Topology control in wireless networks

- Channel
- Transmission rate ➔ this class
- Transmission power
- Directional antennas’ direction
- Node placement
Phase Shift Keying

- **BPSK (Binary Phase Shift Keying):**
 - bit value 0: sine wave
 - bit value 1: inverted sine wave
 - very simple PSK
 - low spectral efficiency
 - robust, used in satellite systems

- **QPSK (Quadrature Phase Shift Keying):**
 - 2 bits coded as one symbol
 - needs less bandwidth compared to BPSK
 - symbol determines shift of sine wave
 - Often also transmission of relative, not absolute phase shift: DQPSK - Differential QPSK
Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM): combines amplitude and phase modulation
- It is possible to code n bits using one symbol
 - 2^n discrete levels
- bit error rate increases with n

Example: 16-QAM (4 bits = 1 symbol)
- Symbols 0011 and 0001 have the same phase φ, but different amplitude a. 0000 and 1000 have the same amplitude but different phase
- Used in Modem
Rate Adapation

• **802.11b**
 - 11, 5.5, 2, 1 Mbps

• **802.11a**
 - 6, 9, 12, 18, 24, 36, 48, 54 Mbps

• **802.11n per stream**
 - 20MHz: 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65, 72.2 Mbps
 - 40MHz: 15, 30, 45, 60, 90, 120, 135, 150 Mbps
Question

• What happens if we have both “slow” and “fast” senders associated with the same AP?
Intuition

• Every node gets the same chance to access the network
• When a node grabs the medium, it can send the same sized packet (regardless of its rate)
• So fast and slow senders will both experience low throughput
Performance Anomaly of 802.11

Martin Heusse, Frank Rousseau, Gilles-Berger Sabbatell, Andrzej Duda

LSR-IMAG Laboratory
Grenoble, France
Performance of DCF

Fig. 1. Successful transmission of a single frame
Performance of DCF

Overall Transmission time (T):

\[T = t_{tr} + t_{ov} \]

Constant Overhead (t_{ov}):

\[t_{ov} = DIFS + t_{pr} + SIFS + t_{pr} + t_{ack} \]

Proportion of useful throughput (p):

\[p = \frac{t_{tr}}{T} \times \frac{1500}{1534} = 0.70. \]
Performance of DCF

Taking into account collisions and exponential backoff, Overall Transmission Time \((T(N))\) becomes:

\[
T(N) = t_{tr} + t_{ov} + t_{cont}(N)
\]

Time spent in contention \((t_{cont}(N))\):

\[
t_{cont}(N) \simeq SLOT \times \frac{1 + P_c(N)}{2N} \times \frac{CW_{min}}{2}
\]
Performance of DCF

Assuming that multiple successive collisions are negligible, the proportion of collisions ($P_c(N)$) experienced for each packet acknowledged successfully is given by:

$$P_c(N) = 1 - (1 - 1/CW_{\text{min}})^{N-1}$$

The proportion (p) of useful throughput obtained by a host is:

$$p(N) = t_{\text{tr}} / T(N)$$
Performance Anomaly of 802.11b

Fast Host:

\[T_f = t_{ov}^R + \frac{s_d}{R} + t_{cont} \]

Slow Host:

\[T_s = t_{ov}^r + \frac{s_d}{r} + t_{cont} \]

R : transmission rate of ‘fast’ host (11Mbps)

r : transmission rate of ‘slow’ host (5.5, 2 or 1 Mbps)

\(t_{ov}^R \) : overhead time of ‘fast’ host

\(t_{ov}^r \) : overhead time of ‘slow’ host
Model

Throughput of a fast sender and a slow sender are as follow:

\[X_f = \frac{S_d}{(N-1)T_f + T_s + P_c(N) \times t_{jam} \times N} \]

\[X_s = \frac{S_d}{(N-1)T_f + T_s + P_c(N) \times t_{jam} \times N} \]
Performance Anomaly of 802.11b

Result:

The fast hosts transmitting at a higher rate ‘R’ obtain the same throughput as the slow host transmitting at a lower rate ‘r’.

i.e. \[X_s = X_f = X. \]
Simulation Studies

Throughput experienced by a 802.11b host when all hosts except one transmit at 11Mb/s
Performance Measurements

• 4 notebooks – Marie, Milos, Kea, and Bali
• Linux RedHat 7.3 (kernel 2.4.18)
• 802.11 cards based on Lucent Orinoco and Compaq WL 110
• Lucent Access Point
• Wvlan driver for the wireless card
Performance Measurements

• Tools used
 • *netperf* – generates TCP and UDP traffic to a target host running *netserver* and measures throughput obtained at each second.
 • *tcpperf* – generates TCP traffic and measures throughput obtained at each second.
 • *udpperf* – generates UDP traffic and measures throughput obtained at each second.
Performance Measurements

