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Abstract

This paperintroducesvolume leasesas a medanism
for providing cache consistencyor large-scale geograph-
ically distributed networks.Volumeleasesare a variation
of leases,which were originally designedfor distributed
file systems.Using trace-drivensimulation, we compae
two new algorithms against four existing cache consis-
tencyalgorithmsandshowthatour new algorithmsprovide
strong consistencyvhile maintainingscalability and fault-
tolerance For a trace-basedvorkload of web accesses,
wefind that volumescanreducemessge traffic at serves
by 40% compaedto a standad leasealgorithm, and that
volumescan consideably reducethe peakload at serves
whenpopularobjectsare modified.

1 Introduction

As valuableinformation becomeincreasinglyavail-
ablethroughwide areanetworks, userswill seekto useit
in moreelaboratevays. For example,althoughthe HTTP
protocolwasinitially developedfor disseminatingslonly
changingscholarlyandtechnicalinformation,it is now of-
ten usedto distribute quickly changingcommercialser
vices and news updates. In the future, we expectappli-
cationsthat manipulatedistributed datato extend beyond
human-drwenbrowsersto include program-drvenagents,
robots, and dataminersthat will place new demandson
thedata-distrilutioninfrastructure Thesenew applications
motivatethe useof cachingandcacheconsisteng.
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Cache consisteng can be achieved through either
client-drivenprotocols,in which clientssendmessageto
senersto determindf cachedbjectsarecurrent,or server
drivenprotocols,in which senersnotify clientswhendata
change.In eithercase the challengeis to guarante¢hata
clientreadalwaysreturnstheresultof thelatestcompleted
write. Protocolsthat achieve this are saidto be strongly
consistent.

Client-drivenprotocolsforcecachedo make adifficult
choice. They musteither poll the sener on eachaccess
to cacheddataor risk supplyingincorrectdata. The first
option, polling on eachread, increasesoth the load on
thesenerandthe lateng of eachrequestpoth effectscan
be significantin large scalesystemshecauseseners sup-
port mary clients and polling latenciescanbe high. The
otheroption, periodicpolling, relaxesconsisteng seman-
tics and allows cachesto supplyincorrectdata. For ex-
ample,webbrawersaccountfor weakconsisteng through
a human-basegrotocolin which usersmanuallypressa
“reload” button whenthey detectstaledata. Weakconsis-
tengy semanticsnay be merelyannging to a human,but
they can causeparallel and distributed programsto com-
puteincorrectresults,andthey complicatebuilding aggres-
sive cachingor replicationhierarchiesbecauseeplication
is nottransparento the application.

Sener-driven protocolsintroducethreechallengesof
their own. First, strongconsisteng is difficult to maintain
in the faceof network or processfailuresbecausebefore
modifying an object, a sener using theseprotocolsmust
contactall clientsthatcachethatobject. If therearemary
cachedcopies, it is likely that at leastone client will be
unreachablein which casethe sener cannotcompletethe
write without violating its consisteng guarantees.Sec-
ond, a sener may requirea significantamountof memory
to track which clients cachewhich objects. Third, send-
ing cacheinvalidationmessagemay entail large burstsof
seneractity whenpopularobjectsaremodified.

In distributed file systems,the problemsof sener
drivenprotocolswereaddressetly usingleaseg5], which
specifyalengthof time duringwhich senersnotify clients
of modificationsto cacheddata.After aleases timeoutex-



pires,clientsmustrenav theleaseby sendinga messagéo
thesenerbeforethey mayaccesshecachedbject.Leases
maintainstrongconsisteng while allowing senersto make
progressvenif failuresoccur If a sener cannotcontact
a client, the sener delaysthe write until the unreachable
client's leaseexpires,at which time it becomeghe client’s
responsibilityto contactthe sener. Furthermore leases
free seners from notifying idle clients before modifying
anobject;this reducedoththe sizeof the sener stateand
theload sustainedy the sener whenreadsandwritesare
bursty.

Although leasesprovide significant benefitsfor file
systemworkloads,there are reasongo believe that they
may be lesseffective in a wide areanetwork (WAN). To
amortizethecostof renaving aleaseacrossnultiple reads,
aleaseshouldbelong enoughthatin the commoncasethe
cachecanbe accessedvithout a renaval request. Unfor-
tunately at leastfor browserworkloads,repeatediccesses
to an objectareoften spreadover minutesor more. When
leasdengthsareshorterthanthetime betweerreads)eases
reduceto client polling. On the otherhand,longerlease
lengthsreducethethreeoriginal advantage®f leases.

In this paper we shav how volumeleasesrestorethe
benefitof leasesor WAN workloads.Volumeleasesom-
bine short leaseson groupsof files (volumes)with long
leaseson individual files. Underthe volume leasesalgo-
rithm, a client may access cachedobjectif it holdsvalid
leaseson both the object and the object's volume. This
combinatiorprovidesthefault-tolerancef shortleasede-
causavhenclientsbecomainreachableg senermaymod-
ify an objectoncethe shortvolumeleaseexpires. At the
sametime, the costof maintainingthe leasess modeste-
causes/olumeleasesamortizethe costof leaserenaval over
alargenumberof objects.

