
Software Pip~elining Showdown:

Optimal vs. Heuristic Methods in a Production Compiler

John Ruttenberg*, G. R. Gao”~, A. Stoutchinin~, and W.Lichtenstein*

*Silicon Graphics Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94043
~McGill University – School of Computer Science, 3480 University St., McConnell Building, Room 318, Montreal, Canada H3A2A7

Authors’ email: rutt,wdl@sgi.com gao,stoafjcs.mcgill.ca

Abstract

This paper is a scientific comparison of two code generation tech-

niques with identical goals — generation of the best possible soft-

ware pipelined code for computers with instruction level

parallelism. Both are variants of modulo scheduling, a framework

for generation of soflware pipelines pioneered by Rau and Glaser

[RaG181], but are otherwise quite dissimilar.

One technique was developed at Silicon Graphics and is used in

the MIPSpro compiler. This is the production compiler for SG1’S

systems which are based on the MIPS R8000 processor [Hsu94]. It

is essentially a branch-and-bound enumeration of possible sched-

ules with extensive pruning. This method is heuristic becaus(s of

the way it prunes and also because of the interaction between reg-

ister allocation and scheduling.

The second technique aims to produce optimal results by formulat-

ing the scheduling and register allocation problem as an integrated

integer linear programming (ILP1) problem. This idea has received

much recent exposure in the literature [AlGoGa95, Feautner94,

GoAlGa94a, GoAlGa94b, Eichenberger95], but to our knowledge

all previous implementations have been too preliminary for

detailed measurement and evaluation. In particular, we believe this

to be the first published measurement of runtime performance for

ILP based generation of software pipelines.

A particularly valuable result of this study was evaluation of the

heuristic pipelining technology in the SGI compiler. One of the

motivations behind the McGill research was the hope that optimal

software pipelining, while not in itself practical for use in product-

ion compilers, would be usefhl for their evaluation and validation.

Our comparison has indeed provided a quantitative validation of

the SGI compiler’s pipeliner, leading us to increased confidence in

both techniques.

1. It is unfortunate that both instruction Level Parallelism and Integer
Linear Programming are abbreviated ILP in the literature. To clarifi, we
always use the abbreviation ILP to mean the latter and will suffer thrcugh
describing instruction level parallelism by its fill name.

Permission to make digitalhrd COPYof part or all of this work for personal
or elasaroom use is ranted without fee provided that copies are nc)t made

1or distributed for pm t or eommemial advanta e, the copyright notice, the
!Me of the ubiioation and its date appear, an notice is given that

“tcopying IS y permission of ACM, Ino. To copy othenvise, to republish, to
past on sswsra, or to mdistributs to lists. requires prior speoific parmiaaion
ancf/or a fee.

PLDI ’96506 PA, USA
O 1996 ACM O-89791 -795+YWOW5...$505O

Little work has been done to evaluate and compare alterna-

tive algorithms and heuristics for modulo scheduling from

the viewpoints of schedule quality as well as computational
complexity. This, along with a vague and unfounded percep-

tion that modtdo scheduling is computationally expensive as
well as dljicult to implement, have inhibited its incorpora-

tion into product compilers.

—B. Ramakrishna Rau [Rau94]

1.0 Introduction

1.1 Software pipelining

Software pipelining is a coding technique that overlaps operations
from various loop iterations in order to exploit instruction level

parallelism. In order to be effective software pipelining code must

take account of certain constraints of the target processor, namely:

1. instruction latencies,

2. resource availability, and

3. register restrictions.

Finding code sequences that satisfy the constraints (1) and (2) is

called scheduling. Finding an assignment of registers to program
symbols and temporaries is called register allocation. The primary
measure of quality of software pipelined code is called the 11, short

for iteration or initiation interval. In order to generate the best pos-

sible software pipelined code for a loop, we must find a schedule
with the minimum possible II and also we must have a register

allocation for the values used in the loop that is valid for that

schedule. Such a schedule is called rate--optimal. The problem of
finding rate-optimal schedules is NP--complete [GaJo79], a fact
that has led to a number of heuristic techniques [DeTo93, GaSc9 1,

HuffP3, MoEb92, Rau94, Warter92, Lam88, AiNi88] for genera-
tioti of optimal or near optimal soflware pipelined code. [RaFi93]
contains an introductory survey of these methods.

1.2 The allure of optimal techniques

Recently, motivated by the critical role of software pipelining in
high performance computing, researchers have become interested

in non-heuristic methods, ones that guarantee the optimality of the

solutions they find. The key observation is that the problem can be

formulated using integer linear programming (ZLP), a well known

framework for solving NP-complete problems [Altman95,

AlKePoWa83]. Given such a formulation, the problem can be
given to one of a number of standard ILP solving packages.

Because this framework has been effective in solving other com-
putationally difficult problems [NeWo88, Nemhauser94,
Pugh91,BiKeKr94], it is hoped that it can also be useful for soft-
ware pipelining.

1.3 The showdown

The rest of this paper presents a detailed comparison of two soft-

ware pipelining implementations, one heuristic and one optimal.

The heuristic approach is represented by the Silicon Graphics

MZPSpro compiler. The optimal approach is represented by MOSZ

an ILP based pipeliner developed at McGill University. We

adapted the MOST scheduler to the MIPSpro compiler so that it

could act as an exact fictional replacement for the original heu-

ristic scheduler. This work allowed us to perform a very fair and

detailed comparison of the two approaches.

What did we discover? In short, the SGI heuristics were validated

by this study. Comparison with ,MOST was an effective way to

evaluate SGI’S production quality pipeliner. In particular, we dis-

covered that the optimal approach is only very rarely able to find a

better II than the heuristic approach and benchmarks compiled

with the optimal techniques did not clearly perform better than

those compiled with the hefistic pipeliner.

In the remainder of this paper we describe the two approaches in

detail, present our experimental results, draw some conclusions

from these results, and try to shed some intuitive light on the

results.

2.0 The heuristic approach — software

pipelining at Silicon Graphics

2.1 MIPSpro compiler

Starting in 1990, Silicon Graphics designed a new microprocessor

aimed at the supercomputing market called R8000 [HSU94] and

shipped with SGI’S Power Challenge and Power Indigo2 comput-

ers. It is an in+rder 4-issue superscalar RISC processor featuring

fully pipelined floating point and memory operations. As part of

this project, a new compiler was implemented that had the basic

goal of generating very high quality software pipelined inner loop

code. This compiler shipped under the name MIPSpro Compiler

with R8000 based systems starting in late summer of 1994. At the

time the system shipped, it had the best reported perfomxmce on a

number of important benchmarks, in particular for the floating

point SPEC92. Our measurements show the compiler’s software

pipelining capabilities play the central role in delivering this per-

formance on the R8000, (See Figure 2.)