- **Hosts with different rates, no mobility**

<table>
<thead>
<tr>
<th>Bit rate of Bali</th>
<th>Bali</th>
<th>Marie</th>
<th>Milos</th>
<th>Kea</th>
<th>Eq. 7</th>
<th>observed P_c</th>
<th>Eq. 4</th>
<th>Figure No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3.09</td>
<td>3.36</td>
<td>-</td>
<td>-</td>
<td>3.26</td>
<td>4%</td>
<td>3.1%</td>
<td>6</td>
</tr>
<tr>
<td>5.5</td>
<td>2.38</td>
<td>2.42</td>
<td>-</td>
<td>-</td>
<td>2.44</td>
<td>4%</td>
<td>3.1%</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1.30</td>
<td>1.26</td>
<td>-</td>
<td>-</td>
<td>1.29</td>
<td>4%</td>
<td>3.1%</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>0.76</td>
<td>0.76</td>
<td>-</td>
<td>-</td>
<td>0.73</td>
<td>4%</td>
<td>3.1%</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>2.26</td>
<td>2.0</td>
<td>2.23</td>
<td>-</td>
<td>2.20</td>
<td>6%</td>
<td>6.2%</td>
<td>8</td>
</tr>
<tr>
<td>5.5</td>
<td>2.01</td>
<td>1.56</td>
<td>1.89</td>
<td>-</td>
<td>1.77</td>
<td>6%</td>
<td>6.2%</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1.17</td>
<td>0.90</td>
<td>1.16</td>
<td>-</td>
<td>1.06</td>
<td>6%</td>
<td>6.2%</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>0.74</td>
<td>0.58</td>
<td>0.69</td>
<td>-</td>
<td>0.63</td>
<td>6%</td>
<td>6.2%</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>1.71</td>
<td>1.41</td>
<td>1.81</td>
<td>1.41</td>
<td>1.64</td>
<td>10%</td>
<td>9.1%</td>
<td>10</td>
</tr>
<tr>
<td>5.5</td>
<td>1.66</td>
<td>1.16</td>
<td>1.59</td>
<td>1.19</td>
<td>1.38</td>
<td>10%</td>
<td>9.1%</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0.96</td>
<td>0.84</td>
<td>0.81</td>
<td>0.72</td>
<td>0.89</td>
<td>10%</td>
<td>9.1%</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>0.69</td>
<td>0.47</td>
<td>0.63</td>
<td>0.49</td>
<td>0.56</td>
<td>10%</td>
<td>9.1%</td>
<td>10</td>
</tr>
</tbody>
</table>

TABLE II

Measured throughputs in Mb/s for a varying number of hosts, UDP traffic
Performance Measurements

- *Hosts with different rates, no mobility*

<table>
<thead>
<tr>
<th>Bit rate of Bali</th>
<th>Bali</th>
<th>Marie</th>
<th>Milos</th>
<th>Kea</th>
<th>Eq. 10</th>
<th>observed P_e</th>
<th>Eq. 4</th>
<th>Figure No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>5.08</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.21</td>
<td>4%</td>
<td>3.1%</td>
<td>-</td>
</tr>
<tr>
<td>5.5</td>
<td>3.37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.12</td>
<td>4%</td>
<td>3.1%</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.65</td>
<td>4%</td>
<td>3.1%</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0.83</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.83</td>
<td>4%</td>
<td>3.1%</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>2.52</td>
<td>2.48</td>
<td>-</td>
<td>-</td>
<td>3.48</td>
<td>8%</td>
<td>6.2%</td>
<td>5</td>
</tr>
<tr>
<td>5.5</td>
<td>2.04</td>
<td>1.96</td>
<td>-</td>
<td>-</td>
<td>2.51</td>
<td>8%</td>
<td>6.2%</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1.12</td>
<td>1.11</td>
<td>-</td>
<td>-</td>
<td>1.27</td>
<td>8%</td>
<td>6.2%</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>0.67</td>
<td>0.63</td>
<td>-</td>
<td>-</td>
<td>0.70</td>
<td>8%</td>
<td>6.2%</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>1.65</td>
<td>1.54</td>
<td>1.52</td>
<td>-</td>
<td>2.24</td>
<td>8%</td>
<td>9.1%</td>
<td>7</td>
</tr>
<tr>
<td>5.5</td>
<td>1.36</td>
<td>1.39</td>
<td>1.47</td>
<td>-</td>
<td>1.77</td>
<td>8%</td>
<td>9.1%</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>0.83</td>
<td>0.89</td>
<td>0.95</td>
<td>-</td>
<td>1.02</td>
<td>8%</td>
<td>9.1%</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>0.57</td>
<td>0.52</td>
<td>0.64</td>
<td>-</td>
<td>0.62</td>
<td>8%</td>
<td>9.1%</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>1.15</td>
<td>0.92</td>
<td>1.21</td>
<td>1.02</td>
<td>1.63</td>
<td>9%</td>
<td>12.0%</td>
<td>9</td>
</tr>
<tr>
<td>5.5</td>
<td>1.16</td>
<td>0.83</td>
<td>1.11</td>
<td>0.83</td>
<td>1.35</td>
<td>9%</td>
<td>12.0%</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0.74</td>
<td>0.41</td>
<td>0.65</td>
<td>0.55</td>
<td>0.85</td>
<td>9%</td>
<td>12.0%</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>0.56</td>
<td>0.32</td>
<td>0.41</td>
<td>0.27</td>
<td>0.53</td>
<td>9%</td>
<td>12.0%</td>
<td>9</td>
</tr>
</tbody>
</table>

TABLE I

Measured throughputs in Mb/s for a varying number of host, TCP traffic
Performance Measurements

- *Hosts with different rates, real mobility*

![Graph showing measured throughput in Mb/s for two hosts (one mobile), UDP traffic.](image)
How to make fast hosts send fast and avoid being slowed down by slow hosts?