
UsingLeasesto SupportServer-DrivenConsistency
in Large-ScaleSystems

�

JianYin, LorenzoAlvisi, MichaelDahlin,andCalvin Lin
ComputerSciencesDepartment
Universityof Texasat Austin

Abstract

This paperintroducesvolumeleasesas a mechanism
for providing cacheconsistencyfor large-scale, geograph-
ically distributednetworks.Volumeleasesare a variation
of leases,which were originally designedfor distributed
file systems.Using trace-drivensimulation,we compare
two new algorithms against four existing cache consis-
tencyalgorithmsandshowthatour newalgorithmsprovide
strongconsistencywhile maintainingscalabilityandfault-
tolerance. For a trace-basedworkload of web accesses,
wefind that volumescanreducemessage traffic at servers
by 40%comparedto a standard leasealgorithm,and that
volumescanconsiderably reducethepeakload at servers
whenpopularobjectsaremodified.

1 Introduction

As valuableinformation becomeincreasinglyavail-
ablethroughwide areanetworks,userswill seekto useit
in moreelaborateways. For example,althoughtheHTTP
protocolwas initially developedfor disseminatingslowly
changingscholarlyandtechnicalinformation,it is now of-
ten usedto distribute quickly changingcommercialser-
vices and news updates. In the future, we expect appli-
cationsthat manipulatedistributeddatato extendbeyond
human-drivenbrowsersto includeprogram-drivenagents,
robots,and dataminersthat will placenew demandson
thedata-distributioninfrastructure.Thesenew applications
motivatetheuseof cachingandcacheconsistency.

�
This work wasfundedin partby a NSFCISEgrant#CDA-9624082

andby gifts from Novell andSunMicrosystems.Dahlin wassupported
by an NSF CAREER award (CCR-9733842). Copyright 1998 IEEE.
Publishedin the Proceedingsof ICDCS’98, May 1998Amsterdam,The
Netherlands.Personaluseof this material is permitted. However, per-
missionto reprint/republishthis materialfor advertisingor promotional
purposesor for creatingnew collective works for resaleor redistribution
to serversor lists, or to reuseany copyrightedcomponentof this work in
otherworks,mustbeobtainedfrom the IEEE. Contact:Manager, Copy-
rightsandPermissions/ IEEE ServiceCenter/ 445HoesLane/ P.O.Box
1331/ Piscataway, NJ 08855-1331,USA. Telephone:+ Intl. 908-562-
3966.

Cache consistency can be achieved through either
client-drivenprotocols,in which clientssendmessagesto
serverstodetermineif cachedobjectsarecurrent,orserver-
drivenprotocols,in which serversnotify clientswhendata
change.In eithercase,thechallengeis to guaranteethata
client readalwaysreturnstheresultof thelatestcompleted
write. Protocolsthat achieve this are said to be strongly
consistent.

Client-drivenprotocolsforcecachesto makeadifficult
choice. They must either poll the server on eachaccess
to cacheddataor risk supplyingincorrectdata. The first
option, polling on eachread, increasesboth the load on
theserver andthelatency of eachrequest;botheffectscan
be significantin large scalesystemsbecauseserverssup-
port many clientsandpolling latenciescanbe high. The
otheroption,periodicpolling, relaxesconsistency seman-
tics and allows cachesto supply incorrectdata. For ex-
ample,webbrowersaccountfor weakconsistency through
a human-basedprotocol in which usersmanuallypressa
“reload” buttonwhenthey detectstaledata.Weakconsis-
tency semanticsmay be merelyannoying to a human,but
they cancauseparallel anddistributedprogramsto com-
puteincorrectresults,andthey complicatebuilding aggres-
sive cachingor replicationhierarchiesbecausereplication
is not transparentto theapplication.

Server-driven protocolsintroducethreechallengesof
their own. First, strongconsistency is difficult to maintain
in the faceof network or processfailuresbecausebefore
modifying an object, a server using theseprotocolsmust
contactall clientsthatcachethatobject. If therearemany
cachedcopies,it is likely that at leastone client will be
unreachable,in which casetheserver cannotcompletethe
write without violating its consistency guarantees.Sec-
ond,a server mayrequirea significantamountof memory
to track which clients cachewhich objects. Third, send-
ing cacheinvalidationmessagesmayentail largeburstsof
serveractivity whenpopularobjectsaremodified.

In distributed file systems,the problemsof server
drivenprotocolswereaddressedby usingleases[5], which
specifya lengthof timeduringwhichserversnotify clients
of modificationsto cacheddata.After a lease’s timeoutex-

pires,clientsmustrenew theleaseby sendingamessageto
theserverbeforethey mayaccessthecachedobject.Leases
maintainstrongconsistency while allowingserversto make
progresseven if failuresoccur. If a server cannotcontact
a client, the server delaysthe write until the unreachable
client’s leaseexpires,at which time it becomestheclient’s
responsibilityto contactthe server. Furthermore,leases
free servers from notifying idle clients beforemodifying
anobject;this reducesboththesizeof theserver stateand
the loadsustainedby theserver whenreadsandwritesare
bursty.

Although leasesprovide significant benefitsfor file
systemworkloads,thereare reasonsto believe that they
may be lesseffective in a wide areanetwork (WAN). To
amortizethecostof renewing aleaseacrossmultiplereads,
a leaseshouldbelong enoughthatin thecommoncasethe
cachecanbe accessedwithout a renewal request.Unfor-
tunately, at leastfor browserworkloads,repeatedaccesses
to anobjectareoftenspreadover minutesor more. When
leaselengthsareshorterthanthetimebetweenreads,leases
reduceto client polling. On the otherhand,longer lease
lengthsreducethethreeoriginaladvantagesof leases.

In this paper, we show how volumeleasesrestorethe
benefitsof leasesfor WAN workloads.Volumeleasescom-
bine short leaseson groupsof files (volumes)with long
leaseson individual files. Under the volume leasesalgo-
rithm, a client mayaccessa cachedobjectif it holdsvalid
leaseson both the object and the object’s volume. This
combinationprovidesthefault-toleranceof shortleasesbe-
causewhenclientsbecomeunreachable,aservermaymod-
ify an objectoncethe shortvolumeleaseexpires. At the
sametime, thecostof maintainingtheleasesis modestbe-
causevolumeleasesamortizethecostof leaserenewalover
a largenumberof objects.

Thispaperevaluatestheperformanceof volumeleases
usingtrace-basedsimulation. We examinetwo variations
of volumeleases:volumeleases,andvolumeleaseswith
delayedinvalidations. In the latter algorithm,serversde-
fer sendingobject invalidationmessagesto clientswhose
volume leaseshave expired. We comparethesealgo-
rithmswith threetraditionalconsistency algorithms:client
polling, server invalidations,andserver invalidationswith
leases. Our simulationsdemonstratethe benefitsof vol-
ume leases. For example, volume leaseswith delayed
invalidationscan ensurethat clients never seestale data
andthat serversnever wait morethan100secondsto per-
form a write, all while using about the samenumberof
messagesasa standardinvalidationprotocolthat canstall
server writes indefinitely. Comparedto a standardobject
leasealgorithmthatalsoboundsserverwrite delaysat 100
seconds,this volumealgorithmreducesmessagetraffic by
40%.

