
Summary-based Routing for Content-based Event
Distribution Networks

Yi-Min Wang, Lili Qiu, Chad Verbowski, Dimitris Achlioptas, Gautam Das, and Paul Larson
Microsoft Research, Redmond, WA, USA

Abstract— Providing scalable distributed Web-based eventing
services has been an important research topic. It is desirable to
have an effective mechanism for the servers to summarize their
filters for in-network preprocessing in order to optimize system
performance. In this paper, we propose a summary-based rout-
ing mechanism and introduce the notion of imprecise summaries
to provide a trade-off between routing overhead and event traffic.
Our system uses similarity-based filter clustering to reduce overall
event traffic and performs self-tuning summary precision selection
to optimize throughput. We have implemented summary-based
routing on top of an XML-based infrastructure that closely follows
the proposed Web services standards. Measurements from the ac-
tual implementation validate our analytical and simulation results,
and demonstrate the practical benefits of the proposed techniques.

I. INTRODUCTION

Today, World Wide Web use is predominantly based on the
synchronous polling model: a Web user either visits a Web
page using its URL or goes through a search engine to find
pages of interest. A complementary model that is becom-
ing increasingly popular is the asynchronous publish/subscribe
(pub/sub) event notification model: a user subscribes to a server
by specifying events of interest, and later receives notifications
when any of those events are published. The Instant Messag-
ing buddy/contact lists, the Amazon shopping alerts, the EBay
outbid notifications, and the stock quotes and news alerts from
Yahoo! Alerts and MSN Mobile are all examples of this model.

In addition, new applications with subscribers being non-
human entities are also emerging. User-agent applications that
communicate with sensors and devices to perform automation
tasks and B2B Web applications that communicate with each
other to conduct day-to-day businesses will both rely heavily on
the event notification model. Non-human subscribers present
additional scalability challenges to the design of pub/sub sys-
tems because they can significantly increase the total number
of participants, handle much more complex subscriptions, and
receive and process notifications at a much higher rate.

Pub/sub systems are typically classified into two categories:
topic-based and content-based. In a topic-based system, each
event is associated with one of a set of predefined topics and a
subscriber receives notifications for all events belonging to the
subscribed topics. A content-based system supports more fine-
grained selection of events by defining an event schema under
a topic, which specifies the names and types of the attributes
that appear in an event. Subscription filters are then specified as
conjunctions of predicates [11] on a subset of those attributes.
For example, under the topic of “stock quotes”, we may have
an event schema that defines three attributes: Symbol, Price,

and Volume. An example event would be (Symbol=GE and
Price=29.3 and Volume=30,000,000); an example subscription
filter would be (Symbol=GE and Price>30.0).

A centralized, content-based pub/sub system consists of a
server that receives and stores subscriptions from all sub-
scribers, receives events from all publishers, performs matching
of each event against the subscriptions, and sends notifications
to all subscribers with matching subscriptions.

To provide scalability, several previous papers have proposed
a distributed architecture that uses a network of servers [9] (also
called proxies [31] or brokers [4]), which can be either physi-
cally co-located or distributed in geographically diverse loca-
tions, to route events between publishers and subscribers. A
naive way of performing distributed pub/sub operations in such
a network is to propagate every event message to every server,
and have all content-based matching operations performed lo-
cally at each server. A natural optimization is to allow each
server to “summarize” the entire set of local subscription filters
and propagate that summary information along the reverse path
of event dissemination in order for the upstream routers (or for-
warders) [8] to block unnecessary event traffic at the earliest
point [15], [4], [31]. The SIENA system [9] formalized this no-
tion by arranging the subscription filters as a partially ordered
set (poset), and using the set of root filters (i.e., maximal poset
elements) as the summary. We refer to such a summary as a
precise summary because it precisely captures the set of events
that are needed by any downstream servers.

Two issues related to the use of summaries need to be ad-
dressed. First, if the subscription filters submitted to the same
server have poor “locality” (i.e., the sets of events they match do
not have much overlap), then the summaries may be too broad
to allow efficient routing and effective traffic reduction.

Second, although precise summaries minimize event traffic,
they may not optimize overall system throughput. Depending
on the distribution of subscription filters, precise summaries
may be so complex that the routers become the bottleneck, de-
grading system throughput. While empowering the routers with
better hardware helps to alleviate the throughput degradation to
some extent, it is not cost-effective to provision routers based
on peak load, which can be orders of magnitudes higher than
the typical load. By properly adjusting summary precision, we
can dynamically optimize the overall throughput using the ex-
isting hardware under varying loads.

In this paper, we propose subscription partitioning and
summary-based routing to address the above issues, and eval-
uate their effectiveness using analysis, simulation, and imple-
mentation. As the first step to gain insights into subscription

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200459



partitioning and summary-based routing, we make the follow-
ing simplifications and assumptions in this paper.

First, we focus on the case where the servers are physically
co-located. As described in Section III-D, our idea can be gen-
eralized to handle widely distributed servers by incorporating
network distance among servers.

Second, different from many previous work, which used re-
verse path forwarding to set up forwarding table (e.g., [9]), our
study focuses on event notification systems that decouple the
subscription paths from the notification paths. Many existing
commercial systems adopt this model. For example, a user
would go to a Web page to enter his or her subscriptions and
specify that the notifications should be sent to his or her cell
phone. Such architecture gives us the flexibility to route and
cluster the subscriptions once they enter the network, and al-
lows us to focus on optimizing the system throughput where the
system excludes the notification paths (e.g., the path in a cellu-
lar network towards a subscriber’s cell phone). In cases where
it is desirable to have servers handle subscriptions for nearby
clients, we can extend our scheme by considering subscribers’
locations as additional dimensions for clustering as described
in Section III-D.

Third, our work focus on the distribution topology that has
one level of branching as shown in Figure 1, where an event
dispatcher is connected directly to all servers. We use Ns to
denote the number of servers throughout the paper. The re-
maining symbols in Figure 1 will be explained in Section IV
and Appendix . We leave extension of our approach to handle
general distribution topologies with potentially multiple levels
of branching as part of our future work.

Ns servers Ts F 

Dispatcher Td 

R 
Tl 

Tl 

Tp Publishers 

 Fig. 1. System architecture evaluated in this paper.

Our key contributions and results can be summarized as fol-
lows.

First, we propose a summary-based routing framework and
introduce the notion of imprecise summaries to provide a trade-
off between routing efficiency and event traffic: summaries with
a lower precision would allow more efficient routing at the cost
of a higher amount of false-positive event traffic. The frame-
work includes previous work on precise summaries and no sum-
maries as two extremes of the spectrum.

Second, to make summaries more compact and effective, we
use similarity-based filter clustering for offline subscription par-
titioning and online subscription routing. We evaluate the ben-
efit of clustering using both uniform and Zipf-like subscription
and event distributions.

Third, to evaluate the impact of summary precisions on over-
all system throughput, we present analysis and simulation re-
sults to show that varying summary precisions can provide
load balancing among system components to optimize system
throughput.

Fourth, to allow dynamic adaptation to changing system and
network characteristics, we present a self-tuning algorithm that
performs ongoing monitoring of throughput bottleneck and au-
tomatically adjusts summary precision to bring the system to-
wards a new optimal operating point.

Finally, we describe an implementation of summary-based
routing on an XML/SOAP messaging infrastructure conform-
ing to a set of proposed Web Services standards [30]. With ac-
tual parameters from the implementation and the system setup,
we give a detailed discussion on when imprecise summaries
are useful in practice. We present experimental results from the
implementation to validate our analysis and to demonstrate the
capability of our self-tuning algorithm to dynamically maintain
optimal throughput.

This paper is organized as follows. In Section II, we give an
architecture overview of a content-based event distribution net-
work. In Section III, we describe and evaluate summary-based
subscription and event routing. In Section IV, we present an
analysis and simulation results for throughput evaluation, and
describe a self-tuning algorithm for adaptive throughput opti-
mization. In Section V, we describe the architecture of our Web
Services-based implementation and discuss actual experimental
results. We review previous work in Section VI, and conclude
the paper in Section VII.

II. SYSTEM ARCHITECTURE

Just as Content Distribution Networks (CDNs) have been de-
ployed to provide scalable Web information dissemination, we
propose building Event Distribution Networks (EDNs) to pro-
vide scalable event dissemination. An EDN will be built as a
self-configuring overlay network of servers. As shown in the
left-hand side of Figure 2, a geographically distributed subset
of nodes, called edge servers, are deployed to provide a low-
latency front-end interface to geographically distributed pub-
lishers and subscribers. Other servers reside inside the network
and may host subscriptions or route traffic or both. Through the
edge servers, event sources (i.e., publishers) publish events and
subscribers submit subscriptions for events of interest.

Notification 
Routing 
Service 

1. Submit subscription 
2. Subscription routing 
3. Summary reporting 
 

4. Summary exchange 
5. Event routing 
6. Notification delivery 
 

Edge 
Servers 

Summary- 
Based 
Router 

Summary 
Manager 

Single-
Node 

Filtering 
Engine 

Summary 

Subscription 

Event 

EDN 
Node 

EDN 
Node 

Event 
Sources 

Subscriber 

1 

2 
3 

3 

4 

5 

5 

6 

6 

Subscriber 

1 6 

6 

 Fig. 2. EDN network architecture. (Shaded squares are edge servers; non-
shaded squares are internal servers; the right-hand side is the node architecture
for an internal server.)

