ries must, therefore, appear to come from a current user/machine

124

pair. This level of security can be breached, but it provides a useful safeguard against “casual”
intruders who might otherwise access other users’ files by using their personal machines to issue

commands in other users’ names.

Although NFS and AFS protect their systems’ most sensitive files by disallowing all privi-
leged root-account accesses from the network, this safeguard adds less to security than it would
first appearA compromised network can fgr any data read by a client, even if the version of the
data stored at the server remains unmodified. An intruder that agn rietwork packets can,
therefore, modify even these protected files when they are read over the network by clients
[Brewer etal., 1995]. From a clien$ point of viewthe entire file system, including protected root-
owned files, is compromised. For example, an intruder can capture passwords by providing a fake

version of the login executable to the client.

Further as software implementations of encryption become fastill become feasible to
encrypt all data sent over the network. This will reduce the vulnerability of all of these network file

systems to these types of attack.

6.1.4. Physical Access to a Machine

In addition to making it easier to compromise the kernel or network of a machine (with the
consequences described above), physical access to a machine also allows access to its disks. A
malicious user can remove a disk to damage the file systiata or to connect the disk to a new

machine in order to read or modify the file systeddta.

Because NFS clients, serverless clients, and serverless managers do not access their local
disks, this peril does not directlyfet them. Conversel\NFS servers, AFS servers, and server-
less storage servers store their syssasata on their disks and must be concerned with this type of
attack. FurtherAFS clients cache data on their local disks, making the cached data vulnerable to

this type of assault.

6.2. Untrusted Clients in Mixedtlist Environments

In some environments, not all machines will be trusted to perform all of the functions required
by a serverless system. This section first explores allowing untrusted clients to use traditional cli-

ent protocols such as NFS, Kerberized NFS, and AFS to access data stored by trusted, serverless

125

machines. Sectiof.2.2 then examines a solution with higher performance: modifying the client

portion of the serverless protocol to make cooperative caching and log reconstruction safe.

6.2.1. Using the Serverless System as a Scalable Server

When a system uses protocols that do not require that clients be trusted and restricts storage
servers and managers to a subset of trusted machines, the trusted machines act as a “scalable
server” for the clients. The architecture resembles a traditional client-server one with a group of
serverless machines acting as a traditieradhough scalable, reliable, and codeetive— file
server If the storage servers and managers run only on trusted machines that are managed like tra-
ditional servers, such a system provides the same level of security as a traditional, centralized file

system.

The approach ¢drs two additional advantages. First, it allows commodity workstation clients
to use the industry-standard NFS protocol to benefit from many of the advantages of serverless-
ness without changing any part of their operating systems. Second, the NFS and AFS protocols
may work better than the serverless protocols for clients with slow (e.g. Ethernet-speed) network
connections, because they do not require tight cooperation among clients. An economical use of
this technology might be to build fast, serverless cores using high-end machine-room networks but

to leave desktop machines connected to slower networks.

Figure6-1 illustrates an installation in which a serverless core of machines exports file service
to untrusted fringe clients via the NFS protocal. Use this system, an NFS client employs the
same procedures it would use to mount a standard NFS partition, but instead of contacting a tradi-
tional NFS serveiit contacts any one of the serverless clients. The serverless client then acts as an

NFS server for the NFS client, providing high performance by employing the remaining core

FIGURE 6-1. A serverless coe. The serverless core acts as a scalable file server for unmodi
NFS clients.

126

machines to satisfy requests not satisfied by its local cache. Multiple NFS clients can utilize the
core as a scalable file server by havindedént NFS clients mount the file system fronfetiént

core clients to avoid bottlenecks. Because the serverless system provides single-machine sharing
semantics, it appears to the NFS clients that they are mounting the same file system from the same
server The NFS clients also benefit from the serverless £diigh availability because they can

mount the file system using any available core client.

Figure6-2 illustrates a similar scenario, where several administraéile work together to
service a single, global file system hierardbifferent machines from the same cell fully trust one
another but machines from dérent cells have less trust. Such a situation might exist among dif-
ferent research groups within the Berkeley Computer Science Department, for instance. The NOW
groups machines all have the same administrator and root password, and the members of the
NOW research group trust those machine as file servers. Similar levels of trust exist within the
Daedalus group, the Plateau group, and grefgroup. Each of these cells can use its machines
to provide serverless file service and can use the full serverless protocol within cells for best per-
formance. Users from one group might sometimes use machines from other groups, so each
machine in a cell mounts the other cells’ file systems using NFS or some other untrusted-client

protocol so that all machines present a uniform, global name space.

NOW NFS Protocol Daedalus
Serverless Serverless

FIGURE 6-2. Four administrative cells. Each uses the serverless protocol for file access with
the cell, but uses the NFS protocol for access to other cells’ files.

127

6.2.2. Safe Serverless Client Protocol

Although traditional client protocols such as NFS and AFS can be used to access a serverless
core, the NFS and AFS client protocols reduce performance compared to the serverless client pro-
tocol for two reasons. First, there are additional forwarding delays because the NFS and AFS cli-
ents access the serverless system by using a serverless core client as an NFS or AFBiserver
client adds a delay because all data transmissions between the traditional clients and the serverless
core are staged through that serverless client. For instance, if an NFS client reads a block that is
not located in the cache of the serverless client that is acting as its NFStherserverless client
reads the block from a storage server or other serverless client, and then it forwards the block to
the NFS client. The second disadvantage is that the serverless system can not exploit the memory
of the traditional clients for use in the cooperative cache. The rest of this section describes how to
adapt the serverless client protocol for use by untrusted clients so that they can realize nearly the

same performance as trusted serverless clients.

Serverless clients ddr from traditional clients in three ways thateat security First, they
write data to logs that are stored directly on the storage servers. Second, they read data from the
storage server logs during normal operation and recoVéiyd, they participate in cooperative
caching. The rest of this section discusses issues raised by each of these aspects of the design and

describes how to maintain security while retaining the serverless architecture.

6.2.2.1. Client Wites to Storage Server Logs

Although serverless clients write data directly into the storage server logs, this capability does
not compromise security because managers prevent unauthorized writes from being observed by
any but the compromised client. If a client tries to modify asfitigita by writing a new version of
the file to the log without permission, the manager refuses to update the disk-location metadata for
that file, and the new version of the data has fecebn the system. The manager also issues a
“reject delta” to its log to allow the cleaners to free the space consumed by the bogus data [Hart-
man and Ousterhout995].

Just as the managers in a serverless system control the data-location metadata fqr security
they also control the file-attribute metadata such as file ownership and access permissions.
Although performance guments can be made for storing file-attribute metadata in either the file

directories (written by clients) or in index nodes (written by managers), the latter approach is more

128

secure. Manager control of file-attribute metadata prevents a compromised client from, for
instance, creating a dangerous executable and then changing its attributes to be “set-uid root” so

that it is executed with all of the capabilities of the root account.

6.2.2.2. Client Reads from Storage Servers

Clients read data from storage servers in thrderdiit ways. First, during normal operation,
they read blocks from storage servers. Second, when a storage server fails, they read blocks by
reading other blocks and parity from the same segment. Fidaliyng recoveryclients roll-for-

ward logs to replay reads that occurred between the time of a checkpoint and the crash.

During normal operation, clients ask managers for data and the managers forward the clients’
reads to the correct storage servers. Because clients never access storage servetsalireatly
not read data without authorization. This approach provides better security than the Zebra system

in which clients issue arbitrary read requests directly to storage servers.

If a client reads data stored on a failed storage sengtead of supplying the data that a client
requests, the system supplies other blocks of data and parity so that the client can reconstruct the
missing block. This is a potential security hole because the client may receive blocks that it does
not have permission to read. A better approach, which | plan to implement in the future, is to

reconstruct lost data at one of the remaining storage servers rather than at the client.

Finally, clients read the logs directly during roll-forward. This raises two concerns. First, if a
client rolls forward a log that was written by some other client or one containing multiple clients’
writes combined together by a cleariemay read data without permissiom. dvoid this, the sys-
tem can restrict roll forward to trusted machines o8kcond, the deltas in the log may contain
unauthorized modifications to the system. Managers should, therefore, check permissions for

actions requested during roll-forward just as they verify client requests during normal operation.

6.2.2.3. Cooperative Caching

Cooperative caching introduces two concerns about client sedtirgty, a client might mod-
ify a block before forwarding it to another client. Second, a client might allow unauthorized local
reads to data that have been forwarded to it. These risks can be addressed in either of two ways: by
restricting which clients cache data cooperatively or by using encryption-based techniques. Com-

binations of these techniques may be the most practical approach.

129

Restricting Cooperative Caching tausted Machines

A simple strategy to make cooperative caching safe is to only use trusted clients’ memories for
cooperative caching. Untrusted clients could still benefit from cooperative caching when blocks
are forwarded to them, but because they would never forward blocks themselves, they could not
modify data being sent to other clients. Furtbecause the system would not forward data to such
clients for cooperative caching storage, they would not be able to issue unauthorized reads. Of

course, the system could not benefit from the untrusted clients’ memory capacity

Another strategy that protects only against unauthorized read is to restrict untrusted clients to
greedy cooperative caching. In that case, the contents of untrusted clients’ memories only include
data that they have read on behalf of authorized users via the traditional client interface. For full
protection, this strategy for protecting reads can be combined with the encryption-based strategy

described below for protecting writes.