This paperevaluategheperformancef volumeleases
usingtrace-basedimulation. We examinetwo variations
of volumeleases:volume leasesandvolumeleaseswith
delayedinvalidations. In the latter algorithm, senersde-
fer sendingobjectinvalidation messageto clientswhose
volume leaseshave expired. We comparethesealgo-
rithmswith threetraditionalconsisteng algorithms:client
polling, sener invalidations,and sener invalidationswith
leases. Our simulationsdemonstratehe benefitsof vol-
ume leases. For example, volume leaseswith delayed
invalidationscan ensurethat clients never seestale data
andthat senersnever wait morethan 100 secondgo per
form a write, all while using aboutthe samenumberof
messageasa standardnvalidationprotocolthat canstall
sener writes indefinitely. Comparedo a standardobject
leasealgorithmthatalsoboundssener write delaysat 100
secondsthis volumealgorithmreducesmessageraffic by
40%.

The rest of this paperis organizedas follows. Sec-

Variable Meaning

t timeoutfor anobject

ty timeoutfor avolume

d time senersstorestatefor inactie clients

R frequeny objecto is read

\%4 # active objectspervolume

Clot # clientswith a copy of objecto

Co # clientswith leaseon objecto

Cy # clientswith leaseon volumev

Cqy # clientswhosevolumeleasesxpired
< d secondsgo.

size(x) bytesof sener stateto supportz clients

Figure 1: Definition of parameter s in Table 1

tion 2 describedraditional algorithmsfor providing con-
sisteny to cacheddata,and Section3 describesour new
volume leasealgorithms. Section4 discussesur exper
imental methodology and Section5 presentsour experi-
mentalresults. After discussingelatedwork in Section6,
Section7 summarize®ur conclusions.

2 Traditional consistency algorithms

This sectionreviews four traditionalcacheconsisteng
algorithms. The first two—Poll Each Readand Poll—rely
onclientpolling. Theremainingalgorithms—€allbad<and
Lease—arebasednsenerinvalidation.In describingeach
algorithmwe referto Table1, which summarize&ey char
acteristicof eachof thealgorithmsdiscussedh this paper
including our two new algorithms. We alsorefer to Fig-
ure 1, which definesseveral parametersf thealgorithms.

2.1 Poll eachread

Poll Each Readis the simplestconsisteng algorithm.
Beforeaccessing cachedbject,a client asksthe objects
senerif theobjectis valid. If so,the senerrespondsaffir-
matively; if not,thesener sendghecurrentversion.

This algorithmis equialentto always having clients
read datafrom the sener with the optimizationthat un-
changeddatais not resent. Thus, clients never seestale
data, and writes by the sener always proceedimmedi-
ately If anetwork failureoccursclientsunableto contacta
senerhave no guaranteesf thevalidity of cacheddbjects.
To cope with network failures, clients take application-
dependenactions,suchassignalingan error or returning
thecacheddataalongwith awarningthatit maybestale.

Theprimarydisadwantageof thisalgorithmis readper
formance asall readsaredelayedby a roundtripmessage
betweerthe client andthe sener. In addition,thesemes-
sagesnayimposesignificantioad on the seners[8].

2.2 Poll

Poll is basedon Poll Each Read but it assumeghat
cachedbjectsremainvalid for atleastatimeoutperiodof ¢



Reads Writes State
Expectedstaletime | Worststaletime Readcost Write cost | Ack waitdelay | Sener state
(seconds) (seconds) (messages) (messages (seconds) (bytes)
Poll EachRead 0 0 1 0 0 0
Poll t t min(45,1) 0 0 0
Callback 0 0 0 Cltot [es] size(Chtot)
Lease 0 0 o Co t size(Co)
VolumeLeases 0 0 1(R o+ o Co min(t, ty) size(Co)
Vol. DelayInval(t, ty, d) 0 0 ki + Cy min(t, ty) size(Cy)
ey (Botv)

Table 1: This table shows the cost of maintaining consistenc y for an object o using each of the algorithms. Columns
correspond to key figures of merit: the expectedstaletimeindicates how long a client expects to read stale data after
o is modified, assuming random reads, random updates, and failures. The worst staletimeindicates how long o can
be cached and stale assuming that (1) o was loaded immediatel y before it was modified and (2) a network failure
prevented the server from contacting the client caching o. The readcostshows the expected fraction of cache reads
requiring a message to the server. The write costindicates how many messages the server expects to send to notify
clients of a write . The acknowledgmentvait delayindicates how long the server will wait to write if it cannot invalidate
a cache. The serverstatecolumn indicates how many clients the server expects to track for each object.

secondsfteraclientvalidateghedata.Hencewhent = 0

Poll is equivalentPoll Each Read Choosingthe appropri-
atevalueof ¢ presentsa trade-of: Onthe onehand,long

timeoutsimprove performancedy reducingthe numberof

readsthat wait for validation. In particular if a client ac-

cesseslataat arateof R readspersecondandthetimeout
is long enoughto spanseveral readsthenonly ﬁ of the

client'sreadswill requirenetwork messageéseeTablel).

On the other hand, long timeoutsincreasethe likelihood
thatcacheswill supplystaledatato applications.Gwertz-
manandSeltzer[7] shav thatfor webbrowserworkloads,
evenfor atimeoutof ten days,sener load is significantly
higher than underthe Callbad algorithm describedbe-

low. The samestudyfindsthatanadaptie timeoutscheme
works betterthan statictimeouts,but that whenthe algo-

rithm’s parameteraresetto make the adaptve timeoutal-

gorithmimposethesamesenerloadasCallbad, about4%

of clientreadsreceve staledata.

