
On Self Adaptive Routing in Dynamic Environments ∗

— An Evaluation and Design Using a Simple, Probabilistic Scheme

Haiyong Xie†, Lili Qiu‡, Yang Richard Yang†, and Yin Zhang§

†Computer Science Department, Yale University, New Haven, CT 06520
‡Microsoft Research, Redmond, WA 98052

§AT&T Labs – Research, Florham Park, NJ 07932

Abstract

Recently we have seen an emergent trend of self adaptive
routing in both Internet and wireless ad hoc networks. Al-
though there are previous methods for computing the traffic
equilibria of self adaptive routing (e.g., selfish routing), these
methods use computationally demanding algorithms and re-
quire that a precise analytical model of the network be given.
Also, it remains an open question how to design an adaptive
routing scheme which ensures convergence to traffic equi-
libria in practice. In this paper we propose a simple, effi-
cient, distributed probabilistic routing scheme for self adap-
tive routing in dynamic, realistic environments. Using both
analysis and extensive simulations, we show that our scheme
can converge to the desired traffic equilibrium (either user-
optimal or network-optimal) very quickly. We find that user-
optimal routing can achieve very close to optimal average
latency in dynamic environments, but such performance of-
ten comes at the cost of seriously overloading certain links.
To avoid link overloads, we improve adaptive routing by op-
timizing average user latency and link utilization simultane-
ously. Our evaluation shows that there is a trade-off between
optimizing dual objectives, but the degradation in average
latency is only marginal for typical link utilization require-
ments.

1 Introduction

Recently we have seen an emergent trend of adaptive rout-
ing in both Internet and wireless ad hoc networks. In Internet,
recent studies [30, 34] have shown that there is inherent ineffi-
ciency in IP routing from the user’s perspectives. In response
to this observation, we have seen a trend to allow end hosts
to adaptively choose routes themselves either by using source
routing (e.g., Nimrod [14]) or by using overlay routing (e.g.,
Detour [30] or RON [2]). Such end-to-end route selection is
self adaptive, in that it allows end users to select routes to
optimize their own performance without considering system-
wide criteria [27]. In wireless ad hoc networks, source rout-
ing, such as DSR [19], allows wireless users to selfishly select
low-latency routes (e.g., [18]), thus resulting in self adaptive
routing. This emergence of self adaptive routing poses chal-
lenging research questions regarding both design of routing
protocols and evaluation of traffic equilibrium behavior.

∗Haiyong Xie is supported by NSF grant ANI-0238038. Yang Richard
Yang is supported in part by NSF grants ANI-0207399 and ANI-0238038.

In terms of design of routing protocols, it remains an open
research question how to design an adaptive routing scheme
that ensures convergence to traffic equilibria in realistic set-
tings. Although there are several previous designs, some fun-
damental issues remain to be addressed. In particular, it is
unclear how adaptive routing schemes should probe the net-
work in order to effectively discover efficient routes. If a pro-
tocol uses an ineffective probing scheme, high-quality routes
may not be discovered. Furthermore, it is unclear how the
routing paths should be adjusted in a distributed way and still
converge to the optimal paths without causing oscillations.

In terms of evaluation of traffic equilibrium behavior, an
important yet challenging question is how to evaluate the per-
formance of self adaptive routing in large networks. While
there is previous work on this subject from both theoret-
ical perspectives (e.g., [23, 29]) and practical perspectives
(e.g., [27]), several issues remain to be addressed. First, how
to efficiently compute traffic equilibria in large networks is an
open problem. The traditional algorithms used to derive traf-
fic equilibria (e.g., the Frank Wolfe algorithm [15]) are com-
putationally expensive, and hard to scale to large networks.
Second, such algorithms require an analytical model of the
network, e.g., link latency functions, be known, which may
not be the case. For example, there are no simple analyti-
cal expressions for packet delay in wireless networks, where
delay is caused by queuing, MAC layer contention, and re-
transmissions. Moreover, such algorithms can derive equilib-
ria only in a static environment. In reality, networks can be
highly dynamic and routing works in a distributed fashion.
So it is important to capture the dynamic process.

In this paper, we propose a routing scheme to address the
above issues. Our scheme has the following requirements.
First, viewed as a mechanism for computing equilibrium, the
scheme should be simple and efficient, and thus can be used
to evaluate large scale networks. It should not require a pre-
cise network model, and thus can be applied in various set-
tings (i.e., both wired and wireless networks). It should also
be able to model adaptive routing in a dynamic environment,
and be able to capture the potential overhead of adaptive rout-
ing. Second, viewed as a protocol for computing network
routes, the scheme should be distributed and with low proto-
col overhead. The design should provide insight in designing
adaptive routing protocols with different objectives (e.g., user
optimal or network optimal). The protocol should address the
key issues of how to probe networks and how to adjust routing
paths to guarantee convergence.

Specifically, the routing scheme we propose and study in

this paper is a probabilistic routing scheme. On the data path,
each packet is forwarded to a neighbor picked according to
a probability distribution defined for each destination. Our
scheme keeps states only for destinations with active traffic,
and thus the state overhead is low. On the control path, a
protocol resembling distance-vector routing maintains these
probabilities. Upon receiving a routing update from a neigh-
bor, a router updates its routing probabilities.

Our probability update scheme is motivated by the two
time-scale stochastic approximation scheme proposed by
Borkar and Kumar in [10] and the Q-routing scheme pro-
posed by Littman and Boyan in [25]. However, these two
schemes use path-based per-packet feedback and update. As a
consequence, their protocols require the cooperation between
the routing layer and the transport layer. Furthermore, the
routing overhead of their protocols can be high. In compar-
ison, our scheme aggregates routing updates; thus the over-
head of our scheme is comparable to that of a load-adaptive
routing scheme such as QoS routing. In a low-load environ-
ment (e.g., one where the latency of a link is not sensitive to
the amount of traffic), our update algorithm is equivalent to
the distributed Bellman-Ford algorithm [5].

Our update scheme is also motivated by the distributed
gradient projection algorithms, e.g., see [7, 4, 17, 35]. How-
ever, these algorithms assume quasi-static environments,
namely, the effect of a routing update can be observed im-
mediately, while our scheme allows the effects of routing up-
dates to settle down gradually. Thus our scheme captures net-
work dynamics, and can be both a computing scheme and a
realistic routing scheme. Also, our routing scheme is proba-
bilistic and has lower complexity than the previous gradient
projection algorithms, which are deterministic.

We use our scheme to implement two types of adaptive
routing: user-optimal routing and network-optimal routing.
The user-optimal routing converges to the Wardrop equi-
libria [36] in the Cesaro sense, where at Wardrop equilib-
ria, users do not have incentives to unilaterally change their
routes. The network-optimal routing converges to the min-
imum latency. The former is achieved by having neighbors
exchange information about link latency, while the latter is
achieved by having neighbors exchange information about
marginal link latency.