Encryption-Based Cooperative Caching Security

Cooperative caching protected via encryption-based techniques can exploit untrusted memo-
ries, paying additional CPU overheads to prevent clients from transgressinabld8-2Z shows,
modern CPUs can encrypt data (to guard against unauthorized reads) or compute digests (to guard
against unauthorized writes) quickly; because these operations are CPU limited, the technology

trends discussed in Chapfewill make this approach even more attractive in the future. In addi-

Digests Encryption
SPECInt92 MD4 MD5 DES WAKE
HP 715/80 65 8.2 MB/s| 5.9 MB/s| 3.7 MB/s| 9.5 MB/s
HP 735/99 80 8.6 MB/s| 6.0 MB/s| 4.5 MB/s| 11.4 MB/s
HP 9000/J200 139 10.6 MB/s| 7.6 MB/s| 4.9 MB/s| 12.27 MB/s
SUN SS2 22 25MB/s| 1.9 MB/s| 0.8 MB/s N/A
SUN SS10/51 65 6.3 MB/s| 4.7 MB/s| 1.6 MB/s 8.2 MB/s
SUN SS20/51 77 6.4 MB/s| 4.7 MB/s| 1.6 MB/s 8.6 MB/s
DEC AXP 3000/400 75 7.4 MB/s| 5.1 MB/s N/A N/A

TABLE 6-2. Encryption and message digest performancé&erformance was measured for severe
algorithms on several machines. All performance figures indicate the bandwidth to encryy
compute the message digest of alBBblock of data; if lager blocks were used, all bandwidths
would be significantly higheThe digest algorithms are RivestID4 [Rivest,1992a] and MD5
[Rivest,1992b], the Digital Encryption Standard algorithm (DES), and Wheel®¥AKE
[Wheeler 1993].

130

tion to protecting cooperative caching, widespread, fast encryption may protect other aspects of

distributed file systems such as network communication.

Encryption prevents an unauthorized client from reading data stored in its cooperative cache.
Figure6-3 illustrates how a client can encrypt and forward data to another <leuhe as it
would for the N-Chance algorithm. When a client makes room in its cache by forwarding data to
another client, it first encrypts the data using a private key; clients issuerardikey for each
block they encrypt. In addition to forwarding the encrypted data to the remote cache, the client
sends the key to the managehich stores the key with the blosk¢ache consistency state. If the
manager forwards a read request to the client holding the encrypted data, that client sends the
encrypted data to the readand the manager sends the key to the redtierreader can decrypt

the data using the key and then store the data in its own cache.

Another encryption-based technique, message digests, can protect against unauthorized data
modifications. Message digests provide a secure checksum for data: given a block and its message
digest, it is computationally infeasible to devise another block with the same digest. AsSHgure

illustrates, when a client loses write ownership of a block it has modified, it computes a new digest

Forward to Cooperative Cache

data:key

engrglt%ted engrglt%ted

FIGURE 6-3. Encryption. Cooperative caching when client 2 is not authorized to read a block
data. The left picture indicates how client 1 encrypts data before sending it to client 2. The
picture shows how client 2 forwards this encrypted data, which, when combined with the encry
key sent by the servesatisfies client 3'read request.

Compute Digest on Yite

data

FIGURE 6-4. Message digestsThe security protocol uses message digests to verify the integrity
data supplied via cooperative caching. Clients compute digests and send them to their manage!
they lose write ownership of a block. Laterhen another client reads the block via cooperatiy
caching, it verifies the data by computing its digest and comparing the digest to the digest supp!
the manager

131

and sends its digest to the managdére managers thus always have current digests for all cache
blocks that are forwarded via cooperative caching. Digests can be combined with encryption or

greedy caching to provide protection from both unauthorized reads and unauthorized writes.

6.3. Summary

The serverless design will be modieefive when machines trust one another equbdlyhat
case, machines can take full advantage of one anothers’ resources to provide file service. If not all
machines are trusted, more restrictive versions of the serverless protocol can be used. In these pro-
tocols, the serverless clients are replaced with clients with the same security requirements as tradi-
tional file system clients, and the serverless managers and storage servers execute only on trusted

machines, in the same way that traditional systems’ servers do.

132

7XFS Prototype

To investigate the pieces of serverless design described in the previous chapters, this chapter
examines XFS, a prototype serverless network file system. The construction and measurement of
the XFS prototype has been a joint project with rest of the Berkeley xFS group: Jeanna M. Neefe,

Drew S. Roselli, and Randolph Y. Wang.

The xFS prototype integrates cooperative caching, serverless storage, and serverless
management to realize its goal of location independence: the ability to put “anything, anywhere.”
It seeks to distribute all data, metadata, and control throughout the system and to allow them to be
dynamically migrated during operation. It attempts to exploit this location independence to improve
performance by taking advantage of all of the system’s resourd@BUs, DRAM, and disks-
to distribute load and increase locality. Finally, it aims to use location independence to provide high
availability by allowing any machine to take over the responsibilities of a failed component after

recovering its state from the redundant log-structured storage system.

This chapter first describes how cooperative caching, distributed storage, and distributed
management fit together to form xFS. Next, it describes the xFS prototype and presents initial
performance results. Finally, it summarizes the conclusions that can be drawn from these

preliminary results and discusses future directions.

7.1. Serverless File Service

The xFS prototype brings together cooperative caching, serverless storage, and serverless
management to replace the functionality of a traditional central sénvartypical, centralized
system, the central server has four main tasks:

1.The server stores all of the systerdata blocks on its local disks.

2.The server manages disk location metadata that indicate where on disk the system has stored
each data block.

133

3.The server maintains a central cache of data blocks in its memory to satisfy some client misses
without accessing its disks.

4.The server manages cache consistency metadata that lists which clients in the system are cach-
ing each block. It uses this metadata to invalidate stale data in client caches.

The xFS system performs the same tasks, but it builds on the ideas discussed in this dissertation
to distribute this work over all of the machines in system. xFS replaces the server cache with
cooperative caching that forwards data among client caches under the control of the managers as
described in Chapt&. Similarly, to provide scalable disk storage, xFS uses log-based network
striping with distributed cleaners as Chaptelescribed. Finally, to provide scalable control of disk
metadata and cache consistency state, XFS uses serverless management techniques like those
discussed in Chaptér In xFS, four types of entities — the clients, storage servers, cleaners, and

managers cooperate to provide file service as Figurdlustrates.

7.2. XFS Prototype

The xFS prototype implementation runs on a cluster of 32 SPARCStation 10’s and 20’s. A small
amount of code runs as a loadable module for the Solaris kernel. This code provides xFS’s interface
to the Solaris v-node layer and kernel buffer cache. The remaining pieces of XFS run as daemons

outside of the kernel address space to facilitate debugging [Howalrd1&88]. If the XFS kernel

oragg ‘ Storagg i oragg)
Server Server Server
Cleand(Manage) [Cleanel{Manage} [CleangManage

E Network i
i |
(e
(Managey |

Cleanef [Cleanelr

e—e' |

Sond, [/3R

FIGURE 7-1.Two simple XFS installationsIn the first, each machine acts as a client, storage sen
cleaney and managewhile in the second each node only performs some of those roles. The free
to configure the system is not complete; managers and cleaners access storage using th
interface, so all machines acting as managers or cleaners must also be clients.

134

module cannot satisfy a request using the buffer cache, then it sends the request to the client
daemon. The client daemons provide the rest of xFS’s functionality by accessing the manager,

storage server, and cleaner daemons over the network.

The rest of this section summarizes the status of the prototype as of October 1995 and describes

the prototype’s hardware and software environment.

7.2.1. Prototype Status

The xFS prototype implements most of the key features of a serverless system, including
distributed management, cooperative caching, and network disk striping with single parity and
multiple groups. Several key features, however, remain to be implemented. The most glaring
deficiencies are in crash recovery and cleaning. Although the implementation supports storage
server recovery, including automatic reconstruction of data from parity, it does not implement
manager state checkpoint and roll forward; also, it does not include the consensus algorithms
necessary to calculate and distribute new manager maps and stripe group maps; the system
currently reads these mappings from a non-xFS file and cannot change them. Additionally, the
system does not have a cleaner yet. As a result, xFS is still best characterized as a research
prototype, and the results in this chapter should thus be viewed as evidence that the serverless

approach is promising, not as “proof” that it will succeed.

7.2.2. Bst Environment

The testbed includes a total of 32 machines: eight dual-processor SPARCStation 20’s, and 24
single-processor SPARCStation 10’s. Each of the machines higl8 Gf physical memory.
Uniprocessor 50AHz SS-20's and SS-10's have SPECInt92 ratings of 74 and 65, and can copy
large blocks of data from memory to memory atviB/s and 20MB/s, respectively. For the xFS
tests, all machines act as storage servers, managers, and clients unless otherwise noted. For
experiments using fewer than 32 machines, | always include all of the SS-20’s before starting to use

the less powerful SS-10’s.

Each xFS storage server stores data on &Bpartition of a 1.1GB Seagate-ST11200N disk.
These disks have an advertised average seek time ah&@hbd rotate at 5,4HRPM. | measured
a 2.7MB/s peak bandwidth to read from the raw disk device into memory. For all xFS tests, the
system uses a log fragment size okl and unless otherwise noted it uses storage server groups
of eight machines — seven for data and one for parity; all xFS tests include the overhead of parity

computation.

135

A high-speed, switched Myrinet network [Boderak{1995] connects the machines. Although
each link of the physical network has a peak bandwidth &fiB&, RPC and TCP/IP protocol
overheads place a much lower limit on the throughput actually achieved [Keatgri @95]. The
throughput for fast networks such as the Myrinet depends heavily on the version and patch level of
the Solaris operating system used. For my xFS measurements, | use a kernel that | compiled from
the Solaris 2.4 source release. | measured the TCP throughput toNdB/8.tor 8KB packets
when using this source release. The binary release of Solaris 2.4, augmented with the binary patches
recommended by Sun as of June 1, 1995 provides higher performance; the TCP test achieves a
throughput of 8.MB/s for this setup. Alas, | could not get sources for the patches, so my xFS
measurements are penalized with a slower effective network than the NFS and AFS measurements

described below. RPC overheads further reduce network performance.

7.2.3. NFS and AFS Environments

| use the same hardware to compare xFS with two central-server architectures, NFS [Sandberg
etal.,1985] and AFS (a commercial version of the Andrew file system [Howaild £088]). | use
NFS as my baseline system for practical reasendFS is mature, widely available, and well-
tuned, allowing easy comparison and a good frame of referertodt its limitations with respect
to scalability are well known [Howard aL., 1988]. Since many NFS installations have attacked
NFS’s limitations by buying shared-memory multiprocessor servers, | would like to compare xFS
running on workstations to NFS running on a large multiprocessor server, but such a machine was
not available to me, so my NFS server runs on essentially the same platform as the clients. | also
compare XFS to AFS, a more scalable central-server architecture. However, AFS achieves most of
its scalability compared to NFS by improving cache performance; its scalability is only modestly

better compared to NFS for reads from server disk and for writes.