The MIPSpro compiler performs a rich set of analysis and optimi-

zation before its software pipelining phase. These fall into three

distinct categories:

1. high level loop analysis and transformations, including:

a. array dependence analysis,

b. loop interchange, and

c. outer loop unrolling;

2. classical intermediate code optimizations, such as:

a. common subexpression elimination,

b. copy propagation,

c. constant folding, and

d. strength reductioru

3. special inner loop optimizations and analysis in preparation

for software pipelining, in particular:

a, if-conversion to convert loops with internal branches

to a form using conditional moves [AlKePoWa83,

DeTo93],

b. interleaving of register recurrences such as summation

or dot products,

c. inter iteration common memory reference elimination,

and

d. data dependence graph construction.

2.2 Modulo scheduling

The framework for the MIPSpro compiler’s pipeliner is modulo

scheduling, a technique pioneered by Bob Rau and others and very
well described in the literature. [Larn88, RaFi93, Lam89]. Modulo

schedulers search for possible schedules by first fixing a iteration
interval (II) and then trying to pack the operation in the loop body

into the given number of cycles. If this is unsuccessful for one of a
number of reasons, a larger II may be tried.

The SGI scheduler contains a number of extensions and elabora-

tions, Five of the most important are:

1. binary instead of linear search of the 11s,

2. brancbsm&bound ordering of the search for a schedule
with a great deal of heuristic pruning,

3. use of multiple heuristic orderings in (2) to facilitate register
allocation,

4. generation of spill code when required to alleviate register

pressure, and

5. pairing of memory references to optimize memory system
utilization.

As we describe SGI’S pipeliner in the following sections, it will be

useful to keep these in mind.

2.3 Modulo scheduling using binary search

The SGI modulo scheduler searches the space of possible 11susing

a binary instead of linear search. 1 This has no measurable impact
on output code quality, but can have a dramatic impact on compile

speed. The search is bounded fi-om below by MinII, a loose lower

bound based on resources required and any dependence cycles in
the loop body [RaG18 1]. The search is bounded fi-om above by an
arbitrary maximum —MaxII = 2MinII. We set this maximum as a
sort of compile speed circuit breaker under the assumption that
software pipelining has little advantage over traditional scheduling
once this bound is exceeded. In practice, this has proven to be a
reasonably accurate assumption. Our search also makes the heuris-

tic assumption that if we can find a schedule at II we will also be

able to find one at II+ 1. Although it is possible to find counter

examples of this in theory, we have yet to encounter one in the
course of fairly extensive testing.

The search is designed to favor the situation where we can sched-

ule at or close to MinII, as these cases are overwhelmingly com-
mon. A simple binary search would be wasteful in cases where a
schedule could be found within a few cycles of the MirdI. Instead,
we use a search with two distinct phases:

1. Exponential buckoff — Initially, the search attempts to
establish an upper bound at which a schedule exists. During
this phase we perform an exponential backoff from MinII,

1. The use of binary search in this context has a fairly long history in
the literature. Touzems described the AP 120 and FPS 164 compiler and
explains how binary search 1sused [Tou84]. Lam pointed out that being
able to find a schedule at II does not imply being able to find a schedule at
11+1and used this to explain why her compiler used linear search [Lam88].

2

searching successively:

MinII, MinII+l, MinII+2, MinII+4, MinII+8,...

until we either fmd a schedule or exceed MaxII. If a schedule

is found with II s MinII+2, there are no better 11s left to

search and the schedule is accepted. If no schedule is found,

our modulo scheduling attempt has failed. (But we may still

be able to find a software pipelined schedule by introducing

spills and trying again. Section 2.8.)

2. Binary search — If phase 1 is successful and a schedule is

found, but with II > MinII+2, a binary search is used over

the space of feasible 11s. Information from phase 1 allows us

to tighten both the upper and lower bounds for the search,

For the lower bound, we use the largest II for which phase 1

tried to schedule and failed. For the upper bound, we use the

II for which phase 1 succeeded in finding a schedule. These

bounds are tighter than MinII and MaxII which are used to

bound phase 1.

In special situations the two phase approach is abandoned in fawor

of simple binary search. This is done when there is reason tc) be

pessimistic about being able to software pipeline. In particular,

simple binary search is used exclusively after spills are introduced

into the code. (See Section 2.8.)

2.4 Enumerating possible schedules with pruning

The process of searching for a schedule at an given II is viewed as

an enumeration of the possible schedules for that II. This enumera-

tion can be accomplished with a branch–and-bound algorithm

whose outlines should be familiar. The algorithm is presented in its

filly exponential form in Figure 1.

This is an exponential algorithm and is not practical in its

unpruned form. In order to make it useful, it is necessary to prime

away much of the search. Fortunately, this can be done without

losing too much, since much of the backtracking it does is

extremely unlikely to accomplish anything.

For example, consider two operations with unrelated resource

requirements which are unrelated by data precedence constraints.

Suppose one of these has been scheduled and the second one fails

to schedule. What good can possibly come of allowing a backtrack

from one to the other? They have nothing to do with one another

and moving one of them in the schedule cannot make it possiblle to

schedule the other.

Or consider the example of two fully pipelined operations with

identical resource requirements and unrelated data precedence.

Suppose the second (on the priority list) of these fails to schecktle.

Can it help to move the first one? Any other place we put it is a

place that second operation would have found if still available.

The assumption that two operations are unrelated by data prece-

dence is less important than might appear at first. Because we are

modulo scheduling, any two operations that are not in the same

strongly connected component can occupy any tNo cycles inl the

schedule; it’s just a matter of adjusting the pipestages. (See

Section 2.5 below.)

Step (4) in Figure 1 guides the backtracking of the algorithm. We

will say that it chooses a catch point for the backtracking. The

catch point is a scheduled operation that will advance to the next
cycle of its legal range after all the operations following it on the

priority list have been unscheduled. Pruning is accomplished by

strengthening the requirements about which operations can be

catch points.

1. Make a list of the operations to be scheduled,

LO..Ln.l .

2. Afler LO..Li.l have been scheduled, attempt to schedule Li
as follows:

a. Calculate a legal range of cycles in which Li may be

scheduled. If Li is not part of a nontrivial strongly

connected component in the data precedence graph,

its legal range is calculated by considering arty of its

direct predecessors and successors that have already

been scheduled. Li must be scheduled late enough so

that precedence arcs from its predecessors are not

violated and early enough so any arcs to its succes-

sors are not violated. For operations that are part of

nontrivial strongly connected components, we need

to consider all scheduled members of Li’s strongly

connected component. A longest path table is kept

and used to determine the number of cycles by which

two members must precede or follow each other. The

legal range is cut off to be no more than II cycles,

since searching more than this number of cycles will

just reconsider the same schedule slots pointlessly.

b. Consider the cycles in Li’s legal range in order. If a

cycle is found in which Li maybe scheduled without

violating resource constraints, schedule Li in that

schedule. If no such cycle is found, we have failed in

this attempt to schedule Li.