The following definitions will be used throughout the paper:
a filter f is any expression that defines a set of eventsEf , and an

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200460



event e matches the filter f if e ∈ Ef . A filter f ′ is said to cover
another filter f if Ef ⊆ Ef ′ . A similar covering relationship
is defined between two sets of filters. A subscription consists
of a notification address and a subscription filter, which is a
filter in the form of a conjunction of predicates conforming to a
pre-defined event schema. When a server hosting a subscription
receives a published event that matches the subscription’s filter,
it sends a notification to the corresponding notification address.
Given a set of subscription filters F , a summary S of F is a set
of filters that covers F . A filter f ∈ F is maximal if there is no
f ′ ∈ F such that f ′ covers f . Clearly, the set of all maximal
filters in F covers F .

Any subscription submitted to an edge server is forwarded to
an internal server. (We will use the term “server” to mean “in-
ternal server”.) In this paper, we focus on the following type of
notification addresses. The subscriber specifies the address of
a notification routing service followed by a device-independent
ID such as a Yahoo! ID or a .NET Passport ID. A notification
is first sent to the routing service, which resolves the ID and
forwards the notification to the subscribing user via instant mes-
saging, email, cell phone SMS, etc. [27]. When such type of no-
tification addresses is in use, the internal servers can effectively
batch notifications, which alleviates the scalability problem on
the notification delivery side and allows us to concentrate on the
event propagation side.

Upon receiving a subscription from an edge server, an inter-
nal server may further forward it to another server whose sum-
mary overlaps the most with (and hopefully already covers) the
new filter, thus minimizing the additional event traffic handled
by each server. The server makes the routing decision based on
the subscription routing summaries. Each subscription server
knows about all other subscription servers in the network, and
periodically sends them a summary of its subscription set for
routing subscriptions. The right-hand side of Figure 2 illus-
trates the architecture of an internal server. The single-node
filtering engine can be any pub/sub engine that stores subscrip-
tions in efficient data structures for fast matching [14], [2],
[11]. The summary manager is responsible for maintaining
summaries for the entire sub-tree rooted at the current node.
1 It intercepts all new subscriptions entering the local filtering
engine, and updates the local summary accordingly. It also re-
ceives summaries from all child nodes. All these summaries are
made available to the summary-based router, which maintains
them in an efficient data structure for fast event and subscrip-
tion routing. The summary manager combines all summaries
into a sub-tree summary and reports it to the parent node. Upon
receiving an event, a summary-based router forwards it down
only those sub-trees whose summaries the event matches.

The format of the summaries can be different from that of
the subscription filters, and thus the data structure used by the
summary-based routers can be different from that used by the
filtering engines. For example, when shopping at an online auc-
tion site, users may subscribe notifications by specifying ranges

1For ease of presentation, we assume throughout the paper that the servers
are statically configured into a tree. The same concept of summary-based rout-
ing can be applied to systems that dynamically construct trees through either
advertisement forwarding [9] or SUBSCRIBE message forwarding [24] in a
peer-to-peer routing system.

for price, seller rating, shipping cost, and time to arrive. Each
subscription is then represented as a multi-dimensional rectan-
gle. Instead of keeping rectangles for every subscription, we
can summarize them using a small number of bounding rect-
angles to speed up routing. For equality predicates (e.g., Sym-
bol=GE) in subscription filters, we can summarize them using
a Bloom filter [6], [28]. Another way of summarizing subscrip-
tions is to use only a selected subset of attributes in the event
schema.

Let S denote a summary of the set of filters F representing
all the subscriptions hosted by a single server. The summary S
is precise if EF = ES ; otherwise, EF ⊂ ES and it is called an
imprecise summary. Clearly, the set of all maximal filters of F
forms a precise summary of F . The most imprecise summary
covers the entire event space, which corresponds to the case
of not using summaries, but forwarding every event to every
server. Reducing summary precision, i.e., increasing the size
of ES \ EF (where “\” denotes set-minus), would introduce
more “false-positive traffic” that invokes wasteful operations
at some downstream filtering engines to produce zero match.
However, it would typically reduce per-event processing time
at the summary-based routers. Summary-based routing thus al-
lows tunable in-network pre-processing of event traffic to opti-
mize overall network performance. We note that subscription
routing summaries need not be the same as those used for event
routing: while the latter must guarantee correctness, the former
are only used for optimization and so they can be in a less com-
plex format and exchanged less frequently.

III. SUMMARY-BASED ROUTING

In this section, we describe how to route incoming subscrip-
tions and events.

A. Subscription Routing & Partitioning

In general, there are two approaches to partitioning the over-
all pub/sub operations among multiple servers: we either par-
tition the event space or partition the set of subscription fil-
ters [28]. We call the former Event Space Partitioning (ESP),
and the latter Filter Set Partitioning (FSP). As discussed in [28],
the ESP approach in general needs to replicate subscriptions to
multiple servers, making it difficult to support stateful update
and subscription deletion. Therefore, we focus on the FSP ap-
proach in this paper to simplify subscription management.

1) Range Predicates: We have investigated ESP-based sub-
scription partitioning of equality predicates in [28]. In this pa-
per, we study subscription partitioning of range predicates using
the FSP approach. Given an event schema with d attributes, it
is convenient to model each event as a point and each subscrip-
tion filter as a rectangle in a d-dimensional space where each
dimension corresponds to an attribute.

The objective of subscription partitioning is to minimize the
total event traffic and the associated server load, while avoiding
overloading any individual server. There are two versions of the
problem: offline and online. In the offline version, we are given
a set of existing subscription filters to be partitioned among a
set of servers. Such subscriptions are usually available when a
successful event service provider upgrades its pub/sub system

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200461



(e.g., upgrade from a single-node centralized architecture to a
distributed one in order to accommodate growing demands). A
service provider can also periodically re-partition the subscrip-
tions using the offline scheme when the performance of the on-
line version degrades to a certain threshold. In the online ver-
sion, each server, upon receiving an incoming new subscription,
makes a local decision based on the subscription routing sum-
maries to route the subscription to the “best” server. To avoid
server overload, only those servers with load below the pre-
specified threshold are considered candidate targets for routing.
Intuitively, an online algorithm would perform better if it starts
with an initial good partitioning provided by an offline scheme.

Below we use similarity-based filter clustering for subscrip-
tion partitioning and routing. We will evaluate the effective-
ness of the clustering techniques using realistic subscription and
event distributions in Section III-C.

Random routing: The random algorithm is oblivious to the
similarity among different subscriptions. It randomly routes a
subscription to a server. Subscriptions that have large overlap
with each other may be assigned to different servers, and thus
incur significant duplicate traffic and server processing load for
events falling in the intersection region.

R-tree based routing: An R-tree [16] is a dynamic index
structure for multi-dimensional data rectangles. It is a height-
balanced tree similar to a B-tree [5], with all data rectangles
residing at the leaf nodes. Typically, an R-tree algorithm tries
to grow the tree in such a way that rectangles with large inter-
sections reside at leaf nodes that are close to each other.

An offline R-tree algorithm, such as the bulk-loading algo-
rithm described in [13], builds an R-tree in a top-down fashion.
At each level, it sorts the rectangles based on their minimum,
maximum, and center coordinates of each dimension, consid-
ers all cuts orthogonal to the coordinate axes that would align
with the eventual partition boundaries, greedily picks the cut
that minimizes a cost function, and then recursively applies the
cuts to the smaller partitions until the desired number of rect-
angles per partition is reached. We apply the bulk-loading al-
gorithm to the offline partitioning problem by forcing the num-
ber of children of the root node to be equal to the number of
servers. Each sub-tree rooted at a child is assigned to a server.
The cost function is chosen to be the sum of the volumes of the
bounding rectangles of the two partitions on the two sides of
the cut. Assuming that events are uniformly distributed, mini-
mizing this sum of volumes corresponds well to minimizing the
sum of event traffic.

In the online version, a new subscription is checked against
each server’s summary R-tree and forwarded to the server that
owns a rectangle that has the maximum overlap with the sub-
scription rectangle, and is not overloaded (i.e., current load is
below a threshold).

K-Mean clustering: K-Mean [18] is a well-known cluster-
ing technique to group points into clusters based on their prox-
imity. It starts with an arbitrary initial cluster assignment. Then
it assigns each point to its closest cluster centroid, re-computes
the centroids after all assignments, and iterates until the total
distance between the new clusters’ centroids and the old clus-
ters’ centroids is within δ (In our experiment, δ = 1). By rep-
resenting each subscription rectangle using its centroid, we can

Algorithm Storage Amortized Total Traffic
Search Time (Server Load)

Random 0 O(1) High
Offline R-Tree O(S) O(log(S)) Lowest
Online R-Tree O(Ns ·Nb) O(Ns ·Nb) Low

Offline K-Mean O(S +Ns) O(I ·Ns) Medium
Online K-Mean O(Ns) O(Ns) Medium

TABLE I
COMPARISON OF DIFFERENT PARTITION ALGORITHMS, WHERE THE

NUMBER OF DIMENSIONS IN THE DATA IS A SMALL CONSTANT.

apply K-Mean clustering to partitioning subscriptions offline.
We refer to this scheme as offline K-Mean.

In the online version, we route an incoming subscription A
to the server i whose subscriptions’ centroid is closest to A’s
centroid, and then we update the subscriptions’ centroid at the
server i.

Summary: Table I compares the cost and performance of
different partitioning algorithms, where Ns is the number of
servers, S is the total number of subscriptions, I is the number
of iterations in K-Mean, Nb is the number of summary bound-
ing rectangles in the R-Tree for each server, and the number of
dimensions of rectangles is a constant. Note that Ns ∗Nb ≤ S.
In Section III-C, we will evaluate the performance of these al-
gorithms in more details.