We analyze the convergence of our scheme and evalu-
ate its dynamics through extensive simulations. Our simula-
tions show that our routing scheme responds to traffic stimuli
(whether in the form of impulse, or step function, or linear
function) and converges to new equilibria very quickly.

Utilizing our efficient routing scheme, we study how to
choose routes to optimize end-user performance and link uti-
lization simultaneously. This is an important problem in traf-
fic engineering for adaptive networks [27], because optimiz-
ing end-user performance alone sometimes causes link over-
load (which is undesirable from network operators’ point of
view), while optimizing network utilization alone may de-
grade end-user performance. To achieve good user perfor-
mance without overloading the network, we introduce a link
utilization threshold. We update the routing probabilities as
before when the utilization of a link is below the threshold;
on the other hand, when the utilization of a link is above the
threshold, we shift traffic to less loaded links. We evaluate the

trade-off between user latency and link utilization and show
that the degradation in end-user performance is only marginal
for typical link utilization requirements.

In summary, our contributions are as follows.

• First, we develop a routing scheme to achieve user-
optimal routing and network-optimal routing. This
scheme can be used both as a simple, efficient comput-
ing mechanism to compute traffic equilibrium in a dy-
namic network without a precise analytical model, and
as a routing scheme to determine network routes in a
distributed way.

• Second, we prove the convergence of our routing
scheme, and demonstrate its efficiency and responsive-
ness using extensive simulations.

• Third, we extend the routing scheme to optimize both
end-user performance and link utilization simultane-
ously. Our evaluation shows that the routing scheme
is able to achieve low link utilization while maintaining
good end-user performance.

The remainder of this paper is organized as follows. In
Section 2, we describe our routing scheme. In Section 3,
we analyze the convergence of our scheme for implementing
user-optimal routing and network-optimal routing. In Sec-
tion 4, we describe our evaluation methodology. We present
extensive evaluations on the performance and dynamics of the
routing scheme in Section 5. We examine how to optimize
end-user performance and link utilization simultaneously in
Section 6. We discuss related work in Section 7 and conclude
in Section 8.

2 Routing Scheme
The routing scheme we consider consists of a data-path

component and a control-path component. The data-path
component is common while the control-path component is
different for different routing objectives.

2.1 Data path
We first present the data path. Consider node i in the net-

work. Assume that node i has n(i) neighbors, represented by
the set N(i).

pj
ik

dest. k

neigh. j

Figure 1. Forwarding table of node i.

Similar to distance-vector routing, the routing scheme we
consider maintains states for active destinations. In other
words, the forwarding table of node i consists of one row for
each active destination. The active destinations may be all
overlay nodes in an overlay network or all active sinks in a
wireless ad hoc network. Below when we say destinations,

we mean active destinations. Figure 1 illustrates the forward-
ing table of node i.

For destination k, node i maintains a routing probability
pik

j for each neighbor j. Note that ∑ j pik
j = 1 and pik

j ≥ 0.
Whenever node i receives a packet destined to node k, it for-
wards the packet to neighbor j with probability pik

j .
Note that this probabilistic routing scheme generalizes the

normal Internet routing. More specifically, if only one neigh-
bor has a positive routing probability, the probability must be
1, and thus we have the traditional single-path routing. We
can also implement the scheme of OSPF routing with equal-
weight splitting by assigning equal probabilities to the neigh-
bor(s) on the shortest path(s) to a given destination.

2.2 Control path
The forwarding table of a node is updated by the control

path. We consider two implementations of the control path:
the first one achieves user-optimal routing, while the second
one achieves network-optimal routing.

2.2.1 User-optimal routing

User-optimal routing is also called Wardrop routing [36, 1, 3],
which is defined in the context of transportation networks as
follows [36]: “The journey times on all the routes actually
used are equal and less than those which would be experi-
enced by a single vehicle on any unused route.” Wardrop
routing is especially interesting since it achieves traffic equi-
libria when each user individually optimizes the performance
of its traffic. In other words, at a Wardrop equilibrium, users
do not have incentives to unilaterally change their routes.

In the context of computer networks, we define user-
optimal routing in a similar way. For a given demand, i.e.,
a source-destination pair with a given amount of traffic, the
routes with positive traffic should have equal latency, no
larger than those of the routes not used for this particular
source-destination pair.

Note that although user-optimal routing is a multi-path
routing scheme, in this situation the paths used have the same
latency, so the chance of packet re-ordering is low, and there-
fore the potential performance penalty at the transport layer,
e.g., TCP, is small. In addition, several TCP enhancements
have been proposed to cope with packet re-ordering under
multi-path routing(e.g., [8] and [38]).

To achieve user-optimal routing, we implement the control
path asynchronously, where each node sends its updates to its
neighbors after some delay. Note that our protocol is asyn-
chronous. Below we describe the implementation at a given
node i.

First, for destination k, node i maintains the following data
items for each neighbor j:

• The latency li
j of the link from node i to its neighbor

j. This latency consists of propagation delay and the
average queuing delay during the interval between the
previous update and the current time. It is also possible
that the receiver j maintains l i

j. We will further discuss
how to measure li

j at the end of this subsection.
• The estimated delay, Lik

j , from i to destination k through
node j. Node i also receives the most recently reported

latency L jk from neighbor j. Note that this report is gen-
erated by node j at sometime in the past. Also note that
destination k always reports zero delay to itself.

• The internal probability qik
j from node i to destination k

through neighbor j. This probability is used mainly for
internal update. As we will show later in Section 3.3,
the set of internal probabilities {qik

j } converges (in the
Cesaro sense) with probability one to the set of Cesaro-
Wardrop equilibria, which is an extension to the notion
of a Wardrop equilibrium as introduced in [10].

• The routing probability pik
j from node i to destination

k through neighbor j. Note that the routing probabil-
ity will change after each update and remain the same
until next update. As we will show later, the set of rout-
ing probabilities {pik

j } are ε-approximate of {qik
j } and

thus will converge to the set of ε-approximate Cesaro-
Wardrop equilibria with probability one.

After receiving the n-th update L jk from neighbor j at time
σik

j (n), node i first updates its delay estimation of Lik
j , i.e., the

estimated delay to destination k through node j. This update
has two steps. Node i first computes the value of a new sam-
ple:

∆ik
j = li

j +L jk. (1)

Then it updates the new delay estimation as:

Lik
j = (1−α(n))Lik

j +α(n)∆ik
j , (2)

where α(n) ∈ [0,1] is the delay learning factor. Note that we
take ∆ik

j as current delay sample with noise. Therefore, we
use (2) to adapt delay estimation and make it robust in the
presence of noise. When α(n) is larger, delay estimation is
more sensitive to noise; however, α(n) cannot be too small.
Otherwise, delay estimation is not responsive enough to net-
work dynamics.

Node i then computes its overall delay estimation Lik to
destination k as:

Lik = ∑
j′∈N(i)

pik
j′L

jk
j′ , (3)

where N(i) represents the set of node i’s neighbors. Node i
reports Lik to its neighbors after some delay. This delay is
a random value between T/2 and T to avoid routing update
synchronization, where T is a constant.

