Securing Wireless Medical Implants

Shyamnath Gollakota
Haitham Hassanieh
Benjamin Ransford
Dina Katabi
Kevin Fu
Modern Implants Have Wireless

Cardiac Defibrillators

Neurostimulators

Cochlear Implants
Benefits of Wireless

- Easier communication with implant
- Remote monitoring
Benefits of Wireless

• Easier communication with implant
• Remote monitoring
 ➢ Reduces hospital visits by 40% and cost per visit by $1800

[Journal of the American College of Cardiology, 2011]

What about security?
Security Attacks

1) Passive attack: Eavesdrop on private data
 Patient diagnosis, vital signs

2) Active attack: Send unauthorized commands
 Turn off therapies, deliver electric shock

[Halperin’08] demonstrated attacks using software radios
How Do We Protect Against Such Attacks?

Cryptography?
Problems with Adding Cryptography on Implants

• In emergencies, patient may be taken to a foreign hospital where doctors don’t have the secret key

• Millions of patients already have implants with no crypto; would require surgery to replace
Ideally,
Ideally, secure implants **without modifying them**

Delegate security to an **external device**

- In emergencies, doctor turns external device off
- Helps people who already have implants
Solution Idea

Wireless Device
Shield Protects from Active Attacks
Shield Protects from Active Attacks

- Shield listens on medium
- Shield jams unauthorized commands

Implant protected from active attacks
But How to Protect from Passive Attacks?

Naïve Sol: Shield jams implant tx so attacker can’t decode

How can we prevent eavesdropper from getting data while delivering data to doctor?

Analog one-time pad
Classic Approach: One-Time Pad

Encryption

\[\text{Message} \oplus \text{Key} = \text{Encrypted Message} \]

Decryption

\[\text{Encrypted Message} \oplus \text{Key} = \text{Message} \]

Only a node that has the key can decrypt
Protect from Passive Attacks: Analog One-Time Pad

Implant’s signal

Random Sum

Jamming signal acts like the key in one-time pad
Putting it together

Traditional System
Putting it together

Our System

Doctor configures the shield with a secret key

↗ Shield acts as proxy

Shield encrypts the implant data and forwards it to doctor

Use encryption
Contributions

• First system that secures wireless implants without modifying them

• Design that simultaneously jams and decodes medical implant transmissions

• Implemented and evaluated using commercial cardiac defibrillators
 ➢ Effective at protecting the implants
Shield simultaneously:

- Jams the implant’s signal
- Decodes the implant’s signal

Need radio that transmits and receives simultaneously, i.e., a full-duplex radio
How to Design Full-Duplex for Medical Implants?

Mobicom’2010

tx_2 $d + \frac{\text{wavelength}}{2}$ $\text{d} + \frac{\text{wavelength}}{2}$ rx tx_1

$\approx 40 \text{ cm}$

Too large for portable devices
Full-Duplex Without Antenna Separation

\[h_{\text{cross}} S_{\text{antidote}} + \frac{h_{\text{self}}}{h_{\text{cross}}} S_{\text{jamming}} = 0 \]

- Shield can simultaneously jam and receive
- Design is small and portable
But, Full-Duplex Needs 60–80 dB Cancellation

- Reduce signal power by 100 million times
 - Requires highly linear components
 - Expensive

Can we build shield with significantly less cancellation?

30–40 dB is sufficient!
Shield Requirements

Decode Implant’s signal

- FSK signal
- Implant signal has a 10 dB SNR

Jam eavesdropper

- 50% bit error rate
Shield Requirements

Decode Implant’s signal
- FSK signal
- Implant signal has a 10 dB SNR

Jam eavesdropper
- 50% bit error rate
- Jamming power 20 dB higher than implant’s power
Shield Requirements

Decode Implant’s signal
- FSK signal
- Implant signal has a 10 dB SNR

Jam eavesdropper
- 50% bit error rate
- Jamming power 20 dB higher than implant’s power

Cancel 30 dB

Shield requires only 30 dB cancellation
Empirical Results
Evaluation

• Medtronic cardiac implants

• Medtronic programmer

• Implement attacker and shield on USRP2s

• Simulate human implantation: bacon & beef
Testbed

- 20-location test bed
- Fix locations of implant and shield
- Node at every other location acts as adversary
Passive Attacks

Eavesdrop on private data

• Decode implant’s transmissions
• Use optimal FSK decoder
Can Eavesdropper do Better Than Random Guess?
Can Eavesdropper do Better Than Random Guess?

CDF over attacker locations vs. Attacker Bit Error Rate

Random Guess
Can Eavesdropper do Better Than Random Guess?

Independent of location, eavesdropper can do no better than a random guess.

Random Guess
With Jamming
Can Shield Decode Implant’s Messages?

Packet Loss at Shield

CDF

0 0.005 0.01 0.015 0.02 0.025
Can Shield Decode Implant’s Messages?

Shield can reliably decode the implant’s messages, despite jamming.
Active Attacks

Send unauthorized commands

• Attacker sends “change therapy”

• Shield jams

• Read implant to check if therapy has changed
Two Types of Active Attacks

- Off-the-shelf implant programmers
 - Same power as our shield
- Customized hardware
 - 100 times the power of our shield
Can Shield Protect Against Unauthorized Programmers?
Can Shield Protect Against Unauthorized Programmers?

![Bar graph showing the fraction of successful attacks with and without a shield for different attacker locations.](image)
Can Shield Protect Against Unauthorized Programmers?

- Red: Any attack successful
- Blue: No attack successful
Can Shield Protect Against Unauthorized Programmers?

- Any attack successful
- No attack successful

Without the Shield

14 m
Can Shield Protect Against Unauthorized Programmers?

- Any attack successful
- No attack successful

With the Shield

Independent of the location, shield protects from unauthorized programmers
Can Shield Protect Against High-Power Attacks?

- Any attack successful
- No attack successful
Can Shield Protect Against High-Power Attacks?

- Any attack successful
- No attack successful

Without the Shield

27 m
Can Shield Protect Against High-Power Attacks?

- Any attack successful

- No attack successful

With the Shield

Intrinsic limitation of jamming

Shield forces the attacker to get closer → raises the bar
Can Shield Protect Against High-Power Attacks?

- Any attack successful
- No attack successful

With the Shield

Can we do better?

Can always detect high-power attacks
→ Raise alarm and inform doctor or patient
Conclusion

• First to secure medical implants without modifying them

• Other applications in RFIDs, small low-power sensors, legacy devices

• Convergence of wireless and medical devices open up new research problems

www.omdrl.org