If senerscanpredictwith certaintywhenobjectswill
be modified,thenPoll is ideal. In this case senerscantell
clientsto usecachedcopiesof objectsuntil thetime of the
next modification. For this study we do not assumethat
senershave suchinformationaboutthefuture.

2.3 Callback

In a Callbadk algorithm[8, 12], senerskeeptrack of
which clientsarecachingwhich objects.Beforemodifying
anobject,asener notifiestheclientswith copiesof theob-
jectanddoesnot proceedwith the modificationuntil it has
receved an acknavledgmentfrom eachclient. As shovn
in Table1, Callbad’s readcostis low because clientis
guaranteethatacachedbijectis valid until told otherwise.
However, the write costis high becausavhenan objectis
modified the sener invalidatesthe cachedobjects,which
may requireup to Cy,; messageskFurthermorejf a client

hascrashedr if anetwork partitionseparateasenerfrom
aclient,thenawrite maybe delayedndefinitely.

24 Lease

To addressthe limitations of Callbadk, Gray and
Cheritonproposed_ease[5]. To readan object, a client
first acquiresa leasefor it with an associatedimeoutt.
The client may thenreadthe cachedcopy until the lease
expires. When an objectis modified, the object’s sener
invalidatesthe cachedobjectsof all clientswhoseleases
have not expired. To readthe objectaftertheleaseexpires,
aclientfirst contactghe senerto renav thelease.

Leaseallows senersto make progressvhile maintain-
ing strongconsisteng despitefailures. If a client or net-
work failure preventsa sener from invalidatinga client’s
cache the sener needonly wait until the leaseexpiresbe-
fore performingthewrite. By contrastCallbadk mayforce
thewrite to wait indefinitely.

Leasesalsoimprove scalabilityof writes. Ratherthan
contactingall clientsthathave everreadanobject,asener
needonly contactrecently active clients that hold leases
on thatobject. Leasesanthusreducethe amountof state
thatthe sener maintaingto trackclients,aswell asthe cost
of sendinginvalidationmessage$10]. Seners may also
chooseto invalidatecachesby simply waiting for all out-
standingleasedo expire ratherthanby sendingmessages
to a large numberof clients; we do not explore this op-
tion in this study Leasepresentsa tradeof similar to the
oneofferedby Poll. Long leaseseducethe costof reads
by amortizingeachleaserenaval over R - ¢t reads.On the
other hand,shortleasesreducethe delay on writes when
failuresoccut

As with polling, a client that is unableto contacta
senerto renav aleaseknawsthatit holdspotentiallystale
data.Theclient maythentake application-specifiactions,



such as signaling an error or returning the suspectdata
alongwith a warning. However, unlike Poll, Leasenever
letsclientsbelieve thatstaleobjectsarevalid.

3 Volumeleases

Traditionalleasegrovide goodperformancavhenthe
costof renaving leasess amortizedover mary reads.Un-
fortunately for mary WAN workloads,readsof an object
may be spreadover secondsor minutes, requiring long
leasesin orderto amortizethe cost of renavals [7]. To
male leasegracticalfor theseworkloads,our algorithms
usea combinationof objectleases which are associated
with individual dataobjects,andvolumeleaseswhich are
associateavith a collectionof relatedobjectson the same
sener. In ourschemeaclientreadsdatafromits cacheonly
if bothits objectandvolumeleasedor thatdataarevalid,
and a sener can modify dataas soonas either leasehas
expired. By makingobjectleasedong andvolumeshort,
we overcomethe limitations of traditionalleasesiong ob-
ject leaseshave low overheadwhile shortvolumeleases
allow senersto modify datawithout long delays. Fur
thermore,if thereis spatiallocality within a volume, the
overheadf renaving shortlease®nvolumesis amortized
acrossmary objects. This sectionfirst describeghe \Vol-
umeLeaseslgorithmandthenexaminesavariationcalled
\VolumeLeaseswith Delayedinvalidations

3.1 Thebasicalgorithm

Figures?, 3, and4 shav thedatastructuresisedby the
\VolumeLeaseslgorithm,the sener sideof the algorithm,
andthe clientsideof thealgorithm,respectiely. Thebasic
algorithmis simple.

ReadingData. Clientsreadcacheddataonlyif they hold
valid object and volume leaseson the correspondingpb-
jects. Expiredleasesarerenaved by contactingthe appro-
priate seners. Whengrantinga leasefor an objecto to a
clientc, if o hasbeenmodifiedsincethe lasttime ¢ helda
valid leaseon o thenthe sener piggybackghe currentdata
ontheleaserenaval.

Writing Data. Before modifying an object, a sener
sendsinvalidation messageso all clientsthat hold valid
leaseson the object. The sener delaysthe write until it
recevesacknavledgmentgrom all clients,or until thevol-
umeor objectleasesxpire. After modifyingtheobject,the
senerincrementghe object’s versionnumber

3.1.1 Handling unreachable clients

Clientcrashe®r network partitionscanmake someclients
temporarilyunreachableyhichmaycauseproblems.Con-
siderthe caseof anunreachablelientwhosevolumelease

hasexpired but that still holdsa valid leaseon an object.
Whenthe client becomeseachableandattemptsto renev
its volume lease,the sener mustinvalidateany modified
objectsfor which the client holdsa valid objectlease.Our
algorithmthusmaintainsateachseneranUnreahableset
thatrecordsthe clientsthathave not acknavledged within
sometimeoutperiod,someof thesener'sinvalidationmes-
sages.