The rest of this paperis organizedas follows. Sec-

Variable Meaning�
timeoutfor anobject���
timeoutfor avolume�
time serversstorestatefor inactive clients�
frequency object � is read�
# active objectspervolume	�
��

# clientswith acopy of object �	��
# clientswith leaseonobject �	 �
# clientswith leaseonvolume �	��
clientswhosevolumeleasesexpired� �

secondsago.����������� bytesof server stateto support� clients

Figure 1: Definition of parameter s in Table 1

tion 2 describestraditionalalgorithmsfor providing con-
sistency to cacheddata,andSection3 describesour new
volume leasealgorithms. Section4 discussesour exper-
imental methodology, and Section5 presentsour experi-
mentalresults.After discussingrelatedwork in Section6,
Section7 summarizesour conclusions.

2 Traditional consistency algorithms

Thissectionreviewsfour traditionalcacheconsistency
algorithms.Thefirst two—Poll Each ReadandPoll—rely
onclientpolling. Theremainingalgorithms—Callbackand
Lease—arebasedonserverinvalidation.In describingeach
algorithmwereferto Table1, whichsummarizeskey char-
acteristicsof eachof thealgorithmsdiscussedin thispaper,
including our two new algorithms. We also refer to Fig-
ure1, whichdefinesseveralparametersof thealgorithms.

2.1 Poll each read

Poll Each Readis thesimplestconsistency algorithm.
Beforeaccessinga cachedobject,a client askstheobject’s
server if theobjectis valid. If so,theserver respondsaffir-
matively; if not, theserversendsthecurrentversion.

This algorithmis equivalentto alwayshaving clients
readdata from the server with the optimization that un-
changeddatais not resent. Thus, clients never seestale
data, and writes by the server always proceedimmedi-
ately. If anetwork failureoccurs,clientsunableto contacta
serverhavenoguaranteesof thevalidity of cachedobjects.
To cope with network failures, clients take application-
dependentactions,suchassignalingan error or returning
thecacheddataalongwith a warningthatit maybestale.

Theprimarydisadvantageof thisalgorithmis readper-
formance,asall readsaredelayedby a roundtripmessage
betweenthe client andthe server. In addition,thesemes-
sagesmayimposesignificantloadon theservers[8].

2.2 Poll

Poll is basedon Poll Each Read, but it assumesthat
cachedobjectsremainvalid for at leasta timeoutperiodof �

Reads Writes State
Expectedstaletime Worststaletime Readcost Write cost Ack wait delay Server state

(seconds) (seconds) (messages) (messages) (seconds) (bytes)

Poll EachRead 0 0 1 0 0 0
Poll

� � � � �!�#"$!%
'&)(� 0 0 0
Callback 0 0 0

	
��
 * �+� �,�'� 	
��
 �
Lease 0 0 "$!%
 	�� � ��� �,�'� 	�� �
VolumeLeases 0 0 "-/.+0�132 $.
 4,576 "$!%
 	�� � � �8� � & ��� � ��� �,�'� 	�� �
Vol. DelayInval(

�
,
���

,
�
) 0 0 "-/.+0�1 2 $.
 4 5 6 "$!%
 	 � � � �8� � & ��� � ��� �,�'� 	 � �

Table 1: This table sho ws the cost of maintaining consistenc y for an object 9 using each of the algorithms. Columns
correspond to key figures of merit: the expectedstaletime indicates how long a client expects to read stale data after9 is modified, assuming random reads, random updates, and failures. The worst staletime indicates how long 9 can
be cached and stale assuming that (1) 9 was loaded immediatel y before it was modified and (2) a netw ork failure
prevented the server from contacting the client caching 9 . The readcostsho ws the expected fraction of cache reads
requiring a messa ge to the server. The write costindicates how many messa ges the server expects to send to notify
clients of a write . The acknowledgmentwait delayindicates how long the server will wait to write if it cannot invalidate
a cache. The serverstatecolumn indicates how many clients the server expects to trac k for each object.

secondsafteraclientvalidatesthedata.Hence,when �;:=<
Poll is equivalentPoll Each Read. Choosingtheappropri-
atevalueof � presentsa trade-off: On the onehand,long
timeoutsimprove performanceby reducingthe numberof
readsthat wait for validation. In particular, if a client ac-
cessesdataat a rateof > readspersecondandthetimeout
is long enoughto spanseveral reads,thenonly ?@BA C of the
client’s readswill requirenetwork messages(seeTable1).
On the other hand, long timeoutsincreasethe likelihood
thatcacheswill supplystaledatato applications.Gwertz-
manandSeltzer[7] show thatfor webbrowserworkloads,
even for a timeoutof ten days,server load is significantly
higher than under the Callback algorithm describedbe-
low. Thesamestudyfindsthatanadaptivetimeoutscheme
works betterthanstatic timeouts,but that whenthe algo-
rithm’sparametersaresetto make theadaptive timeoutal-
gorithmimposethesameserverloadasCallback, about4%
of client readsreceivestaledata.

If serverscanpredictwith certaintywhenobjectswill
bemodified,thenPoll is ideal. In this case,serverscantell
clientsto usecachedcopiesof objectsuntil thetime of the
next modification. For this study, we do not assumethat
servershavesuchinformationaboutthefuture.

2.3 Callback

In a Callback algorithm[8, 12], serverskeeptrackof
whichclientsarecachingwhichobjects.Beforemodifying
anobject,aservernotifiestheclientswith copiesof theob-
ject anddoesnot proceedwith themodificationuntil it has
receivedan acknowledgmentfrom eachclient. As shown
in Table1, Callback’s readcost is low becausea client is
guaranteedthatacachedobjectis validuntil toldotherwise.
However, thewrite costis high becausewhenanobjectis
modified the server invalidatesthe cachedobjects,which
may requireup to D C�E�C messages.Furthermore,if a client

hascrashedor if anetwork partitionseparatesaserverfrom
a client, thena write maybedelayedindefinitely.

2.4 Lease

To addressthe limitations of Callback, Gray and
CheritonproposedLease[5]. To readan object, a client
first acquiresa leasefor it with an associatedtimeout � .
The client may then readthe cachedcopy until the lease
expires. When an object is modified, the object’s server
invalidatesthe cachedobjectsof all clients whoseleases
havenot expired.To readtheobjectaftertheleaseexpires,
a client first contactstheserver to renew thelease.

Leaseallowsserversto makeprogresswhile maintain-
ing strongconsistency despitefailures. If a client or net-
work failure preventsa server from invalidatinga client’s
cache,theserver needonly wait until theleaseexpiresbe-
foreperformingthewrite. By contrast,Callback mayforce
thewrite to wait indefinitely.