Node i then updates its internal routing probabilities as fol-
lows. Suppose that this is the n′-th time node i updates its
routing probabilities. For all neighbors j, node i computes:

qik
j = qik

j +β(n′)[qik
j (Lik −Lik

j)+ξik
j], (4)

where β(n′) > 0 is the routing learning factor for the n′-th
update, and ξik

j are i.i.d. random routing vectors distributed
uniformly on the unit ball of dimension N(i). The objective
of adding the i.i.d. uniform random routing vectors is to add
disturbance to avoid non-Wardrop solutions. Note that we use
β(n′) and (4) to smooth out the noise in estimations.

After computing the above routing probabilities, node i
projects the routing vector consisting of the routing probabil-
ities to the subspace of [0,1]N(i), where the sum of the routing

probabilities is 1. The reason for the projection is to ensure
that the vector is a valid probability vector. That is, node i
computes the projected value of the new routing probability
by solving the following optimization problem:

minimize ∑
j∈N(i)

(x j −qik
j)2 (5)

subject to ∑
j∈N(i)

x j = 1 (6)

over 0 ≤ x j ≤ 1 for all j. (7)

The computed values of x j then become the new internal rout-
ing vector.

To ensure that the network probes all possible neighbors,
node i computes routing probabilities p from the just updated
internal routing probabilities q by adding uniform routing
probabilities to them:

pik
j = (1− ε)qik

j +
ε

N(i)
, (8)

where ε is a small constant number.
Finally, a few comments about measuring l i

j. The preced-
ing description specifies that the transmitter (i.e., node i) mea-
sures li

j. To achieve this, node i first measures the (fixed)
propagation and transmission delay from node i to node j.
Then during the protocol run, node i keeps track of its trans-
mission queue to determine the queueing delay. An alterna-
tive is that the receiver j measures l i

j. Thus instead of sending
L jk, node j sends ∆ik

j to node i. An interesting advantage of
this approach is that it does not need clock synchronization
among the nodes. Specifically, in order to measure l i

j, node i
time-stamps a packet (with its local clock), and node j com-
putes the link delay of the packet by computing the difference
between the time it receives the packet (in its local clock) and
that of the time stamp of the packet (when node i receives the
packet in its local clock). Thus the estimation of l i

j may have
a constant offset due to the difference between the clocks of
nodes i and j, assuming constant clock drift. However, it can
be checked that the values of ∆ik

j , Lik and Lik
j have an off-

set which is just the clock difference between node i and the
destination, which is independent of node j. Thus due to the
structure of the routing probability update (i.e., the update
of (4) depends only on Lik −Lik

j), the offset is canceled and
there is no need for clock synchronization. The overhead of
this approach is that it needs to time-stamp packets. In the re-
maining of the paper we use the first approach for measuring
li

j. It is easily extended to use the second approach. Figure 2
summarizes the protocol at node i for destination k.

2.2.2 Network-optimal routing

Our second implementation is network-optimal routing,
which minimizes total latency over all traffic. In [3], Beck-
mann, McGuire, and Winsten showed that the total latency is
minimized if and only if all traffic travels along paths with
minimum marginal cost. In network settings, marginal cost
is equivalent to marginal link latency, i.e., mci

j = li
j + f i

js
i
j,

where si
j is the rate of change in the latency from node i to

. Assume pik
j is routing probability to neighbor j.

repeat after some random delay in a range
send Lik to all neighbors

repeat after receiving an update L jk from neighbor j
compute Lik

j for neighbor j using (2)
compute Lik = ∑ j′∈N(i) pik

j Lik
j′ using (3)

update qik
j′ and pik

j′ for all neighbors j′

update q according to (4)
do projection on q as in (5)
compute p as in (8)

Figure 2. Protocol to implement user-optimal
routing.

node j at traffic amount f i
j. Compared with user-optimal rout-

ing where delays along different paths are minimized, we re-
place li

j with mci
j to achieve network-optimal routing. Similar

to li
j, mci

j is estimated without knowing the analytical expres-
sion.

3 Convergence Analysis
In this section we analyze the convergence of our routing

scheme.

3.1 Intuition

We first study Figure 3 to gain intuition. The figure shows
the phase diagram of a node with two links leading to a given
destination. The x-axis is the routing probability of link 2
while the y-axis is the routing probability of link 1. Note that
the only valid probability vector will be p1 ≥ 0, p2 ≥ 0, and
p1 + p2 = 1.

1(d) (e)
1

1 2

(c)

p

p

(a)

(b)

Figure 3. Illustration of the update on routing
probabilities.

We identify five cases. In the first three cases, both links
have traffic. In case (a), link 1 has higher latency. Thus the
probability of link 1 is reduced while that of link 2 is in-
creased. The dashed line points to the updated routing prob-
abilities before projection. Then projection along the dotted
line brings the routing probabilities back to a valid routing
vector satisfying p1 ≥ 0, p2 ≥ 0, and p1 + p2 = 1. In case (b),

link 1 has lower latency. Thus the probabilities are adjusted
and then projected back to the space. In case (c), link 1 and 2
have the same latency and therefore their routing probabilities
are not changed. Note that this is a stable state, i.e., the state
will no longer change. In the next two cases, one link has no
traffic. Without loss of generality, we consider the case that
link 1 has all of the traffic while link 2 has no traffic. If the
latency of link 1 is smaller than that of link 2 (case (d)), then
the algorithm will not change the state of the network. On the
other hand, if the latency of link 1 is higher than that of link
2 (case (e)), then the probability of link 2 is increased and the
network is on the correct trajectory to the final state.

14p = [0 0 0 1]
T

24p = [0 0 1 0]
T

34p = [0 0 0 1]
T

l 4
1

= 3

1

2
3

4

l = 12
1

l = 14
2

l = 14
3

l = 33
2

Figure 4. An example of the need of multi-hop
update.

The above discussion applies to only a single node. A node
may stay at a local equilibrium and wait for its downstream
nodes to converge. Figure 4 shows an example. In this figure,
traffic originates from node 1 to node 4. Routing probabil-
ities, pi4 = [pi4

j] j=1,2,3,4, i = 1,2,3,4, are labeled along with
nodes. Node 1 is at (local) equilibrium (namely case (d) if we
think the link from node 1 to node 4 as link 1 in the above dis-
cussion). However, node 2 is not at equilibrium (namely case
(e) if we think the link from node 2 to node 3 as link 1 in the
above discussion). Thus the update of node 2 will eventually
cause node 1 to update. Our small random probing will allow
node 2 to measure the latency from node 2 to node 4.

3.2 Assumptions

We make the following assumptions in our convergence
analysis. More technical assumptions on the stochastic pro-
cess, such as the packet arrival process and network con-
nectivity, can be found in the complete version of this pa-
per [37]. Note that our assumptions are similar to those by
Borkar and Kumar in [10], which are standard in the con-
vergence analysis of two time-scale stochastic iterative algo-
rithms [9, 11, 33]. Our delay assumption is similar to that
of [35] on asynchronous distributed gradient algorithms.