After receving a readrequestor a leaserenaval re-
questfrom aclientin its Unreachableet,a senerremoves
theclientfrom its Unreachableet,renavs theclient’s vol-
umeleaseandnotifiestheclientto renew its leasen ary
currently cachedobjectsbelongingto that volume. The
clientthenresponddy sendinga list of objectsalongwith
their versionnumbers,and the sener replieswith a mes-
sagethat containsa vectorof objectidentifiers. This mes-
sagg(1l) renavsthelease®f any objectsnotmodifiedwhile
theclientwasunreachabland(2) invalidatestheleaseof
ary objectswhoseversionnumberchangedvhile theclient
wasunreachable.

DataStructures
Volume A volumev hasthefollowing attributes
id = uniqueidentifier
objects = setof objectsin v
epoch = volumeepochnumber(incrementedn sener reboot)
expire = time by which all currentleasen v will have expired
at = setof (client, expire) of valid leasenv

unreachable = setof clientswhosevolumeleaseshave expired
andwho mayhave missedobjectinvalidationmessages

Object An objecto hasthefollowing attributes
id = uniqueidentifier
data =theobjectsdata
version = versionnumber
expire = time by which all currentleasen o will have expired
at = setof {client, expire) of valid leaseno

volume =volume

Figure 2: Data Structures for Volume Lease algorithm.

3.1.2 Handling server failures

Whena sener fails we assumehatthe stateusedto main-
tain cacheconsisteng is lost. In LAN systemssenersof-
tenreconstructhis stateby polling their clients[12]. This
approachs impracticalin a WAN, so our protocolallows
a sener to incrementallyconstructa valid view of the ob-
ject leasestate,while relying on volume leaseexpiration
to prevent clients from using leasesthat were grantedby
afailed sener. To recover from a crash,a sener first in-
validatesall volumeleaseshy waiting for themto expire.
This invalidationcanbe donein two ways. A sener can
save on stablestoragehelatestexpirationtime of any vol-
ume lease. Then, uponrecovery, it readsthis timestamp
anddelaysall writesuntil afterthis expirationtime. Alter-
natively, the sener cansare on stablestoragethe duration
of the longestpossiblevolume lease. Upon recovery, the



Server writesobject o

for al {(client, expire) € o.at

if expire > currentTime A client € o.volume.unreachable
To_contact < To_contact U client

send(INVALIDATE, o.id) to all clientsin To_contact

Ty < min(o.volume.ezpire, o.expire)

if Ty < msgTimeout
Ty + msgTimeout

while (Ty > currentTime) and(To_contact # @) do
receivVe(ACK_INVALIDATE, o.id) from ¢ € To_contact
To-contact < To_contact — {C}

o.volume.unreachable <+ o.volume.unreachable U {To-contact}

o.at + 0

o.version < o.version + 1

writeo

Server grantsleasefor object o with 0.id = objId

receive(REQ_-OBJ_LEASE, objld, version) fromc

let o betheobjectsuchthato.id = objId

o.expire + currentTime + objLeaseTimeout

o.at < o.at — {(client, X )} // deleteold leasedor client

o.at <+ o.at U {{client, o.ezpire)}

if (0.version > clientVersion) then
send(OBJ_.LEASE,o.id, o.version, o.ezpire, o.data)

elseif(o.version = clientVersion) then
send(OBJ_LEASE, o0.id, 0.version, o.ezpire)

Server grantsleasefor volume v with v.id = volId
receive(REQ_VOL_LEASE,volld, vol Epoch) from ¢
let v bethevolumesuchthatv.id = volId
if (¢ € v.unreachable) or (v.epoch > volEpoch) then
recoverUnreachableClient( v) // seebelon

if ¢ & v.unreachable
v.expire < currentTime + volumeLeaseTimeout
v.at + v.at — {{client, X)} // deleteold leasedor client
v.at + v.at U {{client, v.expire)}
send(VOL_LEASE, v.id, v.ezpire, v.epoch)

Server re-establishes contact with unreachable client ¢ for volume v
recorerUnreachableClient( v)
send(MUST_-RENEW _ALL,v.id) toc
receive(RENEW OBJ_LEASES, volld,leaseSet) fromc
for all (objId, objVersion) € leaseSet do
let o betheobjectsuchthato.id = objId
if (0.version > objVersion) then
invalList < invalList U {objId}
o.at + o.at — {{c, X)} I/ deleteold leasedor client
ese
o.expire < currentTime + objLeaseTimeout
renewList + renewList U {0.id, o.version, o.expire)
o.at + o.at — {{c, X)} // deleteold leasedor client
o.at < o.at U {{c,o0.expire)}
send(INVALIDATE, invalList, RENEW, renewList)
Ty = currentTime + msgTimeout
while (Ty > currentTime) and(c € v.unreachable)
receive (ACK_INVALIDATE) frome
v.unreachable « v.unreachable — {c}

Figure 3: The Volume Leases Protocol (Server Side).