Leasesalsoimprovescalabilityof writes. Ratherthan
contactingall clientsthathaveeverreadanobject,aserver
needonly contactrecentlyactive clients that hold leases
on thatobject. Leasescanthusreducetheamountof state
thattheservermaintainsto trackclients,aswell asthecost
of sendinginvalidationmessages[10]. Serversmay also
chooseto invalidatecachesby simply waiting for all out-
standingleasesto expire ratherthanby sendingmessages
to a large numberof clients; we do not explore this op-
tion in this study. Leasepresentsa tradeoff similar to the
oneofferedby Poll. Long leasesreducethe costof reads
by amortizingeachleaserenewal over >GFH� reads.On the
otherhand,short leasesreducethe delayon writes when
failuresoccur.

As with polling, a client that is unableto contacta
server to renew a leaseknowsthatit holdspotentiallystale
data.Theclientmaythentakeapplication-specificactions,

such as signaling an error or returning the suspectdata
alongwith a warning. However, unlike Poll, Leasenever
letsclientsbelieve thatstaleobjectsarevalid.

3 Volume leases

Traditionalleasesprovidegoodperformancewhenthe
costof renewing leasesis amortizedovermany reads.Un-
fortunately, for many WAN workloads,readsof an object
may be spreadover secondsor minutes, requiring long
leasesin order to amortizethe cost of renewals [7]. To
make leasespracticalfor theseworkloads,our algorithms
usea combinationof object leases, which are associated
with individual dataobjects,andvolumeleases, which are
associatedwith a collectionof relatedobjectson thesame
server. In ourschemeaclientreadsdatafrom its cacheonly
if both its objectandvolumeleasesfor thatdataarevalid,
and a server can modify dataas soonas either leasehas
expired. By makingobjectleaseslong andvolumeshort,
we overcomethelimitationsof traditionalleases:long ob-
ject leaseshave low overhead,while shortvolume leases
allow servers to modify datawithout long delays. Fur-
thermore,if thereis spatial locality within a volume, the
overheadof renewing shortleasesonvolumesis amortized
acrossmany objects. This sectionfirst describesthe Vol-
umeLeasesalgorithmandthenexaminesavariationcalled
VolumeLeaseswith DelayedInvalidations.

3.1 The basic algorithm

Figures2, 3,and4 show thedatastructuresusedby the
VolumeLeasesalgorithm,theserver sideof thealgorithm,
andtheclientsideof thealgorithm,respectively. Thebasic
algorithmis simple.

Reading Data. Clientsreadcacheddataonly if they hold
valid object and volume leaseson the correspondingob-
jects.Expiredleasesarerenewedby contactingtheappro-
priateservers. Whengrantinga leasefor an object 9 to a
client I , if 9 hasbeenmodifiedsincethe last time I helda
valid leaseon 9 thentheserverpiggybacksthecurrentdata
on theleaserenewal.

Writing Data. Before modifying an object, a server
sendsinvalidation messagesto all clients that hold valid
leaseson the object. The server delaysthe write until it
receivesacknowledgmentsfrom all clients,or until thevol-
umeor objectleasesexpire. After modifyingtheobject,the
server incrementstheobject’sversionnumber.

3.1.1 Handling unreachable clients

Clientcrashesor network partitionscanmakesomeclients
temporarilyunreachable,whichmaycauseproblems.Con-
siderthecaseof anunreachableclientwhosevolumelease

hasexpired but that still holdsa valid leaseon an object.
Whentheclient becomesreachableandattemptsto renew
its volume lease,the server must invalidateany modified
objectsfor which theclient holdsa valid objectlease.Our
algorithmthusmaintainsateachserveranUnreachableset
thatrecordstheclientsthathavenot acknowledged,within
sometimeoutperiod,someof theserver’sinvalidationmes-
sages.

After receiving a readrequestor a leaserenewal re-
questfrom aclient in its Unreachableset,aserverremoves
theclient from its Unreachableset,renewstheclient’s vol-
umelease,andnotifiestheclient to renew its leasesonany
currently cachedobjectsbelongingto that volume. The
client thenrespondsby sendinga list of objectsalongwith
their versionnumbers,and the server replieswith a mes-
sagethatcontainsa vectorof objectidentifiers.This mes-
sage(1) renewstheleasesof any objectsnotmodifiedwhile
theclient wasunreachableand(2) invalidatestheleasesof
any objectswhoseversionnumberchangedwhile theclient
wasunreachable.

DataStructures
Volume A volumev hasthefollowing attributes

id = uniqueidentifier
objects = setof objectsin v
epoch = volumeepochnumber(incrementedon server reboot)
expire = time by whichall currentleaseson v will haveexpired
at = setof JLKNMLOLP+Q CNR P+S,T�OLUVP�W of valid leaseson v
unreachable = setof clientswhosevolumeleaseshaveexpired

andwho mayhavemissedobjectinvalidationmessages

Object An objecto hasthefollowing attributes
id = uniqueidentifier
data = theobject’sdata
version = versionnumber
expire = time by whichall currentleaseson o will haveexpired
at = setof JLKNMLOLP+Q CNR P+S,T�OLUVP�W of valid leaseson o
volume = volume

Figure 2: Data Structures for Volume Lease algorithm.

3.1.2 Handling server failures

Whena server fails we assumethatthestateusedto main-
tain cacheconsistency is lost. In LAN systems,serversof-
tenreconstructthis stateby polling their clients[12]. This
approachis impracticalin a WAN, so our protocolallows
a server to incrementallyconstructa valid view of theob-
ject leasestate,while relying on volume leaseexpiration
to prevent clients from using leasesthat weregrantedby
a failed server. To recover from a crash,a server first in-
validatesall volumeleasesby waiting for themto expire.
This invalidationcanbe donein two ways. A server can
save on stablestoragethelatestexpirationtimeof any vol-
ume lease. Then, upon recovery, it readsthis timestamp
anddelaysall writesuntil afterthis expirationtime. Alter-
natively, theserver cansave on stablestoragetheduration
of the longestpossiblevolumelease. Upon recovery, the

Server writes object
E

for all JKNMXOP+Q CNR P�SYT�OUZP�W7[E,\]YC
if P+S,T�OLUVP;^_K)`aUVUZP�Q C�b OcdP!edKNMXOP+Q CBf[E�\ gYE MX`acdP \ `aQHUVP] K+h]�i MXPb�E K E Q C�] K Ckjlb�E K E Q C�] K C�m KNMLOLP+Q C

send n oVprqBs7tkovuws b�x;RyE�\ OLzY{ to all clientsin
b!E K E Q C�] K CbH|}j

min(
E�\ gYE MX`acdP \ P+S,T�OLUVP ,

E�\ P+S,T�OLUVP)
if

b |�~ cr�N� b OcdP E ` Cb | j cr�N� b OLcdP E ` C
while (

b |;� K)`�UVUVP+Q C�b OLcdP) and(
b!E K E Q C�] K C8f���) do

receive(s��3� ovprq�s7tkovuws b�x
,
E�\ OLz) from KB[b!E K E Q C�] K Cb�E K E Q C�] K C�j�b!E K E Q C�] K C����

c �E,\ gYE MX`acdP \ `aQHUVP] K+h]�i MXP jlE�\ gYE ML`�cdP \ `aQHUVP] K+h]�i MXP mr��b�E K E Q C�] K C �E,\],C�j �E,\ g P�UV�)O E Q jlE,\ g P�UV�)O E Qw� ?write
E

