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Abstract— Reliability is critical to a variety of network appli-
cations. Unfortunately, due to lack of QoS support across ISP
boundaries, it is difficult to achieve even two 9s (99%) reliability
in today’s Internet. In this paper, we propose SmartTunnel, an
end-to-end approach to achieving reliability. A SmartTunnel is a
logical point-to-point tunnel between two end points that spans
multiple physical network paths. It achieves reliability by strate-
gically allocating traffic onto multiple paths and performing FEC
coding. Such an end-to-end approach requires no explicit QoS
support from intermediate ISPs, and is therefore easy to deploy
in today’s Internet. To fully realize the potential of SmartTunnel,
we analytically derive near-optimal traffic allocation schemes that
minimize loss rates. We extensively evaluate our approach using
trace-driven simulations, ns-2 simulations, and experiments on
PlanetLab. Our results clearly demonstrate that SmartTunnel is
effective in achieving high reliability.

I. I NTRODUCTION

Many applications, such as Voice over IP (VoIP), video
conferencing, streaming media, gaming, and online trading
have stringent requirements on end-to-end reliability. Unfor-
tunately, today’s Internet does not even provide two 9s (99%)
reliability [16], [10], [8]. This is considerably lower than what
the public switched telephone network (PSTN) offers today
(three to four 9s).

Achieving end-to-end reliability is hard in the Internet for
several reasons. First, there lack both incentives and mech-
anisms for ISPs to cooperate. This implies that it is hard
to provide reliability guarantees across ISP boundaries. As
a result, while it may be possible to achieve high reliability
within an individual ISP, the reliability of end-to-end paths,
spanning over multiple ISPs, is significantly lower. Second,
numerous measurement studies [26], [3], [28] have shown
that Internet packet loss often exhibits burstiness (or temporal
dependency). Bursty losses pose significant challenges to
protect against. While forward error correction (FEC) coding
is useful to protect against random losses, bursty packet losses
significantly affect the effectiveness of FEC.

To address these challenges, we proposeSmartTunnelto
achieve reliability in today’s Internet. A SmartTunnel is a
logical point-to-point tunnel between two communicating end
points that may physically span multiple Internet paths. It
achieves reliability by properly allocating traffic acrossdif-
ferent paths and applying FEC coding. Such an end-to-end
approach requires no explicit QoS support from intermediate
ISPs, and can be directly applied to end hosts or Internet
gateways. Therefore it is easy to deploy in today’s Internet.
Moreover, the simple tunnel abstraction can be naturally
incorporated into applications and services such as virtual
private networks to improve reliability.
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To realize the potential of SmartTunnel, we analytically
derive near-optimal traffic allocation schemes that optimize
end-to-end loss rates under bursty loss.

Our key contributions can be summarized as follows:
• We propose SmartTunnel abstraction to provide end-to-end

reliability. This abstraction immediately supports diverse
upper and lower network layer technologies without modifi-
cation. It can also be easily incorporated into VPN services.
Therefore SmartTunnel is easy to deploy in today’s Internet.

• We analytically develop near-optimal traffic allocation
schemes to optimize end-to-end loss rate in the presence
of bursty packet losses. We further implement SmartTunnel
using the click modular router [13].

• We extensively evaluate the effectiveness of SmartTun-
nel using trace-driven simulation, ns-2 simulations, and
PlanetLab experiments. Our results show that SmartTunnel
is effective in achieving high end-to-end reliability and
multiple SmartTunnels can co-exist well.
The rest of the paper is organized as follows. In Section II,

we survey related work. In Section III, we describe Smart-
Tunnel architecture. In Section IV, we present algorithms
that determine optimal traffic allocation. We describe our
evaluation methodology and results in Section V. We conclude
in Section VI.

II. RELATED WORK

We broadly classify the related work into the following
three areas: (i) measurement of Internet reliability, (ii)overlay
routing and multihoming, and (iii) FEC based loss recovery.