Client reads object o

if validLease(o.volume) A validLease(o.id) then
read local copy of o

if validLease(o.volume) A —walidLease(o.id) then
requesteasefor objecto
read local copy of o

if ~validLease(o.volume) A validLease(o.id) then
requesteasefor volumewv
read local copy of o

if ~validLease(o.volume) A —walidLease(o.id) then
requesteasefor volumewv andobjecto
read local copy of o

Client ¢ requests lease for object o
vnum + max(o.version, —1)
send(REQ_OBJ_LEASE, o.id, vnum) to sener
receive(OBJ_LEASE, o.version, o.expire[, o.data]) from sener

Client ¢ requests lease for volume v
epoch < max(v.epoch, —1)
send(reqV ol Lease, v.id, epoch) to sener
if receive(MUST_RENEW _ALL, v.id) from senerthen
leaseSet + 0
for all objectso for which ((0.volume = v) A (o.ezpires < currentTime))
leaseSet «+ leaseSet U (0.id, o.version)
send(RENEW _OBJ_LEASES,v.id, leaseSet) to sener
receive (INVALIDATE, invalList, REN EW, renew List) from sener
for all objId € invalList
let o betheobjectfor whicho.id = objId
o.expire = —1; deleteo.data; o.data <+ NULL
for all {objId, version, expire) € renewList
let o betheobjectfor whicho.id = objId
assertg.version = version)
o.expire + exrpire
send(ACK_INVALIDATE, v.id) to sener
receive(VOL_LEASE,v.id, v.ezpire, v.epoch) from sener

Client receives object invalidation message for object o
receive(INVALIDATE, objId) from sener
let o betheobjectfor whicho.id = objId
o.expire = —1; deleteo.data; o.data <+ NULL
send(ACK INVALIDATE, o.id) to server

validL ease(lease 1)
if l.expire > currentTime
returnTRUE
else
returnFALSE

Figure 4: The Volume Leases Protocol (Client Side).



senerthendelaysany writesuntil this durationhaspassed.

Since object leaseinformationis lost when a sener
crashesthe sener effectively invalidatesall objectleases
by treatingall clientsasif they werein the Unreachable
set. It doesthis by maintaininga volume epochnumber
thatis incrementedvith eachreboot. Thus,all client re-
guestgo renav a volumemustalsoindicatethelastepoch
numberknown to the client. If the epochnumberis cur
rent, thenvolumeleaserenaval proceedsiormally. If the
epochnumberis old, thenthe sener treatsthe client asif
theclientwerein thevolume's Unreachableet.

It is alsopossibleto storethe cacheconsisteng infor-
mationon stablestoragd3, 6]. This approaclreducege-
coverytime atthe costincreasedverheadn normallease
renavals. We do notinvestigatehis approachn this paper

3.1.3 Thecost of volume |leases.

To analyzeVolume Leases we assumethat seners grant
leaseof lengtht, onvolumesandof length¢ on objects.
Typically, thevolumeleases muchshorterthanthe object
leasesbut whena clientaccessesultiple objectsfrom the
samevolumein a shortamountof time, the volumelease
is likely to be valid for all of theseaccessesAs theread
costcolumnof Tablel indicatesthe costof atypical read,

measuredh messageperread,is W + 7. The
oev oY

first term reflectsthe fact that the volume leasemust be

renavedeveryt, seconddut thattherenaval is amortized
over all objectsin the volume, assumingthat objecto is

readR, timespersecond.Thesecondermis the standard
costof renaving an objectlease. As the ack wait delay
columnindicates,if a client or network failure preventsa

sener from contactinga client, a write to an objectmust
be delayedfor min(t,t,), i.e., until eitherleaseexpires.
As thewrite costandserverstatecolumnsindicate, seners
trackall clientsthathold valid objectleasesandnotify them
all when objectsare modified. Finally, asthe staletime

columnsindicate,VolumelLeasemever suppliesstaledata
to clients.

3.2 Volumeleaseswith delayed invalidations

The performanceof VolumelLeasescan be improved
by recognizingthat oncea volume leaseexpires, a client
cannotuseobjectleasegrom thatvolumewithoutfirst con-
tacting the sener. Thus, ratherthan invalidating object
leasesmmediatelyfor clientswhosevolume leaseshave
expired, the sener can sendinvalidation messagesvhen
(andif) the client renavs the volumelease. In particular
the olume Leaseswith DelayedInvalidationsalgorithm
modifiesVolumelLeasesasfollows. If the sener modifies
an objectfor which a client holds a valid objectleasebut
an expired volume lease,the sener movesthe clientto a

pervolume Inactive set, and the sener appendsary ob-
jectinvalidationsfor inactive clientsto aperinactive-client
Pending Messae list. When an inactive client renevs a
volume,thesenersendsall pendingmessageto thatclient
and waits for the client’s acknavledgmentbefore renav-
ing the volume. After a client hasbeeninactive for d sec-
onds thesenermovestheclientfrom thelnactive setto the
Unreachablesetanddiscardgheclient's PendingMessage
list. Thus,d limits theamountof statestoredat the sener.
Smallvaluesfor d reducesener statebut increasehe cost
of re-establishingyolumeleasesvhenunreachablelients
becomeeconnected.

As Table1 indicates,whena write occurs,the sener
mustcontactthe C, clientsthathold valid volumeleases
ratherthanthe C,, clientsthathold valid objectleasesDe-
layedinvalidationsprovide threeadvantagesover Volume
Leases First, sener writes can proceedfasterbecause
mary invalidationmessagesare delayedor omitted. Sec-
ond, the sener canbatchseveral objectinvalidationmes-
sagedo a client into a single network messagavhenthe
client renavs its volume lease,therebyreducingnetwork
overhead.Third, if aclientdoesnotrenav avolumefor a
long periodof time, the sener canavoid sendingheobject
invalidationmessageby moving theclientto theUnreach-
able setand using the reconnectiorprotocol if the client
everreturns.