3. If(2) is successfid, resume scheduling the next element of
L in step (2) or if all the operations are scheduled, termi-
nate with success,

$. If(2) is tmsuccessfi-d, find the largest j <i, such that Lj’s
legal range is not exhausted. Unscheduled all the opera-

tions Lj..Li-l If there is no such j, the entire scheduling

attempt has failed. Otherwise, set i = j and resume sched-
uling at step (2) with the next cycle of Li’s legal range.

FIGURE 1, Branch-and-bound enumera-
tion of all possible schedules at a given II

The SGI pipeliner prunes by imposing the following constraints on

backtracking:

1.

2.

3.

Only the first listed element of a strongly connected compo-
nent can catch.

Operation j may catch the backtrack caused by the schedul-
ing failure of operation i if the resource required of i and j

are non-identical and unscheduling j makes it possible to
schedule i.

If no catch point is found under constraint (2) a slightly

looser constraint is used. Under this constraint, Operation j

may catch the backtrack of operation i even if i and j have

identical resources, Unscheduled all the operations starting
with j on the priority list. If i can now be scheduled but in a

dzjjlerent schedule slot than j, j may catch the backtrack.

2.5 Adjusting the pipestages

Our branchd-bound algorithm does not require that the priority

list be a strict topological ordering of the data dependence graph.
The legal range calculation in Figure 1 only takes account of such
predecessors and successors of an operation as are actually sched-
uled already, i.e., ahead of the current operation on the priority list.

Why doesn’t this result in “schedules” that violate data precedence
constraints?

3

The answer is that it does. A simple postpass is used to compen-

sate, ensuring validity. The postpass performs a single depth first
search of the strongly connected component tree starting with the

roots (operations with no successors, such as stores) and proceed-

ing to predecessors. This visitation is topological, When each
strongly connected component is visited, all its successors have

already been visited, and their times in the schedule made legal in

terms of their successors. Now it may be required to move the
component to an earlier time in the schedule in order to make its
results available on time to its predecessors. This can be done

without changing the resource requirements of the schedule as a
whole by moving the component by multiples of II. Once this has

been done for every strongly connected component, we have a
schedule that is valid both in terms of its resource and data prece-
dence constraints.

Of course, this process may have the negative effect of lengthen-

ing live ranges. It is better ilom a register allocation perspective to

use a topological ordering for the schedule priority list. But some-
times that is untenable in terms of actually finding a schedule. For-

tunately the scheme of using multiple priority heuristics ensures
that both topological and non-topological approaches can be

applied to every piece of code, in search of what works best. (See

Section 2.7.)

2.6 Register allocation and modulo renaming

Once a legal schedule is found, an attempt is made to allocate reg-
isters for it using fairly well known techniques. The R8000 has no
explicit support for software pipelining. In particular, it has only

conventionally accessed registers. Lam describes a technique
called modulo renaming that allows effective pipelining with con-

ventional architectures by replicating the software pipeline and
rewriting the register references in each replicated instance

[Lam89]. The SGI pipeliner borrows this technique. The modulo
renamed live ranges so generated serve as input of a standard glo-

bal register allocator that uses the Cluzitin-Briggs algorithm with

minor modifications. [BrCoKeTo89, Briggs92].

2.7 Multiple scheduling priorities and their effect on
register allocation

Early on the SGI team discovered that the ordering of operations

on the schedule priority list has a significant impact on whether the
schedules found can be register allocated. On reflection this is not
very surprising. For example, a priority list that is a backward
topological sort of the data dependence graph has the advantage

that each operation is considered for scheduling only afier any of

its uses have already been placed in the schedule. When this is the
case, we know the latest point in the schedule at which it is valid to
place the operation and still have its result available in time for its

uses. We can shorten live ranges by trying to place each operation
as low in the schedule as possible, given this limitation.

A more interesting discovery was that different search orders seem

to work well with different loop bodies. No single search order
works best with all loop bodies. Backward topological search
order, as described in the previous paragraph, works well in many
cases since it tends to group the operands of each operation close
together shortening live ranges from their beginnings. On the other

hand, we have found cases where forward topological search order
works better. The reason is exactly symmetric to the one given in
the previous paragraph. Forward orders allow us to group all the

uses of each operation close together and as high as possible in the

schedule, thus shortening live ranges from their ends. This can be
particularly useful in some codes with common subexpressions of
high degree.

In some cases, shortening the live ranges has to take aback seat to
producing code at all. In loops with many operations that are not

fully pipelined or large strongly connected components, it is cru-
cial to move these to the head of the scheduling list.

What scheduling heuristic could take account of so many different

factors? Perhaps it would be possible to devise such a heuristic,

but instead of searching for the one right heuristic, the SGI team

took a different approach. A number of different scheduling list
heuristics would be tried on every loop, ordered by likelihood to

succeed. In common cases only one heuristic would be tried. Sub-

sequent heuristics need only do well in cases where the other are
weak.

The MIPSpro pipeliner uses 4 scheduling priorities. Experimental
results show that lower quality results are obtained if any one is

omitted. (See Section 4.2). Here is a brief description of the two
primary ordering heuristics.

1. Folded depthjrst ordering — In the simple cases, this is just

a depth first ordering starting with the roots (stores) of the

calculation. But when there are difficult+o-schedule opera-

tions or large strongly-connected components, they are

folded and become virtual roots. Then the depth first search
proceeds outward from the fold points, backward to the
leaves (loads) and forward to the roots (stores).

2. Data precedence graph heights — The operations are

ordered in terms of the maximum sum of the latencies along
any path to a root.

These two fundamental heuristics are modified in one or both of
two ways to derive additional heuristics:

1. Reversal — the list can be reversed. Forward scheduling is

particularly usefid with the heights heuristic.

2. Ajinal memory sort-pulling stores with no successors and
loads with no predecessors to the end of the list.

The four heuristics actually in use in the MIPSpro compiler are:

1. FDA4S — folded depth first ordering with a final memory

sort,

2. FDNMS— folded depth first ordering with no final memory
sort,

3. HMS — heights with a final memory sort, and

4. RHMS— reversed heights with a final memory soti,

See Section 4.2 for experimental results that show the complemen-
tary effect of these four.

2.8 Spilling

The SGI pipeliner has the ability to spill in order to alleviate regis-
ter pressure. If a modulo scheduling pass is unsuccessful because

of failure to register allocate, spills and restores are added to the
loop and another attempt is made. Spills are added exponentially;
the first modulo scheduling failure results in a single value being
spilled; the second failure spills two additional values; the third

spills 4 more, and so on. The process is capped at 8 modulo sched-
uling failures, implying that up to 255 values maybe spilled before
giving up. In practice this limit is never reached.