Measurement of Internet reliability: Several measurement
studies have reported that Internet reliability is quite limited.
In particular, Paxson observed a routing pathology arises 1.5%
- 5% during 1994-1995. Jiang et al. [10], and Gummadi [8]
conducted large-scale measurement studies of Internet path
failures, and reported that Internet reliability is often below
two 9s (99%).

Overlay routing and multihoming: Several studies, such
as [21], [24], [18], have shown that the default network
path is often suboptimal in terms of latency, loss rate, and
TCP throughput. To address these issues, a variety of overlay-
based techniques have been proposed to improve network
performance and resilience. For example, RON [18] allows
distributed applications to recover network path failuresby
routing through alternative overlay paths. OverQoS [23] uses
a controlled loss virtual link abstraction to bound the loss
rate. Since OverQos uses only a single path, it cannot protect
against highly bursty losses in a timely fashion. Zhang et al.
[27] proposes mTCP, an end-to-end transport layer protocol, to
enhance the robustness under path failures by using multiple
paths. mTCP uses retransmission to recover packet loss and



is not suitalbe for real-time multimedia applications. More
recently, scalable one hop source routing (SOSR) [8] proposes
that upon path failures the source node randomly chooses four
nodes as relay nodes to re-route traffic. Their results show that
it can recover 20-56% failures. SOSR is a reactive approach
and requires failure indications. Therefore it is suitablefor
recovering long-term failures, but not for recovering bursty
loss, which is our main focus.

There are quite a few research studies on the design and
evaluation of route control schemes for multihomed users.
For example, Cao et al. [4] propose using hash functions to
achieve load balancing among multiple links. Akella et al. [2]
quantify the potential performance benefits of multihoming
using real Internet traces. In their follow-up work, the authors
implement a route control scheme based on either passive
or active monitoring schemes. Their experimental evaluation
show that their approach provides 15% to 25% performance
improvement. The authors in [7] develop novel smart routing
algorithms to simultaneously optimize cost and performance
for multihomed users, and study the interactions between
multihomed and single-homed users.

SmartTunnel can be applied to both overlay paths and
multihoming paths. One of the fundamental differences be-
tween SmartTunnel and the existing work is that almost all
the existing work uses only a single path (e.g., send traffic
along the best performing path). Due to bursty packet losses
in the Internet, using a single path yields limited reliability.
In comparison, SmartTunnel can achieve high reliability by
simultaneously using multiple paths.

FEC based loss recovery:Significant research work has
been done on the design and evaluation of forward error
correcting code, such as [17], [15]. Our work is orthogonal to
the development of FEC coding algorithms, and can directly
apply the existing systematic FEC coding schemes (i.e., FEC
codes that include unmodified original data packets in the FEC
group).

Jain et al. [9] study the problem of traffic allocation onto
multiple paths to achieve high reliability. This is a pioneering
work on this subject. It is also the work closest to ours.
Different from our work, [9] targets delay tolerant networks,
and the proposed approach is based on very different loss
models from the Internet. In particular, they do not consider
bursty loss. As a result, their approach does not work well
for Internet paths, as we will show in Section V. Note that
in order to cope with bursty loss, it is necessary to develop a
completely different traffic allocation scheme (as opposedto a
simple extension to [9]). We will further elaborate this point
and compare SmartTunnel with [9] in Section IV-A.

III. SMARTTUNNEL ARCHITECTURE

SmartTunnel is a logical point-to-point tunnel between two
communicating end points that may physically span multiple
Internet paths. It sits at network-layer, and is transparent to ap-
plications. As shown in Figure 1, a tunnel source continuously
monitors the network paths, and provides the performance of
network paths to the controller. The controller applies thetraf-
fic allocation algorithm, described in Section IV, to distribute
traffic onto multiple physical paths. On the data plane, datais
first delivered to FEC encoder, which generates redundancy
packets and hands over the resulting data and redundancy

packets to the traffic distributor that stripes packets according
to the controller’s specification. The tunnel destination decodes
and buffers data. Buffering is necessary to reduce packet re-
ordering, which can degrade TCP performance. A packet is
delivered to uppper layers either when all the packets before
it have been received (or recovered) or when buffer is full.
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Fig. 1. SmartTunnel architecture.