4 Methodology

To examine the algorithms’ performance we simu-
latedthealgorithmsdiscussedn Table1 underaworkload
basednwebtracedata.

4.1 Simulator

We simulatea setof senersthatmodify files andpro-
vide files to clients, and a set of clients that read files.
Thesimulatoracceptgsimestampedeadandmodify events
from input files and updatesthe cachestate. The simula-
tor recordsthe sizeand numberof messagesentby each
senerandeachclient, aswell asthe sizeof the cachecon-
sisteny statemaintainedateachsener.

We validatedthe simulatorin two ways. First, we ob-
tained Gwertzmanand Seltzers simulator[7] and one of
their traces,andcomparedur simulators resultsto theirs
for the algorithmsthatarecommonbetweerthe two stud-
ies. Second,we usedour simulatorto examine our al-
gorithmsundersimple syntheticworkloadsfor which we
could analytically computethe expectedresults. In both
casespur simulators resultsmatchthe expectedresults.

Limitations of the simulator. Our simulatormakesser-
eral simplifying assumptions.First, it doesnot simulate



concurreng—it completelyprocessesachtraceeventbe-
fore processinghe next one. This simplificationallows us
to ignoredetailssuchasmutualexclusionon internaldata
structuresraceconditions,and deadlocks. Although this
couldchangethe messagethataresent(if, for instancea
file is readat aboutthe sametime it is written), we do not
believe thatsimulatingthesedetailswould significantlyaf-
fectour performanceesults.

Second,we assumeinfinitely large caches. Thus,
clientsexperienceno capacitycachemissesandwe do not
simulatesener disk accessesBoth of theseeffectsreduce
potentially significant sourcesof work that are the same
acrossalgorithms. Thus, our resultswill magnify the dif-
ferencemmongthealgorithms.Infinite clientcachesnight
also reducean adwantageof shortleasesand polling: a
senermaysendaninvalidationto a clientfor anobjectthe
clienthasalreadydiscarded Shortleasesandclientpolling
may reducetheseunnecessargnessages.

Finally, we assumethat the systemmaintainscache
consisteng on entirefiles ratherthanon somefiner gran-
ularity. We choseto examinewhole-file consisteng be-
causehisis currentlythemostcommonapproachor WAN
workloads[1]. Fine-grainedconsisteng may reducethe
amountof datatraffic, but it alsoincreaseshe numberof
control messagesequiredby the consisteng algorithm.
Thus,fine-graineccacheconsisteng would likely increase
therelative differencesamongthe algorithms.

4.2 Workload

We use a workload basedon tracesof HTTP ac-
cessesat Boston University [4]. Thesetracesspanfour
monthsduring January1995 through May 1995 and in-
cludeall HTTP accesseby Mosaic browsers—including
local cachehits—for 33 SFARCstations.

Although thesetraces contain detailed information
aboutclientreadsthey do notindicatewhenfiles aremod-
ified. We thereforesynthesizewrites to the objectsusing
a simplemodelbasedon two studiesof write patternsfor
web pages. Bestaros [2] examinedtracesof the Boston
Universityweb sener, andGwertzmarandSeltzer[7] ex-
aminedthe write patternsof threeuniversity web seners.
Both studiesconcludedthat few files changerapidly, and
that globally popularfiles are lesslikely to changethan
otherfiles. For example, Gwertzmanand Seltzers study
foundthat2%—-23%of all files weremutable(eachfile had
a greaterthan 5% chanceof changingon ary given day)
and0%-5%of thefileswereverymutable(hadgreatethan
20% chanceof changingduringa 24-hourperiod).

Basedon thesestudies,our syntheticwrite workload
dividesthefiles in the traceinto four groups. We give the
10% mostreferencediles a low averagenumberof ran-
domwrites perday (we usea Poissondistribution with an
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Figure 5: Number of messages vs. timeout length.

expectednumberof writes perday of 0.005).We thenran-
domly placethe remaining90% of thefiles into threesets.
Thefirst set,whichincludes3% of all filesin thetrace,are
very mutableand have an expectednumberof writes per
day of 0.2. The secondset, 10% of all files in the trace,
aremutableandhave anexpectechumberof writesperday
of 0.05. Theremaining77% of the files have an expected
numberof writesperdayof 0.02.

We simulate the 1000 most frequently accessed
seners; this subsetof the senersaccountsor more than
90% of all accessei the trace. Our workload consists
of 977,899readsof 68,665differentfiles plus 209,461ar-
tificially generatedwrites to thosefiles. Thefiles in the
workloadaregroupednto 1000volumescorrespondingo
the1000seners.We leave moresophisticatedroupingas
futurework.

5 Simulation results

This sectionpresentssimulationresultsthat compare
thevolumealgorithmswith otherconsisteng schemesin
interpretingtheseresultsremembethatthetraceworkload
tracksthe activities of arelatively smallnumberof clients.
In reality, senerswould beaccessetly mary otherclients,
sotheabsolutevalueswvereportfor senerandnetwork load
will arelower thanthe senerswould actually experience.
Insteadbf focusingon theabsolutenumbersn theseexper
iments,we focuson the relative performanceof the algo-
rithmsunderthis workload.