Spill candidates are chosen by looking at the best schedule that
failed to register allocate. For each live range, a ratio is calculated:
the number of cycles spanned divided by the number of references.
The ~eater this ratio, the greater the cost and smaller the benefit of
keeping the value in a register. Thus values with the largest ratios

are spilled first.

2.9 Memory bank optimization

The MIPS R8000 is one of the simplest possible implementations

of an architecture supporting more than one memory reference per
cycle. The processor can issue two references per cycle, and the
memory (specifically the second level cache which is directly

4

accessed by floating point memory references) is divided into two

banks of double-words, the even address bank, and the odd address

bank. If two references in the same cycle address opposite banks,

then both references are serviced immediately, If two references in

the same cycle both address the same bank, one is serviced imme-

diately, and the other is queued for service in a l-element queue

called the bellows. If this hardware configuration cannot keep up

with the stream of references, the processor stalls. In the worst

case there are two references every cycle all addressing the same
bank, and the processor stalls once on each cycle, so that it enck up

running at half speed.

Scheduling to avoid memory bank conflicts must address two
issues, which are independent of the details of any particular
banked memory system. First, at compile-time we rarely have

complete information on the bank assignments of references. For
example the relative banks of consecutive elements of a row of
two-dimensional Fortran array depend on the leading dimensicm of

the array, which is often not a compile-time constant. Second,

modifying a schedule to enforce rules about the relative bank

assignments of nearby references may increase register pressure,

and therefore increase the length of the schedule more than the

savings in memory stalls shortens the schedule.

The MIPSpro heuristic attempts to find known even-odd pairs of

references to schedule in the same cycle — it does not model the

bellows feature of the memory system. Before scheduling begins,
but after priority orders have been calculated, for each memory
reference m it forms the prioritized list L(m) of all other references

m‘ for which (m, m ~ is known to be an even-odd pair. If L(w) is

no~mpty then we say m is pairable. Given the iteration interval,

the number of memory references, and the number of pairable ref-

erences, we can tell how many references should ideally be sched-

uled in known pairs, and how many references will have to be

scheduled together even though they may turn out at rnntime to

reference the same bank. Until enough pairs have been scheduled
together, whenever the compiler schedules a pairable memory ref-

erence m, it immediately attempts to schedule the first possible
unscheduled element m‘ of L(m) in the same cvcle as m. If this
fails,

1.

2.

3.

,.
“” it tries the following in order:

try to schedule another element of L(m) in the same cycl[e as

m, or

try scheduling m in a different cycle, or

backtrack and try changing the scheduling of earlier opera-
tions in scheduling priority order.

Note that this process may change the priority ordering of schedul-

ing, since memory reference with higher priority than m’ are
passed over in favor of scheduling m’ with m.

The MIPSpro scheduler has two methods of controlling the impact

of memory bank scheduling on register pressure. First, it measures
the amount that priorities are changed due to pairing attempts dur-
ing the entire scheduling process. If this measurement is large
enough, and if register allocation fails, it tries scheduling again
with reduced pairing requirements. Second, in the adjusting pipe

stages part of scheduling (see Section 2.5), preserving pairing may
require issuing a load one or more pipe stages earlier than would

be necessary for simple legality of a schedule, Again, register :dlo-

cation history is used to guide policy — if there has been trouble
allocating registers, the scheduler is less willing to add pipe stages
to preserve pairing.

Finally, since the minimal II schedule found first may not be best
once memory stalls are taken into account, the algorithm makes a

small exploration of other schedules at the same or slightly larger
II, searching for schedules with provably better stalling behavior.

3.0 Software pipelining at McGill University
— the optimal approach

3.1 Development of the ILP formulation

The interest in software pipelining at McGill stemmed from work

on register allocation for loops on dataflow machines. This work

culminated in a mathematical formulation of the problem in a lin-

ear periodic form [GaNi9 1,NiGa92]. It was soon discovered that
this formulation can also be applied to software pipelining for con-

ventional architectures. This formulation was then used to prove
an interesting theoretical result: the minimum storage assignment

problem for rate-optimal software pipelined schedules can be
solved using an efficient polynomial-time method provided the tar-
get machine has enough functional units so resource constraints
can be ignored [NiGa93]. In this framework, FIFO buffers are

used to model register requirements. A graph coloring method can

be applied subsequently on the obtained schedule to further
decrease the register requirements of the loop. This is referred to

as the integrated formulation and results in rate-optimal schedules

with minimal register usage.

Subsequently, the McGill researchers extended their ftamework to
handle resource constraints, resulting in a unified ILP formulation

for the problem for simple pipelined architectures

~iGa92,GoAlGa94a]. The work was subsequently generalized to
more complex architectures [AlGoGa95]. By the spring of 1995,
this work was implemented at McGill in MOST, the Modulo

Scheduling Toolset, which makes use of any one of several exter-
nal ILP solvers. MOST was not intended as a component of a pro-

duction compiler, but rather as a standard of comparison. Being

able to generate optimal pipelined loops can be useful for evaluat~

ing and improving heuristics for production pipeliners (as this

study demonstrates).

Because the McGill work is well represented in recent publica-

tions, we omit the details of the ILP formulation. The interested
reader should consult [AlGoGa95] and then the other cited publi-

cations.

3.2 Integration with the MIPSpro compiler

The research at McGill left many open questions. Although the
formulation of the software pipelining problem in ILP was appeal-
ing, could it also be usefhl? The McGill team did not believe that it

could be part of a production compiler due to its exponential run
time, but did expect that it could be used to evaluate such a com-

piler. How would it compare with a more specialized heuristic

implementation? It was bound to be slower, perhaps even much
slower; but how much better would its results be? Because heuris-
tic approaches can have near–linear rnming time, they would cer-

tainly be able to handle larger loops. How much larger?

MOST was not a full software pipelining implementation; its out-

put was a set of static quality measures, principally the II of the

schedule found and the number of registers required, not a piece of
runable code. It only targets were models that exhibited certain
interesting properties, never a real commercial high performance
processor. How well would it work with when targeted to a real
processor? Were there any unexpected problems standing in the

way of a full implementation, one that would generate runable

code?

The opportunity to embed MOST in the MIPSpro compiler

seemed perfect to answer these questions. In that context, MOST
would enjoy a proven pipelining context — a full set of optimiza-
tion and analysis before pipelining and a robust post processing
implementation to integrate the pipelined code correctly back into
the program. It was particularly attractive to reuse the postprocess-
ing code. Although modulo renaming, generation of pipeline fill

and drain code, and other related bookkeeping tasks may seem the-

5

oretically uninteresting, they account for a large part of the job of

implementing a working pipeliner. In the MIPSpro compiler, this

postprocessing accounts for 18’XOof the lines of code in the pipe-

liner — about 6,000 out of 33,000 lines total in the pipeliner.