For my NFS and AFS tests, one of the SS-20's acts as the central server, using a larger and
somewhat faster disk than the xFS storage servers: @R.DEC RZ28-VA with a peak
bandwidth of SMB/s from the raw partition into memory. These servers also use a Prestoserve
NVRAM card that acts as a buffer for disk writes [Bakealet1992]. The xFS machines did not
use NVRAM buffers, but their log buffers provide similar performance benefits.

For local disk caches, the AFS clients use aNlB0partition of the same Seagate ST11200N

disks used by the xFS storage servers.

136

The NFS and AFS tests run on the unmodified Solaris kernel, so | use the patched-binary Solaris
release for them. Under this kernel release, the network TCP tests indicate a maxiriviBYs8.4

throughput between one client and the server for the Myrinet network.

7.2.4. Performance Results

This section presents preliminary performance results for xFS under a set of microbenchmarks
designed to stress file system scalability and under an application-level benchmark. Although these
results are preliminary and although | expect future tuning to significantly improve absolute
performance, they suggest that xFS has achieved its goal of scalability. For instance, in one of the
microbenchmarks 3@lients achieved an aggregate large file write bandwidth ofNMIB/, close
to a linear speedup compared to a single client VB bandwidth. The other tests indicated

similar speedups for reads and small file writes.

As noted above, several significant pieces of the xFS systemmanager checkpoints and
cleaning— remain to be implemented. | do not expect checkpoints to limit performance. Thorough
future investigation will be needed, however, to evaluate the impact of distributed cleaning under
a wide range workloads; other researchers have measured sequential cleaning overheads from a few
percent [Rosenblum and Ousterhdi92, Blackwell etl.,1995] to as much as 40% [Seltzer
etal.,1995], depending on the workload.

Also, the current prototype implementation suffers from three inefficiencies, all of which will

be addressed in the future:

1.xFS is currently implementeay redirecting v-node calls to a set of user-level processes. This
indirection hurts performance because each user/kernel space crossing requires the kernel to
schedule the user level process and copy data to or from the user process’s address space. The
fix for this limitation is to move xFS into the kernel. (Note that AFS shares this handicap.)

2.RPC and TCP/IP overheads severely limit xe#8twork performance. The fix for this limita-
tion is to port XFS communications layer to a faster communication system, such as Active
Messages [von Eicken at, 1992].

3.0nce the first two limitations have been addressed, the system must be systematically profiled
and tuned to identify and fix any other major fioééncies.

As aresult, the absolute performance is much less than | expect for the (hypothetical) well-tuned
XFS. As the implementation matures, | expect a single xFS client to significantly outperform an
NFS or AFS client by benefitting from the bandwidth of multiple disks and from cooperative
caching. The eventual performance goal is for a single XFS client to be able to read and write data
at a rate near that of its maximum network throughput, and for multiple clients to realize an

aggregate bandwidth approaching the system’s aggregate local disk bandwidth.

137

To quantify the performance of the prototype, | examine the performance of cooperative caching
in detail. | then examine its scalability using a series of microbenchmarks. These microbenchmarks
measure read and write throughput for large files and write performance for small files. Finally, |
use Satyanarayanan’s Andrew benchmark [Howardl. gt988] as a simple evaluation of
application-level performance. In the future, | plan to compare the systems’ performance under

more demanding applications.

7.2.5. Performance of the Prototype
Figure7-2 details the performance of the prototype for a read request satisfied via cooperative

caching. These measurements illustrate the limitations of the current implementation that were
discussed above. As the summary abl€7-1 indicates, network protocol processing causes most

of the latency for cooperative caching; context switches and copies between kernel dexkliser

application

Wake Up
Thread:

Copy Data Fom 1lms

Kernel: 2.6 ms

read() _
Client
Processinc
<0.1ms

Kernel Piocessing

and Copies2ms RPC Reply:

5ms
RPC: Send Dat
7ms

Wake Up Thead:
1ims

RPC (Local) to
Client: 1.5ms

1.5ms

Manager Pocessing:

b RPC Reply: <0.1 ms
<0lms/ —— 5ms

client daemb

RPC to Manager: Manager Pocessing:

5ms <0.1ms
FIGURE 7-2.Time to read data via cooperative cachingeach lage circle represents a Unix
process and address space. On the left, three processes cooperate on the client that is reque
data: the application that made the read request, the kernel, andlevekelient daemon that
implements most of xFS'functionality On the machine on the right, three processes cooperate
manager daemon, a client daemon (this figure assumes that the manager and client are co-loc
this data), and the kernel. The lines with solid heads show the flow of control, and the critical pi
drawn with thick lines. The complete read() takes abouh20

138

daemons are also significant factors. Once these overheads have been reduced, further improve-
ments may require restructuring the code to avoid switching between threads, since each of the

two signals to wakeup a new thread takes over a millisecond.

Although the performance of the current prototype falls short of its ultimate goals, these mea-
surements identify the limiting factors and point the way towards improved performance. Feeley
et al. [Feeley edl., 1995] implemented a global virtual memory system that provides performance
similar to what | expect from a more mature cooperative cache implementation. This system’
architecture is similar to XF&'when one machine has a local miss, it sends a message to a global-
cache-directory (GCD) that is similar to x6Shanagers. The GCD forwards the request to the
machine with the data, and that machine sends the data to the first machine. The implementation
differs from xFS, howevein that it uses a custom lightweight communications protocol, runs in
the kernel, and is more carefully tuned (although the authors note several remaining opportunities
to improve performance through further tuning.) The system runs on several 225 MHz DEC
Alphas running OSF/1 that communicate over a lMb&/s ATM network. This implementation

allows the system to fetch data from a remote ckam&mory in 1.5ns.

7.2.6. Scalability
Figures7-3 through 7-5 illustrate the scalability of XxFS’s performance for large writes, large

reads, and small writes. For each of these tests, as the number of clients increases, so does xFS’s
aggregate performance. In contrast, just a few clients saturate NFS’s or AFS’s single server,

limiting peak throughput.

Time

Network Protocols 13.5 ms|

Kernel/User Space Crossings 4.6 ms

Thread Switching 2.2ms
Other <0.5 ms
Total 20 ms

TABLE 7-1. Breakdown of time for cooperative cachingead Network processing accounts for
the lagest fraction of the latency for a cooperative caching request. The mdtlaomponent is
the cost of communication between uspace and kernel-space; this cost includes the time for t
kernel to intercept the vnode call, copy data between the address spaces, and schedule and a
userlevel process. The third source of ifii@éncy is the implementation’'use of threads; each
remote hit switches between udevel threads in the client daemon twice for a total cost ofn®.2
Manipulating data structures and other processing is a relatively minor source of delay

139

Figure7-3 illustrates the performance of the disk write throughput test, in which each client
writes a large (101B), private file and then invokes sync() to force the data to disk (some of the
blocks stay in NVRAM in the case of NFS and AFS.) A single xFS client is limited (dB/S,
about one-third of the 1 MB/s throughput of a single NFS client; this difference is largely due to
the extra kernel crossings and associated data copies in the user-level xFS implementation as well
as high network protocol overheads. A single AFS client achieves a bandwidtiMB/3, 1imited
by AFS’s kernel crossings and overhead of writing data to both the local disk cache and the server
disk. As the number of clients increases, NFS’s and AFS’s throughputs increase only modestly until
the single, central server disk bottlenecks both systems. The xFS configuration, in contrast, scales
up to a peak bandwidth of 13\B/s for 32 clients, and it appears that if the prototype had more
clients available for these experiments, it could achieve even more bandwidth from the 32 xFS

storage servers and managers.

Figure7-4illustrates the performance of xFS and NFS for large reads from disk. For this test,
each machine flushes its cache and then sequentially reads a per-dvhfilld Again, a single
NFS or AFS client outperforms a single xFS client. One NFS client can read\éB/A.8and an
AFS client can read at 1NB/s, while the current xFS implementation limits one xFS client to
0.9MB/s. As is the case for writes, xFS exhibits good scalability; 32 clients achieve a read
throughput of 13.8/B/s. In contrast, two clients saturate NFS at a peak throughput bfE3sl

and 12 clients saturate AFS’s central server disk diB/&.

While Figure7-4 shows disk read performance when data are not cached, all three file systems

achieve much better scalability when clients can read data from their caches to avoid interacting

14 MB/s

xFS
12 MB/s

10 MB/s
8 MB/s
6 MB/s
4 MB/s

2MB/s| .

Aggregate Large-Write Bandwidth

0 MB/s

Clients

FIGURE 7-3.Aggregate disk write bandwidth. The x axis indicates the number of clients
simultaneously writing private 1B files, and the y axis indicates the total throughput across all
the active clients. XFS uses four groups of eight storage servers and 32 manageredkS’
throughput is 1.91B/s with 2 clients, AFS is 1.3 MB/s with 32 clients, and xBS5 13.9 MB/s
with 32 clients.

140

with the server. All three systems allow clients to cache data in local memory, providing scalable
bandwidths of 20MB/s to 30MB/s per client when clients access working sets of a few tens of
megabytes. Furthermore, AFS provides a larger, though slower, local disk cache at each client that
provides scalable disk-read bandwidth for workloads whose working sets do not fit in memory; our
32-node AFS cluster can achieve an aggregate disk bandwidth of neavig/¢lfor such
workloads. This aggregate disk bandwidth is significantly larger than xFS’s maximum disk
bandwidth for two reasons. First, as noted above, xFS is largely untuned, and | expect the gap to
shrink in the future. Second, xFS transfers most of the data over the network, while AFS’s cache
accesses are local. Thus, there will be some workloads for which AFS’s disk caches achieves a
higher aggregate disk-read bandwidth than xFS’s network storage. xFS’s network striping and
better load balance, however, provides better write performance and will, in the future, provide
better read performance for individual clients via striping. Additionally, once cooperative caching
runs under a faster network protocol, accessing remote memory will be much faster than going to
local disk, and thus the clients’ large, aggregate memory cache will further reduce the potential

benefit from local disk caching.