Server grants lease for object
E

with
E�\ OLz � Evi�� oVz

receive n @7x�� �B�3� t x s7� x;R�Evi�� oVz RNg P+UV�+O E QH{ from K
let

E
betheobjectsuchthat

E,\ Oz � EVi�� oVzE,\ P�SYT�OUZP j K)`aUVUZP�Q C�b OcdPk� Evi�� t�P] �+P b OcdP E ` CE,\],C�jlE�\]YC���� JKNMXOLP�Q CNR�� Wy� // deleteold leasesfor clientE,\],C�jlE�\]YCHm�� JLKNMXOP+Q CNRNE,\ P�SYT�OUZP�W��
if n E�\ g P+UV�+O E Q�^#KNMXOP+Q C q3P+Uv�)O E Q�{ then

send n �B�3� t x s7� x R�E,\ Oz RyE�\ g P+UV�+O E Q RyE�\ P+S,T,OUVP R�E�\ z]YC�] {
else if n E�\ g P+UV�+O E Q � KNMXOP+Q C qBP+Uv�)O E QH{ then

send n �B�3� t x s7� x R�E,\ Oz RyE�\ g P+UV�+O E Q RyE�\ P+S,T,OUVP+{
Server grants lease for volume

g
with

g�\ Oz � gYE MoZz
receive n @7x�� q � t t x s7� x R�gYE MoZz R�gYE M x T E K+h�{ from K
let

g
bethevolumesuchthat

g�\ Oz � gYE MoZz
if (K�[g�\ `aQHUVP] K+h]�i MXP) or (

g�\ P�T E K+h�^ gYE M x T E K+h) then
recoverUnreachableClient(K ,

g
) // seebelow

if K f[g�\ `aQHUVP] K+h]�i MXPg�\ P+S,T�OLUVP j K)`aUVUZP+Q C�b OcdP8� gYE MX`acdP�t�P] �+P b OcdP E ` Cg�\]YCkjlg�\]YCk��� JLKNMXOP+Q CNRN� Wy� // deleteold leasesfor clientg�\]YCkjlg�\]YC�md� JKNMXOLP�Q CNRNg�\ P�SYT�OUZP�W��
send n q � t t x s7� x;R�g�\ Oz Ryg�\ P+S,T�OLUVP RNg�\ P�T E K+h�{

Server re-establishes contact with unreachable client K for volume
g

recoverUnreachableClient(K ,
g

)
send n�¡£¢}� b @7x p xB¤ s7t8t R�g�\ OLzY{ to K
receive n @7x p xB¤ �3�B� t x s7� x � R�gYE MLoVz R MXP] �+P���P C { from K
for all J EVi�� oVz R�Evi�� qBP+UV�+O E Q�W�[rMXP] �)P���P C do

let
E

betheobjectsuchthat
E�\ OLz � Evi�� oVz

if n E�\ g P+Uv�)O E Q�^ Evi�� q3P+Uv�)O E QH{ thenOQ gY] MLt�O � C!j OQ gY] Mt�O� C�m��ZEVi�� oVz��E�\]YCkjlE,\]YC¥��� JLK R�� Wy� // deleteold leasesfor client
else E�\ P+SYT�OUZP j K)`�UVUVP+Q C�b OLcdP8� EVi�� t�P] �)P b OLcdP E ` CUVP+QHP+¦}t�O � C8j UVP+QHP+¦}tkO� C�m J E�\ OLz R�E�\ g P+Uv�)O E Q RNE,\ P+S,T�OLUVP�WE�\]YCkjlE,\]YC¥��� JLK R�� Wy� // deleteold leasesfor clientE�\]YCkjlE,\]YC�m�� JK R�E,\ P+S,T�OLUVP�W��

send n oVprqBs7tkovuws b�x;R OQ gY] MLtkO� CNR+@7x p x3¤§R UZP�QHP+¦}t�O � C {b | � K)`aUZUVP+Q C�b Oc�P8�#cr�N� b OcdP E ` C
while (

b |�� K)`aUVUZP�Q C�b OcdP) and(KB[g�\ `aQHUZP] K+h]�i MXP)
receive ns��B� ovprq�s7t8oVu¨s b�x { from Kg�\ `aQHUVP] K+h]�i MXP jlg�\ `aQHUVP] K+h]�i MXP ��� K��

Figure 3: The Volume Leases Protocol (Server Side).

Client reads object
E

if
gY] MXOz,t�P] �+Pvn E�\ gYE MX`acdP+{¥e gY] MXOz,t�P] �+Pvn E�\ OLzY{ then

read localcopy of
E

if
gY] MXOz,t�P] �+Pvn E�\ gYE MX`acdP+{¥er© gY] MXOz,t�P] �+Pvn E�\ OLzY{ then

requestleasefor object
E

read localcopy of
E

if © gY] MXOz,t�P] �+Pvn E�\ gYE MX`acdP+{¥e gY] MXOz,t�P] �+Pvn E�\ OLzY{ then
requestleasefor volume

g
read localcopy of

E
if © gY] MXOz,t�P] �+Pvn E�\ gYE MX`acdP+{¥er© gY] MXOz,t�P] �+Pvn E�\ OLzY{ then

requestleasefor volume
g

andobject
E

read localcopy of
E

Client K requests lease for object
Eg QH`ac j«ª ¬� n E�\ g P+Uv�)O E Q RZ� ? {send n @7x}� �B�3� t x s7� x;R�E�\ OLz R�g QH`ac�{ to server

receive n �3�B� t x s7� x RyE�\ g P+UV�+O E Q RyE�\ P+S,T,OUVPv® R�E�\ z]YC�]v¯ { from server

Client K requests lease for volume
gP�T E K+h j«ª ¬Z n g�\ P�T E K+h R+� ? {send nUZP+°vq E MLtkP] �)P RNg�\ OLz R P�T E K+h�{ to server

if receive n ¡±¢7� b @7x p x3¤ s7tkt Ryg�\ OLzY{ from server thenMXP] �)P���P C!j �
for all objects