MOST was successfully embedded in the MIPSpro compiler over

the summer of 1995.

3.3 Adjustment of McGill approach Due to this study

Over the course of this study, the McGill team found it necessary

to adjust their approach in order to conduct a useful evaluation of

SGI’S production pipeliner. Sometimes a rat~ptimal schedule

with minimal register usage cannot be found in a reasonable

amount of time. For the purpose of this study, we used 3 minutes

as a limit on searches for rattiptimal schedules with minimal reg-

ister usage. Increasing this limit doesn’t seem to improve the

results very much. When no optimal schedule is found within the

given time limit, it is necessary to derive a good but not necessar-

ily optimal schedule. As a result, the following adjustments were

made to MOST during this study:

1. Obtain a resource-constrained schedule)rst. Using the ILP

formulation of the integrated register allocation and schedul-

ing problem was just too slow and unacceptably limited the

size of loop that could be scheduled. For example, finding a

schedule for the large N3 loop in the tomcatv benchmark was

far beyond the reach of the integrated formulation. The ILP

formulation of resourc~onstiained scheduling could be

solved considerably faster. This formulation finds schedules

satisfying resource constraints, but does not address register

allocation. When it cannot be solved within reasonable time

limits, we would also not be able to solve the integrated

problem, so separating the problems seems to serve as a use-

ful filter against unnecessary compile time usage.

2. Adjustment of the objective function — Often it was not fea-

sible to use the register optimal formulation (involving col-

oring) reported in [AlGoGa95]. Instead, the ILP formulation

used minimized the number of buffers in the sotlvvare pipe-

line. This objective function directly translates into the

reduction of the number of iterations overlapped in the

steady state of the pipeline. 1 The ILP solver for this phase

was restricted to a fixed time limit. After that, it would

accept the best suboptimal solution found, if any.

3. Multiple priority orders — One surprising result of this

study was the discovery that the same multiple priority order

heuristics that were used in the SGI pipeliner are also very

useful in driving the McGill solver. The priority order in

which the ILP solver traverses the branch-and-bound tree is

by far the most important factor affecting whether it could

solve the problem. MOST thus adopted SGI’S policy of try-

ing many different priority orders in turn until a solution is

found.2

These adjustments have proved to be very important for our study,

They enable MOST to generate R8000 code and greatly extend the

size and number of loops it can successfully schedule

1. This is probably at least as important a parameter to optimize as reg-
ister usage as it has a more dkect impact on the size of the pipeline fill and
drain code and thus on short trip count performance of the loop. Short trip
count performance is the only performance impact of either minimization,
Only the II affects the asymptotic performance.

2. In fact, the final implementation of MOST embedded in the
MIPSpro compiler used most of the code from the SGI scheduler directly,
replacing only the scheduler proper with MOST.

4.0 Experiments and results

4.1 Effectiveness of the MIPSpro pipeliner

To lend perspective to the comparative results in Section 4,4, we
first present some results to demonstrate that the pipelining tech-
nology in the MIPSpro compiler is very effective. We use the 14
benchmarks in the SPEC92 floating point suite for this purpose, as

SPEC has become an important standard of comparison. (We omit
the SPEC92 integer suite because our software pipeliner unfortu-

nately has little impact on those benchmarks.)

Figure 2 shows the results for each of the 14 SPEC92 floating

point benchmarks with the software pipeliner both enabled and

disabled, Not only is the overall result very good for a machine
with a 75 MHz clock, the effectiveness of the pipeliner is dramatic,

resulting in more than 35’?/o improvement in the overall SPEC
number (calculated as the geometric mean of the results on each
benchmark).

To be fair, this overstates the case for SGI’S scheduling technology
because disabling software pipelining does not enable any very

effective replacement. The MIPSpro compiler leans heavily on

software pipelining for floating point performance and there has
been little work in tuning the alternative paths. In particular, with
software pipelining disabled, the special inner loop optimizations

and analysis described in Section 2.1 are disabled; without pipelin-

ing there is also no if+onversion and vector memory reference

analysis, When soflware pipelining is disabled a fairly simple list
scheduler is used.

We are often asked why we consider it important to be able to
pipeline large loops. When a loop is large, the argument goes,

there should be enough parallelism within each iteration without
having to overlap iterations. Perhaps this is true, but softiarepipe-

lining as we use the term is much more than just overlapping loop
iterations. Rather it is a fundamentally different approach to code

generation for innermost loops. We are willing to spend much
more compile time on them than other parts of programs, We have

a suite of special optimizations that we apply to them. We have a

scheduler that backtracks in order to squeeze out gaps that would

geomt

spice2g6

doduc

mdljdp2

wave5

tomcatv

ora

alvinn

ear

mdljsp2

swm256

su2cor

hydro2d

nasa7

fPPP

>tric mean

FIGURE 2. SPEC92 floating point benchmarks
for the MIPSpro compiler run on an SGI Power
Challenge with 75MHz R8000 processors. Results
are given with software pipelining both enabled
and disabled. Results are given as SPECmarks,
i.e., performance mukiples of VAX 780 mu times.

6

wave5

mdljdp2

doduc

spice2g6

0.6 0.7 0.8 0.9 1.0 -

- RHMS _ FDMS

- FDNMS - HMS

FIGURE 3. Three of the four priority list heuris-
tics help to win at least one SPEC benchmark.
Each bar gives the results of an experiment where
all but one heuristic was disabled. The result is
reported as the ratio over the numbers reported in
Figure 2.

otherwise be left in the schedule. We have even gone so far (in this

paper) as to consider au exponential scheduling ~echnique.

4.2 The effect of multiple scheduling priority heuristics

Figure 3 shows the results of an experiment testing the effective-

ness of the multiple scheduling heuristics discussed in Section 2.7.

We tried compiling the SPEC benchmarks with each of the heuris-

tics alone. No single heuristic worked best with all the bench-

marks. In fact, three out of the four heuristics were required in

order to achieve our best time for at least one of the benchmarks:

FDMS hydro2d

FDNMS alvinn, ear, swm256

HMS tomcatv, mdljsp2

The fourth heuristic, RHMS, is useful for loops not important to

any of the SPEC92 floating point benchmarks.

For several of the benchmarks, such as wave5, no single heuristic

achieves a time equal to the overall best time shown in Figure 2,

This is because the benchmarks consist of more than one important

loop, and within a single benchmark each loop may require a dif-

ferent heuristic.

There are also a few benchmarks, e.g., ear, that do better by a few

percent when limited to a single heuristic than when the “best”

schedule is chosen from among all four heuristics. This is less

strange than it may seem at first, The MIPSpro compiler uses only

the II of a schedule to measure its quality and ignores some other

factors that can have minor impacts on the performance of a sclhed-

ule. In particular, the overhead to start-up and complete a 10CJPis

ignored when looking for a schedule, but can be relevant to, the

performance of short trip loops. (See Section 4.6.)