Figure7-5illustrates the performance when each client creates 2,048 files contakBgfl
data per file. For this benchmark, XxFS’s log-based architecture overcomes the current
implementation limitations to achieve approximate parity with NFS and AFS for a single client: one
NFS, AFS, or xFS client can create 51, 32, or 41 files per second, respectively. xFS also
demonstrates good scalability for this benchmark. 32 xFS clients generate a total of 1,122 files per
second, while NFS’s peak rate is 91 files per second with four clients and AFS’s peak is 87 files per
second with four clients.

14 MB/s

xFS
12 MB/s

10 MB/s|
8 MB/s
6 MB/s
4 MB/s

2 MBJs}

Aggregate Large-Read Bandwidth

0 MB/s

5 10 15 20 25 30 5
Clients

FIGURE 7-4.Aggregate disk ead bandwidth. The x axis indicates the number of client:
simultaneously reading private MB files and the y axis indicates the total throughput across
active clients. XFS uses four groups of eight storage servers and 32 managerpdak#roughput
is 3.1MB/s with two clients, AFS is 1.9MB/s with 12 clients, and xFS'is 13.8VIB/s with 32
clients.

141

Figure7-6 shows the average time for a client to complete the Andrew benchmark as the number
of clients varies for each file system. This benchmark was designed as a simple yardstick for
comparing application-level performance for common tasks such as copying, reading, and
compiling files. When one client is running the benchmark, NFS takesd®hds to run and AFS
takes 61seconds, while xFS requires somewhat more #mé&8seconds. xXFS’s scalability,
however, allows xFS to outperform the other systems for larger numbers of clients. For instance,
with 32clients simultaneously running independent copies of the benchmark, xFS takes
117seconds to complete the benchmark on average, while increased 1/O time, particularly in the
copy phase of the benchmark, increases NFS’s time teelctihds and AFS's time to 2&6conds.

A surprising result is that NFS outperforms AFS when there are a large number of clients; this is
because in-memory file caches have grown dramatically since this comparison was first made
[Howard etal., 1988], and the working set of the benchmark now fits in the NFS clients’ in-memory

caches, reducing the benefit of AFS’s on-disk caches.

7.2.7. Storage Server Scalability

In the above measurements, | used a 32-node xXFS system where all machines acted as clients,
managers, and storage servers and found that both bandwidth and small write performance scaled
well. This section examines the impact of different storage server organizations on that scalability.
Figure7-7 shows the large write performance as | vary the number of storage servers and also as |

change the stripe group size.

Increasing the number of storage servers improves performance by spreading the system’s
requests across more CPUs and disks. The increase in bandwidth falls short of linear with the

1200 files/s

XFS
1000 files/s

800 files/q

600 files/q

400 files/s

200 files/q

Small File Creates per Second

0 files/s

5 10 15 20 25 30 5
Clients

FIGURE 7-5. Aggregate small write performance.The x axis indicates the number of clients
each simultaneously creating 2,04&R files. The y axis is the average aggregate number of f
creates per second during the benchmark run. xFS uses four groups of eight storage servers
managers. NFS achieves its peak throughput of 91 files per second with four clients, AFS peak
files per second with four clients, and xFS scales up to 1,122 files per second with 32 clients.

142

NFS

250
200 5
k
2 150 maxe
=
k5
2 o
K|
W 505 copy
0s makeDir
0 5 10 15 20 25 30
Clients
AFS
250
200 5
o make
£ 150 s
|_
2 1003 20
%)
Q.
K|
L 50 s copy
0s makeDir
0 5 10 15 20 25 30
Clients
250 XFS
200 s
(O]
g 150 s
|_
©
$» 1004
g
_ make
L 50 g readAll
scanDir
copy
0s makeDir
0 5 10 15 20 25 30
Clients

FIGURE 7-6. Average time to complete the Andew benchmark.The three graphs show results
for NFS, AFS, and XFS as the number of clients simultaneously executing the benchmark varie
total height of the shaded areas represents the total time to complete the benchmark; each shai
represents the time for one of the five phases of the benchmark: makgipiscanDir readAll, and
make. For all of the systems, the caches were flushed before running the benchmark.

143

number of storage servers, however, because client overheads are also a significant limitation on

system bandwidth.

Reducing the stripe group size from eight storage servers to four reduces the system’s aggregate
bandwidth by 8% to 22% for the different measurements. | attribute most of this difference to the
increased overhead of parity. Reducing the stripe group size from eight to four reduces the fraction
of fragments that store data as opposed to parity. The additional overhead reduces the available disk

bandwidth by 16% for the system using groups of four servers.

7.2.8. Manager Scalability

Figure7-8 shows the importance of distributing management among multiple managers to
achieve both parallelism and locality. It varies the number of managers handling metadata for 31
clients running the small write benchmark (due to a hardware failure, | ran this experiment with
three groups of eight storage servers and 31 clients.) This graph indicates that a single manager is
a significant bottleneck for this benchmark. Increasing the system from one manager to two
increases throughput by over 80%, and a system with four managers more than doubles throughput

compared to a single manager system.

Continuing to increase the number of managers in the system continues to improve performance
under XFS’s First Writer policy. This policy assigns files to managers running on the same machine
as the clients that create the files; Secidon pagd 04 described this policy in more detail. The
system with 31 managers can create 45% more files per second than the system with four managers

under this policy. This improvement comes not from load distribution but from locality; when a

£14 MB/s

12 MB/s

10 MB/s

8 MB/s ~ -
-~ "XFS (4 SS’s per Grou

6 MB/s (P P)
4 MB/s

2 MB/s

Aggregate Large-Write Bandwidt

0 MB/s

10 15 20 25 30 5
Storage Servers
FIGURE 7-7. Storage server thoughput. Large write throughput as a function of the number o
storage servers in the system. The x axis indicates the total number of storage servers in the
and the y axis indicates the aggregate bandwidth when 32 clients each write a 10 MB file to disl
8 SSs line indicates performance for stripe groups of eight storage servers (the default), and
SS’s shows performance for groups of four storage servers.

144

larger fraction of the clients also host managers, the algorithm is more often able to successfully co-

locate the manager of a file with the client accessing it.

The Nonlocal Manager line illustrates what would happen without locality. For this line, |
altered the system’s management assignment policy to avoid assigning files created by a client to
the local manager. When the system has four managers, throughput peaks for this algorithm
because the managers are no longer a significant bottleneck for this benchmark; larger numbers of

managers do not further improve performance.

7.3. Conclusions and Future work

This chapter described how cooperative caching, serverless storage, and serverless manage-
ment combine to form a completely serverless file system, and it provided an overview of a proto-
type system called xFS. The goal of a serverless system is to eliminate all file system bottlenecks
to provide scalabilityhigh performance, and high availabilignd the initial prototype provides

evidence in support of this approach.

Full validation of this approach, howeyeuill have to wait for a more complete implementa-

tion of the prototype. The remaining work on the prototype can be divided into three rfaajsr ef

1. Performance Improvements

'81200 files/s First Writer Polic
o
31000 files/d
%)
& 800 files/s
0
9
g 600 files/d
O
2L 400 files/s
LL
£ 200 files/s
n 24 Storage Servefs
_— 31 Clients
0 files/ 510 15 20 25 30 35
Managers

FIGURE 7-8.Manager throughput. Small write performance as a function of the number
managers in the system and manager locality polibg x axis indicates the number of manager
The y axis is the average aggregate number of file creates per second by 31 clients
simultaneously creating 2,048 smallB) files. The two lines show the performance using the Fil
Writer policy that co-locates a fiemanager with the client that creates the file, and a Nonlocal po
that assigns management to some other machine. Because of a hardware failure, | ran this exg
with three groups of eight storage servers and 31 clients. The maximum point on the x-axis
managers.

145

My hypothesis is that single client in a serverless system should be able to realize /0O band-
width limited only by its network interface and that the system as a whole should be limited only
by its aggregate disk bandwidth. Figur® compares the prototygeturrent performance to the
ultimate performance | hope to achieve. Clearlych remains to be done on this front. | plan to
pursue three approaches to achieve this goal: replacing RPC communication with Active Mes-
sages, moving the xFS implementation into the kernel address space, and more general perfor-

mance profiling and tuning.
2. Dynamic Reconfiguration

A mature serverless system will use dynamic reconfiguration both to provide high availability
and to balance load. The current XFS prototype, howdges not implement reconfiguration after
machine failures and it does not use reconfiguration of management to balance load. Future work
will therefore be needed to test the hypotheses that a serverless system can provide better avail-
ability than a central-server system and that a serverless system can, for a wide range of loads,

avoid performance bottlenecks caused by hot-spots.
3. Distributed Cleaning

The distributed cleaner design presented in Chdpteas designed to prevent the cleaner
from bottlenecking throughputoTevaluate the &dctiveness of this design, a distributed cleaner

must be implemented for xFS, and that cleaner must be tested under a wide range of workloads.

100 MB/s :

5 . .

b= _ -} System Aggregate Disk Bandwidth

S 8OMBlsf 4= — — — — -

g ™\ Ideal xFS

'_

F 60 MBIs

i)

fa

[0]

= 40 MB/s|

(@]

g

<g 20 MB/s Current XFS
0 MB/s

5 10 15 20 25 30 5
Clients

FIGURE 7-9. Ideal performance goals.Comparison of current xFS performance fogéawrites

against ideal performance goals on the current experimental hardware configuratiosm@all

numbers of clients, the system throughput should be limited only by the clients’ network throug

and with lage numbers of clients, the throughput should be limited only by the sgséeigregate

disk throughput.

146

8Conclusions

My thesis is that serverless network file systemtully distributed file systems consisting of
cooperating commodity workstatiors can eliminate file system bottlenecks and scale to meet
rapidly increasing demands on file systems. This dissertation presents a design that distributes the
services handled by a traditional, central server by first functionally decomposing a central
servets responsibilities, and then distributing each of these functions. A cooperative cache distrib-
uted among clients replaces central-server caching; log-based, redundant, network storage
replaces server disks; and a distributed management protocol both provides cache consistency and

locates the blocks stored on the disks.