E
for which n�n E�\ gYE MX`ac�P � g {�e²n E,\ P�SYT�OUZP�� ~ K)`aUZUVP+Q C�b OLcdP+{�{MXP] �)P���P C�j MLP] �)P���P C¥m J E�\ OLz R�E�\ g P+Uv�)O E Q�W

send n @7x p x3¤ �3�B� t x s7� x � R�g�\ OLz R MXP] �)PZ��P C { to server
receive novpdqBs7tkovuws b�x;R OQ gY] Mt�O� CNRN@7x p x3¤§R UVP+QHP+¦}t�O � C { from server
for all

EVi�� oVz�[rOLQ gY] MLt�O � C
let

E
betheobjectfor which

E�\ OLz � Evi�� oVzE�\ P+SYT�OUZP � � ? ; delete
E�\ z]YC�] ;

E�\ z]YC�]wj pr¢7tkt
for all J Evi�� oZz RNg P+Uv�)O E Q R P+SYT�OUZPZW�[rUZP+Q�P+¦}t�O � C

let
E

betheobjectfor which
E�\ OLz � Evi�� oVz

assert(
E�\ g P+Uv�)O E Q � g P+Uv�)O E Q)E�\ P+SYT�OUZP j P+SYT�OUZP

send ns��B� oVprqBs7tkovuws b�x;R�g�\ OzY{ to server
receive n q � t t x s7� x;R�g�\ Oz Ryg�\ P+S,T�OLUVP R�g�\ PNT E K+h�{ from server

Client receives object invalidation message for object
E

receive novprqBs7tkovuws b�x RyEvi�� oVzY{ from server
let

E
betheobjectfor which

E,\ Oz � EVi�� oVzE,\ P�SYT�OUZP � � ? ; delete
E�\ z]YC�] ;

E�\ z]YC�] j pd¢}tkt
send n s��B� ovprqBs7t8oVu¨s b�x R�E,\ OzY{ to server

validLease(lease M)
if M \ P+S,T�OLUVP;^_K)`aUVUZP+Q C�b OcdP

returnTRUE
else

returnFALSE

Figure 4: The Volume Leases Protocol (Client Side).

serverthendelaysany writesuntil thisdurationhaspassed.
Sinceobject leaseinformation is lost when a server

crashes,the server effectively invalidatesall object leases
by treatingall clients as if they were in the Unreachable
set. It doesthis by maintaininga volume epochnumber
that is incrementedwith eachreboot. Thus,all client re-
queststo renew a volumemustalsoindicatethelastepoch
numberknown to the client. If the epochnumberis cur-
rent, thenvolumeleaserenewal proceedsnormally. If the
epochnumberis old, thenthe server treatsthe client asif
theclientwerein thevolume’sUnreachableset.

It is alsopossibleto storethecacheconsistency infor-
mationon stablestorage[3, 6]. This approachreducesre-
covery timeat thecostincreasedoverheadonnormallease
renewals.Wedonot investigatethisapproachin thispaper.

3.1.3 The cost of volume leases.

To analyzeVolumeLeases, we assumethat serversgrant
leasesof length � g on volumesandof length � on objects.
Typically, thevolumeleaseis muchshorterthantheobject
leases,but whenaclientaccessesmultipleobjectsfrom the
samevolumein a shortamountof time, the volumelease
is likely to be valid for all of theseaccesses.As the read
costcolumnof Table1 indicates,thecostof a typical read,
measuredin messagesperread,is ?- .�0�1 n @ . C 4 {B³ ?@BA C . The

first term reflectsthe fact that the volume leasemust be
renewedevery � g secondsbut thattherenewal is amortized
over all objectsin the volume, assumingthat object 9 is
read > E timespersecond.Thesecondtermis thestandard
cost of renewing an object lease. As the ack wait delay
columnindicates,if a client or network failure preventsa
server from contactinga client, a write to an objectmust
be delayedfor ´¶µN·w¸��V¹v� gHº , i.e., until either leaseexpires.
As thewrite costandserverstatecolumnsindicate,servers
trackall clientsthatholdvalidobjectleasesandnotify them
all when objectsare modified. Finally, as the stale time
columnsindicate,VolumeLeasesnever suppliesstaledata
to clients.

3.2 Volume leases with delayed invalidations

The performanceof VolumeLeasescanbe improved
by recognizingthat oncea volumeleaseexpires,a client
cannotuseobjectleasesfrom thatvolumewithoutfirst con-
tacting the server. Thus, rather than invalidating object
leasesimmediatelyfor clients whosevolume leaseshave
expired, the server can sendinvalidation messageswhen
(andif) the client renews the volumelease. In particular,
the VolumeLeaseswith DelayedInvalidationsalgorithm
modifiesVolumeLeasesasfollows. If the server modifies
an object for which a client holdsa valid object leasebut
an expired volumelease,the server movesthe client to a

per-volume Inactive set, and the server appendsany ob-
ject invalidationsfor inactiveclientsto aper-inactive-client
PendingMessage list. When an inactive client renews a
volume,theserversendsall pendingmessagesto thatclient
andwaits for the client’s acknowledgmentbeforerenew-
ing thevolume. After a client hasbeeninactive for » sec-
onds,theservermovestheclientfrom theInactivesetto the
Unreachablesetanddiscardstheclient’sPendingMessage
list. Thus, » limits theamountof statestoredat theserver.
Smallvaluesfor » reduceserverstatebut increasethecost
of re-establishingvolumeleaseswhenunreachableclients
becomereconnected.

As Table1 indicates,whena write occurs,the server
mustcontactthe D g clientsthat hold valid volumeleases
ratherthanthe D E clientsthathold valid objectleases.De-
layed invalidationsprovide threeadvantagesover Volume
Leases. First, server writes can proceedfasterbecause
many invalidationmessagesaredelayedor omitted. Sec-
ond, the server canbatchseveral object invalidationmes-
sagesto a client into a singlenetwork messagewhen the
client renews its volume lease,therebyreducingnetwork
overhead.Third, if a client doesnot renew a volumefor a
longperiodof time,theservercanavoid sendingtheobject
invalidationmessagesby moving theclient to theUnreach-
able set andusing the reconnectionprotocol if the client
ever returns.

4 Methodology

To examine the algorithms’ performance,we simu-
latedthealgorithmsdiscussedin Table1 underaworkload
basedon webtracedata.

4.1 Simulator

We simulatea setof serversthatmodify files andpro-
vide files to clients, and a set of clients that read files.
Thesimulatoracceptstimestampedreadandmodify events
from input files andupdatesthe cachestate. The simula-
tor recordsthe sizeandnumberof messagessentby each
serverandeachclient,aswell asthesizeof thecachecon-
sistency statemaintainedateachserver.

We validatedthesimulatorin two ways.First, we ob-
tainedGwertzmanandSeltzer’s simulator[7] andoneof
their traces,andcomparedour simulator’s resultsto theirs
for thealgorithmsthatarecommonbetweenthetwo stud-
ies. Second,we usedour simulator to examineour al-
gorithmsundersimplesyntheticworkloadsfor which we
could analytically computethe expectedresults. In both
cases,oursimulator’s resultsmatchtheexpectedresults.