A1 We assume that the latency of the link from node i to
node j is represented by the function l i

j(x), where x is
the load of this link. We assume that this function is
continuous, non-decreasing, and bounded. We also as-
sume that the latency functions are chosen such that both
the user-optimal and network-optimal settings satisfy the
monotone condition to guarantee that the network has a
unique Wardrop or optimal equilibrium. Note that al-
though we make assumptions about the properties of the

latency functions, our protocol does not need to know
the analytical expressions.

A2 We assume that the Feller property holds, i.e., the up-
dates are frequent enough compared with the change
rate in the underlying network states. In our protocol,
the interval between two updates sent by one node to
each of its neighbors is randomly distributed in [T/2,T],
where T is a constant. Also, we assume that the number
of packets sent in each interval is finite with a constant
bound.

A3 We assume that {α(n)} used in delay estimation satisfy
the following conditions:

∀ n : α(n) ≥ α(n+1) > 0,

∑
n

α(n) = ∞,∑
n

α(n)2 < ∞,

and
∑
n

((α(n)−α(n+1))/α(n))r < ∞

for some r ≥ 1.
A4 We assume that {β(n)} used in routing probability up-

date satisfy the following conditions:

∀ n : β(n) ≥ β(n+1) > 0,

∑
n

β(n) = ∞,∑
n

β(n)2 < ∞,

and
∑
n

(β(n)/α(n))s < ∞

for some s ≥ 1.
Note that the above assumptions are common for most pre-

vious analyses. In particular, the last two assumptions (A3
and A4) are essential to guarantee convergence for stochastic
iterative algorithms (see, e.g., [6]). Intuitively, learning fac-
tors {α(n)} and {β(n)} represent the step sizes of updating
delay estimation and routing probability, respectively. The
sum of step sizes (∑n α(n) or ∑n β(n)) should be unbounded
in order to reach equilibrium. On the other hand, the range
of ∑n α2(n) and ∑n β2(n) guarantees that the variance of de-
lay estimation and routing probability is bounded. There-
fore, diminishing step sizes satisfying the above assumptions
guarantees that the stochastic iterative algorithms converge
to the solution almost surely. Furthermore, the range of
∑n(β(n)/α(n))s guarantees that delay estimation has larger
step sizes. In other words, the delay estimation should be rel-
atively stabilized before the next routing probability update
occurs. Our algorithm uses varying learning factors. It is
possible to use constant learning factors as well. For stochas-
tic approximation algorithms with constant learning factors,
we refer interested readers to [33].

3.3 Convergence analysis

Consider valid routing probability vectors at all nodes. Let
H denote the subset: {y : yik

j > 0 ⇒ Lik
j = ∑ j′∈N(i) yik

j′L
ik
j′}. Let

Hs denote the set {y ∈ H : yik
j > 0 ⇒ Lik

j = min j′∈N(i) Lik
j′}.

Note that we can use L to denote either the true latency or
the maintained state. When L is the true latency, Hs is the set

of Wardrop equilibria. When L is the maintained state, which
is (properly normalized) time average of the true latency, Hs
becomes the set of so called Cesaro-Wardrop equilibria [10].
Under a Cesaro-Wardrop equilibrium, a link is assigned a
positive flow only if the (properly normalized) time-averaged
delay along the link is minimal.

Below we use L to denote the maintained state and prove
the convergence of the internal routing probabilities {qik

j } to
Hs, the set of Cesaro-Wardrop equilibria. More specifically,
we have the following convergence result:

Theorem 1 If the assumptions are satisfied, the protocol in
Figure 2 converges to the set H. Furthermore, the internal
routing probabilities q converge in Hs almost surely.

Due to space limitation, a complete proof of the above the-
orem is omitted here and can be found in a complete version
of this paper [37]. The proof is modeled after [10] but adapted
to our link-based aggregated update scheme. To give the read-
ers some intuition about the proof, below we present the ma-
jor steps of the proof. The readers can skip to the next section
without loss of continuity.

In order to prove the above theorem, we need to show
that (1) routing probability converges; (2) delay estimation
converges under stationary routing probability; and (3) when
routing probability and delay estimation converge, the inter-
nal routing probabilities converge in Hs almost surely. Thus,
our proof consists of three steps as follows.

In the first step of the proof, we show that the routing prob-
abilities converge after the algorithm runs for a sufficiently
long time. The major challenge in this step is that we need to
find a converging sequence to bound the difference of routing
probabilities. By combining and rewriting delay estimation
and routing probability update equations, we derive a func-
tion of the two learning factors to bound the difference of
routing probabilities at different times in a given small time
interval. We then apply Borel-Cantelli Lemma and assump-
tions A1-A4 to show the convergence. In particular, the as-
sumption that the range of ∑n(β(n)/α(n))s is bounded is cru-
cial in order to apply Borel-Cantelli Lemma.

In the second step of the proof, we prove the convergence
of the expected delay with respect to stationary routing prob-
abilities (which is a result of the first step). The intuition be-
hind the proof is that routing probability update has smaller
step sizes in order for delay estimation to stabilize before the
next routing probability update occurs. Again, the major chal-
lenge here is to find a converging bound for the expected de-
lay. We consider delay estimation in a give small time in-
terval. By rewriting the delay estimation equation (2), we
derive a closed form expression for the difference of delays,
which consists of terms of martingales and bounded delays.
We then apply the convergence result in the first step, martin-
gale convergence theorem and Gronwall’s Lemma to derive
the convergence of delay estimation.

In the last step of the proof, we derive the convergence of
internal routing probabilities in Hs based on the results of the
previous two steps. Recall that we add the i.i.d. uniform ran-
dom routing vectors in (4) and (8) to introduce disturbance to
escape from non-Wardrop solutions H \Hs. Specifically, we
show that for any given demand, delays are equalized along
paths with positive traffic. The major challenges in this step

are to show that internal routing probabilities converge and
that the expected delays converge to equalized delays along
different paths with positive traffic. To simplify the analysis
and make the problem more tractable, we adopt the standard
O.D.E. approach to projected stochastic approximation algo-
rithms and consider the continuous version of our discretized
routing update scheme. We then prove that internal routing
probabilities converge by taking the discrete routing update
scheme (4) as an approximation of its continuous version in
the O.D.E. approach. Similarly, we show that for any given
demand, delays with respect to the converged positive rout-
ing probabilities converge to the same value. Afterwards, we
show that non-Wardrop solutions in H \Hs are unstable and
that the i.i.d. uniform random routing vectors allow us to
avoid them.

As for the network-optimal routing scheme, a similar
proof can be constructed.

4 Evaluation Methodology

We implement the above routing schemes in ns-2 [26] and
evaluate their performance and dynamics through extensive
simulations. Below we describe the network topologies, traf-
fic demands, and performance metrics used in our evaluation.