SmartTunnel can be deployed either at the two communicat-
ing end-points or at their Internet gateways. SmartTunnel can
also be easily integrated with current VPNs. Today’s VPNs
only provide reachability and security, but no reliability. By
running SmartTunnel sender and receiver at the VPN servers
of the two communicating points, network providers can offer
value-added services.

IV. SMARTTUNNEL ALGORITHMS

To fully realize the potential of SmartTunnel, we need to
address the following issues: (i) how to allocate traffic onto
multiple paths to minimize loss rates under realistic Internet
loss models, and (ii) how to measure path properties which
can be used for the allocation schemes. In this section, we
examine these issues in turn.

A. Allocation Problem Formulation

First we formulate the traffic allocation problem of mini-
mizing packet loss rate. Table I summarizes our notations.

N number of physical paths
D number of data packets per FEC group
R number of redundant packets per FEC group
G FEC group size (G = D + R)
di number of allocated data packets on pathi
ri number of allocated redundant packets on pathi
xi number of lost data packets on pathi
yi number of lost redundant packets on pathi

X total number of lost data packetsX =
P

N

i=1
xi

Y total number of lost redundant packetsY =
P

N

i=1
yi

X̄FEC expected number of lost data packets after applying FEC:
X̄FEC =

P

D

ℓ=1
ℓ · Pr[X = ℓ ∧ X + Y > R]

X̄≈

FEC
continuous approximation of̄XFEC (see Section IV-B.1)

TABLE I

NOTATIONS

Consider a SmartTunnel from nodes to node d. Traffic
from node s to node d can take several differentphysical
paths, which can be provided by either multihoming or overlay
routing. LetN denote the number of physical paths available
to the SmartTunnel. When a packet is transmitted along a
physical path, it can get lost due to a variety of reasons, such
as routing loops, failures, and network congestion. To achieve
reliability, nodes applies forward error correction (FEC) code



to protect packets that use the SmartTunnel. Specifically, for
every D data packets, nodes createsR redundant packets,
which together with all the data packets form an FEC group
of size G = D + R. The FEC code is designed to recover
from R packet losses. That is, when noded receives anyD
out of G packets in the group, it can reconstruct the entire
FEC group. If more thanR packets are lost, however, noded
can only deliver those successfully received data packets and
cannot recover the lost data packets.

Given an FEC group withD data packets andR redundant
packets, there areND+R different ways of allocating packets
in an FEC group ontoN physical paths. Different allocations
can result in different numbers of packet losses after applying
FEC. The goal of the SmartTunnel is to derive an optimal
allocation that minimizes the expected number of packet losses
after applying FEC. This problem can be formally specified
as follows.

Definition 1 (Optimal Allocation Problem):Let di and ri

denote the number of data packets and redundant packets
allocated on pathi. Let random variablesxi andyi denote the
number of data packets and redundant packets that are lost on
pathi. Let random variablesX =

∑N

i=1 xi andY =
∑N

i=1 yi

denote the total number of lost data packets and lost redundant
packets, respectively. The optimal allocation problem is to
determine an allocation{(di, ri)} under which the expected
number of lost data packets after applying FEC is minimized.
That is,

minimize X̄FEC ≡
D

∑

ℓ=1

ℓ · Pr[X = ℓ ∧ X + Y > R] (1)

whereℓ = 1, · · · ,D enumerates all possible values forX (i.e.,
the total number of lost data packets), and the summation gives
the expected number of lost data packets when FEC cannot
reconstruct the entire FEC group (i.e., whenX + Y > R).

Modeling Temporal Loss Dependency in the Internet:
To solve the above optimization problem, we first need to
understand the behavior of Internet packet loss. Numerous
measurement studies [26], [3], [28] have shown that Internet
packet loss often exhibits burstiness. Burstiness affectsthe
performance of FEC because when a large burst of packets
are lost in an FEC group, FEC cannot recover the lost data
packets. It is therefore important to explicitly model bursty
loss in SmartTunnel.