I

tp#

I
hydro2d

su2cor
swm256
mdlj sp2

ear
alvinn

ora
. tomcatv

wave5
mdljdp2

doduc
spice2g6

geometric mean

FIGURE 4. Effectiveness of the MIPSpro mem-
ory bank heuristics — Performance improvements
from enabling these heuristics

4.3 Effectiveness of the MIPSpro memory bank
heuristics

.

We measured the effectiveness of the MIPSpro compiler’s mem-

ory bank heuristics discussed in Section 2.9. Figure 4 shows the
performance ratio for code compiled with the heuristic enabled

over the same code compiled with the heuristic disabled. Two

benchmarks stand out as benefiting especially, alvinn and mdljdp2,

For alvinn, the explanation is fairly simple. This program spends

nearly 100°A of its time in two memory bound loops that process
consecutive single precision vector elements. Because the R8000
is banked on double precision boundaries, the most natural pair-
ings of memory references can easily cause memory bank stalls. In

particular, one of the two critical loops is a dot product of two sin-
gle precision vectors. Two natural memory reference patterns for
this code are:

v[i+O], u[i+O]

v[i+ I], u[i+l]

and

v[i+O], v[i+ 1]
u[i+O], u[i+l].

When (as in this case) both u and v are single precision and even

aligned, both of these patterns batch 4 references to the same bank
within two cycles, causing a stall. The memory bank heuristic pre-
vents this, producing a pattern such as the following memory ref-
erence pattern instead:

v[i+OJ, v[i+2]

u[i+O], u[i+2]

This pattern is guaranteed to reference an even and an odd bank in

each cycle and thus to have no stall,

For mdljdp2, the situation is different and more complicated, This
loop is not memory bound; it has only 16 memory references out

of 95 instructions. The pattern of memory references is compli-
cated by the fact that there is a memory indirection and so the

exact pattern of memory references cannot be known. Inspection
of the generated code reveals that without memory bank heuristics,
memory references with unknowable relative offsets are grouped

together unnecessarily. The memory bank heuristics prevent that
grouping and thus avoid risking stalls by preventing any pairing of
memory references.

4.4 Comparison between ILP and SGI’S heuristics

We wanted to answer the question whether an optimal approach
could improve performance relative to the pipeliner in the

7

MIPSpro compiler. Remember that the primaty goal of this study

is to validate and improve SGI’s heuristic techniques. Thus we

wanted to give the ILP approach every possible advantage to

expose weaknesses in the production compiler.

Unfortunately, there is a problem that could strongly favor the heu-

ristic pipeliner — not every loop that can be scheduled by the SGI

pipeliner can also be scheduled by the MOST scheduler in reason-

able time. This is a particular problem because the penalty for not

pipelining can be very high. (See Section 4. 1.) We addressed this

by using the heuristic pipeliner as a backup for MOST. Thus

instead of falling back to the single block scheduler used when the
MIPSpro pipeliner fails to schedule and register allocate a loop, it

instead falls back to the MIPSpro pipeliner itself. In theory, this

should reveal only deficiencies in the production compiler, never

in the ILP pipeliner.

fPPPP
nasa7

hydro2d

su2cor

swm256

mdlj sp2

ear

alvim

ora

tomcatv

wave5

mdljdp2

doduc

spice2g6

>tric mean

FIGURE 5. Relative performance of ILP sched-
uled code over MIPSpro results with and without
memory bank pairing heuristics

4.5 Comparison of run time performance

The solid bars in Figure 5 show comparative results for the SPEC

floating point benchmarks. This data shows the code scheduled by

the SGI pipelined code outperforming the “optimal” code on 8 of
the benchmarks. The geometric mean of the suite as a whole is 8V0

better for the heuristic scheduler than for ILP method. On one

benchmark, alvinn, the code scheduled by MOST ran 15% slower
than the code scheduled by the MIPSpro pipeliner.

How can this be? The design of the experiment should have pre-

vented the ILP pipeliner from ever finding a worse schedule than

could be found by MIPSpro. After all, the heuristics are available

as a fallback when an optimal schedule cannot be found.

A large part of the answer is a dynamic factor introduced by the
memory system of the R8000 and described briefly in Section 2.9.
The MIPSpro pipeliner uses heuristics to minimize the likelihood

of unbalanced memory references causing stalls. Currently, the

ILP scheduling formulation does not optimize for this hardware.
Thus it can generate code which has poorer dynamic performance

than that generated by the MIPSpro scheduler.

$.

0.6 0.7 0.8 0.9 1.0 1.1 1.2

FIGURE 6. Relative performance of ILP sched-
uled code over MIPSpro results for each Liver-
more kernel.

In order to show the size of the dynamic effect introduced by the

memory system, we report a second set of numbers. These com-

pare the ILP results to code scheduled by the MIPSpro pipeliner
with its memory bank optimization disabled. These results are

also shown in Figure 5, this time as striped bars. In this compari-

son, the ILP code performs within a range from just a little bit

worse to about s~o better than the MIPSpro code. (See Section 4.3
for the direct comparison of MIPSpro results with and without

memory bank heuristics.)

For two benchmarks, tomcatv and alvinn, the ILP does about 5?/o
better than the MIPSpro code scheduled with memory bank heuris-
tics disabled. Are these places where it is actually generating better
code, or is it just another random factor introduced by the memory

system? The latter is the case and the ILP code is just generating

fewer memory stalls for these programs by chance. We know this
because the performance of both programs is dominated by just a
few loops which:

1. are scheduled by the MIPSpro compiler at their MinII,

2. have very long trip counts (300 for tomcatv, > 1000 for
alvinn), and

3. are memory bound or nearly memory bound.

In fact these two programs were part of the original motivation for
the MIPSpro pipeliner’s memory bank optimization and served as

a benchmark for tuning it.

4.6 Short trip count performance

Both the SGI and the McGill techniques strive to minimize the
number of registers used by software pipelined steady states; how-

ever, the emphasis and motivations are somewhat different. At SGI

the motivation was to make schedules that could be register allo-

cated. Certainly this was important to the McGill team, but there
was the additional goal of improving performance even for pipe-
lines scheduled at the same II. How well do the two approaches
perform in this regard, and how important is it in practice?

In fact register usage is only one of a number of factors that can
affect the time to enter and exit a pipelined steady state -- its over-
head. This overhead is constant relative to the trip count of the
loop and thus increases in importance as the trip count decreases

8

g

1;!
19.1
18.3
18,2
18.1
15.2
15.1
14.3
14.2
14.1

13
12
11
10
g

7

~

:

FIGURE 7. Difference MIPSpro minus ILP in
second order static quality measures for each of
the loops in the Livermore kernels given as abso-
lute register numbers and instruction cycles

-,

and asymptotically disappears in importance as the trip count

increases. If we ignore dynamic factors such the memory system

effect discussed in the previous section, then different schedules of

a loop with identical 11sand different registers requirements differ

at most in overhead so long as they both fit in the machine’s avail-

able registers. After all, register usage can be compensated by

spills and restores in the loop head and tail.