Limitations of the simulator. Our simulatormakessev-
eral simplifying assumptions.First, it doesnot simulate

concurrency—it completelyprocesseseachtraceeventbe-
fore processingthenext one.This simplificationallows us
to ignoredetailssuchasmutualexclusionon internaldata
structures,raceconditions,anddeadlocks.Although this
couldchangethemessagesthataresent(if, for instance,a
file is readat aboutthesametime it is written), we do not
believe thatsimulatingthesedetailswouldsignificantlyaf-
fectour performanceresults.

Second,we assumeinfinitely large caches. Thus,
clientsexperiencenocapacitycachemisses,andwedonot
simulateserverdisk accesses.Both of theseeffectsreduce
potentially significantsourcesof work that are the same
acrossalgorithms.Thus,our resultswill magnify the dif-
ferencesamongthealgorithms.Infinite clientcachesmight
also reducean advantageof short leasesand polling: a
servermaysendaninvalidationto aclient for anobjectthe
clienthasalreadydiscarded.Shortleasesandclientpolling
mayreducetheseunnecessarymessages.

Finally, we assumethat the systemmaintainscache
consistency on entirefiles ratherthanon somefiner gran-
ularity. We choseto examinewhole-file consistency be-
causethisis currentlythemostcommonapproachfor WAN
workloads[1]. Fine-grainedconsistency may reducethe
amountof datatraffic, but it alsoincreasesthe numberof
control messagesrequiredby the consistency algorithm.
Thus,fine-grainedcacheconsistency would likely increase
therelativedifferencesamongthealgorithms.

4.2 Workload

We use a workload basedon tracesof HTTP ac-
cessesat BostonUniversity [4]. Thesetracesspanfour
monthsduring January1995 throughMay 1995 and in-
cludeall HTTP accessesby Mosaicbrowsers—including
local cachehits—for33 SPARCstations.

Although these traces contain detailed information
aboutclient reads,they donot indicatewhenfilesaremod-
ified. We thereforesynthesizewrites to the objectsusing
a simplemodelbasedon two studiesof write patternsfor
web pages. Bestavros [2] examinedtracesof the Boston
Universitywebserver, andGwertzmanandSeltzer[7] ex-
aminedthe write patternsof threeuniversityweb servers.
Both studiesconcludedthat few files changerapidly, and
that globally popularfiles are less likely to changethan
otherfiles. For example,GwertzmanandSeltzer’s study
foundthat2%–23%of all filesweremutable(eachfile had
a greaterthan5% chanceof changingon any given day)
and0%–5%of thefileswereverymutable(hadgreaterthan
20%chanceof changingduringa24-hourperiod).

Basedon thesestudies,our syntheticwrite workload
dividesthefiles in the traceinto four groups.We give the
10% most referencedfiles a low averagenumberof ran-
domwritesperday(we usea Poissondistribution with an

0

100000

200000

300000

400000
¼
500000

600000

700000

1 10 100 1000 10000 100000 1e+06

Timeout (Seconds)

Volume(10,t)Delay Volume(10,t, ∝)

Callback

Volume(100,t)

Delay Volume(100,t,∝)

Client Poll(t) Object Lease(t)

N
um

be
r

of
 M

es
sa

ge
s

½

Figure 5: Number of messa ges vs. timeout length.

expectednumberof writesperdayof 0.005).We thenran-
domly placetheremaining90%of thefiles into threesets.
Thefirst set,which includes3% of all files in thetrace,are
very mutableandhave an expectednumberof writes per
day of 0.2. The secondset,10% of all files in the trace,
aremutableandhaveanexpectednumberof writesperday
of 0.05. The remaining77%of thefiles have anexpected
numberof writesperdayof 0.02.

We simulate the 1000 most frequently accessed
servers; this subsetof the serversaccountsfor more than
90% of all accessesin the trace. Our workload consists
of 977,899readsof 68,665differentfiles plus209,461ar-
tificially generatedwrites to thosefiles. The files in the
workloadaregroupedinto 1000volumescorrespondingto
the1000servers.We leave moresophisticatedgroupingas
futurework.

5 Simulation results

This sectionpresentssimulationresultsthat compare
thevolumealgorithmswith otherconsistency schemes.In
interpretingtheseresults,rememberthatthetraceworkload
trackstheactivities of a relatively smallnumberof clients.
In reality, serverswouldbeaccessedby many otherclients,
sotheabsolutevalueswereportfor serverandnetwork load
will arelower thanthe serverswould actuallyexperience.
Insteadof focusingontheabsolutenumbersin theseexper-
iments,we focuson the relative performanceof the algo-
rithmsunderthisworkload.

5.1 Server/network load

Figure5 showstheperformanceof thealgorithms.The
x-axis, which usesa logarithmic scale,gives the timeout
length, � , in seconds,while they-axisgivesthenumbersof
messagessentbetweentheclient andservers. For Volume
Lease, � refersto theobjectleasetimeoutandnot thevol-
umeleasetimeout; we show differentvolumeleasetime-
outswith different lines. The line for Callback is flat be-
causeCallback invalidatesall cachedcopiesregardlessof

� . The Lease, and basicVolumeLeaselines declineun-
til � reachesabout100,000secondsandthenrise slightly.
Thisshapecomesfrom thecompetinginfluenceof two fac-
tors. As � rises,the numberof leaserenewals by clients
declines,but the numberof invalidationssent to clients
holding valid leasesincreases.For this workload,oncea
client hasheld an object for 100,000seconds,it is more
likely that the server will modify the object than that the
clientwill readit, soleasesshorterthanthis reducesystem
load.DelayedInvalidationandClient Poll algorithmsend
strictly fewer messagesas � increasesbecauseDelayedIn-
validation avoids sendinginvalidationsto clients that are
no longeraccessinga volumeevenif theclientshold valid
objectleasesandbecauseClient Poll neversendsinvalida-
tion messages.Notethat for timeoutsof 100,000seconds,
Client Poll resultsin clientsaccessingstaledataon about
1% of all reads,andfor timeoutvaluesof 1,000,000sec-
onds,thealgorithmresultsin clientsaccessingstalecopies
on about5%of all reads.

The separationof the Lease, Volume(¾'<k¹V�), and
Volume(¾'<�<�¹v�) lines shows the additional overheadof
maintainingvolume leases. Shortervolume timeoutsin-
creasethis overhead.Leasecanbethoughtof asthelimit-
ing caseof infinite-lengthvolumeleases.