A variety of models have been proposed to capture temporal
loss dependency, including the 2-state Gilbert Model [6], the
n-state Extended Gilbert Model, and the Markov Chain Model
[26], [20], [3]. In this paper, we use Extended Gilbert Model.
As shown in [20], the Extended Gilbert Model achieves a
good balance between model accuracy and simplicity – it is
much more accurate than the2-state Gilbert Model, while only
requiresn parameters to be estimated (as oppose ton2 in the
General Markov Model).

The Extended Gilbert Model [20], as shown in Figure 2,
captures changes in the loss burst length. Specifically, in an n-
state Extended Gilbert Model, statei (i = 0, 1, ..., n−2) means
that there are exactlyi consecutive losses since the beginning
of the current loss burst, whereas staten−1 means thatn−1
or more consecutive losses have occurred. The corresponding
loss probability vector isL = [0, 1, · · · , 1] (i.e., ℓ0 = 0 and
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Fig. 2. The Extended Gilbert Model

for ∀i > 0, ℓi = 1). Suppose the current loss burst length is
i. For a newly transmitted packet, it will either get lost with
probability pi(i+1) and cause the burst length to increment
by one, or get through successfully with probabilitypi0 =
1 − pi(i+1) and reset the burst length to0. No other state
transitions are allowed. So the model is fully specified byn
parameterspi0, and the corresponding transition matrix has
only 2n non-zero entries.

P =











p00 p10 p20 · · · p(n−2)0 p(n−1)0

p01 0 0 · · · 0 0
0 p12 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · p(n−2)(n−1) p(n−1)(n−1)











(2)

Why are new algorithms and techniques required?The
problem of using redundancy to cope with failures has recently
been considered in the context of Delay Tolerant Networks
(DTNs) by Jain et al. [9]. They use a similar problem
formulation to optimally allocate packets in an FEC group onto
different paths. Given such similarity, one may be tempted
to directly apply the techniques developed in [9] to the
Internet. Unfortunately, several important reasons prevent us
from applying these techniques to achieve high reliabilityin
the Internet. Therefore, we have to develop new algorithms
and techniques for use in SmartTunnel.

• Burstiness in Internet packet loss.Two different loss mod-
els are considered in [9]: independent packet loss (which
exhibits no temporal loss dependency) and complete path
failure (where a path delivers either all packets successfully
or no packet at all). While these models may be useful in a
DTN, neither model captures the commonly observed bursty
loss behavior in the Internet. Since the goal of SmartTunnel
is to minimize loss in the Internet context, it is essential
to use models that capture the Internet loss behavior more
accurately.

• The use of different performance metrics.Jainet al. [9] try
to minimize the expected FECgroup loss probability (as
opposed to thepacketloss probability), which is defined as
the probability for FEC to be unable to recover an entire
FEC group (i.e., Pr[X + Y > R]). While this metric
captures the performance of non-systematic FEC codes, it is
too conservative for systematic FEC codes. As noted above,
a major advantage of systematic FEC codes is that even if
the entire group cannot be recovered (i.e., X + Y > R),
all the unmodified data packets that arrive successfully are
still available. To capture the performance of systematic
FEC codes, we use a new metric (X̄FEC), which is more
difficult to optimize and calls for the development of new
optimization algorithms (in Section IV-B).

Later in Section V, we will thoroughly compare our algorithms
with the algorithms proposed in [9] along with several other



baseline algorithms, and show that our algorithms significantly
out-perform the existing ones under bursty losses.

B. Allocation Algorithms

We decompose the original optimal allocation problem into
the following two sub-problems:

1. Given an allocation{(di, ri)}, how to computeX̄FEC, the
expected number of lost data packets after applying FEC?
This is challenging because random variablesX and Y
are convolutions of random variablesxi and yi (i.e., the
numbers of lost data and redundant packets on pathi) and
have no close form in general. In Section IV-B.1, we address
the challenge by approximating the joint distribution ofX
andY as a bivariate normal distribution.