Table I shows the trade-off between the complexity and per-
formance of the algorithms. Random assignment is cheapest,
but yields the highest amount of traffic and server load; on the
other hand, R-Tree reduces the total traffic and server load at
the cost of more expensive computation; and K-Mean falls in
between. A nice feature of the R-Tree approach is that we can
smoothly trade off the complexity for performance by adjust-
ing the number of summary bounding rectangles Nb we use for
subscription routing.

B. Event Routing

We use the R-tree algorithm to route incoming events. Given
an event e, it finds all the servers which have at least one
summary bounding rectangle containing e. The pseudo-code
for event routing is shown below. Note that the event routing
scheme is independent of the subscription routing scheme, and
we use the R-tree for event routing regardless of which sub-
scription routing scheme is used.

Online R-tree based event routing

Input: An incoming event, e
Output: The IDs of the servers to which the event is forwarded

count = 0;
foreach server s
foundMatch = SearchAnyContaining(e, RTree[s]);
if (foundMatch = TRUE)

serverIDs[count++] = s;
end

end

C. Performance Evaluation

In this subsection, we compare the performance of differ-
ent subscription partitioning algorithms. Our evaluation differs
from previous studies on clustering algorithms in the following
ways.

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200462



First, according to our application requirement, we use event
traffic as a performance metric for comparing different parti-
tioning schemes. Specifically, we use the average per-server hit
ratio as the performance metric, which is defined as the total
number of forwarded events by the dispatcher divided by the
total number of published events and the number of serversNs.
Given a set of subscription rectangles, a lower hit ratio is desir-
able as it indicates more effective traffic reduction.

Second, we examine the effectiveness of partitioning algo-
rithms under different event and subscription distributions. In
particular, we study the impact of realistic event and subscrip-
tion distributions on the amount of event traffic generated.

Third, we investigate the effect of subscription summary pre-
cision on the traffic reduction.

Unless otherwise specified, we use the following settings:
each server hosts 10,000 subscriptions on average, with a ca-
pacity constraint (i.e., load threshold) of 20,000 subscriptions.
Events and subscriptions are both generated randomly in a 4-
dimensional space with coordinate values uniformly distributed
in the range of 0 to 10 in each dimension. In most experiments,
the R-tree schemes use precise summaries for subscription rout-
ing. In addition, we also evaluate the effects of imprecise sum-
maries, Zipf-like subscription and event distributions, different
server load thresholds, and different numbers of dimensions.

Varying the number of servers: Figure 3 compares the per-
formance of different partitioning algorithms by varying the
number of servers. With random partitioning, the per-server
hit ratio is the highest and close to 1.0. This means that almost
every incoming event is forwarded to all the servers due to poor
clustering of subscription rectangles. In comparison, the offline
R-tree algorithm performs the best, and reduces the hit ratio by
20% to 60%. Moreover, the benefit of offline R-Tree increases
with the number of servers. The offline/online R-tree curve is
obtained by using 50% of the subscriptions to build an R-tree
offline and then inserting the remaining subscriptions with the
online R-tree algorithm. It performs very close to the offline
R-tree. However the online R-tree performs noticeably worse:
its hit ratio is 0.2 higher than that of the offline R-tree when the
number of servers is large. This suggests a set of good initial
partitions obtained from the offline algorithm is important to
the performance of the R-tree. The performance of the K-Mean
approach falls between random partitioning and online R-tree.
The R-tree approach outperforms K-Mean because the R-tree
tries to minimize the sum of rectangles volume of all server,
which is a direct measure of event traffic.

Varying subscription routing summary precision: Next
we evaluate the effect of summary precision on traffic reduc-
tion. We control the precision by varying the depth of the sub-
tree of the maximal R-tree that we use for subscription routing.
Shallower trees with less precise summaries would allow faster
routing, but potentially at the expense of less effective cluster-
ing. Figure 4 shows the hit ratio versus the average depth of
the summary R-Trees across all servers, when the number of
servers is 10 and 20. The leftmost data point corresponds to
every server using only the root node of the maximal R-tree;
the rightmost point is for using the entire maximal R-tree as a
precise summary.

We make the following observations. First, the offline/online

00
00..11
00..22
00..33
00..44
00..55
00..66
00..77
00..88
00..99

11

00 55 1100 1155 2200
##  sseerrvveerrss

HH
iitt

  rr
aatt

iioo
  pp

eerr
  ss

eerr
vvee

rr

RRaannddoomm OOfffflliinnee  RR--ttrreeee
OOnnlliinnee  RR--ttrreeee OOfffflliinnee//OOnnlliinnee  RR--ttrreeee
OOfffflliinnee  KK--MMeeaann OOnnlliinnee  KK--MMeeaann
OOfffflliinnee//OOnnlliinnee  KK--MMeeaann

Fig. 3. Performance of different partitioning algorithms as a function of the
number of servers.

R-tree outperforms the corresponding online R-tree in all cases.
Second, the hit ratio tends to decrease as we use more detailed
R-trees. For example, relative to the case of depth-1 R-tree, the
use of precise summaries cuts down the hit ratio by 20% - 25%.

However, the decrease in hit ratio is not always monotonic.
This is because the heuristic we use (i.e., route a subscription
to the server that contains a leaf node that has the largest over-
lap with it) is sometimes sub-optimal. For example, server 1
may have two rectangles each overlapping 50% with the incom-
ing subscription A, but the union of the two rectangle overlaps
with A completely, while server 2 has one rectangle overlap-
ping 80% with A. According to the heuristic, we would route
A to server 2, but this is not as good as routing it to server 1,
which incurs no extra traffic.

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9
Depth of summary R-tree

H
it

 r
at

io
 p

er
 s

er
ve

r

Online R-tree (Ns=10) Online R-tree (Ns=20)

Offline/Online R-tree (Ns=10) Offline/Online R-tree (Ns=20)

Fig. 4. The effect of subscription routing summary precision.

Zipf-like subscription/event distribution: To examine the
impact of subscription distribution, below we compare the al-
gorithms by generating subscriptions whose boundary values
follow a Zipf-like distribution.

A number of studies [3], [7], [21] report that the Web requests
follow a Zipf-like distribution; that is, the number of requests
to the i-th popular document is proportional to 1

iα , where α is a
small constant. We analyzed the end-user subscriptions at a ma-
jor stock-quote notification service provider, and also observed
a Zipf-like distribution [28]. Based on the previous findings, it
is likely that subscriptions in the form of range predicates may
exhibit a similar distribution.

We use the following approach to generate subscriptions with
range predicates that follow a Zipf-like distribution. Since the
Zipf-like distribution is only applicable for discrete values, we
first discretize values in each dimension toB bins; then for sub-

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200463



scriptions with n attributes, we have Bn bins, where each bin
is numbered as x1x2..xd, with xi representing the value of the
bin in the i-th dimension. Without loss of generality, we assign
popularity ranking to these bins according to their numerical
order (e.g., for a 2 dimensional space, the bins in the order of
decreasing popularity are 00, 01, 02, ... , 10, 11, 12, ... ). This
ranking order assumes that some dimensions have greater im-
pact on popularity than other dimensions, which is a reasonable
assumption in practice. Next we assign the popularity distribu-
tion to the bins according to 1

iα , where α is varied from 0.25
to 4. Then we draw the boundary values of each subscription
from the above distribution. Specifically, we pick two bins, de-
noted as x1x2..xd and x′1x

′
2..x
′
d. Then the new subscription’s

lower and upper bounds in the i-th dimension are defined by
min(xi, x′i) and max(xi, x′i), respectively.

Figure 5 shows the results when subscriptions follow a Zipf-
like distribution and events are still uniformly distributed; and
Figure 6 shows the results when subscriptions and events both
follow a Zipf-like distribution with the same value of α but dif-
ferent popularity ranking of the bins. 2

We make the following observations. First, in both cases the
event traffic decreases with increasing α for all partition algo-
rithms. This occurs because as α increases, subscriptions are
more concentrated around certain area, and it becomes more
difficult for events with a different popularity distribution to
find matches, thereby reducing the hit ratio. Second, when α
increases, the performance of K-mean improves. This is be-
cause rectangles’ lower and upper bounds are drawn from the
same popularity distribution, and an increase in α makes the
rectangle boundaries closer together, resulting in a small vol-
ume. This increases the effectiveness of K-mean, which uses
the centriods’ positions for subscription routing. Finally, the
random algorithm performs much worse than the others. For
example, it yields 3 - 5 times as much traffic as the offline R-
tree. The clustering algorithms, such as offline R-tree, achieve
a higher traffic reduction rate when subscriptions follow a Zipf-
like distribution because when the rectangles are clustered to-
gether and have smaller volume, the effectiveness of clustering
is improved.

00

00..11

00..22

00..33

00..44

00..55

00..66

00..77

00 11 22 33 44

aallpphhaa  iinn  tthhee  ZZiippff--ddiissttrriibbuuttiioonn

HH
iitt

  rr
aatt

iioo
  pp

eerr
  ss

eerr
vvee

rr

RRaannddoomm OOfffflliinnee  RR--ttrreeee
OOnnlliinnee  RR--ttrreeee OOfffflliinnee//OOnnlliinnee  RR--ttrreeee
OOfffflliinnee  KK--mmeeaann OOnnlliinnee  KK--mmeeaann
OOfffflliinnee//OOnnlliinnee  KK--mmeeaann

Fig. 5. The effect of Zipf-like subscription distributions, when subscriptions
follow a Zipf-like distribution and events are uniformly distributed (Ns = 10).