Although VolumeLeasesimposesa significantover-
headcomparedto Leasesfor a given valueof � , applica-
tionsthatcareaboutfault tolerancecanachieve betterper-
formancewith VolumeLeasesthanwithout. For example,
the trianglesin the figure highlight the bestperformance
achievableby a systemthatdoesnot allow writesto bede-
layed for more than10 secondsfor Lease, Volume(¾'<k¹V�),
andDelayedInvalidations(¾�<�¹v� , ¿). Volume(10,100000)
sends32% fewer messagesthan Lease(10), and Delayed
Invalidations(10,10À , ¿) sends39%fewer messagesthan
thebasicobjectleasealgorithm.Similarly, for applications
that candelaywrites at most100 seconds,VolumeLease
outperformsLeaseby 30%andDelayedInvalidationsout-
performsthe leasealgorithm by 40% as indicatedby the
squaresin thefigure.

Althoughproviding strongconsistency is moreexpen-
sive thanthePoll algorithm,thecostappearstolerablefor
many applications.For example,Poll(100000)usesabout
15%fewer messagesthanDelayedInvalidations(¾�<�<k¹'¾'<�À ,¿), but it suppliesstaledatato clientson about1% of all
reads. Even in the extremecaseof Poll(¾'<�À) (in which
clientsseestaledataon over 35% of reads),DelayedIn-
validationsuseslessthantwice asmany messagesas the
polling algorithm.

Althoughspacelimitationsdo not allow us to include
the graphshere,we alsoexaminedthe network bytessent
by thesealgorithmsandthe server CPU load imposedby
thesealgorithms.By bothof thesemetrics,the difference
in cost of providing strongconsistency comparedto Poll

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 10 100 1000 10000 100000 1e+06 1e+07

S
er

ve
r

S
ta

te
s

(B
yt

es
)

Timeout (Seconds)

Object Lease(t)
Volume(10,t)
Á
Volume(100,t)
Á
Delay Volume(10,t,
Â

∝)
Delay Volume(100,t,∝)

Delay Volume(10,t,10000)
Â
Delay Volume(100,t,10000)

Callback

Figure 6: State at the most popular server vs. timeout.

0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000 10000 100000 1e+06 1e+07

S
er

ve
r

S
ta

te
s

(B
yt

es
)

Timeout (Seconds)

Callback

Delay Volume(10,t,∝)
Delay Volume(100,t,∝)

Object Lease(t)
Volume(10,t)
Volume(100,t)

Delay Volume(10,t,10000)
Delay Volume(100,t,10000)

Figure 7: State at the 10
C h most popular server vs. time-

out.

wassmallerthanby themetricof network messages.The
relative differencesamongthe leasealgorithmswas also
smaller for thesemetrics than for the network messages
metricfor thesamereasons.

5.2 Server state

Figures6 and 7 show the amountof server memory
requiredto implementthealgorithms.Thefirst shows the
requirementsat thetrace’smostheavily loadedserver, and
thesecondshowsthedemandatthetrace’stenthmostheav-
ily loadedserver. Thex-axisshows thetimeoutin seconds
using a log scale. The y-axis is given in bytesand rep-
resentsthe averagenumberof bytesof memoryusedby
the server to maintainconsistency state. We charge the
servers16 bytesto storeanobjector volumeleaseor call-
backrecord.For messagesqueuedby theDelayalgorithm,
we alsocharge16bytes.

For shorttimeouts,theleasealgorithmsuselessmem-
ory than the callback algorithm becausethe leasealgo-
rithmsdiscardcallbacksfor inactive clients. Comparedto
standardleases,VolumeLeasesincreasetheamountof state
neededatservers,but thisincreaseis smallbecausevolume
leasesareshort, so serversgenerallymaintainfew active
volumeleases.If theDelayalgorithmnever movesclients
to the Unreachablesetit may storemessagesdestinedfor

1

10

100

1000

10000

100000

1e+06

1e+07

0 20 40 60 80 100

P
er

io
ds

 w
ith

 a
t L

ea
st

 th
at

 L
oa

d

Messages per 1 Second

Client Poll(10)
Object Lease(10)

Callback
Volume(10,1x10^7)

Delay Volume(10,1x10^7,
Ã

∝)

Figure 8: Periods of heavy server load under default
workload for the most heavil y loaded server.

1

10

100

1000

10000

100000

1e+06

1e+07

0 20 40 60 80 100

P
er

io
ds

 w
ith

 a
t L

ea
st

 th
at

 L
oa

d

Messages per 1 Second
Ä

Delay Volume(10,1x10^7,∝)

Client Poll(10)
Object Lease(10)

Callback
Volume(10,1x10^7)

Figure 9: Periods of heavy server load under “b ursty
write” workload for the most heavil y loaded server.

inactive clientsfor a long time andusemorememorythan
the otheralgorithms. Conversely, if Delay usesa short »
parameterso that it canmove clientsfrom the Inactive set
to theUnreachablesetanddiscardtheir pendingmessages
andcallbacks,Delaycanuselessstatethantheotherlease
or callbackalgorithms.NotethatrunningDelaywith short
discardtimeswill increaseserver load andthe numberof
consistency messages.We have not yet quantifiedthis ef-
fectbecauseit will dependonimplementationdetailsof the
reconnectionprotocol.

5.3 Bursts of load

Figure5.3showsa cumulativehistogramin which the
y value,shown in log scale,countsthenumberof 1-second
periodsin which the loadat theserver wasat leastx mes-
sagessentor receivedper second.Therearethreegroups
of lines. Client Poll andObjectLeasebothuseshorttime-
outs,sowhenclientsreadgroupsof objectsfrom a server,
thesealgorithmssendgroupsof objectrenewalmessagesto
theserver. Callback andVolumeuselong objectleasepe-
riods,soreadtraffic putslessloadon theserver, but writes
resultin burstsof loadwhenpopularobjectsaremodified.
For thisworkload,peakloadscorrespondto burstsof about

one messageper client. Finally, Delay useslong object
leasesto reduceburstsof readtraffic from clientsaccessing
groupsof objects,andit delayssendinginvalidationmes-
sagesto reduceburstsof traffic whenwrites occur. This
combinationreducesthe peakload on the server for this
workload.

For the experimentdescribedin the previous para-
graph,Client Poll andObjectLeasehaveperiodsof higher
load thanCallback andVolumefor two reasons.First, the
systemshowsperformancefor amodestnumberof clients.
Larger numbersof clientswould increasethe peakinval-
idate load for Callback andVolume. For Client Poll and
ObjectLease, increasingthe numberof clientswould in-
creasepeakserver load lessdramaticallybecausereadre-
questsfrom additionalclients would be more spreadout
in time. Thesecondreasonfor Callback andVolume’s ad-
vantagein this experimentis that clients in the traceread
datafrom servers in bursts,but writes to volumesarenot
bursty in that a write to oneobject in a volumedoesnot
make it morelikely thatanotherobjectfrom thesamevol-
umewill soonbemodified. Conversely, Figure9 shows a
“burstywrite” workloadin which whenoneobjectis mod-
ified, we select Å otherobjectsfrom the samevolumeto
modify at thesametime. For thisgraph,wecomputeÅ asa
randomexponentialvariablewith ameanof 10. Thiswork-
loadsignificantlyincreasestheburstsof invalidationtraffic
for VolumeandCallback.