The goals of this design are improved performance, availalaitity scalabilityl have evalu-

ated the design using both simulation and measurements of a prototype called xFS.

» Goal: Impr oved Performance

The cooperative cache replaces the relatively small central-server cache with a potentially
much lager cache that exploits all clients’ memories. Simulation results indicate that cooperative

caching improves read response time by 30% to 150%ffoe @nd engineering workloads.

The network-striped disks allow parallel data transfers for reads and writes; the goal is to pro-
vide enough bandwidth to an individual client to saturate its network bandwidth and to provide
aggregate bandwidth when servicing multiple clients approaching the aggregate bandwidth of the
disks in the system. Initial measurements indicate that the prototype falls short of these goals;
however it appears that the architecture will support higher performance as limitations of the

implementation are addressed.

Distributed management improves performance both by eliminating the bottleneck that would

be present with a single manager and by improving locality by co-locating managers with the cli-

147

ents using the files they manage. Simulation results suggest that localitygsrapknformance
factor than load distribution for fade and engineering workloads, but benchmarks run on the pro-

totype reveal the importance of both factors for some workloads.

» Goal: Impr oved Availability

The architecture bases high-availability on location independence and redundant logging of
durable state. If a machine fails, another takes over its duties by recovering its state from the
redundant logs. | have completed the design of serverless redowvefyture work is still needed
to fully implement and validate this design. Beyond this basic approach, the use of stripe groups
increases the number of storage servers over which the system can store its data by improving

availability and limiting segment size.

e Goal: Impr oved Scalability

A key aspect of both the systenperformance and availability goals is scalabi#tythe sys-
tem’s performance should improve as the number of machines increases, and its availability
should not decline. The design addresses these goals by trying to eliminate all centralized bottle-
necks, and initial performance results are promising. For instance, in the 32-node prototype with
32 active clients, each client receives nearly as much read and write bandwidth as it would see if it
were the only active client. As the prototypabsolute performance increases, continuing to avoid
bottlenecks will be more challenging. Evaluating the protogypealability with respect to avail-

ability is also future work.

8.1. Lessons Learned About Research

The xFS project represents computer systems research “indee’ [@he complexity of this
system makes it ditult to evaluate the design. On one hand, simulation alone cannot be used,
because the simulator is unlikely to capture all of the important factors in the system. On the other
hand, the system’complexity also makes it hard to isolate theafof different aspects of the
design when the system is running. My approach has been to use both simulation and evaluation of

the prototype.

| found simulation to be valuable when comparindedént policy choices for specific points
of the design; howevethere is a limit on how much can be learned from simulations alone, so

they should be carefully designed to minimize tHerefneeded to examine a particular issue.

148

There are two dangers. First, it is tempting to put unnecessary details into a simulation. Second, it
is easy to neglect important details in a simulation. Although these statements may appear to be
contradictory they are not because they apply tdedént aspects of the simulation. Designers
must guard against “tunnel vision” where, on one hand, they spend all of their time working on
details of the simulator that they understand well, while on the, dtiesr ignore details that they

don't. Otherwise, simulation complexity can begin to approach implementation compbexiiis
accuracy will not! The positive lesson is to consider exactly what one wants to learn from a simu-
lation, build the simplest simulator that can examine the issues, and to validate the simulation

results against the real world.

My first major simulation study [Dahlin at.,1994] (which does not appear in this disserta-
tion) is a good example of the dangers of careless simulator design. In that builfyan event-
driven simulator that not only modeled CPUs, disks, and networks, but also modeled queueing for
those resources. This simulator was far too completke event-driven approach introduced log-
ical concurrency to the simulatdorcing me to worry about locking data structures and avoiding
race conditions. Although this complexity made it appear that the simulator captured a lot of
details, the details were probably meaningless because my choices of workload and my simplify-
ing assumptions about the network, operating system, and disk all were more significant factors in

the final results than the queuindeets.

Evaluating a prototype, howeveas not simple eitheiThe performance results that appear in
Chapter7 required myself and the rest of the XxFS group to engage in literally hundreds of hours of
tedious “baby-sitting” the machines while the simulations ran. At least part of this problem came
from engineering errors on our part: we neglected practical pieces of the implementation that
would have made our lives easier because they seemed to be boring compared to the “real
research” parts of the design where we spent out time. For instance, restarting a client in a running
XFS system required rebooting the machine on which the client was running and then killing and

restarting all of the storage servers and managers in the system.

Beyond problems with engineering, howevevaluating a serverless network file system is

inherently complex. Performance idestfted by at least the following factors:

« the number of clients
* the number of managers

* the number of storage servers

149

« the number of fragments in a stripe
* the fragment size

* the size of files being accessed

* the ratio of reads to writes

» the degree of sharing

* the state of the caches

* the raw network bandwidth

* the raw disk bandwidth

» the prefetching policy

« the cache replacement policy

Because so many ¢hirent factors déct performance, some design decisions and measurement
priorities must be based on engineering judgement; there are too many factors to implement them

all, let alone systematically investigate all of their impacts on performance.

8.2. Future Directions

The work described in this dissertation has addressed many of the basic questions about build-
ing a serverless network file system, but it leaves some questions unanswered and raises several
new issues. This section first describes future work that will help evaluate this approach in more

detail. It then discusses broader research issues raised by the project.

8.2.1. Serverless File System Issues
The simulation studies presented in this thesis and the measurements of the xFS prototype pro-

vide a basis for evaluating the serverless approach to building file systems. Future work is called
for to flesh out the prototype, undertake additional simulation studies to address unanswered ques-

tions, and to extend the xFS design to handle other types of workloads.

The most immediate issues involve implementing significant pieces of the design described in
this dissertation but not yet included in the xFS prototype. Three kaysedre to improve the

performance of the prototype, implement dynamic reconfiguration, and implement parallel clean-

ing.

150

In addition, several other useful file system services should be added to xFS both to provide
important services and to exploit the state of the art in file system design. For instance, recent
advances in prefetching would allow the system to exploit its scalable bandwidth to reduce latency
[Griffioen and Appleton1994, Cao eal., 1995, Patterson al., 1995]. Improved cache replace-
ment policies [Cao «l.,1994, Karedla edl.,1994] and cache implementation technigues
[Braunstein etl.,1989, Stolarchukl993] can improve performance, as can improved disk
request scheduling €brey and Pinkertorl972, Seltzer edl., 1990, Wrthington etl., 1994].

On-line compression can reduce storage costs [Burroads, £992] and increase performance
[Douglis, 1993]. The system could also use its cleaner tayesize data stored on its disks to
improve read performance [McKusickadt, 1984, Rosenblum and Ousterhdl92, Smith and
Seltzer 1994, Seltzer «il., 1995].

Another service needed to make xFS comparable to commercial file systems is backup. While
serverless systems do not directly introduce new problems for backup subsystems, they rely on
some form of scalable backup to prevent backup from limiting scalafitig/serverless architec-
ture does, howevemprovide facilities that may help construct scalable backup systems. First,
because serverless systems already store redundant data, backup systems may worry less about
disk head crashes and more about restoring past versions of individual files; this mode of operation
would place a premium on random access to the archive as opposed to the ability to restore an
entire volume quickly (although the system must still retain the ability to recover the entire file
system to enable recoveries from catastropHestafg the entire file system.) Second, the man-
ager module abstracts location service and already tracks data thrdagintivels of the stor-
age hierarchy (cache and disk). The manager might be extended to track data stored in the backup
archive as well. Finallythe LFS cleaner might be adapted to migrate and backup data to the
archive as it cleans segments, or it might be modified to avoid cleaning recently deleted or over-
written blocks to provide a usaccessible “undelete” or “time-travel” function such as that found

in the Network Appliancenapshot$Hitz, 1993].

In addition to these implementation issues, a number of detailed simulation and measurement
studies will help improve the understanding offetiént aspects of the serverless design. As
Section3.1.7 on pag84 discussed, there are several interesting variations of cooperative caching
algorithms that should be studied. Also, several aspects of the distributed cleaner design should be
examined; for instance, as SectB on pag®2 indicated, a specific algorithm must be devel-

oped to balance locality and load when activating cleaners. Furthermore, in SeZtiom

151

pagel04, | hypothesized that parallel workloads might benefit more from distributed management
than the sequential workloads | studied; to examine this hypothesis, the management strategies
should be studied under a wider range of workloads. Fjrigdigtion6.2 on pagd25 suggested a
“core-fringe” protocol for dealing with mixed-security environments; the performance of this

approach, howeveneeds to be examined.

Once the basic system is operational, one track of research will be evaluating a wide range of
workloads and making any necessary changes to support them. For instgecéatarbase sys-
tems might benefit from xF§'scalable 1/O, but for best performance, these systems need to have
more precise control over resource usage than is provided by the Unix file system interface on
which xFS is built. One possible addition to the interface is to allow a single client to write to mul-
tiple logs, each of which contains a specific subset of the datalfdesg’'and each of which the
database stores on a specific set of storage servers. A second enhancement would be to add addi-
tional storage server architectures; for instance as described in ChapfAID level 1 mirrored
storage system could be combined with write-ahead logging to supficergefupdate-in-place

often needed by the random update patterns @é ldatabases.

Parallel programs might also benefit from being able to specify particular assignments of data
to disks [Corbett edl., 1993] or from new storage server architectures. For instance, some parallel
programs might prefer to log data without parity to increase their performance even at the risk of
lost data. Systems that support such unreliable writes, howeust ensure that no other data can

be lost through file system inconsistencies.

Multimedia workloads should also benefit from x&Scalable bandwidth, but the system may

need to be modified to support real-time scheduling for biesit ef

Finally, other issues arise when adapting a file system for wide area netwdky) (Vérk-
loads. Although the serverless protocol assumes that machines are tightly coupled, a hybrid sys-
tem could be used in which the serverless protocol is used within clusters of machines connected
by a LAN, while clusters share data with one another usingfexretit, WAN protocol [Sandhu
and Zhou,1992]. An earlier version of the xFS protocol diigg and Andersor993, Dahlin
etal., 1994] would be an &ctive WAN protocol.