Network Topologies: Rocketfuel applies effective tech-
niques to obtain fairly complete ISP maps [31]. We use three
POP-level topologies published by the authors: ATT, Sprint,
and Tiscali. Link capacities of these topologies are derived
by scaling up the OSPF weights of the links by a constant
factor. To focus on the core of the network, we exclude all of
the leaf nodes (i.e., nodes with only one neighbor). Table 1
summarizes the three topologies.

ISP #Nodes #Edges
ATT 30 126

Sprint 19 100
Tiscali 32 140

Table 1. ISP topologies as measured by Rock-
etfuel.

Traffic Demands: We consider different ways of generat-
ing synthetic traffic demands for our evaluation. One possible
approach is based on the gravity model [39], which has been
shown to provide a reasonable approximation to real traffic
demands.

However, we find that when using the gravity model, the
network becomes stabilized too quickly to demonstrate evo-
lution dynamics (i.e., how convergence is reached). In addi-
tion, under the gravity model, we find it difficult to generate
traffic demands that stress the entire network to a sufficient
level — in most cases there are only a handful of congested
links while most links are under-utilized.

Therefore, in order to better demonstrate the evolution dy-
namics of convergence, we use another way of generating
synthetic traffic demands. We randomly pick two nodes as
the source and destination and assign a Pareto traffic flow to
them. The traffic rate ri j of the flow from node i to j is 20%
of the minimum link bandwidth along the shortest hop-count
path from node i to j. We continue doing this until all nodes
are assigned with an outgoing traffic flow. In our evaluation,

the average link utilization ranges from 10% to 20% under
the three network topologies we study.

Traffic Stimuli: To evaluate how a network converges,
we introduce a traffic stimulus as follows. We first feed a
given demand matrix to a network to let it converge. Then
we introduce a traffic stimulus to the network. The maximum
traffic rate of flow from node i to j during the traffic stimulus,
Ri j, is three times the original rate ri j. When the traffic rates
achieve their maximum values, most low-capacity links are
saturated and the average link utilization ranges from 20% to
50% with the network topologies in our evaluation. We apply
the following three stimuli commonly used in control theory:

• Traffic spike: The traffic rate of each flow originating
from node i to j increases suddenly to the highest rate Ri j
and lasts for only a short period of time; then it decreases
to the original level ri j. This represents a traffic burst and
tests how the system adapts to the disturbance.

• Step function: The traffic rate of each flow originating
from node i to j increases to Ri j and remains at that level
afterwards. This represents the transition of traffic levels
in the network and tests how the system responds and
evolves accordingly.

• Linear function: The traffic rate of each flow originating
from node i to j increases linearly to the maximum rate
Ri j over a relatively long period of time, and remains
at that maximum level afterwards. This represents the
gradual transitions of traffic levels and tests how the sys-
tem keeps up with the gradually changing traffic.

Performance Metrics: We consider the following three
performance metrics: average latency, average convergence
time, and link utilization.

• The average latency reflects the end-to-end user per-
formance, which is the major concern for both user-
optimal and network-optimal routing schemes. The
average latency is computed for all source-destination
pairs, weighted by the amount of traffic flowing from
the source to destination.

• The average convergence time reflects the speed at
which the network stabilizes. We consider a net-
work as converged at time t+1 when ∑i ‖xi,t+1 − xi,t‖ ≤
5%∑i ‖xi,t‖ where xi,t is the routing matrix at node i dur-
ing time t, and ‖A‖ is `2 norm of matrix A. When the net-
work converges, the latency variance is small, and this
can be used as a criterion for convergence.

• The link utilization reflects the objectives of network op-
erators, who want to avoid link overloads in their net-
works.

5 Performance Evaluation: End-to-End
Latency and Dynamics

5.1 Convergence under self-similar traffic demands

We first study the performance of adaptive routing
schemes under realistic self-similar traffic demands and with
links using drop-tail queues. Figure 5 shows the aver-
age latency for the three topologies under user-optimal and

network-optimal routing. We make the following observa-
tions.

First, both user-optimal and network-optimal routing con-
verge quickly to stable states, with comparable fluctuation
during the learning stage.

Second, the performance of user-optimal routing is sim-
ilar to that of network-optimal routing. This result further
supports the observations in [27] that the performance degra-
dation of user-optimal routing is not significant.

Third, network topologies play an important role in the
speed of convergence. As shown in the figure, both ATT and
Sprint topologies hurtle through the learning stage and con-
verge almost immediately after the simulation starts. In con-
trast, the Tiscali network experiences a short period of learn-
ing stage with high latency before converging to a stable stage
with fluctuating average latency.

Fourth, at stable states, the average latency of both routing
schemes has small fluctuation (within about 10%). The fluc-
tuation after convergence in both routing schemes are compa-
rable.

Because all three topologies exhibit similar convergence
properties, and the Tiscali topology has a distinct learning
stage and stabilized stage, in the following subsections we
focus on evaluation using the Tiscali topology.

5.2 Responsiveness to traffic stimuli

We now evaluate the responsiveness and stability of the
routing schemes under different traffic stimuli in the forms of
a spike, a step function, and a linear function.

We apply each of the traffic stimuli to the network at
13 second after the network has converged. The highest traf-
fic rate during a stimulus is 3 times the original traffic rate.
Both spike and step stimuli increase the traffic level to the
highest rate at time 13 second. The spike stimulus maintains
the highest traffic rate for 2 seconds and then decreases to the
original level, while the step stimulus keeps the highest rate
until the simulation ends. Linear stimulus increases the rate
gradually to the highest rate from time 13 second to 20 sec-
ond (with an increase interval of 0.2 ms) and then maintains
that rate to the end of the simulation.

Figure 6 shows how the two routing schemes respond to
the stimuli in the Tiscali network topology. As we can see,
both user-optimal and network-optimal routing schemes react
to the stimuli and stabilize very quickly. For the spike stim-
ulus, the network returns to the original stable state almost
immediately after the spike disappears. For the step stimu-
lus, the network settles to the new steady state in a very short
time. For the linear stimulus, the network follows the increas-
ing traffic closely as the traffic rate increases gradually from
13 second to 20 second; after the linear stimulus stops in-
creasing at 20 second, the network converges quickly.

5.3 Adaptiveness to link failures

We have shown that our algorithms perform very well un-
der realistic traffic demands and that the algorithms are re-
sponsive to various traffic stimuli in the preceding subsec-
tions. Next, we evaluate how our algorithms perform when
the network topology is changing due to link failures.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(a) ATT

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(b) Sprint

 40
 50
 60
 70
 80
 90

 100
 110
 120

 0 5 10 15 20 25

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(c) Tiscali

Figure 5. Dynamics of user-optimal and network-optimal Routing.

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 5 10 15 20 25

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(a) Spike stimulus

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(b) Step stimulus

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(c) Linear stimulus

Figure 6. Responsiveness of routing schemes.

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 la
te

nc
y

(m
s)

Time (s)

link failures at time 25s

with link failures
without link failures

Figure 7. Adaptiveness to link failures.