Other Results: As mentioned earlier, subscription routing
takes load balancing into account by routing subscriptions only

2Since in practice the popularity rankings of events and subscriptions may not
match, we generate the events using the same steps as we generate subscriptions
except that we assign the bins with a random popularity ranking instead of using
their numerical order.

00

00..11

00..22

00..33

00..44

00..55

00..66

00..77

00..88

00..99

11

00 00..55 11 11..55 22 22..55 33 33..55 44

aallpphhaa  iinn  tthhee  ZZiippff--lliikkee  ddiissttrriibbuuttiioonn

HH
iitt

  rr
aatt

iioo
  pp

eerr
  ss

eerr
vvee

rr

RRaannddoomm OOfffflliinnee  RR--ttrreeee
OOnnlliinnee  RR--ttrreeee OOfffflliinnee//OOnnlliinnee  RR--ttrreeee
OOfffflliinnee  KK--mmeeaann OOnnlliinnee  KK--mmeeaann
OOfffflliinnee//OOnnlliinnee  KK--mmeeaann

Fig. 6. The effect of Zipf-like subscription distributions when both subscrip-
tions and events follow a Zipf-like distribution with the same value of α, but
different popularity ranking of the bins (Ns = 10).

to those servers whose load is below a certain threshold. The
threshold can be used to control the degree of load balancing, so
we call it the load balancing factor, which is defined as the ra-
tio of the maximum allowable server load to the average server
load. We see a clear trade-off between load balancing and the
hit ratio: as we relax the load balancing constraint by increas-
ing the load balancing factor, the hit ratio drops monotonically
because we are more likely to be able to route a subscription
to the server closest to it in the event space rather than route it
to an alternative server in order to avoid overloading the closest
server.

We also study the effectiveness in traffic reduction as a func-
tion of the percentage of subscriptions used to build an R-tree
offline. In general, the hit ratio decreases as we increase the
percentage because more subscriptions are clustered better. For
example, relative to the online R-tree data point, the hit ratio
is reduced by 7%, 20% and 30% when 30%, 50%, and 100%
subscriptions are used offline, respectively.

Finally, we vary the number of dimensions from 2 to 10,
and observe consistent results with those from the 4-dimension
case. The offline R-tree algorithm continues to reduce traffic by
30% - 50% compared to random partitioning, and online/offline
R-tree performs close to offline R-tree, within 10% difference
in hit ratio.

Summary: To summarize, our simulation results suggest
that R-trees are most effective in reducing event traffic. So we
will focus on the R-tree-based routing for the rest of the paper.

D. Extension to Widely Distributed Servers

So far, we have considered the case where servers are phys-
ically co-located. We can generalize our clustering scheme to
handle widely distributed servers as follow.

First, when the paths from the dispatcher to different servers
have different network distance, we can change the cost func-
tion used in the offline R-tree algorithm to be a weighted sum
of traffic and network distance. That is, we choose the cut
that minimizes the sum of the volumes of the bounding rect-
angles of the two partitions on the two sides of the cut weighted
by the network distance. Similarly, in the online R-tree algo-
rithm, a new subscription is forwarded to the server that incurs
least additional traffic weighted by the network distance, where
the additional traffic incurred at a server is approximated by
mini |NewSubscription \ BoundRectanglei |, and i’s are in-
dices for the bounding rectangles at the server.

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200464



Second, for performance reasons it is sometimes desirable to
have servers handle subscriptions for nearby clients. In such
cases, we can estimate similarity between different subscrip-
tions not only based on subscription filters but also based on
subscribers’ locations. This can be achieved in our system by
considering the subscriber’s location (e.g., its latency towards a
set of landmarks [22]) as additional dimensions for clustering.
Subscription servers can then be seeded with an affinity towards
specific coordinates in a given dimension. Clustering based on
both subscription filters and subscribers’ location is likely to
produce clusters with good locality, since subscriptions often
exhibit spatial locality as shown in [1].

IV. THROUGHPUT OPTIMIZATION

In addition to event traffic reduction, overall system through-
put is another important performance metric to optimize.
Higher system throughput would mean that the event distribu-
tion network can process incoming events at a higher rate, im-
proving the scalability on the publisher side. Although event
routing based on precise summaries minimizes event traffic, it
does not necessarily optimize system throughput. Since the
size and complexity of precise summaries are determined by
the characteristics of the subscription filters and are not oth-
erwise controllable, it is possible that the dispatcher may be-
come the bottleneck and the system throughput is negatively
impacted. The likelihood increases when the dispatcher serves
a large number of servers, and precise summaries match only a
small percentage of overall event traffic.

We propose the use of imprecise summaries as a mecha-
nism for balancing the load between the dispatcher, the net-
work links, and servers to optimize system throughput. The
intuition is that, if event routing with precise summaries causes
the dispatcher’s CPU to become the bottleneck of the overall
system, switching to less precise summaries would speed up
event routing and allow the dispatcher to accept more events
per second, enhancing system throughput. This is, however,
only true when the dispatcher remains the bottleneck. Obvi-
ously, if either the dispatcher’s input link or the publishers be-
come the bottleneck, there is no incentive for the dispatcher to
further reduce summary precision to speed up event routing. If
either the dispatcher’s outgoing link or the servers become the
bottleneck, further reducing summary precision would gener-
ate more false positive traffic and cause more congestion at the
bottleneck, degrading overall system throughput.

In this section, we first study system throughput using anal-
ysis and simulation, and then describe a self-tuning algorithm
to dynamically adjust summary precision for throughput opti-
mization. Note that while our simulation and implementation
(in the next section) use rectangle subscriptions as an example
to demonstrate the benefit of a tunable summary precision for
routing, the idea is more general, and can be potentially applied
to other forms of subscriptions.

A. Throughput Analysis and Simulation Study

We analyze the impact of imprecise summaries on system
throughput in Appendix . In this section, we summarize the key
results and equations that will be used in the simulation study.

Referring to Figure 1, let TPD, TPOL, and TPS denote the
individual throughput components of the dispatcher CPU, the
outgoing link, and the servers, respectively. These components
and the overall system throughput TP can be calculated as:

TPD = 1/(Td ·Ns)

TPOL = 1/(R · Tl ·Ns)
TPS = 1/(R · Ts · F )

TP = min(TPD, TPOL, TPS)

where Td is dispatcher’s average per-server per-event routing
time, Ns is the total number of servers receiving event mes-
sages from the dispatcher, R is the average hit ratio per server,
Tl is the average per-message transmission time by dispatcher’s
outgoing link, Ts is the average per-event processing time on a
single-node filtering engine, and F is the server’s load expan-
sion factor as defined in the Appendix.

Let TP ′ = min(TPOL, TPS); that is, TP ′ is the through-
put bottleneck downstream from the dispatcher CPU. If TP ′ <
TPD for all summary precisions, then precise summary offers
the optimal throughput. If TP ′ > TPD for all summary pre-
cisions, then the no-summary operating point is the optimal
one. In the remaining case, the TP ′ and TPD curves intersect
and the summary precision corresponding to the intersection
provides the optimal throughput. If TP ′ = TPOL, the opti-
mal Relative ThroughPut (RTP) equations with respect to the
precise-summary and no-summary operating points are

RTP op =
Tdp

Ro · Tl
, and (1)

RTP on =
1/(Ro · Tl ·Ns)

1/(Tl ·Ns)
=

1
Ro

, (2)

respectively, where Ro is the average hit ratio per server at the
optimal operating point.

We use simulations to study the effect of the number of sub-
scriptions, the number of dimensions, and subscription parti-
tioning algorithms on the optimal relative throughput achiev-
able by imprecise summaries. The impact of actual systems and
network parameters on the enhancement of absolute through-
put will be discussed in the implementation section. Here
we assume that all communication links have a bandwidth of
100Mbps or roughly 10MBps, and that the average size of each
event message is 1KB. This translates into Tl = 1K

10M = 100 mi-
croseconds per message. We present simulation results only for
the case of TP ′ = TPOL; results for the case of TP ′ = TPS
are similar. The main performance metrics are therefore the
two optimal relative throughput RTP op and RTP on defined in
Eq. 1 and Eq. 2, respectively. In our experiments, all events
and subscriptions have 8 dimensions, and the values on each
dimension are uniformly distributed between 0 and 10, unless
otherwise specified.

Varying the number of rectangles: Figure 7 shows the rel-
ative throughput as a function of summary precision, which is
represented as the ratio between the number of bounding rect-
angles and the total number of subscription rectangles. Each
curve corresponds to a different number of subscription rectan-
gles and is normalized by its own precise-summary throughput,

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200465



which is at the rightmost of the curve. As it shows, initially
when the system’s bottleneck is at the outgoing link, increasing
the summary precision reduces the amount of out-going traf-
fic and alleviates the bottleneck, thereby improving the overall
throughput. On the other hand, an increase in the summary pre-
cision also puts a higher load on the CPU. At some point when
the CPU becomes a bottleneck, a further increase in summary
precision aggravates the bottleneck, and decreases the overall
throughput. The peak of each curve marks the intersection of
the TPOL and TPD curves (i.e., when the throughput of dis-
patcher CPU equals to that of outgoing link), and thus the opti-
mal operating point, and its Y-axis value gives the RTP op mea-
sure. The RTP on measure can be calculated based on the hit
ratio Ro shown in the legend. (Rp is the average hit ratio per
server when precise summaries are used.)