152

8.2.2. Other Research Issues

The serverless network file systems design attempts to distribute a complex system across
multiple machines in a way that provides scalable performance and reliddity of the issues
raised in this research have broader applicatiert® other complex, distributed, scalable, high-

performance, and highly-available systems.

The experience of evaluating the performance of the xFS prototype has highlighteéi-the dif
culties of measuring and tuning complex computer systems. Developing methodologies to evalu-
ate and tune complex systems is an interesting research question of immense practical concern.
Because even commercial systems are becoming quite complex, such methodologies would have
applications beyond leading-edge research systems like xFS. The goal is make these systems self-
diagnosing or self-tuning or both. Idealfgr instance, a system would configure its parameters in
response to changing workloads or hardware configurations to achieve as good performance as

possible, even when it is run by someone who does not fully understand its design.

A related issue is balancing competing resource demands in a Networkrksét&tions
(NOW) environment, where dérent distributed or serverless systems make demands for
resources. In the Berkeley NOW project, for instance, maigreift subsystems compete to use
memory: the Inktomi world wide web search engine application uses memory as a cache for data it
stores on disk; Network RAM allows workstations to page virtual memory to remote client mem-
ory rather than to their local disks; XFS uses cooperative caching to cache files in client memories;
and, of course, users run programs that require RAM memorgomplicate matters furthehe
operating system dynamically balances the amount of memory used for file cache or virtual mem-
ory on each machine. Each of these consumers of memory can deliganathabetter perfor-
mance to its user if it is allowed to use more physical memaiythe amount of memory that the
system has to distribute among these applications is finite. Research is needed to determine how
best to allot limited resources to such diverse demands not only for memory ¢dpdaatgo for

CPU cycles, disk accesses, and network accesses.

File systems researchers would benefit from a standard file system programming interface that
covers a broader range of issues than the vnode 1&§dle vnodes standardize the interface that
allows the operating system to access file system services, it leaves out other interfaces important
to file system implementation. These omissions cause two problems. First, they méikelittdif

integrate a new file system into multiple operating system platforms. For instance, the interface to

153

the bufer cache diers across diérent Unix platforms, forcing a file system developer to develop

and maintain multiple sets of code. Second, the lack of well-defined interfacefetendifunc-

tions forces file system designers to “reinvent the wheel” for many subsystems of each system. For
instance, as noted above, the xXFS prototype has not yet implemented sophisticated prefetching
despite the wealth of recent research in the area [Kotz and1B8i§, Cao eal., 1995, Patterson

etal., 1995]. Standard interfaces would make it easier for researchers to benefit from onésanother
innovations. xFS functional division of the file system into distinct modules for storage, caching,
and management may provide a starting point for this investigation, as may recent stadk-in

ablefile system interfaces [Khalidi and Nelsd®93, Heidemann and Popdlg94].

The serverless file system design addresses the issue of recovery in a distributed system, dem-
onstrating one approach to the problem, but a systematic investigation of the range of approaches
would be useful. The serverless design represents one end of the spectrum: it achieves availability
by logging batches of state changes to highly-available storage. Conveystdyns like Isis [Bir-
man and Coopel990], Coda [Kistler and Satyanarayanb®92], Echo [Birrell etl., 1993], and
Horus [Renesse al.,1994], replicate servers and keep the replicas synchronized with one
another for each maodification to the systerstate. These approaches makéediht trade-dé
between update-time, cost, and recovery-time. Basing availability on logged, redundant storage
allows fast updates because it batches modifications, and it is inexpensive because it stores the
backup copy of system state on disk rather than maintaining multiple running copies of the system.
On the other hand, after a machine fails, this approach must recover that nseathiedtom disk,
so fail-over may take a significant amount of time. The other approach, server replication, has
faster fail-over because it maintains an on-line replica, but updates are slow because each update
must be committed at both the primary machine and the backup machine, and the approach is
expensive because it maintains two running copies of the system. Research is needed to systemat-
ically investigate the impact of logging updates to disk, batching updates, and maintaining muilti-
ple running versions of a system. Such research would help to understand when each approach is
appropriate, or when a hybrid approach should be used. One example of such a hybrid is Bres-
souds hypervisor[Bressoud and Schneid@©95], which transmits a log of updates directly from
a primary server to a secondaggining some of the advantages of logging while maintaining fast

recovery

Finally, it would be valuable to design a system that is “always” avaitabteme whose mean

time to failure is measured in years or decades rather than weeks or months. Designing such a sys-

154

tem would require a top-to-bottom evaluation of design decisions and would also require the
designer to address such issues as geographic distribution of data (to protect against natural or

man-made disasters) and hot-swap upgrades of hardware or software.

8.3. Summary

The original goals of distributed systems were better performance and avajlhbilitystrib-

uted systems, in general, and distributed file systems, in particaiar often been built around a
central server that implements most of the systdomctionality The lack of location indepen-

dence in central server architectures results in crucial performance or availability bottlenecks. The
serverless file system architecture exploits fast, scalable networks and aggressive location inde-
pendence to provide scalable performance and availability and to deliver the full capabilities of a
collection of “killer micros” to file systems users. The challenge in the future is to generalize the
principles explored in this file system design to other applications to enable a new generation of

high performance, highly-available, and scalable distributed systems.

155

Bibliography

Adler, M., Chakrabarti, S., Mitzenmacher, M., and Rasmussen, L. (1995). Parallel Randomized Load

Balancing. InProceedings of the Twenty-seventh ACM Symposium on Theory of Computing

Agarwal, A., Simoni, R., Hennessy, J., and Horowitz, M. (1988). An Evaluation of Directory Schemes for
Cache Coherence. Proceedings of the Fifteenth International Symposium on Computer Architecture
pages 280-289.

Anderson, T., Culler, D., Patterson, D., and the N@#Wn (1995). A Case for NOW (Networks of
Workstations)IEEE Micro, pages 54—64.

Archibald, J. and Baer, J. (1984). An Economical Solution to the Cache Coherence ProBieoeduaings
of the Eleventh International Symposium on Computer Architeqiages 355-362.

Archibald, J. and Baer, J. (1986). Cache Coherence Protocols: Evaluation Using a Multiprocessor Simulation
Model. ACM Transactions on Computer Syste#{(d):273—-298.

Arpaci, R., Dusseau, A., Vahdat, A., Liu, L., Anderson, T., and Patterson, D. (1995). The Interaction of
Parallel and Sequential Workloads on a Network of WorkstatiorRtdoeedings of the SIGMETRICS
Conference on Measurement and Modeling of Computer Sysiages 267—278.

ATM Forum (1993).The ATM Forum User-Network Interface Specification, versionF3dntice Hall Intl.,

New Jersey.

Baker, M. (1994)Fast Crash Recovery in Distributed File SysteRisD thesis, University of California at
Berkeley.

Baker, M., Asami, S., Deprit, E., Ousterhout, J., and Seltzer, M. (1992). Non-Volatile Memory for Fast,
Reliable File Systems. lroceedings of the Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLO®&y8s 10-22.

Baker, M., Hartman, J., Kupfer, M., Shirriff, K., and Ousterhout, J. (1991). Measurements of a Distributed

156

File System. IrProceedings of the ACM Thirteenth Symposium on Operating Systems Primpages
198-212.

Basu, A., Buch, V., Vogels, W., and von Eicken, T. (1995). U-Net: A User-Level Network Interface for
Parallel and Distributed Computing. Proceedings of the ACM Fifteenth Symposium on Operating
Systems Principlepages 40-53.

Bellovin, S. (1992). There be Dragons.USBENIX Unix Security lJipages 1-16.

Ben-Or, M. (1990).Fault-Tolerant Distributed Computingzolume 448 ofLecture Notes in Computer

Sciencechapter Randomized Agreement Protocols, pages 72—83. Springer-Verlag.

Birman, K. and Cooper, R. (1990). The ISIS Project: Real Experience with a Fault Tolerant Programming
System. InEuropean Workshop on Fault-Tolerance in Operating Systpages 103—-107.

Birrell, A., Hisgen, A., Jerian, C., Mann, T., and Swart, G. (1993). The Echo Distributed File System.
Technical Report 111, Digital Equipment Corp. Systems Research Center.

Blackwell, T., Harris, J., and Seltzer, M. (1995). Heuristic Cleaning Algorithms in Log-Structured File
Systems. IrProceedings of the Winter 1995 USENIX Conference

Blaum, M., Brady, J., Bruck, J., and Menon, J. (1994). EVENODD: An Optimal Scheme for Tolerating
Double Disk Failures in RAID Architectures. IRroceedings of the Twenty-First International

Symposium on Computer Architectupages 245-254.
Blaze, M. (1993)Caching in Large-Scale Distributed File Systef8D thesis, Princeton University.

Blumrich, M., Li, K., Alpert, R., Dubnicki, C., Felten, E., and Sandberg, J. (1994). Virtual Memory Mapped
Network Interface for the SHRIMP Multicomputer. Rroceedings of the Twenty-First International

Symposium on Computer Architectupages 142—153.

Boden, N., Cohen, D., Felderman, R., Kulawik, A., Seitz, C., Seizovic, J., and Su, W. (1995). Myrinet — A
Gigabit-per-Second Local-Area NetwotEEE Micro, pages 29-36.

Bondurant, D. (1992). Enhanced Dynamic RAMEE Spectrumpage49.

Braunstein, A., Riley, M., and Wilkes, J. (1989). Improving the Efficiency of UNIX File Buffer Caches. In
Proceedings of the ACM Twelfth Symposium on Operating Systems Prirzfgles 71-82.

Bressoud, T. and Schneider, F. (1995). Hypervisor-based Fault Tolerarmckedings of the ACM
Fifteenth Symposium on Operating Systems Pringipkeges 1-11.