When evaluating the adaptiveness of our algorithms to link
failures, we run our algorithms with self-similar traffic de-
mands and different network topologies until they converge;
we then randomly disconnect 5% of the links from the net-
work (the network is still connected).

Figure 7 shows the responsiveness of our user-optimal
routing algorithm to link failures with the Tiscali network
topology. The link failures occur at 25 second. We ob-
serve that the average latency increases immediately after the
link failures. After a short period of time, the routing algo-
rithm starts to converge. The converged average latency after
the link failures is about 25% higher than that without link
failures. The result shows that the algorithm adapts well to
dynamic environments with link failures. The results using
other routing algorithms and topologies are consistent.

5.4 Advantage over shortest hop-count routing
In this subsection, we evaluate the benefits of user-optimal

routing over shortest hop-count routing (i.e., rtProtoDV in ns-

2) under both self-similar traffic and traffic stimuli. Figure 8
summarizes the results. As we can see, user-optimal rout-
ing out-performs shortest hop-count routing by 20% - 30%
in most cases. This is consistent with our expectation, since
shortest hop-count routing minimizes hop-count instead of
user latency.

5.5 Improvement of convergence and responsive-
ness

In this subsection, we consider the following issue: how to
make the network converge faster and be more responsive.

Recall that we implement the routing update in two steps.
First, a node updates its delay estimations to all of the des-
tinations using exponential averaging. The parameter used
in exponential averaging is called the delay learning factor.
Next, the node updates its routing probability using the re-
sults in the previous step; the parameter used in this step is
called the routing learning factor. Note that in our analysis we
use decreasing sequences while in our evaluation we use fixed
values. We evaluate the impact of various control parameters,
namely the delay learning factor, the routing learning factor,
and the period of updating routing probability vectors.

Delay Learning Factor: We first evaluate the effect of
the delay learning factor, which is used in updating delay es-
timations. Recall that we adopt delay learning factor α(n)
and Equation (2) to smooth out noise introduced in estimat-
ing link latency and marginal link latency.

Figure 9(a) summarizes the results. We find that a large de-
lay learning factor leads to faster convergence but high fluc-
tuation. In comparison, a small learning factor makes the
algorithm not responsive to network dynamics, resulting in
slow convergence. It is very important to choose appropriate

 20
 40
 60
 80

 100
 120
 140
 160

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
shortest hop-count

(a) Pareto traffic

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
shortest hop-count

(b) Spike stimulus

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
shortest hop-count

(c) Step stimulus

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
shortest hop-count

(d) Linear stimulus

Figure 8. Comparison between user-optimal and shortest path routing.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

av
er

ag
e

la
te

n
cy

 (
m

s)

time (s)

delay learning factor
0.1
0.2
0.4
0.6

(a) Delay learning factor

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

av
er

ag
e

la
te

n
cy

 (
m

s)

time (s)

routing learning factor
0.1
0.2
0.4
0.6

(b) Routing learning factor

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25

av
er

ag
e

la
te

n
cy

 (
m

s)

time (s)

update period
0.2 ms
0.4 ms
0.6 ms
0.8 ms

(c) Update period

Figure 9. Impacts of different parameters.

values for delay learning factor in order for the routing algo-
rithm to be both robust to noise and responsive to network
dynamics. Our results suggest that a preferable learning fac-
tor would range between 0.4 and 0.6.

Routing Learning Factor: Figure 9(b) shows how the
routing learning factor affects the convergence speed. The
network starts to converge more quickly when using eager
learning (with a higher learning factor) than lazy learning.
However, we also observe that a higher factor leads to more
fluctuation, e.g., the curve corresponding to a factor of 0.6 has
more fluctuation compared to that of 0.2 and 0.4. A preferable
learning factor would range between 0.2 and 0.4. Note that
similar to delay learning factor, a large routing learning factor
makes the algorithm sensitive to noise, and leads to undesired
fluctuations after convergence; and a small factor makes the
algorithm less responsive and slows down convergence rate,
as shown in the figure.

Period of Routing Update: The last parameter we eval-
uate is the period of updating the routing probability vectors.
As Figure 9(c) shows, an eager update scheme (with shorter
update period) leads to faster convergence and less fluctua-
tions compared with lazy update. We have the same obser-
vation when evaluating the impact of larger update periods;
therefore, only the results of shorter update periods are pre-
sented here in the interest of space. We observe that eager
update scheme is preferable for fast convergence and high
responsiveness. We also note that a shorter update period
introduces more control traffic between neighboring routers.
However, the overhead is low and localized, and the routing
schemes with a shorter update period still scale very well.

In summary, the three parameters we evaluate have im-
portant impacts on convergence and fluctuation. A relatively

short update period and medium routing learning factor can
be combined to provide enough sensitivity to the dynamics of
the network. Empirical evaluation can help serve as basis for
setting values for these parameters.

5.6 Effects of transition process and probing prob-
abilities on path lengths

The two routing schemes studied in this paper are both
probabilistic routing. After our schemes converge, if there are
no probing probabilities, no packet will visit the same node
twice. More specifically, after convergence and without the
small probing probabilities, a node will not assign a positive
routing probability to a neighbor with a higher latency. As-
suming no link has zero latency (which is true in almost all
scenarios), we have that no packet can visit the same node
twice. However, during the transition process and with the
small probing probabilities, it is possible for a packet to take
detours; therefore a packet may visit the same node multiple
times.1 Note that even if a packet visits the same node multi-
ple times, it will not loop forever because of the probabilistic
nature of the scheme.

In this subsection, we quantify the effects of the transition
process and the probing probabilities on path lengths as fol-

1The routing schemes proposed in [4, 17] guarantee loop-freeness, i.e.,
no node is visited twice by a packet. However, they require synchronous up-
date, which may slow down convergence, especially in large networks. It is
also possible to avoid any loops during the convergence process by imposing
an acyclic structure on the network nodes, e.g., the shortest hop-count path
tree to a given destination. However such restrictions may reduce the search
space and thus cause the network to converge to less efficient equilibria, e.g.,
only short paths are searched. Overall, trade-offs among convergence speed,
efficiency of converged equilibrium, and loops during transition process need
to be made.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

number of hops

before convergence
after convergence

(a) ATT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

number of hops

before convergence
after convergence

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

number of hops

before convergence
after convergence

(b) Sprint

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

number of hops

before convergence
after convergence

(c) Tiscali

Figure 10. Cumulative probability of packets being delivered in a number of hops.

lows. Consider a given destination d. We take all of the rout-
ing probability vectors at all of the nodes at time t for des-
tination d. These vectors altogether represent a snapshot of
the state of the network at that time. We construct a Markov
transition matrix Pd as follows. The i-th row of the matrix Pd
is the routing probability vector for destination d at node i.
Note that the d-th row of Pd will have a value 1 at the d-th
entry and 0 otherwise, indicating that node d is an absorbing
state. Consider a source node s. Let πs be the row probabil-
ity vector with 1 for source node s and 0 for all other nodes.
Then according to the property of Markov matrices [21], the
probability that a packet starting from source node s arrives
at the destination node d in h hops is the d-th entry of the row
vector πsPh

d .
Figure 10 shows the results of the cumulative distribution

of the lengths of routing paths. In our evaluations, we have a
constant probing probability 0.08 at all nodes. We randomly
choose a source node s and a destination node d. We take
snapshots of the complete routing probabilities Pd at 5 sec-
ond after simulation starts (the network has not converged
yet) and at a random time after the network converges. We
then compute the cumulative distribution of the number of
hops that a packet sent from s to d traverses in the network.
As we can see, the number of hops a packet traverses from the
source to the destination is significantly lower after the net-
work has converged. For example, before the network con-
verges, the probability of delivering packets within 10 hops is
88%, 60%, and 70% in ATT, Sprint, and Tiscali topologies,
respectively; in comparison, the corresponding probabilities
increase to 100%, 91%, and 86% after the network converges.