0.5

1

1.5

2

2.5

3

0% 20% 40% 60% 80% 100%

Summary precision

R
el

at
iv

e 
th

ro
u

g
h

p
u

t

100,000 rectangles (Rp=0.75;Ro=0.97) 50,000 rectangles (Rp=0.67;Ro=0.89)
20,000 rectangles (Rp=0.54;Ro=0.82) 10,000 rectangles (Rp=0.42;Ro=0.73)

Fig. 7. System throughput for different number of rectangles.

As the number of rectangles increases, both the number of
maximal rectangles and the hit ratio R increase, which to-
gether cause the average precise-summary routing time Tdp to
increase. As a result, RTP op increases from 1.55 for 10,000
rectangles to 3.01 for 100,000 rectangles, a 200% increase in
system throughput over precise summaries. This demonstrates
that, compared to precise summaries, imprecise summaries are
especially useful when the number of subscriptions is large.

On the other hand, the optimal relative throughput with re-
spect to the no-summary operating point is RTP on = 1

Ro
and

the value drops from 1.37 to 1.03 as the number of rectangles
increases. Fortunately, Figure 8 shows that this negligible 3%
throughput gain (for 100,000 rectangles) is not inherent as we
scale up to a large number of subscription rectangles. When
we limit the volume of each rectangle and thus reduce the hit
ratio, the use of imprecise summaries can still increase system
throughput by 67% ( 1

0.60 − 1) compared to no summaries, as
shown by the lower curve in Figure 8. The shape of the curve
in fact resembles the lower curves in Figure 7.

Varying the number of dimensions: Figure 9 studies the ef-
fect of the number of dimensions on relative throughput while
keeping a constant number of 10,000 subscription rectangles.
As the number of dimensions increases, the hit ratio Rp de-
creases because the volume of the event space increases expo-
nentially, while the routing time Tdp increases due to a higher
overhead incurred in checking if a point belongs to a rectan-
gle. As a result, the dispatcher’s CPU is more likely to be the
bottleneck, and RTP op tends to increase as the number of di-
mensions increases, as shown by the two upper curves. In con-

0.5

1

1.5

2

2.5

3

0% 20% 40% 60% 80% 100%

Summary precision

R
el

at
iv

e 
th

ro
u

g
h

p
u

t

Rp=0.75;Ro=0.92 Rp=0.37;Ro=0.60

Fig. 8. Effect of hit ratios on optimal throughput gain (100,000 rectangles).

trast, the two lower curves illustrate the cases where imprecise
summaries are not useful: the low route time and high hit ra-
tio result in TPOL < TPD for all summary precisions, and so
precise summaries provide the optimal throughput.

0.5

1

1.5

2

0% 20% 40% 60% 80% 100%

Summary precision

R
el

at
iv

e 
th

ro
u

g
h

p
u

t

10 dims (Rp=0.11;Ro=0.76) 8 dims (Rp=0.42;Ro=0.73)
6 dims (Rp=0.81) 4 dims (Rp=0.98)

Fig. 9. System throughput for different numbers of dimensions.

Subscription locality and partitioning: The results pre-
sented so far have assumes that randomly generated subscrip-
tion rectangles are randomly partitioned among the servers. We
next evaluate the effect of subscription locality and partition-
ing on system throughput. We simulate locality by generating
the same random subscriptions within a subspace of the event
space. The results (not shown here) are very close to the follow-
ing analytical results. Suppose the ratio of the subspace volume
to the entire event space volume is x. Clearly, the hit ratio R
will drop by that ratio. The routing time Td also drops by ap-
proximately the same ratio because events within the subspace
are routed using the same R-tree (with all rectangles proportion-
ally smaller) and those outside the subspace can be filtered out
very quickly by the top-level bounding rectangle. The absolute
throughput thus increases by a ratio of 1

x , but the optimal op-
erating point stays the same and so RTP op remains unchanged.
The relative throughput RTP on increases by a ratio of 1

x .
A very similar behavior is observed when random subscrip-

tions are partitioned offline using a bulk-loading R-tree algo-
rithm. Figure 10 shows the relative throughput for 100,000 rect-
angles on 10 servers with and without offline partitioning. The
top two curves (with square points) are normalized against the
same precise-summary throughput value to illustrate the bene-
fit of offline partitioning in terms of increased system through-
put. In this case, offline partitioning reduces the routing time
Td by approximately 50% and hence doubles the throughput.
The bottom curve is constructed by normalizing the top curve

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200466



against its own precise-summary throughput. Since offline par-
titioning also reduces the hit ratioR by approximately 50%, this
curve matches the without-partitioning curve very well, which
indicates that imprecise summaries remain effective in further
enhancing the already increased system throughput.

0.5

1

1.5

2

2.5

3

0% 20% 40% 60% 80% 100%

Summary precision

R
el

at
iv

e 
th

ro
u

g
h

p
u

t

With partitioning (w.r.t. without partitioning)
Without partitioning
With partitioning

Fig. 10. Effect of subscription partitioning on system throughput.

B. Self-tuning

In addition to demonstrating the benefits of imprecise sum-
maries for throughput optimization, the analysis and simulation
results presented so far can also be used to perform offline se-
lection of optimal summary precision, if a sufficient number
of representative subscriptions are available. However, if those
are not available or if the optimal operating point shifts due to
changes in the event or subscription distributions or in network
conditions, the system must be able to automatically determine
the (new) optimal operating point and self-adapt using the op-
timal summary precision for routing. We describe such a self-
tuning algorithm in this subsection.

The main idea behind the algorithm is based on the following
observation: if the dispatcher’s CPU is the bottleneck, we can
move towards the optimal operating point, OPT , by reducing
summary precision; otherwise, either the dispatcher’s outgoing
link or the servers are the bottleneck and we can move towards
OPT by increasing summary precision. Instead of measuring
the various parameters used in the throughput equations, our
self-tuning algorithm simply relies on the dispatcher to monitor
its own CPU load and declare itself the bottleneck if and only if
it is fully loaded. In practice, the dispatcher periodically sam-
ples its CPU usage and compares the average CPU load during
the last time interval (e.g., 1 minute) with a threshold (e.g., 96%
usage). A threshold lower than 100% is necessary to account
for measurement errors and small fluctuations in CPU load.

The following pseudo-code describes our self-tuning algo-
rithm. When either the (variable) timeout t occurs or a signif-
icant change in system throughput is detected, the dispatcher
increments the self-tuning step index p, changes the summary
precision by x in the direction discussed previously, and in-
vokes the update t() function. Depending on the supported
granularity of x (which may be determined based on imple-
mentation efficiency and complexity 3), the limited number of

3To improve adaptivity, we can use a larger step size when we are farther
away from the optimal point, and use a smaller step size when we get closer to
the optimal.

operating points may force the algorithm to oscillate around the
optimal point. The update t() function tries to capture the fact
that the best achievable operating point has been reached by de-
tecting the number of repeated oscillations exceeding a thresh-
old (e.g, 3 in the pseudo-code). When that happens, the timeout
value t is increased to n ∗ t, n ≥ 1, (subject to an upper bound
of maxT ) to dampen the oscillation. The factor n provides a
trade-off between stability and adaptivity: a smaller n would
allow the system to detect changes in optimal operating point
faster, achieving greater adaptivity; this would however cause
the oscillation to happen at a higher frequency, and thus less
stability.

Self-tuning algorithm
wait for timeout t or throughputChangeTrigger
p++;
if (dispatcher CPU-bound)

decrease summary precision by x
else

increase summary precision by x
end
update t();

function update t()
if (p < 3)
t = 1;

else if (precision[p] = precision[p− 2] and
precision[p− 1] = precision[p− 3])
if (precision[p] > precision[p− 1])
numOscillations++;
if (numOscillations >= 3 and n ∗ t ≤ maxT )
t = n ∗ t;
numOscillations = 0;

end
end

else
numOscillations = 0;
t = 1;

end

V. AN XML-BASED IMPLEMENTATION

We next describe an implementation of summary-based sub-
scription and event routing in an XML-based Web Services
framework. The framework implements a set of SOAP-based
protocols that are being proposed to W3C as standards [30].

A. Design & Implementation

To allow experimentations with different algorithms, we
first modified the framework to support extensibility at vari-
ous points of the system, and then plugged in our routing and
matching modules through the extensibility mechanism.

Figure 11 illustrates the high-level software architecture of
the extensible framework as well as EDN-specific components
(in shaded boxes). The Messaging Layer provides the infras-
tructure for sending and receiving XML messages between Web
Services endpoints. The Namespace Binding Layer maintains
a hierarchical namespace (for event topics or routing table en-
tries) and associates each name entry with a matcher class that
would be instantiated to store the filters contained in messages
sent to that name. When a new route or topic entry is created
in the namespace, the creation message has the option of spec-
ifying a URI that identifies the matching engine to use for han-
dling any filter operations associated with the topic/route. The

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200467



default matcher class in the framework is the standard XPath
filter matcher, which is also used by the Messaging Layer for
message dispatching.

The Base Route Manager registers a handler with the Mes-
saging Layer to receive all incoming messages, and uses a
namespace layer instance and the matcher instances associated
with its name entries to make routing decisions. It also regis-
ters another handler to receive route administration messages
for creating, deleting, and enumerating route information. The
Base Subscription Manager registers a handler to receive all
messages related to topic management, subscriptions, and event
publications. In addition to supporting pluggable matcher and
namespace implementations, the extensibility also allows appli-
cations to extend the base classes in order to add custom XML
elements to base XML administrative messages and to override
or include additional logic in route or topic management.