5.1 Server/network load

Figure5 shavstheperformancef thealgorithms.The
x-axis, which usesa logarithmic scale,gives the timeout
length,t, in secondswhile they-axis givesthe numbersof
messagesentbetweerthe clientandseners. For Volume
Lease t refersto the objectleasetimeoutandnot the vol-
ume leasetimeout; we show differentvolume leasetime-
outswith differentlines. Theline for Callbad is flat be-
causeCallbad invalidatesall cachedcopiesregardlessof



t. The Lease and basic Volume Leaselines declineun-

til t reachesabout100,000secondsandthenrise slightly.

This shapecomedrom thecompetingnfluenceof two fac-
tors. As t rises,the numberof leaserenavals by clients
declines,but the numberof invalidationssentto clients
holding valid leasesncreases.For this workload, oncea

client hasheld an objectfor 100,000secondsijt is more
likely that the sener will modify the objectthanthat the

clientwill readit, soleaseshorterthanthis reducesystem
load. DelayedinvalidationandClient Poll algorithmsend
strictly fewer messageast increasedecausdelayedin-

validation avoids sendinginvalidationsto clientsthat are
no longeraccessing volumeevenif theclientshold valid

objectleasesaandbecauseClient Poll never sendsnvalida-
tion messagesNote thatfor timeoutsof 100,000seconds,
Client Poll resultsin clientsaccessingtaledataon about
1% of all reads,andfor timeoutvaluesof 1,000,000sec-
onds,thealgorithmresultsin clientsaccessingtalecopies
on about5% of all reads.

The separationof the Lease \Wolume(0,t), and
Volume(00,t) lines shows the additional overhead of
maintainingvolume leases. Shortervolume timeoutsin-
creasdhis overhead.Leasecanbethoughtof asthelimit-
ing caseof infinite-lengthvolumeleases.

Although Volume Leasesimposesa significantover-
headcomparedo Leasesor a given valueof ¢, applica-
tionsthatcareaboutfault tolerancecanachiese betterper
formancewith VolumelLeaseghanwithout. For example,
the trianglesin the figure highlight the bestperformance
achievableby a systemthatdoesnot allow writesto be de-
layed for more than 10 secondgfor Lease Volume(0, t),
andDelayedinvalidations(0, ¢, c0). Volume(10,100000)
sends32% fewer messageshan Lease(10) and Delayed
Invalidations(10,107, co) sends39% fewer messagethan
thebasicobjectleasealgorithm. Similarly, for applications
that can delay writes at most 100 secondsMolumelLease
outperformd_easeby 30% andDelayedinvalidationsout-
performsthe leasealgorithm by 40% asindicatedby the
squaresn thefigure.

Although providing strongconsisteng is moreexpen-
sive thanthe Poll algorithm,the costappeargolerablefor
mary applications.For example,Poll(100000)usesabout
15% fewer messagethanDelayedinvalidations( 00, 107,
00), but it suppliesstaledatato clientson about1% of all
reads. Evenin the extreme caseof Poll(107) (in which
clients seestaledataon over 35% of reads),DelayedIn-
validationsuseslessthantwice as mary messagessthe
polling algorithm.

Although spacdimitations do not allow usto include
the graphshere,we alsoexaminedthe network bytessent
by thesealgorithmsand the sener CPU load imposedby
thesealgorithms. By both of thesemetrics,the difference
in costof providing strongconsisteng comparedo Poll
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wassmallerthanby the metric of network messagesThe
relative differencesamongthe leasealgorithmswas also
smallerfor thesemetricsthan for the network messages
metricfor the samereasons.

52 Server state

Figures6 and 7 shav the amountof serner memory
requiredto implementthe algorithms. The first shawvs the
requirementst thetraces mostheavily loadedsener, and
thesecondshovsthedemandatthetracestenthmosthear-
ily loadedsener. The x-axisshavsthetimeoutin seconds
using a log scale. The y-axis is givenin bytesandrep-
resentsthe averagenumberof bytesof memoryusedby
the sener to maintain consisteng state. We chage the
seners16 bytesto storean objector volumeleaseor call-
backrecord.For messagequeueddy the Delayalgorithm,
we alsochage 16 bytes.

For shorttimeouts theleasealgorithmsuselessmem-
ory than the callback algorithm becausethe leasealgo-
rithms discardcallbacksfor inactive clients. Comparedo
standardeases\olumel easesncreasgheamountf state
neededatseners,but thisincreasas smallbecauseolume
leasesare short, so senersgenerallymaintainfew active
volumeleases|f the Delay algorithmnever movesclients
to the Unreachablesetit may storemessagesdestinedfor
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Figure 9: Periods of heavy server load under “bursty
write” workload for the most heavily loaded server.

inactive clientsfor along time andusemorememaorythan
the otheralgorithms. Corversely if Delay usesa shortd
parametesothatit canmove clientsfrom the Inactive set
to the Unreachablesetanddiscardtheir pendingmessages
andcallbacks Delay canuselessstatethanthe otherlease
or callbackalgorithms.NotethatrunningDelaywith short
discardtimeswill increasesener load andthe numberof
consisteng messagesWe have not yet quantifiedthis ef-
fectbecausdét will dependnimplementatiordetailsof the
reconnectiorprotocol.