2. How to find an allocation{(di, ri)} that minimizesX̄FEC?
The key challenge here is the enormous search space. Given
D data packets andR redundant packets, there areND+R

different ways of allocating them ontoN different physical
paths. For even moderate FEC group sizes, this is already
a too big search space for a brute-force approach to work
(e.g., 20-packet FEC group using 3 paths has 3486784401
combinations!). To address the issue, we develop an effi-
cient dynamic programming algorithm to find an optimal
allocation in Section IV-B.2.

1) Approximating X̄FEC: Our first task is to estimate
X̄FEC, the expected number of lost data packets after applying
FEC under a given allocation{(di, ri)}. As noted above, our
basic strategy is to approximate the joint distribution ofX and
Y with a bivariate normal distribution. Such normal approxi-
mation is reasonable when the number of independent paths is
large and the allocation(di, ri) on each path is relatively small
compared to(D,R). In addition, our experience suggests
that even when these conditions do not hold, the allocation
obtained using the normal approximation tends to work well
in practice. Similar positive experience has been reportedin
[9].

We use Extended Gilbert Model to model packet loss.
Given allocation{(di, ri)}, we can deriveE[xi], E[yi], V [xi],
V [yi], andcov[xi, yi] from the transition matrix of the model.
Because of space limitation, a detail derivation is shown inour
technical report [14]. Our analysis takes into account the fact
that different values of(di, ri) can affect the burstiness of the
packet loss observed on a pathi. This phenomenon has been
reported by several recent studies. For example, the authors
in [22] show that burstiness of probing traffic significantly
affect the burstiness in the observed loss rates. As the inter-
arrival time of probing packets increases, the loss becomes
less bursty.

Based onE[xi], E[yi], V [xi], V [yi], and cov[xi, yi], we
then compute the statistics of the total numbers of lost data
and redundancy packets as follows. LetµX andσX denote the
mean and standard deviation ofX, respectively. LetµY and
σY denote the mean and standard deviation ofY , respectively.
Let σXY = cov[X,Y ] be the covariance ofX andY . In order
to deriveµX , σX , µY , σY , andσXY as functions of a given
allocation{(di, ri)}, we will assume thatlosses on different
paths are independent from each other. Later in Section IV-
E, we will discuss techniques that can be used to detect and
remove paths with shared congestion. Under the independence

assumption, we have

µX =

N
∑

i

E[xi], σ2
X =

N
∑

i

V [xi]

µY =

N
∑

i

E[yi], σ2
Y =

N
∑

i

V [yi]

σXY =

N
∑

i

cov[xi, yi]

.
We can then approximate the joint distribution ofX andY

by a bivariate normal distribution with probability function

P (x, y) =
1

2πσXσY

√

1 − ρ2
exp

[

− z

2(1 − ρ2)

]

, (3)

where

z ≡ (x − µX)2

σ2
X

− 2ρ(x − µX)(y − µY )

σXσY

+
(y − µY )2

σ2
Y

,

and
ρ ≡ cor[X,Y ] =

σXY

σXσY

is the correlation ofX andY .
In the special case whenρ = 0 (i.e., X and Y are

independent), (3) can be further simplified into

P (x, y) =
1

2πσXσY

e
−

(x−µX )2

2σ2
X

−
(y−µY )2

2σ2
Y . (4)

Our experience through extensive simulations suggests that
the correlation ofX and Y (i.e., ρ) is often very small
when multiple paths and sufficiently large FEC group size are
used. For practical purposes, its effect can be safely ignored
compared to the effects ofµX , σX , µY , andσY . We therefore
will use (4) in the rest of the paper in the interest of simplicity.