6 Optimization for both User Latency and
Link Utilization

So far, we have considered routing for optimizing latency.
As shown in [27], optimizing the average user latency alone
sometimes causes link overload, which is undesirable from
the network operators’ point of view [16]. Ideally, we would
like to achieve low user latency while avoiding link overload.
In this section, we study how to optimize routing for both
metrics simultaneously.

Our method is to introduce a link utilization threshold.
Whenever a link’s utilization exceeds the threshold, the rout-
ing scheme will shift some traffic from the highly utilized link
to other under-utilized links. This is done by updating the
routing probability vector for the corresponding destination.
When all of the outgoing links experience higher utilization

than the threshold (i.e., there are no under-utilized links), the
routing scheme distributes the traffic evenly among all outgo-
ing links.

In our experiments, we use several utilization thresholds:
20%, 50%, 80%, and 100%. We apply spike, step, and linear
stimuli to evaluate the responsiveness and stability of differ-
ent routing schemes. Figure 11 shows the average latency of
user-optimal routing scheme with the Tiscali network topol-
ogy.

We make the following observations. First, both routing
schemes are very responsive to the traffic stimuli: they closely
track the changes in traffic and become stabilized as soon as
the traffic stops changing. Second, comparing the results with
those in Figure 6, which are obtained solely by optimizing
user latency, we observe that by trying to minimize the maxi-
mum link utilization, the network experiences higher latency;
this is especially clear when the utilization threshold is below
20%. In comparison, the latency increase is only marginal
when we increase link utilization threshold to 50% or higher.
This is because when the threshold is high, only a few links
are above the threshold; as a result, only a small portion of
traffic needs to be re-routed through less loaded paths.

Next we compare the user- and network-optimal routings.
Figure 12 summarizes the results. As it shows, user-optimal
routing and network-optimal routing exhibit similar latency
and convergence speed, both adapting quickly to changes in
traffic.

7 Related Work
User-optimal routing achieves Wardrop equilibrium [36].

In [3, 36], the authors showed that uncooperative traffic can
be modeled as network flows, and the flow paths between any
source and destination pair have the same latency. Based on
the observation that such an equilibrium flow is an optimal
solution to a related convex program, Beckmann et al. [3]
proved the existence and uniqueness of traffic equilibrium for
user-optimal routing. Most previous studies have been con-
cerned with user-optimal routing with an infinite number of
users, i.e., infinitesimal demand. In [22], Korilis, Lazar, and
Orda considered a finite number of users and studied the con-
ditions for the existence of Nash equilibria. They showed that
there may exist multiple Nash equilibria and that although it
is possible to use Rosen’s Diagonal Strict Concavity [28] to
establish uniqueness, this condition generally does not apply.
In [12], Boulogne, Altman, Pourtallier, and Kameda stud-
ied the conditions for the existence of a Nash equilibrium

 0
 50

 100
 150
 200
 250
 300
 350

 0 5 10 15 20 25 30 35 40

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

20%
50%
80%

100%

(a) Spike stimulus

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20 25 30 35 40

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

20%
50%
80%

100%

(b) Step stimulus

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20 25 30 35 40

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

20%
50%
80%

100%

(c) Linear stimulus

Figure 11. User-optimal routing combined with load optimization: average user latency for various link
utilization thresholds.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20 25

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(a) Spike stimulus

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(b) Step stimulus

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 5 10 15 20 25 30 35

av
er

ag
e

la
te

nc
y

(m
s)

time (s)

user-optimal
network-optimal

(c) Linear stimulus

Figure 12. Comparison between user-optimal and network-optimal routing schemes: average latency
when the link utilization threshold is 20%.

in a mixed network, i.e., a network where some users con-
trol a substantial amount of traffic and other users generate
infinitesimal amount of traffic.

Network-optimal routing in a centralized setting has been
studied previously, and many optimization techniques have
been proposed. For a survey, please see [5]. There are also
previous distributed algorithms for computing optimal traffic
equilibrium, e.g., see [7] for a complete survey; however, they
do not use the probabilistic routing scheme.

The authors in [27] study the performance of self adap-
tive routing and its impact on traffic engineering under traffic
equilibria.

Our routing scheme is based on reinforcement learn-
ing [20]. In [13, 25], Littman and Boyan first applied re-
inforcement learning to routing and proposed the Q-routing
scheme. The Q-routing scheme is further revised in [24, 32].
Their scheme is per-packet based, however, and only sup-
ports single path routing. The work closest to ours is [10]
by Borkar and Kumar. In this significant work, they formally
prove the convergence of their scheme and our proof models
after theirs. We avoid per-packet feedback to have a more
efficient distributed implementation.

8 Conclusion and Future Work

In this paper, we develop routing schemes to achieve user-
optimal and network-optimal routing. Viewed as a mecha-
nism for computing equilibrium, our scheme is simple and
efficient; thus it can be used to evaluate the performance of
large scale networks. Moreover, it does not require analyt-

ical network models, and is able to model user-optimal and
network-optimal routing in a dynamic environment. It is also
able to capture the potential overhead of the routing conver-
gence process. Viewed as a protocol for determining routes
in a network, our scheme is simple and distributed; and the
scheme has low protocol overhead. We analyze the conver-
gence of the routing scheme, and demonstrate its efficiency
and responsiveness through extensive simulations.

In addition, we adapt the routing scheme to optimize end-
user performance and link utilization simultaneously. We
evaluate the trade-off between the two objectives and show
that the degradation in end-user performance is only marginal
for typical link utilization requirements.

There are a number of avenues for future work. First, by
having routers compute user-optimal routing, we know that
the users will have no incentives in deviating from the rout-
ing protocol. However, when the routers also consider traf-
fic engineering objectives (i.e., jointly optimize for both user
latency and link utilization), the resulting routing will devi-
ate from user-optimal routing. A thorough understanding of
the interactions between user’s routing incentives and traf-
fic engineering is needed. Second, it remains an interesting
question how to design routing protocols and compute traf-
fic equilibria when users are optimizing for other end-to-end
performance metrics, such as loss and throughput. In order
to optimize latency, our scheme reduces contention, and thus
has the potential to increase throughput. Also, the probabilis-
tic routing scheme investigated here may offer a way to effi-
ciently compute traffic equilibria for such metrics.