EDN 
R-tree 

Matcher 

XPath 
Filter 

Matcher 

Messaging 
Layer 

Namespace Binding Layer 

Base 
Route Manager 

Base 
Subscription Manager 

EDN 
Route Manager 

EDN 
Subscription Manager 

 

Fig. 11. Software architecture of extensible Web Services framework.

In an R-tree-based EDN system, the dispatcher runs an ex-
tended Route Manager with namespace entries associated with
the RTreeRouteSet class (instead of the default XPath filter
matcher class); an RTreeRouteSet instance holds the set of
routing R-trees, one from each server, matches an incoming
event against all the trees, and returns a list of servers that
have a match. Each EDN server runs an extended Route Man-
ager for random, R-tree, or K-Mean-based subscription rout-
ing; it also runs an extended Subscription Manager with names-
pace entries associated with the RTreeMatchingEngine class.
An RTreeMatchingEngine instance uses an R-tree matcher as
the single-node filtering engine and another R-tree matcher
as the summary manager that maintains the maximal R-tree.
When the server’s routing R-tree is changed due to the inser-
tion of new subscriptions, the updated R-tree is sent to the dis-
patcher’s Route Manager as a route update message. Alterna-
tively, an RTreeMatchingEngine instance can use the XPath fil-
ter matcher as the filtering engine and extract the “most distin-
guishing” range predicates from each new subscription for use
in the R-tree summary manager; that is, it allows the use of
different formats for filtering and routing.

We have set up a network of 10 servers for running exper-
iments. All of them are 1.7GHz Pentium 4 PCs with 1GB
of memory. The results on subscription partitioning with of-
fline R-trees matched the simulation results. The hit ratios from
the online R-tree and offline/online R-tree experiments differed
slightly from the simulation results due to the nondeterminis-
tic relative timing between subscription arrivals and summary
updates. We will focus on the system throughput issues in the
remainder of this section.

B. When is Imprecise Summary Useful?

A key question to ask is: “in practice, when is imprecise
summary useful, and how to choose the precision to optimize
system throughput?” We answer the question in three steps.
First, we extend the dispatcher CPU-bound throughput equa-
tion to accommodate various system parameters from actual
implementations. Next, we show that imprecise summaries in-
deed provide throughput gains for our Web Services-based im-
plementation, and the actual throughput measurements closely
match the calculated curves from the equations. We then use
the calculated curves to explore the “what if” scenarios as we
vary system parameters such as messaging overhead, network
bandwidth, and CPU speed.

The throughput equation TPD = 1
Td·Ns assumes that mes-

saging overhead is negligible with respect to routing overhead.
This may not be true in XML-based implementations, which try
to provide self-describing messages and interoperability at the
cost of increased message size and message processing over-
head. We extend the equation as follows:

TPD =
1

Tf + (Td ·Ns) + Tc · (R ·Ns)
(3)

where Tf is the per-event fixed overhead for the receiving
and sending operations, and Tc is the per-copy sending over-
head. The network-bound throughput equation is re-expressed
in terms of the network bandwidth B and average message size
Sm as follows.

TPOL =
B

R · Sm ·Ns
(4)

In our base-line implementation, we have Tf = 1.6ms, Tc = 0
(with an efficient multicast repeater), and Sm = 3KB. In
our experimental setup, we have Ns = 10, CPU speed of
1.7GHz, and achievable network bandwidth B = 80Mbps on
a 100Mbps link. The route time Td and hit ratio R are obtained
from offline simulations. (Note that Td and R can only be ob-
tained when a set of existing subscriptions are available. In the
absence of such information, we will rely on the self-tuning al-
gorithm to automatically determine the optimal summary preci-
sion, as will be demonstrated in the next subsection. Also note
that we will focus on the above two throughput equations in
the remainder of this section; server CPU-bound scenarios that
involve TPS have similar behaviors.)

The “TP-Measured” curve in Figure 12 illustrates the ac-
tual throughput gain measured from the system. The optimal
summary precision is around 50%, and the optimal throughput
is 438 messages/sec, which is 31% and 27% higher than the
precise-summary and no-summary throughput, respectively. It
is clear from the figure that the “TP-Measured” curve closely
matches the calculated curve, which is the minimum of the
“TP OL” curve (i.e., Eq. (4) with B = 80Mbps) and the
“TP D-1.6ms” curve (i.e., Eq. (3) with Tf = 1.6ms).

The other two curves in Figure 12 study the throughput be-
havior as the per-event fixed overhead Tf changes and the
“TP OL” curve remains the same. The “TP D-0.2ms” curve
represents, for example, the case when a binary wire format
becomes a standard and significantly reduces the messaging
overhead. This would push the CPU-bound throughput curve

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200468



upwards and move the optimal operating point towards pre-
cise summary. In contrast, as Tf increases due to, for exam-
ple, message authentication and integrity checking overhead,
the optimal operating point would move towards no summary.
In the extreme case where Tf is so high that the CPU-bound
curve no longer intersects the network-bound curve, impre-
cise summaries would no longer be useful and the dispatcher
should multicast every event to all servers without performing
any summary-based routing.

225500

330000

335500

440000

445500

550000

555500

00%% 2200%% 4400%% 6600%% 8800%% 110000%%

SSuummmmaarryy  pprreecciissiioonn

TT
hh

rroo
uu

gg
hh

pp
uu

tt  
((mm

ssgg
ss//

ssee
cc))

TTPP__OOLL TTPP__DD--00..22  mmss TTPP__DD--11..66  mmss TTPP__DD--22..66  mmss TTPP--MMeeaassuurreedd

Fig. 12. System throughput as per-event overhead at the dispatcher changes.

Figure 13 examines the effect of available network band-
width on system throughput, while keeping the CPU-bound
curve unchanged (which is the same as the “TP D-1.6ms” curve
in Figure 12). The figure shows that, as network bandwidth
decreases from 100Mbps, 80Mbps, 40Mbps, to 10Mbps, the
optimal operating point moves towards the right. The “TP OL-
10Mbps” curve no longer intersects the “TP D” curve, making
the precise summary the optimal operating point. Figure 13
demonstrates the importance of self-tuning: even when the dis-
tributions of events and subscriptions remain stable, changes
in network conditions may affect the available bandwidth and
cause the optimal operating point to drift. The system must be
able to adapt to such changes to maintain optimal throughput.

00

110000

220000

330000

440000

550000

660000

770000

00%% 2200%% 4400%% 6600%% 8800%% 110000%%

SSuummmmaarryy  pprreecciissiioonn

TT
hh

rroo
uu

gg
hh

pp
uu

tt  
((mm

ssgg
ss//

ssee
cc))

TTPP__DD TTPP__OOLL--1100  MMbbppss TTPP__OOLL--4400  MMbbppss
TTPP__OOLL--8800  MMbbppss TTPP__OOLL--110000  MMbbppss

Fig. 13. System throughput as available network bandwidth changes.

We next study the throughput behavior as the (single-
processor) dispatcher CPU speed changes. The lowest curve
in Figure 14 shows that, with the XML messaging layer that we
are currently using and with 80Mbps available network band-
width, a 800MHz dispatcher would have been unable to catch
up with the network and shifted the optimal operating point to
the far left and render summary-based routing not useful. In
contrast, a 3GHz dispatcher will move the CPU-bound through-
put curve upwards. This allows the system to scale up to handle
event schemas with more attributes and hence higher routing

time Td, which would bring the CPU-bound throughput curve
back down and be able to benefit from the enhancement pro-
vided by imprecise summaries.

110000

220000

330000

440000

550000

660000

770000

00%% 2200%% 4400%% 6600%% 8800%% 110000%%

SSuummmmaarryy  pprreecciissiioonn

TT
hh

rroo
uu

gg
hh

pp
uu

tt  
((mm

ssgg
ss//

ssee
cc))

TTPP__OOLL TTPP__DD--880000MMHHzz TTPP__DD--11..77GGHHzz TTPP__DD--33GGHHzz

Fig. 14. System throughput as dispatcher CPU speed changes.

Finally, the two lower curves in Figure 15 illustrate the effect
of non-trivial per-copy sending overhead Tc on system through-
put. This represents the case where either the messaging layer
does not optimize for multicast sending, or the application re-
quires different processing for events forwarded to different
servers (such as encrypting each message with a different key).
In addition to increasing per-event processing time and hence
lowering the throughput curve, a higher Tc has a secondary ef-
fect that decreases the slope of the curve: if a significant portion
of the time that we save from routing with a lower precision is
“wasted” on the Tc for forwarding the additional false-positive
traffic, the benefits of imprecise summaries may be greatly re-
duced.

225500

330000

335500

440000

445500

550000

555500

00%% 2200%% 4400%% 6600%% 8800%% 110000%%

SSuummmmaarryy  pprreecciissiioonn

TT
hh

rroo
uu

gg
hh

pp
uu

tt  
((mm

ssgg
ss//

ssee
cc))

TTPP__OOLL TTPP__DD--00  mmss TTPP__DD--00..0055  mmss TTPP__DD--00..1155  mmss

Fig. 15. System throughput as per-copy overhead in multicast changes.

C. Self-tuning Experimental Results

We illustrate the self-tuning behavior of our system with two
sets of experiments, both of which use the setting corresponding
to the “TP-Measured” curve in Figure 12 as the basis. We set
the granularity x of summary precision change to 10%, and use
96% as the threshold for determining whether the dispatcher
is CPU-bound. For simplicity, we chose n = 1 in the self-
tuning algorithm, which corresponds to not dampening oscilla-
tions. (In the final version, we will include the results using the
dampening optimization described in Section IV-B.)