There are other factors beside register usage that influence pipeline

overhead. Before the steady state can execute the first time, the

pipeline has to bejilled, and after the last execution of the steady

state, the pipeline has to be drained. The number of instructions in

the fill and drain code is a fimction of how deeply pipelined each

instruction in the loop is and whether the less deeply pipelined

instructions can be executed speculatively during the final few iter-

ations of the loop.

How do the two schedulers compare with regard to the shod trip

count performance of the loops they generate? The well know Liv-

ermore Loops benchmark is particularly well suited for this mea-

surement. It measures the performance on each of 24 floating point

kernels for short, medium, and long trip counts. Figure 6 shows the

relative performance of the two approaches on each loop for both

the short and long trip count cases. These results show better per-

formance for SGI scheduler in nearly all cases with both short and

long trip counts. But as we have just seen, these results can be dis-

torted by the effects of the machine’s memory system. We’d like a

way to make a more direct comparison.

To do this, we looked at some static performance information

about the individual loops in the benchmark. For all the loops in

the benchmark, the schedules produced by both pipeliners had

identical 11s. Figure 7 shows the relative performance of the two

pipeliners in terms ofi

1, register usage measured in total number of both floating

point and integer registers used, and

2. overall pipeline overhead, measured in cycles required to

enter and exit the loop.

Overall pipeline overhead counts directly toward performance,
while register usage is important only is so far as it impacts pipe-

line overhead. This chart shows two things quite clearly:

1. Neither scheduler produces consistent/y better schedules by
either measure of overhead. The heuristic method uses fewer

registers in 15 of the 26 loops and requires lower total over-

head in 12.

2. There is no clear correlation between register usage and

overhead. For 16 of the loops, the schedule with smaller
overhead didn’t use fewer registers.

(1) seems particularly surprising in light of the emphasis on regis-

ter optimality at McGill, but a careful examination of Section 3.3
will shed some light. Even in the best case, the McGill schedules

do not have optimal register usage, but only minimal usage of the
modulo renamed registers or buffers, ignoring the withiwiteration
register usage. Moreover, for the purposes of this study, scheduling

and buffer minimization were often performed in separate passes
so that buffer usage is not really optimized over all possible sched-

ules, but only over a rather small subset.

(2) should not be surprising in light of the discussion above. Sav-

ing and restoring the registers used by the steady state is only one
of the things that needs doing in the loop prologue and epilog. An
additional overlapped iteration in the steady state can have a far

larger effect than the use of more registers.

4.7 Compile speed comparison

As expected, the ILP based pipeliner is much slower than the heu-

ristic based one. Of the 261 seconds spent in the MIPSpro pipe-

liner while compiling the 14 SPEC benchmarks, 237 seconds are
spent in the scheduler proper, with the rest spent in inner loop opti-
mization and post-pipelining bookkeeping. This compares to

67,634 seconds in the ILP scheduler compiling the same code.

5.0 Conclusions and future work

Only very rarely does the optimal technique schedule and allocate
a loop at a lower II than the heuristics. In the course of this study,

we found only one such loop. Even in that case a very modest
increase in the backtracking limits of the heuristic approach equal-
ized the situation.

The heuristic technique is much more efficient than MOST. This is

especially important for larger loop bodies, where its greater effi-
ciency significantly extends its functionality. In our experiments,
the largest loop successfidly scheduled by the SGI technique had

116 operations, while the largest optimal schedule found by
MOST had 61 operations.

The ILP technique was not able to guarantee register optimality for

many interesting and important loops. In order to produce results
for these loops, the McGill team had to devise a heuristic fallback.
This led to the result that neither implementation had consistently
better register usage.

So long as a software pipelined loop actually fits in the registers,
the number of registers used is not an important parameter to opti-

mize since it is not well related to performance, even for short trip

count loops. Future work in this direction should focus on the
more complex task of minimizing overall loop overhead. We feel

that there is much to learn in this area. Inherent in the modulo

scheduling algorithm is a measure of how the results compare
against a loose lower bound on optimality, the MinII (see
Section 2.3.) This has always given us at least a rough idea of how
much room there was for improvement in the iteration intervals of
generated schedules. On the other hand, we know very little about
the limits on the performance of sofhvare pipelined loops when the
trip count is short. Perhaps an ILP formulation can be made that

9

optimizes loop overhead more directly than by optimizing register

usage.

We were unable to compare the MIPSpro memory heuristics with

code that optimally uses the machine’s memory system. This com-
parison would probably be useful for the evaluation and wing of
the heuristics. Frankly, we do not currently understand how well

these heuristics work compared to how well they could work. A
good solution to this problem could have interesting implications

~n design of memory systems,

This study had not produced any convincing evidence that there is

much room for improvement in the SGI scheduling heuristics. But
we know there is still room for improvement in several areas, most

notably performance of loops with short trip counts and large

loops bodies with severe register pressure. Without very signifi-
cant strides toward a more efficient implementation of the ILP

approach, we do not see how it can help with the latter problem.

But short trip count performance is an important problem, espe-

cially in light of loop nest transformations such as tiling. And here
we feel that the ILP approaches to software pipelining may yet

have a significant role to play.

Acknowledgments

We wish to express our gratitude to a number of people and institu-

tions. John Hennessy and David Wall provided invaluable editorial
assistance Without their help, this paper would be much harder to

understand. Erik Altman, Fred Chow, Jim Dehnert, Suneel Jain,
Earl Killian, and Dror Maydan also helped substantially with the
proofreading and editing. Monica Lam was the matchmaker of this

project; she brought the SGI and McGill teams together in the first
place. Erik Altman, R. Govindarajan, and other people from the
ACAPS lab at McGill built the MOST scheduling tool. Douglas

Gilmore made crucial contributions to the design of the SGI sched-
uler, in particular the idea of using more than one scheduling heu-

ristic. Ross Towle was the original instigator of software
pipelining at Silicon Graphics and the father of pratical software

pipelining. We received financial support from Silicon Graphic

and Canadian NSERC (Natural Science and Engineering Council).

Ashfaq Munshi has been primarily responsible for creating an
atmosphere of great productivity and creativity at Silicon Graphics
where the bulk of this work took place during the summer of 1995.
Finally, we must thank the members of our families for their lov-
ing support and forbearance.

Bibliography

[AiNi88] A. Aiken and A. Nicolau. Optimal loop paralleliza-
tions. In Proc. of the ’88 SIGPLAN ConJ on Programming Lan-
guage Design and Implementation, pp. 308-317, Atlanta,
Georgia, June 1988.