Acknowledgments
We thank Sekhar Tatikonda for insightful discussions. We

also thank Theodore Jewell and Sheng Zhong for many dis-
cussions.

References
[1] E. Altman, T. Boulogne, R. E. Azouzi, and T. Jimenez. A sur-

vey on networking games. Telecommunication Systems, Nov.
2000.

[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient overlay networks. In Proceedings of the
18th Annual ACM Symposium on Operating Systems Princi-
ples, Banff, Canada, Oct. 2001.

[3] M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in
the Economics of Transportation. Yale University Press, 1956.

[4] D. P. Bertsekas, E. M. Gafni, and R. G. Gallager. Second
derivative algorithms for minimum delay distributed routing
in networks. IEEE Transactions on Communications, COM-
32(8):911–919, 1984.

[5] D. P. Bertsekas and R. Gallager. Data Networks. Prentice-Hall,
Second Edition, 1992.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-dynamic Program-
ming. Athena Scientific, 1996.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Athena Scientific, 1997.

[8] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka.
TCP-PR: TCP for persistent packet reordering. In Proceed-
ings of the IEEE 23rd International Conference on Distributed
Computing Systems, May 2003.

[9] V. Borkar. Stochastic approximation with two time scales. Sys-
tems and Control Letter, 29:291–294, Feb. 1997.

[10] V. Borkar and P. R. Kumar. Dynamic Cesaro-Wardrop equili-
bration in networks. IEEE Transactions on Automatic Control,
48(3):382–396, Mar. 2003.

[11] V. Borkar and S. Meyn. The O.D.E. method for convergence
of stochastic approximation and reinforcement learning. SIAM
Journal on Control, 38(2):447–469, 2000.

[12] T. Boulogne, E. Altman, O. Pourtallier, and H. Kameda. Mixed
equilibrium for multiclass routing games. IEEE Transactions
on Automatic Control, 47(6):903–916, June 2002.

[13] J. A. Boyan and M. L. Littman. Advances in Neural Infor-
mation Processing Systems, volume 6, chapter Packet routing
in dynamically changing networks: A reinforcement learning
approach, pages 671–678. Morgan Kaufmann, San Francisco,
CA, 1993.

[14] I. Castineyra, N. Chiappa, and M. Steenstrup. The Nimrod
Routing Architecture, RFC 1992, Aug. 1996.

[15] M. Florian and D. Hearn. Network Routing, chapter 6, Net-
work equilibrium models and algorithms, pages 485–550. El-
sevier Science, 1995.

[16] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with
traditional IP routing protocols. IEEE Communication Maga-
zine, Oct. 2002.

[17] R. G. Gallager. A minimum delay routing algorithm using dis-
tributed computation. IEEE Transactions on Communications,
COM-25(1):73–85, 1977.

[18] P. Gupta and P. R. Kumar. A system and traffic dependent
adaptive routing algorithm for ad hoc networks. In Proceed-
ings of IEEE 36th Conference on Decision and Control, San
Diego, CA, 1997.

[19] D. B. Johnson and D. A. Malt. Mobile Computing, chapter Dy-
namic Source Routing in Ad Hoc Wireless Networks, Chapter
5, (Tomasz Imielinski and Hank Korth, eds.). Kluwer Aca-
demic Publishers, 1996.

[20] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learn-
ing: A survey. Journal of Artificial Intelligence Research,
4:237–285, 1996.

[21] S. Karlin and H. M. Taylor. A First Course in Stochastic Pro-
cesses. Academic Press, second edition, 1975.

[22] Y. A. Korilis, A. A. Lazar, and A. Orda. Architecting nonco-
operative networks. IEEE Journal of Selected Areas in Com-
munications, 13(7):1241–1251, Sept. 1995.

[23] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria.
In Proceedings of the 16th Annual Symposium on Theoretical
Aspects of Computer Science, 1999.

[24] S. Kumar. Confidence based dual reinforcement Q-routing: an
on-line adaptive network routing algorithm. Technical Report
AI98-267, Department of Computer Sciences, The University
of Texas, Austin, Texas, U.S.A., 1998.

[25] M. L. Littman and J. A. Boyan. A distributed reinforce-
ment learning scheme for network routing. In Proceedings
of the 1993 International Workshop on Applications of Neu-
ral Networks to Telecommunications, pages 45–51, Hillsdale
NJ, 1993.

[26] Network Simulator – ns-2. http://www.isi.edu/
nsnam/ns/.

[27] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On selfish rout-
ing in Internet-like environments. In Proceedings of ACM SIG-
COMM ’03, Karlsruhe, Germany, Aug. 2003.

[28] J. B. Rosen. Existence and uniqueness of equilibrium points
for concave n-person games. Econometrica, 33:520–534, July
1965.

[29] T. Roughgarden and E. Tardos. How bad is selfish routing?
Journal of ACM, 49(2):236–259, 2002.

[30] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and
J. Zahorjan. Detour: a case for informed Internet routing and
transport. In IEEE Micro, volume 19, pages 50–59, Jan. 1999.

[31] N. Spring, R. Mahajan, and D. Wetherall. Rock-
etfuel: An ISP topology mapping engine. Avail-
able from www.cs.washington.edu/research/
networking/rocketfuel/.

[32] D. Subramanian, P. Druschel, and J. Chen. Ants and reinforce-
ment learning: A case study in routing in dynamic networks.
In IJCAI (2), pages 832–839, 1997.

[33] V. Tadic and S. Meyn. Asymptotic properties of two time-
scale stochastic approximation algorithms with constant step
sizes. In Proceedings of the 2003 American Control Confer-
ence, June 2003.

[34] H. Tangmunarunkit, R. Govindan, S. Shenker, and D. Estrin.
The impact of routing policy on Internet paths. In Proceedings
of IEEE INFOCOM ’01, Anchorage, AK, Apr. 2001.

[35] J. N. Tsitsiklis and D. P. Bertsekas. Distributed asynchronous
optimal routing in data networks. IEEE Transactions on Auto-
matic Control, 31:325–332, 1986.

[36] J. G. Wardrop. Some theoretical aspects of road traffic re-
search. In Proceedings of the Institute of Civil Engineers, Part
II, volume 1, pages 325–378, 1952.

[37] H. Xie, L. Qiu, Y. R. Yang, and Y. Zhang. On self adap-
tive routing in dynamic environments — an evaluation and de-
sign using a simple, probabilistic scheme. Technical Report
YALEU/DCS/TR1289, Computer Science Department, Yale
University, May 2004.

[38] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP: A
reordering-robust TCP with DSACK. In Proceedings of ICNP
2003, Nov. 2003.

[39] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast
accurate computation of large-scale IP traffic matrices from
link loads. In Proceedings of ACM SIGMETRICS, June 2003.