In the first set of experiments, we started the system with
10% and 100% precisions, and expected the self-tuning algo-
rithm to bring the system to the optimal operating point of

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200469



around 50% precision. Figure 16 illustrates the throughput and
summary precision behavior for the two experiments. When
started with a 10% precision, the system was quickly brought to
the 50% point and stayed around the 40% and 50% precisions.
Occasionally, the CPU usage at the 50% point dropped below
the threshold and prompted the algorithm to try the 60% point
to see if the optimal operating point had shifted (e.g., Steps 14
and 15). Since we did not vary any system or network param-
eters in this experiment, the algorithm correctly switched back
to the near-optimal precision points. The second experiment
starting with a 100% precision, shown in Figure 16(b), took a
bit longer to converge. Between Steps 6 and 7, a transient con-
dition falsely suggested that the optimal operating point might
be between 60% and 50%. Once that transient condition disap-
peared, the algorithm correctly stabilized around the 40% and
50% precisions.

330000

335500

440000

445500

550000

555500

00 55 1100 1155 2200 2255

SSeellff--ttuunniinngg  sstteeppss

TT
hh

rroo
uu

gg
hh

pp
uu

tt  
((mm

ssgg
ss//

ssee
cc))

00

1100

2200

3300

4400

5500

6600
SS

uu
mm

mm
aarr

yy  
pp

rree
ccii

ssii
oo

nn
  ((

%%
))

TThhrroouugghhppuutt SSuummmmaarryy  pprreecciissiioonn

(a) Starting from 10% precision

330000

335500

440000

445500

550000

555500

00 55 1100 1155 2200

SSeellff--ttuunniinngg  sstteeppss

TT
hh

rroo
uu

gg
hh

pp
uu

tt  
((mm

ssgg
ss//

ssee
cc))

3300

4400

5500

6600

7700

8800

9900

110000

SS
uu

mm
mm

aarr
yy  

pp
rree

ccii
ssii

oo
nn

  ((
%%

))

TThhrroouugghhppuutt SSuummmmaarryy  pprreecciissiioonn

(b) Starting from 100% precision

Fig. 16. Self-tuning system throughput and summary precision.

In the second set of experiments, we changed the event dis-
tribution from uniform to a normal distribution with a mean
of 9.5 and a standard deviation of 0.25, and expected the self-
tuning algorithm to bring the system to a new optimal operat-
ing point. As shown in Figure 17, the system was started with
a 10% precision and brought to the near-optimal precisions of
40% and 50%; then, the event distribution was changed around
Steps 13 and 14. The disturbance triggered the algorithm to
search for a new optimal point, first incorrectly towards higher
precisions and then in the reversed direction. Eventually, the
algorithm stabilized around the 10% and 20% summary preci-
sions, achieving a higher throughput than that at the previous
optimal operating point.

330000

335500

440000

445500

550000

555500

00 55 1100 1155 2200 2255

SSeellff--ttuunniinngg  sstteeppss

TT
hh

rroo
uu

gg
hh

pp
uu

tt  
((mm

ssgg
ss//

ssee
cc))

00

1100

2200

3300

4400

5500

6600

7700

SS
uu

mm
mm

aarr
yy  

pp
rree

ccii
ssii

oo
nn

  ((
%%

))

TThhrroouugghhppuutt SSuummmmaarryy  pprreecciissiioonn

Fig. 17. Self-tuning system throughput and summary precision in response to
changing event distribution.

VI. RELATED WORK

Related work on pub/sub systems can be classified into four
categories: (1) commercial products such as TIBCO’s TIB Ren-
dezvous, Talarian’s SmartSockets, etc.; (2) interface standards
in CORBA and Java; (3) single-node subscription filtering algo-
rithms such as [14], [2], [11], which are orthogonal to our work;
(4) prototype event notification services such as Elvin [25],
Gryphon [4], Hierarchical Proxy Architecture [31], Ready [15],
SCRIBE [24], and SIENA [9].

The EDN summary-based routing was inspired by the
quench expressions in Elvin, the hybrid matching schemes in
Ready, the vector annotation in Gryphon, the filters poset in
SIENA, and the subscription merging in Hierarchical Proxy Ar-
chitecture. Similar ideas have also appeared outside the pub/sub
literature [26]. The more recent SIENA fast forwarding pa-
per [8] described a fast content-based forwarder, which per-
forms particularly well when the total number of distinct at-
tribute names is large and the number of attributes per message
is relatively small.

Almost all of these work, however, couple the subscription
paths tightly with the notification paths (e.g., use reverse path
forwarding to set up forwarding table). In comparison, we focus
on event notification systems in which the subscription paths
are completely decoupled from the notification paths. The lat-
ter architecture is commonly used in many commercial pub/sub
systems. Under this new architecture model, we generalize the
existing proposals by supporting imprecise summaries to opti-
mize an additional performance metric – system throughput.

C. Y. Chan et al. [10] proposes a new index structure for reg-
ular expressions, called RE-tree. RE-trees is similar in spirit
to R-trees, but handle regular expressions rather than multi-
dimensional rectangles. The notion of imprecise summary is
also useful to RE-trees, when they are used in a distributed fash-
ion.

There have been several recent papers on using similarity-
based clustering in the pub/sub setting. All of them are con-
cerned with reducing the total number of required IP multicast
addresses for notification delivery, while the EDN subscription
partitioning algorithms aim at enabling compact summaries for
event traffic reduction, before notifications are generated. The
Group Approximation Algorithm described in [20] tries to com-
bine actual multicast groups into approximate groups, while in-
troducing the least amount of false-positive traffic. For multi-
party applications, [29] proposed using the k-means method to
group subscribers with similar sets of publishers that they are

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200470



interested in, so as to minimize overall wasted event traffic. The
grid-based clustering framework in [23] partitioned the event
space into cells, and associated a feature vector with each cell
to indicate the set of subscribers interested in events falling into
that cell. The cells are then clustered to minimize the expected
waste of event traffic. The paper briefly mentioned the use of
R-trees to map an event to a multicast group.

Finally, in [28] we have examined how to partition equality
predicates to reduce event traffic.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we propose a summary-based routing frame-
work for content-based event distribution.

To make summary compact and effective, we cluster sub-
scriptions based on their similarity. Our evaluation shows that
for range predicates, the R-tree algorithms are most effective:
compared to random partition, the R-tree algorithms cut down
event traffic by 20% to 60% when subscriptions follow a uni-
form distribution, and by up to 5 times when subscriptions fol-
low a Zipf-like distribution.

To optimize system throughput, we propose using imprecise
summary, which generalizes previous work on precise sum-
maries and provides an important trade-off between routing
overhead and false-positive traffic. Simulation results showed
that summary-based routing could increase throughput by up to
200% and 67% compared to the uses of precise summaries and
no summaries, respectively.

To assess the practical benefits of summary-based routing
in the context of Web-based eventing, we have implemented
the proposed techniques in an XML/SOAP-based framework
that conforms to the proposed Web Services standards. Perfor-
mance measurements from the actual implementation largely
validated our throughput analysis, which was extended to ac-
commodate various implementation parameters.

To help system engineers determine whether imprecise sum-
maries are useful for their particular implementations, we give
a detailed discussion on the behavior of system throughput as
messaging overhead, available network bandwidth, and CPU
speed varies. Most importantly, we have designed a self-tuning
algorithm that can dynamically maintain optimal throughput by
automatically adapting to changing operation conditions. Ex-
perimental results from the implementation confirm the self-
tuning capability in practice. Although we have focused on
range predicates in this paper, the general concept of self-
tuning, imprecise summary-based subscription and event rout-
ing should be applicable to other types of publish/subscribe sys-
tems as well.

A number of avenues for future work remain. First, we are
currently investigating another approach to subscription parti-
tioning. To minimize the average number of servers that an
event needs to reach, we can formulate the problem as a graph
partitioning problem: each vertex represents a rectangle and
the edge cost between two vertices reflects the penalty if the
two rectangles reside on different servers. Given the number
of servers Ns, the goal is to cut the graph into Ns clusters
so that the sum of edge costs in the cut is minimized while
avoiding overloading any server. This is a well-studied prob-
lem known as Capacitated Graph Partitioning [12] or Min-Cut

Clustering [19]. There are good algorithms to achieve this, such
as the multilevel Kernighan-Lin algorithm [17].

Second, we have focused on the distribution topology that
has only one level of branching. It is interesting to extend
summary-based routing for general distribution topologies.

Finally, so far we considered providing summaries for sub-
scriptions after all the dimensions have been defined and sub-
scriptions have been constructed in that space. An interesting
direction for future work would be to consider how our sum-
mary mechanism can guide the definition of the space by offer-
ing system throughput as an additional criterion for evaluating
design alternatives of the dimensions.

REFERENCES

[1] A. Adya, P. Bahl, and L. Qiu. Characterizing alert and browse services
for mobile clients. In Proc. of USENIX Annual Conference, Jun. 2002.

[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chan-
dra. Matching events in a content-based subscription system. In Sympo-
sium on Principles of Distributed Computing, pages 53–61, 1999.

[3] M. F. Arlitt and C. L. Williamson. Internet Web Servers: Workload Char-
acterization and Performance Implications. In IEEE/ACM Transactions
on Networking, pages 631–645, 1997.

[4] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom,
and D. C. Sturman. An efficient multicast protocol for content-based
publish-subscribe systems. In International Conference on Distributed
Computing Systems, pages 262–272, 1999.

[5] R. Bayer and E. McCreight. Organization and maintenance of large or-
dered indices. In Proc. 1970 ACM-SIGFIDET Workshop on Data De-
scription and Access, Nov. 1970.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching
and Zipf-like Distributions: Evidence and Implications. In Proceedings
of INFOCOMM ’99, March 1999.