5.3 Burstsof load

Figure5.3 shavs a cumulative histogramin which the
y value,shovn in log scale countsthe numberof 1-second
periodsin which theload at the sener wasat leastx mes-
sagessentor receved per second.Therearethreegroups
of lines. Client Poll andObjectLeasebothuseshorttime-
outs,sowhenclientsreadgroupsof objectsfrom a sener,
thesealgorithmssendgroupsof objectrenaval messaget®
the sener. Callbad andVolumeuselong objectleasepe-
riods,soreadtraffic putslessloadonthesener, but writes
resultin burstsof loadwhenpopularobjectsaremodified.
For thisworkload,peakloadscorrespondo burstsof about

one messageper client. Finally, Delay useslong object
leasedo reduceburstsof readtraffic from clientsaccessing
groupsof objects,andit delayssendinginvalidationmes-
sagedsto reduceburstsof traffic whenwrites occur This

combinationreducesthe peakload on the sener for this

workload.

For the experimentdescribedin the previous para-
graph,Client Poll andObjectLeasehave periodsof higher
load thanCallbadk andVolumefor two reasons First, the
systemshaws performancdor amodestnumberof clients.
Larger numbersof clientswould increasethe peakinval-
idate load for Callbadk and Volume For Client Poll and
ObjectLeasg increasingthe numberof clientswould in-
creasepeaksener load lessdramaticallybecauseeadre-
questsfrom additional clients would be more spreadout
in time. The secondeasorfor Callbadk andVolumeés ad-
vantagein this experimentis thatclientsin the traceread
datafrom senersin bursts,but writes to volumesare not
bursty in that a write to one objectin a volume doesnot
make it morelik ely thatanotherobjectfrom the samevol-
umewill soonbe modified. Corversely Figure9 shovs a
“burstywrite” workloadin whichwhenoneobjectis mod-
ified, we selectk otherobjectsfrom the samevolumeto
modify atthesametime. For this graph,we computek asa
randomexponentialariablewith ameanof 10. Thiswork-
loadsignificantlyincreaseshe burstsof invalidationtraffic
for VolumeandCallbad.

6 Reated work

Our studybuilds on efforts to assesshe costof strong
consisteng in wide areanetworks. GwertzmarandSeltzer
[7] comparecacheconsisteng approachethroughsimula-
tion, andconcludethat protocolsthatprovide weakconsis-
teng arethe mostsuitableto a Web-like ernvironment. In
particular they find thatan adaptve versionof Poll(t) ex-
ertsalower senerloadthananinvalidationprotocolif the
polling algorithmis allowedto returnstaledata4% of the
time. We arrive at differentconclusions.In particular we
obsere thatmuchof the apparenadvantageof weakcon-
sisteng over strongconsisteng in termsof network traffic
comesfrom clientsreadingstaledata[10]. Also, we use
volumeleasedgo addressnary of the challengego strong
consisteng.

We alsobuild on the work of Liu andCao[10], who
usea prototypesener invalidation systemto evaluatethe
overheadof maintainingconsisteng at the seners com-
paredto client polling. They also study ways to reduce
sener state via perobject leases. As with our study
their workload is basedon a trace of read requestsand
synthetically-generatedrite requests. Our work differs
primarily in our treatmentof fault toleranceissues. In
particular after a sener recoversour algorithm usesvol-



umetimeoutsto “notify” clientsthatthey mustcontactthe
senertorenav leasesl.iu andCaosalgorithmrequireshe
senerto sendmessage® all clientsthatmight be caching
objectsfrom thesener. Also, ourvolumeleasegrovide a
gracefulway to handlenetwork partitions;whena network
failure occurs,Liu and Cao’s algorithmmustperiodically
retransmiinvalidationmessagesndit doesnotguarantee
strongconsisteng in thatcase.

Cacheconsisteng protocolshave long beenstudied
for distributedfile systemq8, 12, 13]. Several aspectof
Codas [9] consisteng protocolarereflectedin our algo-
rithms. In particular our notionavolumeis similar to that
usedin Coda[11]. However, ours differsin two key re-
spectsFirst, Codadoesnot associateolumeswith leases,
and relies insteadon other methodsto determinewhen
senersandclientsbecomealisconnectedT he combination
of shortvolumeleasesandlong objectleasess oneof our
main contributions. Second,becauseCodawas designed
for differentworkloads,its designtrade-ofs aredifferent.
For example becaus€odaexpectsclientsto communicate
with asmallnumberof senersandit regardsdisconnection
asacommonoccurrenceCodaaggressiely attemptdo set
up volumecallbackso all senerson eachhoardwalk (ev-
ery 10 minutes).

7 Conclusions

We have takenthreecacheconsisteng algorithmsthat
have beenpreviously appliedto file systemsandquantita-
tively evaluatedthemin the context of Webworkloads.In
particular we compareda Poll algorithmwith a timeout,
the Callbackalgorithmin which asenerinvalidatesbefore
eachwrite, andGray andCheritons Leasealgorithm. The
Leasealgorithm presents tradeof similar to the one of-
feredby the Poll algorithm. On the onehand,long leases
reducethe costof readsby amortizingeachleaserenaval
over mary reads. On the otherhand,shortleasesreduce
the delay on writes when a failure occurs. To solve this
problem,we have introducedthe Volume Lease,Volume
Leasewith Delayedinvalidation,andBestEffort Leaseal-
gorithmsthatallow senersto performwriteswith minimal
delay while minimizingthenumberof messagesecessary
to maintainconsisteng. Our simulationsconfirmthe ben-
efits of thesealgorithm.
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