6 Related work

Our studybuildson efforts to assessthecostof strong
consistency in wideareanetworks.GwertzmanandSeltzer
[7] comparecacheconsistency approachesthroughsimula-
tion, andconcludethatprotocolsthatprovideweakconsis-
tency arethe mostsuitableto a Web-like environment. In
particular, they find thatan adaptive versionof Poll(t) ex-
ertsa lower server loadthananinvalidationprotocolif the
polling algorithmis allowedto returnstaledata4% of the
time. We arrive at differentconclusions.In particular, we
observe thatmuchof theapparentadvantageof weakcon-
sistency overstrongconsistency in termsof network traffic
comesfrom clients readingstaledata[10]. Also, we use
volumeleasesto addressmany of thechallengesto strong
consistency.

We alsobuild on the work of Liu andCao[10], who
usea prototypeserver invalidationsystemto evaluatethe
overheadof maintainingconsistency at the servers com-
paredto client polling. They also study ways to reduce
server state via per-object leases. As with our study,
their workload is basedon a traceof read requestsand
synthetically-generatedwrite requests. Our work differs
primarily in our treatmentof fault toleranceissues. In
particular, after a server recoversour algorithm usesvol-

umetimeoutsto “notify” clientsthatthey mustcontactthe
serverto renew leases;Liu andCao’salgorithmrequiresthe
server to sendmessagesto all clientsthatmightbecaching
objectsfrom theserver. Also, our volumeleasesprovide a
gracefulway to handlenetwork partitions;whenanetwork
failure occurs,Liu andCao’s algorithmmustperiodically
retransmitinvalidationmessages,andit doesnotguarantee
strongconsistency in thatcase.

Cacheconsistency protocolshave long beenstudied
for distributedfile systems[8, 12, 13]. Several aspectsof
Coda’s [9] consistency protocolarereflectedin our algo-
rithms. In particular, our notiona volumeis similar to that
usedin Coda[11]. However, ours differsin two key re-
spects.First,Codadoesnot associatevolumeswith leases,
and relies insteadon other methodsto determinewhen
serversandclientsbecomedisconnected.Thecombination
of shortvolumeleasesandlong objectleasesis oneof our
main contributions. Second,becauseCodawasdesigned
for differentworkloads,its designtrade-offs aredifferent.
For example,becauseCodaexpectsclientsto communicate
with asmallnumberof serversandit regardsdisconnection
asacommonoccurrence,Codaaggressivelyattemptsto set
up volumecallbacksto all serverson eachhoardwalk (ev-
ery 10 minutes).

7 Conclusions

Wehavetakenthreecacheconsistency algorithmsthat
have beenpreviously appliedto file systemsandquantita-
tively evaluatedthemin thecontext of Webworkloads.In
particular, we compareda Poll algorithmwith a timeout,
theCallbackalgorithmin whichaserver invalidatesbefore
eachwrite, andGrayandCheriton’sLeasealgorithm.The
Leasealgorithmpresentsa tradeoff similar to the oneof-
feredby the Poll algorithm. On theonehand,long leases
reducethecostof readsby amortizingeachleaserenewal
over many reads. On the otherhand,short leasesreduce
the delay on writes when a failure occurs. To solve this
problem,we have introducedthe Volume Lease,Volume
Leasewith DelayedInvalidation,andBestEffort Leaseal-
gorithmsthatallow serversto performwriteswith minimal
delay, while minimizingthenumberof messagesnecessary
to maintainconsistency. Our simulationsconfirmtheben-
efitsof thesealgorithm.

Acknowledgments

We thank JamesGwertzmanand Margo Seltzerfor
making their simulatoravailable for us to useto validate
oursimulator. WethankCarlosCunha,AzerBestavrosand
Mark Crovella for makingthe BU web tracesavailableto
us. And we thankthe programcommitteeandthe anony-
mousreviewersfor theirvaluablefeedback.

References

[1] T. Berners-Lee,R.Fielding,andH. FrystykNielsen.Hyper-
text TransferProtocol– HTTP/1.0.InternetDraft draft-ietf-
http-v10-spec-00,InternetEngineeringTaskForce,March
1995.

[2] A. Bestavros. Speculative DataDisseminatinoandService
to ReduceServer Load,Network Traffic, andServiceTime
in DistributedInformationSystems.In InternationalCon-
ferenceonDataEngineering, March1996.

[3] P. Chen, W. Ng, S. Chandra,C. Aycock, G. Rajamani,
and D. Lowell. The Rio File Cache: Surviving Operat-
ing SystemCrashes.In Proceedingsof the SeventhInter-
nationalConferenceonArchitectural Supportfor Program-
mingLanguagesandOperatingSystems(ASPLOS-VII), Oc-
tober1996.

[4] C. Cunha,A. Bestavros,andM. Crovella. Characteristicsof
WWW Traces. TechnicalReportTR-95-010,BostonUni-
versityDepartmentof ComputerScience,April 1995.

[5] C. Gray and D. Cheriton. Leases: An Efficient Fault-
TolerantMechanismfor DistributedFileCacheConsistency.
In Proceedingsof theTwelfthACM Symposiumon Operat-
ing SystemsPrinciples, pages202–210,1989.

[6] JamesN. Gray. Noteson databaseoperatingsystems.In
R.Bayer, R.M. Graham,andG.Seegmueller, editors,Oper-
ating Systems:An AdvancedCourse, pages393–481.1977.
LectureNotesonComputerScience60.

[7] J.GwertzmanandM. Seltzer. World-WideWebCacheCon-
sistency. In Proceedingsof the 1996 USENIXTechnical
Conference, January1996.

[8] J. Howard, M. Kazar, S. Menees,D. Nichols, M. Satya-
narayanan,R. Sidebotham,and M. West. Scaleand Per-
formancein a DistributedFile System.ACM Transactions
onComputerSystems, 6(1):51–81,February1988.

[9] J. Kistler andM. Satyanarayanan.DisconnectedOperation
in the CodaFile System. ACM Transactionson Computer
Systems, 10(1):3–25,February1992.

[10] C.Liu andP. Cao.MaintainingStrongCacheConsistency in
theWorld-WideWeb. In Proceedingsof theSeventeenthIn-
ternationalConferenceon DistributedComputingSystems,
May 1997.

[11] L. Mummert and M. Satyanarayanan.Large Granularity
CacheCoherencefor IntermittentConnectivity. In Proceed-
ingsof theSummer1994USENIXConference, June1994.

[12] M. Nelson,B. Welch, and J. Ousterhout. Cachingin the
SpriteNetwork File System. ACM Transactionson Com-
puterSystems, 6(1),February1988.

[13] V. SrinivasanandJ.Mogul. SpritelyNFS:Experimentswith
CacheConsistency Protocols.In Proceedingsof theTwelfth
ACM Symposiumon Operating SystemsPrinciples, pages
45–57,December1989.