157

Brewer, E., Gauthier, P., Goldberg, I., and Wagner, D. (1995). Basic Flaws in Internet Security and

Commerce. http://www.cs.berkeley.edgduthier/ endpoint-security.html.
Burrows, M. (1988)Efficient Data SharingPhD thesis, Cambridge University, Cambridge, England.

Burrows, M., Jerian, C., Lampson, B., and Mann, T. (1992). On-line data compression in a log-structured file
system. IrProceedings of the Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLQ$ages 2-9.

Bursky, D. (1992). Memory-CPU Interface Speeds Up Data Tran&fextronic Designpages 137-142.

Cabrera, L. and Long, D. (1991). Swift: A Storage Architecture for Large Objed&oteedings of the
Eleventh Symposium on Mass Storage Syseages 123-128.

Cao, P., Felten, E., Karlin, A., and Li, K. (1995). Implementation and Performance of Integrated Application-
Controlled Caching, Prefetching, and Disk Scheduling?rbteedings of the SIGMETRICS Conference
on Measurement and Modeling of Computer Systpates 188-197.

Cao, P., Felten, E., and Li, K. (1994). Application Controlled File Caching Polici®soteedings of the
Summer 1994 USENIX Conferenpages 171-82.

Censier, L. and Feautrier, P. (1978). A New Solution to Coherence Problems in Multicache Si&Ems.
Transactions on Computerd7(12):1112-1118.

Chaiken, D., Kubiatowicz, J., and Agarwal, A. (1991). LimitLESS Directories: A Scalable Cache Coherence
Scheme. InProceedings of the Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOPay@s 224-234.

Chen, P., Lee, E., Gibson, G., Katz, R., and Patterson, D. (1994). RAID: High-Performance, Reliable
Secondary StoragACM Computing Survey26(2):145-188.

Comer, D. and Griffioen, J. (1992). Efficient Order-Dependent Communication in a Distributed Virtual
Memory Environment. IrBymposium on Experiences with Distributed and Multiprocessor Systems llI
pages 249-262.

Corbett, P., Baylor, S., and Feitelson, D. (1993). Overview of the Vesta Parallel File Systaputer
Architecture News21(5):7-14.

Coyne, RA. and Hulen, H. (1993). An Introduction to the Mass Storage System Reference Model, Version
5. InProceedings of the Thirteenth Symposium on Mass Storage Systges47-53.

Cristian, F. (1991). Reaching Agreement on Processor Group Membership in Synchronous Distributed

158

SystemsDistributed Computing4:175-187.

Cristian, F., Dolev, D., Strong, R., and Aghili, H. (199ult-Tolerant Distributed Computingolume 448
of Lecture Notes in Computer Scienckapter Atomic Broadcast in a Real-Time Environment, pages 51—

71. Springer-Verlag.

Cypher, R., Ho, A., Konstantinidou, S., and Messina, P. (1993). Architectural Requirements of Parallel
Scientific Applications with Explicit Communication. IRroceedings of the Twentieth International

Symposium on Computer Architectupages 2—13.

Dahlin, M., Mather, C., Wang, R., Anderson, T., and Patterson, D. (1994). A Quantitative Analysis of Cache
Policies for Scalable Network File Systems. Pnoceedings of the SIGMETRICS Conference on

Measurement and Modeling of Computer Syst@ages 150-160.
Denning, D. and Denning, P. (1979). Data Secu@tymputing Survey4.1(3):227-249.

Dibble, P. and Scott, M. (1989). Beyond Striping: The Bridge Multiprocessor File SySmmputer
Architechture Newsl7(5):32—-39.

Douglis, F. (1993). The compression cache: Using on-line compression to extend physical memory. In
Proceedings of the Winter 1993 USENIX Conferepages 519-529.

Douglis, F. and Ousterhout, J. (1991). Transparent Process Migration: Design Alternatives and the Sprite

ImplementationSoftware: Practice and Experienc&l(7):757-785.

Drapeau, A. (1993)Striped Tertiary Storage Systems: Performance and reliabityD thesis, University

of California at Berkeley.

Eager, D., Lazowska, E., and Zahorjan, J. (1986). Adaptive Load Sharing in Homogeneous Distributed
SystemslEEE Transactions on Software Engineerifde-12(5):662—675.

Feeley, M., Morgan, W., Pighin, F., Karlin, A., Levy, H., and Thekkath, C. (1995). Implementing Global
Memory Management in a Workstation ClusterPimceedings of the ACM Fifteenth Symposium on

Operating Systems Principlgsages 201-212.

Felten, E. and Zahorjan, J. (1991). Issues in the Implementation of a Remote Memory Paging System.

Technical Report 91-03-09, Dept. of Computer Science, University of Washington.

Franklin, M., Carey, M., and Livny, M. (1992). Global Memory Management in Client-Server DBMS
Architectures. IProceedings of the International Conference on Very Large Data Baasgass 596—609.

Gibson, GA. (1992).Redundant Disk Arrays: Reliable, Parallel Secondary Stara@M Distinguished
159

Dissertations. MIT Press, Cambridge, Massachusettes.

Gray, J. (1995). Personal Communication.

Griffioen, J. and Appleton, R. (1994). Reducing File System Latency Using a Predictive Approach. In

Proceedings of the Summer 1994 USENIX Confergrages 197-207.
Gwennap, L. (1995). Processor Performance Climbs SteMidyoprocessor Report

Hagersten, E., Landin, A., and Haridi, S. (1992). DDM-A Cache-Only Memory ArchitedEiEeE
Computey 25(9):45-54.

Hagmann, R. (1987). Reimplementing the Cedar File System Using Logging and Group Commit. In

Proceedings of the ACM Eleventh Symposium on Operating Systems Pripeigkes155-162.
Hart, C. (1992). Dynamic RAM as Secondary CatBEE Spectrumpage46.

Hartman, J. and Ousterhout, J. (1995). The Zebra Striped Network File Sy<EtdmTransactions on

Computer Systems

Haynes, R. and Kelly, S. (1992). Software Security for a Network Storage Serit&ENX Unix Security
lll, pages 253-265.

Heidemann, J. and Popek, G. (1994). File-system Development with Stackable A@Mr3ransactions
on Computer Systemk2(1):58-89.

Hennessy, J. and Patterson, D. (19@®mputer Architecture A Quantitative Approadhorgan Kaufmann

Publishers, Inc., 2nd edition.
Hitz, D. (1993). An NFS Server Appliance. Technical Report TRO1, Network Appliance Corporation.

Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M., Sidebotham, R., and West, M
Scale and Performance in a Distributed File Sysfe@M Transactions on Computer Systef(4):51—
81.

. (1988).

Hsiao, H. and DeWitt, D. (1989). Chained Declustering: A New Availability Strategy for Multiprocessor

Database Machines. Technical Report CS TR 854, University of Wisconsin, Madison.

Iftode, L., Li, K., and Petersen, K. (1993). Memory Servers for Multicomputer®rdeeedings of
COMPCON93 pages 538-547.

Jones, F. (1992). A New Era of Fast Dynamic RAMEE Spectrumpages 43—-48.

160

Karedla, R., Love, J., and Wherry, B. (1994). Caching Strategies to Improve Disk System PerfdE&d&hce.
Computer pages 38—46.

Kazar, M. (1989). Ubik: Replicated Servers Made EasyPidoceedings of the Second Workshop on
Workstation Operating Systenmages 60—67.

Kazar, M., Leverett, B., Anderson, O., Apostolides, V., Bottos, B., Chutani, S., Everhart, C., Mason, W., Tu,
S., and Zayas, E. (1990). Decorum File System Architectural Overvidvoteedings of the Summer
1990 USENIX Conferencpages 151-163.

Keeton, K., Anderson, T., and Patterson, D. (1995). LogP Quantified: The Case for Low-Overhead Local

Area Networks. IrProceedings of the 1995 Hot Interconnects Il Conference

Khalidi, Y. and Nelson, M. (1993). Extensible File Systems in Springrdneedings of the ACM Fourteenth
Symposium on Operating Systems Princigeges 1-14.

Kistler, J. and Satyanarayanan, M. (1992). Disconnected Operation in the Coda File $yGMm.
Transactions on Computer Systehd(1):3-25.

Kotz, D. and Ellis, C. (1991). Practical Prefetching Techniques for Parallel File SystdéPngcéedings of

the First International Conference on Parallel and Distributed Information Sysiemges 182—-189.

Kubiatowicz, J. and Agarwal, A. (1993). Anatomy of a Message in the Alewife Multiprocessor. In

Proceedings of the Seventh International Conference on Supercomputing

Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K., Chapin, J., Nakahira, D.,
Baxter, J., Horowitz, M., Gupta, A., Rosenblum, M., and Hennessy, J. (1994). The Stanford FLASH
Multiprocessor. IrProceedings of the Twenty-First International Symposium on Computer Architecture
pages 302-313.

Le, M., Burghardt, F., Seshan, S., and Rabaey, J. (1995). InfoNet: The Networking Infrastructure of InfoPad.
In Proceedings of COMPCON 9pages 163-168.

Lee, E. (1995). Highly-Available, Scalable Network Storagd®riyceedings of COMPCON 9pages 397—
402.

Leff, A., Wolf, J., and Yu, P. (1993a). Replication Algorithms in a Remote Caching Architel&ie.
Transactions on Parallel and Distributed SysteA(41):1185-1204.

Leff, A., Yu, P., and Wolf, J. (1991). Policies for Efficient Memory Utilization in a Remote Caching

Architecture. InProceedings of the First International Conference on Parallel and Distributed

161

Information Systemgages 198-207.

Leff, A., Yu, P., and Wolf, J. (1993b). Performance Issues in Object Replication for a Remote Caching
Architecture.Computer Systems Science and Engineg8(ij:40-51.

Lenoski, D., Laudon, J., Gharachorloo, K., Gupta, A., and Hennessy, J. (1990). The Directory-Based Cache
Coherence Protocol for the DASH Multiprocessor.Pioceedings of the Seventeenth International

Symposium on Computer Architectupages 148-159.

Lieberman, H. and Hewitt, C. (1983). A Real-Time Garbage Collector Based on the Lifetimes of Objects.
Communications of the ACM6(6):419-429.