[AlKePoWa83] J. R. Allen, K. Kennedy, C. Portertield, and J.
Warren. Conversion of control dependence to data dependence.
In Proc. of the 10th Ann. ACM Symp. on Principles of Program-
ming Languages, pp. 177-189, January 1983.

[AlGoGa95] E. R. Altrnan, R. Givindarajan~ and G.R. Gao.
Scheduling and mapping: Software pipelining m the presence of
structural hazards. In Proc. of ’95 SIGPLAN Con$ on Program-
ming Language Design and Implementation, La Jolla, Calif.,
June 1995.

[Altman95] E. R. Altman, Optimal Sof~are P@elining with
Functional Unit and Register Constraints. Ph.D. thesis, McGill
University, Montreal, Quebec, 1995.

[BiKeKr94] R. Bixby, K. Kennedy, and U. Kremer. Automatic
data layout using O-1 integer linear programming. In Proc. of
Con$ on Parallel Architectures and Compilation Techniques,

pp. 111-122, August 1994.

[BrCoKeTo89] P. Bnggs, K.D. Cooper, K. Kennedy, and L.
Torczon. Coloring heuristics for register allocation. In Proc. of
’89 S’IGPLAN Con$ on Programming Language Design and Im-

plementation, pp. 275-284, July 1989.

[Briggs92] P. Briggs. Register Allocation via Graph Coloring.
Ph.D. thesis, Rice University, Houston, Texas, April 1992.

[DeTo93] J.C. Dehnert and R.A. Towle. Compiling for Cydra 5.
Journal of Supercomputing, v.7, pp.1 81-227, May 1993.

[Eichenberger95] A. E. Eichenberger, E. S. Davidson, and S, G.
Abraham. Optimum modulo schedules for minimum register re-
quirements. In Proc. of ’95 Intl. Corf on Supercomputing, pp.
31-40, Barcelona, Spain, July 1995.

[Feautrier94] P. Feautrier. Fine-grained scheduling under re-
source constraints. In 7th Ann. Workshop on Languages and
Compilers for Parallel Computing, Ithaca, N.Y., August 1994.

[GaNi91] G, R. Gao and Q. Ning. Loop storage optimization for
dataflow machines. In Proc. of 4th Ann. Workshop on Languag-
es and Compilers for Parallel Computing, pp. 359-373, August
1991.

[GaJo79] M.R. Garey and D.S. Johnson. Computers and Intrac-
tabili~: A Guideto the Theoty of NP-Completeness, W.H. Free-
man and Co., New York, N.Y., 1979.

[GaSc91] F. Gasperoni and U. Schwiegelshohn, Efficient algo-
rithms for cyclic scheduling. Res. Prep. RC 17068, IBM TJ Wat-
son Res. Center, Yorktown Heights, N. Y,, 1991.

[GoAlGa94a] R. Govindarajan, E. R. Altma:, and G. R. Gao. A
framework for rate-optimal resource-constrained soi-lware pipe-
lining. In Proc. of CONPAR94- VAPP VI, no. 854, Lecture Notes
in Computer Science, pp. 640-651, Linz, Austria, September
1994.

[GoAlGa94b] R. Govindarajan, E. R. Altman, and G. R. Gao.
Minimizing register requirements under resource-constrained
rate-optimal software pipelining. In Proc. of the 27th Arm. Intl.
Symp. on Microarchitecture, pp. 85-94, San Jose, Calif., No-
vember-December 1994.

[Hsu94] Hsu, P., Designing the TFP Microprocessor, IEEE Mi-
cro, April 1994, pp. 23-33.

[1-Iuf193] R, A, Huff. Lifetime-sensitive modulo scheduling. In
Proc. of the ’93 SIGPLAN Conf on Programming Language De-
sign and Implementation, pp. 258-267, Albuquerque, N. Mex.,
June 1993.

[Lam88] M. Lam. Software pipelining: An effective scheduling
technique for VLIW machines. In Proc. of the ‘ 88 SIGPLAN
Conf on Programming Lanugage Design and Implementation,
pp. 318-328, Atlanta, Georgia, June 1988.

10

[Larn89] M. Lam. A systolic array optimizing compiler. Kluwer
Academic Publishers, 1989.

[MoEb92] S. Moon and K. Ebcioglu. An efficient resource-con-
strained global scheduling technique for superscalar and VIJW
processors. In Proc. of the 25th Ann. Zntl. Symp. on A4icroarchi-
tecture, pp. 55-71, Portland, Ore., December 1992.

~eWo88] G. Nemhauser and L. Wolsey. Integer and Combina-
torial Optimization. John Wiley & Sons, 1988.

[Nemhauser94] G. Nemhauser. Theageofoptimization: Solv-
ing large-scale real-world problems. Operations Research,
42(1):5-13, January-February 1994.

~iGa92] Q. Ning and G. Gao. Optimal loop storage allocation
for argument-fetching dataflow machines. International Jow--
nal of Parallel Programming, v. 21, no. 6, December 1992.

~iGa93] Q. Ning and G. Gao. A novel framework of register
allocation for software pipelining. Zn Conf Rec. of the 20th Ann.
ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages, pp. 29-42, Charleston, S. Carolina, January 1993.

[Pugh91] W, Pugh. The Omega test: A fast and practical integer
programming algorithm for dependence analysis. In Proc, SW
percomputing ’91, pp. 18-22, November 1991.

[RaG181] B. R. Rau and C. D. Glaser. Some scheduling tec-
niques and an easily schedulable horizontal architecture for high
performance scientific computing. In Proc. of the 14 Ann. Mi-
croprogramming Workshop, pp. 183-198, Chatham, Mass,, Clc-
tober 1981,

[RaFi93] B. R. Rau and J.A. Fisher. Instruction-level parallel
processing: History, overview and perspective. Journal of Su-
percomputing, v.7, pp.:9-50, May 1993.

[Rau94] B.R. ~au. Iterative modulo scheduling: An algorithm
for software pipelining loops. In Proc. of the 27th Ann. Intl.
Symp. on A4icroarchitecture, pp. 63-74, San Jose, Calif., No-
vember-December 1994.

[Tou84] R.F. Touzeau. A FORTRAN compiler for the FPS-164
scientific computer. In Proceedings of the SIGPLAN ’84 Sympo-
sium on Compiler Construction, pages 48-57, Montreal, Que-
bec, June 17–22, 1984.

[Warter92] N.J. Warter, John W. Bockhaus, Grant E. Haab, and
K. Supraliminal. Enhanced modulo scheduling for loops with
conditional branches. In Proc. of the 25th Ann. Intl. Symp. on
Microarchitecture, pp. 170-179, Portland, Ore., December 1992.

11