[8] A. Carzaniga, J. Deng, and A. L. Wolf. Fast forwarding for content-
based networking. In Technical Report CU-CS-922-01, Department of
Computer Science, University of Colorado, Nov. 2001.

[9] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Transactions on Computer
Systems, 19(3):332–383, 2001.

[10] C. Y. Chan, M. Garofalakis, and R. Rastogi. RE-Tree: An efficient index
structure for regular expressions. In Proc. of VLDB ’2002, 2002.

[11] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe.
In Proc. of SIGMOD Conference, 2001.

[12] C. E. Ferreira, A. Martin, C. C. de Souza, R. Weismantel, and L. A.
Wolsey. The node capacitated graph partitioning problem: A computa-
tional study. In Mathematical Programming, 1996.

[13] Y.J. Garcia, M.A. Lopez, and S.T. Leutenegger. A greedy algorithm for
bulk loading R-trees. In Univ. of Denver Computer Science Tech. Report
#97-02, 1997.

[14] J. Gough and G. Smith. Efficient recognition of events in a distributed
system. In Proc. of the 18 th Australasian Computer Science Conference,
Feb. 1995.

[15] R. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the
ready event notification service. In Proc. of the 19th IEEE International
Conference on Distributed Computing Systems Middleware Workshop,
1999.

[16] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
Proc. of ACM SIGMOD Conference, 1984.

[17] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning
graphs. In Proc. of Supercomputing, 1995.

[18] A. K. Jain and Dubes. Algorithms for clustering data. 1988.
[19] Weighted min cut. http://riot.ieor.berkeley.edu/riot/Applications/

WeightedMinCut/.
[20] L. Opyrchal, M. Astley, J. S. Auerbach, G. Banavar, R. E. Strom,

and D. C. Sturman. Exploiting IP multicast in content-based publish-
subscribe systems. In Proc. of Middleware, pages 185–207, 2000.

[21] V. N. Padmanabhan and L. Qiu. The Content and Access Dynamics of
a Busy Web Site: Findings and Implications. In Proceedings ACM SIG-
COMM 2000, August 2000.

[22] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-aware
overlay construction and server selection. In Proc. of IEEE INFOCOM,
Jun. 2002.

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200471



[23] A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and L. Zhang. Clustering al-
gorithms for content-based publication-subscription systems. In Proc. of
ICDCS, 2002.

[24] A. I. T. Rowstron, A. M. Kermarrec, M. Castro, and P. Druschel. SCRIBE:
The design of a large-scale event notification infrastructure. In Inter-
national Workshop on Networked Group Communication, pages 30–43,
2001.

[25] B. Segall and D. Arnold. Elvin has left the building: A publish /subscribe
notification service with quenching. In Proc. of AUUG, 1997.

[26] Alex C. Snoeren, Kenneth Conley, and David K. Gifford. Mesh-based
content routing using xml. In ACM Symposium on Operating System
Principles, Oct. 2001.

[27] Y. M. Wang, P. Bahl, and W. Russell. The SIMBA user alert service archi-
tecture for dependable alert delivery. In IEEE Int. Conf. on Dependable
Systems and Networks (DSN), 2001.

[28] Y. M. Wang, L. Qiu, D. Achlioptas, G. Das, P. Larson, and H. J. Wang.
Subscription partitioning and routing in content-based publish/subscribe
networks (Brief Announcement). In Proc. of DISC, Oct. 2002.

[29] T. Wong, R. H. Katz, and S. McCanne. An evaluation on using preference
clustering in large-scale multicast applications. In Proc. of INFOCOM,
pages 451–460, 2000.

[30] Web Services standards. http://www.webservices.org/index.php/standards/.
[31] H. Yu, D. Estrin, and R. Govindan. A hierarchical proxy architecture for

internet-scale event services. In Proc. of WETICE, 1999.

APPENDIX
We use the following notation to analyze system throughput

(referring to Figure 1):
• Ns: the total number of servers receiving event messages

from the dispatcher.
• Td: dispatcher’s average per-server per-event routing time.

It is calculated as the average per-event routing time of the
summary-based router, divided by Ns.

• R: the average hit ratio per server (always less than one).
It is calculated as the per-event average number of servers
receiving events from the dispatcher, divided by Ns.

• Ts: average per-event processing time on a single-node
filtering engine.

• F : server’s load expansion factor. In addition to invoking
the filtering engine to process each event, a server needs
to generate and deliver notifications to all subscribers with
a matching subscription. We use Ts · F to represent the
overall per-event processing time at the server. The fac-
tor F is close to the minimum value of 1 if Ts dominates
the processing time. This corresponds to the case where
either a separate scalable notification delivery network is
available and so the servers only need to send a copy of
the event message and the IDs of the matching subscribers
to the delivery network, or the application allows delaying
notification deliveries until the system is less loaded, for
example, during off-peak hours.

• Tdp, Rp and Tsp: the values of Td, R, and Ts, respectively,
when precise summaries are used.

• Tdo,Ro, and Tso: the values of Td,R, and Ts, respectively,
at the optimal operating point.

• Tdn and Tsn: the values of Td and Ts, respectively, when
no summary is used. (Note that Rn = 1.)

• Tl: the average per-message transmission time from a
communication link. Let B be the link bandwidth ex-
pressed as the number of bytes per second; let Sm be the
average message size in terms of number of bytes. We
have Tl = Sm

B . For ease of presentation, we will assume
that all servers and the dispatcher have the same band-
width, and hence the same Tl for all incoming and out-

going links. The analysis can be easily extended to ac-
commodate different values of Tl for different links.

• Tp: the average time interval between two consecutive
event messages sent to the dispatcher by the publisher(s).
In the analysis below, we assume that all published events
are sent to a single dispatcher. Multiple dispatchers can be
used to further enhance throughput either by partitioning
the set of events or by partitioning the set of servers among
the dispatchers. The analysis would be similar.

Let TPIL, TPD, TPOL, and TPS denote the individual
throughput components of the incoming link, the dispatcher
CPU, the outgoing link, and the servers, respectively. The over-
all system throughput TP is then determined by the minimum
of these four components, which are calculated as follows.

TPIL = 1/max(Tp, Tl)

TPD = 1/(Td ·Ns)

TPOL = 1/(R · Tl ·Ns)

TPS = 1/(R · Ts · F )

TP = min(TPIL, TPD, TPOL, TPS)

We would like to support as high event rate from the pub-
lisher as possible, so we can assume Tp < Tl. We are mainly
interested in systems with Ns ≥ 10 and R ≥ 0.1, so we have
TPOL = 1

R·Tl·Ns ≤
1
Tl

= TPIL and

TP = min(
1

Td ·Ns
,

1
R · Tl ·Ns

,
1

R · Ts · F
)

Clearly, the first term (inverse of Td) decreases monotonically
and the second term (inverse of R) increases monotonically as
summary precision increases. The third component has both
a hit ratio and a time component Ts. We will show that it
also increases monotonically with summary precision. Given
a hit ratio R2 corresponding to server processing time Ts2,
suppose the hit ratio increases by x percent by using a lower
summary precision, R1. The new Ts1 can be calculated as
Ts2·100+Ts′ ·x

100+x > Ts2·100
100+x where Ts′ is the average per-event pro-

cessing time for those additional x percent of false-positive traf-
fic. We then have R1 · Ts1 > R2·(100+x)

100 · Ts2·100
100+x = R2 · Ts2.

Let TP ′ = min(TPOL, TPS), i.e., the minimum of the two
monotonically increasing terms. We distinguish three cases.
First, if TP ′ < TPD for all summary precisions, then we have
TP = TP ′ and precise summary offers the optimal through-
put. In this case, the dispatcher’s CPU is not the bottleneck
even with precise summaries, so imprecise summaries are not
useful. Second, if TP ′ > TPD for all summary precisions,
then we have TP = TPD and the no-summary operating point
is the optimal one. (When the route time Td approaches zero,
the messaging layer overhead for receiving and sending is no
longer negligible. This will be discussed in more details in the
implementation section.)

In the third case, the TP ′ and TPD curves intersect and the
summary precision corresponding to the intersection provides
the optimal throughput. If TP ′ = TPOL, the optimal operat-
ing point happens at 1

Tdo·Ns = 1
Ro·Tl·Ns . The optimal Relative

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200472



ThroughPut (RTP) with respect to the precise-summary operat-
ing point is

RTP op =
Optimal throughput

Precise summary throughput

=
Tdp

Ro · Tl
(5)

(where the subscript “p” stands for “precise summary” and
the superscript “o” indicates that TPOL is considered), which
would be more significant when Tdp is large and imprecise sum-
maries can reduce it to Tdo (which must be less than Tl because
Ro ≤ 1) while maintaining a low Ro.

The optimal relative throughput with respect to the no-
summary operating point (i.e., R = 1) is

RTP on =
Optimal throughput

No summary throughput

=
1/(Ro · Tl ·Ns)

1/(Tl ·Ns)
=

1
Ro

(6)

Note that, since we have 1 ≥ Ro ≥ Rp, RTP on would be in-
significant if Rp is already close to 1.

Similarly, if TP ′ = TPS , the intersection occurs at
1

Tdo·Ns = 1
Ro·Tso·F , and the optimal RTP’s are RTP sp = Tdp

Tdo

and RTP sn = Tsn
Ro·Tso .

ACM SIGCOMM Computer Communications Review Volume 34, Number 5: October 200473