Liskov, B., Ghemawat, S., Gruber, R., Johnson, P., Shrira, L., and Williams, M. (1991). Replication in the
Harp File System. IiProceedings of the ACM Thirteenth Symposium on Operating Systems Prjnciples
pages 226—238.

LoVerso, S., Isman, M., Nanopoulos, A., Nesheim, W., Milne, E., and Wheeler, R. (1993). sfs: A Parallel
File System for the CM-5. IRroceedings of the Summer 1993 USENIX Confergragges 291-305.

Martin, R. (1994). HPAM: An Active Message Layer for a Network of HP Workstatioria.deeedings of

the 1994 Hot Interconnects Il Conference

Martin, R. (1995). Personal Communication.

McKusick, M., Joy, W., Leffler, S., and Fabry, R. (1984). A Fast File System for UNIDX! Transactions
on Computer Systen?(3):181-197.

Mummert, L., Ebling, M., and Satyanarayanan, M. (1995). Exploiting Weak Connectivity for Mobile File
Access. InProceedings of the ACM Fifteenth Symposium on Operating Systems Prjruagles 143—
155.

Muntz, D. and Honeyman, P. (1992). Multi-level Caching in Distributed File Systems or Your cache ain't
nuthin’ but trash. IlProceedings of the Winter 1992 USENIX Confergepages 305-313.

Mutka, M. and Livny, M. (1991). The Available Capacity of a Privately Owned Workstation Environment.
Performance Evaluatiqri2(4):269-84.

Myllymaki, J. (1994). Overview of Current RAID Technology. http:// www.cs.wisc.egusgsi/

raidtech.html.

Nelson, M., Welch, B., and Ousterhout, J. (1988). Caching in the Sprite Network File Sp&ém.
Transactions on Computer Syste®id).

162

Nichols, D. (1987). Using Idle Workstations in a Shared Computing EnvironmeRtoteedings of the
ACM Eleventh Symposium on Operating Systems Princjpdegs 5-12.

Ousterhout, J. (1990). Why Aren’t Operating Systems Getting Faster As Fast As HardviRrae&dings
of the Summer 1990 USENIX Conference

Patterson, D., Gibson, G., and Katz, R. (1988). A Case for Redundant Arrays of Inexpensive Disks (RAID).

In International Conference on Management of Daiages 109-116.

Patterson, R., Gibson, G., Ginting, E., Stodolsky, D., and Zelenka, J. (1995). Informed Prefetching and
Caching. InProceedings of the ACM Fifteenth Symposium on Operating Systems Prjriuagies 79—
95.

Pierce, P. (1989). A Concurrent File System for a Highly Parallel Mass Storage Subsy$&tene&dings
of the Fourth Conf. on Hypercubes, Concurrent Computers, and Applicatiagss 155-160.

Popek, G., Guy, R., Page, T., and Heidemann, J. (1990). Replication in the Ficus Distributed File System. In
Proceedings of the Workshop on the Management of Replicatediages 5-10.

Prince, B., Norwood, R., Hartigan, J., and Vogley, W. (1992). Synchronous DynamiclREBE Spectrum
pages 44-46.

Rashid, R. (1994). Microsoft's Tiger Media ServerThe First Networks of Workstations Workshop Record

Renesse, R/., Hickey, T., and Birman, K. (1994). Design and Performance of Horus: A Lightweight Group
Communications System. Technical Report TR94-1442, Cornell University Computer Science

Department.

Rivest, R. (1992a). The MD4 Message-Digest Algorithm. Request for Comments 1320, Network Working
Group, ISI.

Rivest, R. (1992b). The MD5 Message-Digest Algorithm. Request for Comments 1321, Network Working
Group, ISI.

Rosenblum, M., Bugnion, E., Herrod, S., Witchel, E., and Gupta, A. (1995). The Impact of Architectural
Trends on Operating System Performanc@rbteedings of the ACM Fifteenth Symposium on Operating
Systems Principlepages 285-298.

Rosenblum, M. and Ousterhout, J. (1992). The Design and Implementation of a Log-Structured File System.
ACM Transactions on Computer Systeff¥{1):26-52.

Rosti, E., Smirni, E., Wagner, T., Apon, A., and Dowdy, L. (1993). The KSR1: Experimentation and
163

Modeling of Poststore. IRroceedings of the SIGMETRICS Conference on Measurement and Modeling

of Computer Systemgages 74-85.

Ruemmler, C. and Wilkes, J. (1993). UNIX Disk Access Patterfadeeedings of the Winter 1993 USENIX
Conferencepages 405-420.

Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. (1985). Design and Implementation of the
Sun Network Filesystem. IRroceedings of the Summer 1985 USENIX Confergragges 119-130.

Sandhu, H. and Zhou, S. (1992). Cluster-Based File Replication in Large-Scale Distributed Systems. In
Proceedings of the SIGMETRICS Conference on Measurement and Modeling of Computer, Systems
pages 91-102.

Satyanarayanan, M. (1989). Integrating Security in a Large Distributed Sy&€@h.Transactions on
Computer Systemg(3):247-280.

Schilit, B. and Duchamp, D. (1991). Adaptive Remote Paging for Mobile Computers. Technical Report
CUCS-004-91, Dept. of Computer Science, Columbia University.

Schmuck, F. and Wyllie, J. (1991). Experience with Transactions in Quicksih@mdeedings of the ACM
Thirteenth Symposium on Operating Systems Principigges 239-253.

Schroeder, M., Birrell, A., Burrows, M., Murray, H., Needham, R., Rodeheffer, T., Satterthwaite, E., and
Thacker, C. (1991). Autonet: A High-Speed, Self-Configuring Local Area Network Using Point-to-Point
Links. IEEE Journal on Selected Areas in Communicat@{f):1318—1335.

Schroeder, M. and Burrows, M. (1990). Performance of Firefly RREM Transactions on Computer
Systems8(1):1-17.

Seagate (19945T-11200N SCSI-2 Fast (Barracuda 4) SpecificatBeragate Technology, Inc.

Seltzer, M., Bostic, K., McKusick, M., and Staelin, C. (1993). An Implementation of a Log-Structured File
System for UNIX. InProceedings of the Winter 1993 USENIX Confergpages 307—326.

Seltzer, M., Chen, P., and Ousterhout, J. (1990). Disk Scheduling Revisitackedings of the Winter
1990 USENIX Conferencpages 313—-324.

Seltzer, M., Smith, K., Balakrishnan, H., Chang, J., McMains, S., and Padmanabhan, V. (1995). File System
Logging Versus Clustering: A Performance ComparisorPrisceedings of the Winter 1995 USENIX
Conferencepages 249-264.

Smith, A. (1977). Two Methods for the Efficient Analysis of Memory Address Trace DREE

164

Transactions on Software EngineeriigE-3(1):94-101.

Smith, A. (1981). Long Term File Migration: Development and Evaluation of Algoritt@osnputer
Architecture and Systenm®4(8):521-532.

Smith, K. and Seltzer, M. (1994). File Layout and File System Performance. Technical Report TR-35-94,

Harvard University.

Srinivasan, V. and Mogul, J. (1989). Spritely NFS: Experiments with Cache Consistency Protocols. In
Proceedings of the ACM Twelfth Symposium on Operating Systems Prirzfgles 45-57.

Steiner, J., Neuman, C., and Schiller, J. (1988). Kerberos: An Authentication Service for Open Network
Systems. IProceedings of the Winter 1988 USENIX Confergpages 191-202.

Stolarchuk, M. (1993). Faster AFS.Pnoceedings of the Winter 1993 USENIX Conferepages 67—75.

Tang, C. (1976). Cache Design in the Tightly Coupled Multiprocessor Syst@rmdeedings of the AFIPS

National Computer Conference

Teorey, T. and Pinkerton, T. (1972). A Comparative Analysis of Disk Scheduling Pdlioresnunications
of the ACM pages 177-84.

Theimer, M. and Lantz, K. (1989). Finding Idle Machines in a Workstation-Based Distributed S{E&E&m.
Transactions on Software Engineeriid(11):1444-57.

Thekkath, C. and Levy, H. (1993). Limits to Low-Latency Communication on High-Speed NetAGis.
Transactions on Computer Systerh$(2):179-203.

Thompson, J. (1987Efficient Analysis of Caching Syste®ED thesis, University of California at Berkeley.

von Eicken, T., Basu, A., and Buch, V. (1995). Low-Latency Communication Over ATM Networks Using
Active MessagedEEE Micro, pages 46-53.

von Eicken, T., Culler, D., Goldstein, S., and SchauseE.K1992). Active Messages: A Mechanism for
Integrated Communication and ComputationPtnceedings of the Nineteenth International Symposium

on Computer Architecturg@ages 256—266.

Walker, B., Popek, G., English, R., Kline, C., and Thiel, G. (1983). The LOCUS distributed operating system.
In Proceedings of the ACM Ninth Symposium on Operating Systems Prinpaaes 49-69.

Wang, R. and Anderson, T. (1993). xFS: A Wide Area Mass Storage File Sysinocéedings of the Third
Workshop on Workstation Operating Systepages 71—78.

165

Wheeler, D. (1993). A Bulk Data Encryption Algorithm. Pnoceedings of the Fast Software Encryption
Cambridge Security Workshopages 127-133.

Wilkes, J., Golding, R., Staelin, C., and Sullivan, T. (1995). The HP AutoRAID Hierarchical Storage System.
In Proceedings of the ACM Fifteenth Symposium on Operating Systems Prjnadgles 96—108.

Wittle, M. and Keith, B. (1993). LADDIS: The Next Generation in NFS File Server Benchmarking. In
Proceedings of the Summer 1993 USENIX Confergrages 111-28.

Worthington, B., Ganger, G., and Patt, Y. (1994). Scheduling Algorithms for Modern Disk Drives. In
Proceedings of the Sigmetrics Conference on Measurement and Modeling of Computer, Bggesns
241-251.

Yen, W., Yen, D., and Fu, K. (1985). Data Coherence Problem in a Multicache ST ransactions
on Conputers34(1):56—65.

166