By replacing the discrete summation in (1) with a continu-
ous integral, we can then approximatēXFEC by

X̄≈
FEC ≡

∫ D

x=0

∫ ∞

y=R−x

x P (x, y) dy dx (5)

=

∫ D

x=0

∫ ∞

y=R−x

x

2πσXσY

e
−

(x−µX )2

2σ2
X

−
(y−µY )2

2σ2
Y dy dx(6)

=

∫ D

x=0

e
−

(x−µX )2

2σ2
X

2
√

2πσX

x

(

1 + erf

[

µY + x − R√
2σY

])

dx (7)

where erf(z) = 2√
π

∫ z

0
e
−t2dt is the error function [25]. We

can then numerically evaluatēX≈
FEC using standard software

package such as Matlab.
2) Dynamic Programming Based Solution:Our second

major task is to find an optimal allocation{(di, ri)} that
minimizesX̄≈

FEC as defined in (7). The main challenge here
is that X̄≈

FEC does not have close-form and cannot be easily
transformed into simple objective functions. Fortunately, from
(7) we can show that̄X≈

FEC is monotonically decreasing with
respect to bothσX andσY .

Our high-level approach to traffic allocation under no ca-
pacity constraints is as follows. We enumerate all possible
values ofµX , and use dynamic programming to find the data
allocation that results in the minimumσX for each given



µX . Similarly, for all possible values ofµY , we determine
the allocation of redundancy packets that minimizesσY for
each givenµY . Then we plug all(µX , µY , σX , σY ) into
Equation 7, and find the allocation that minimizesX̄≈

FEC. The
monotonicity of X̄≈

FEC with respect toσX and σY ensures
that the final solution gives the best possibleX̄≈

FEC. Later we
will extend the idea to handle capacity constraints.

Below we first describe how to determine the allocation that
minimizesσX andσY givenµX andµY . Then we show how
to use these solutions to solve the original allocation problem.

Subproblem: Variance Minimization. Let E{xi|di = k}
and V {xi|di = k} denote the average and variance of data
losses on pathi when pathi is allocateddi = k data packets.
To apply dynamic programming, we need integer values of
E{xi|di = k} andV {xi|di = k}. So we scale them byλ. Let
ed[i, k] ≡ ⌊E{xi|di = k}λ⌋ andvd[i, k] ≡ ⌊V {xi|di = k}λ⌋
be the scaled, discretized mean and variance ofxi, where⌊·⌋
is the floor function (i.e., taking the largest integer no larger
than the input). We can pre-computeed[i, k] and vd[i, k] for
∀1 ≤ k ≤ D and∀1 ≤ i ≤ N .

We define a data loss variance minimizationproblem
dlvm(d, p, e, c) as the problem of allocatingd data packets
onto the firstp paths to minimize the total variance while
satisfying capacity constraintsc and the constraint that the
total mean ise. Formally,

dlvm(d, p, e, c) : minimize
p

∑

i=1

vd[i, di]

subject to







∑p

i=1 di = d
∑p

i=1 ed[i, di] = e
di ≤ c[i],∀i

Let opt(d, p, e, c) be the variance achieved by an optimal
solution todlvm(d, p, e, c). We have

opt(d, p, e, c) =min
0≤k≤d

k≤c[p]

{vd[p, k]+opt(d−k, p−1, e−ed[p, k], c)}

So we can apply a dynamic programming algorithm to solve
dlvm(d, p, e, c) for all 0 ≤ d ≤ D, 1 ≤ p ≤ N , 0 ≤ e ≤
Emax, whereEmax controls the granularity of the solutions.
The complexity for this algorithm isO(D2NEmax).

Similarly, we can define aredundancy loss variance mini-
mizationproblemrlvm(r, p, e, c) as the problem of allocating
r redundant packets onto the firstp paths to minimize the total
variance subject to the constraint that the total mean ise. We
can solverlvm(r, p, e, c) again using dynamic programming.

Traffic allocation under no capacity constraints. We are
now ready to solve the original allocation problem. Let us first
consider the unconstrained allocation problem, whereci = ∞.
In this case, data packets can be allocated independently
from redundancy packets. So the final allocation is to allocate
data packets such thatdlvm(D,N, e1,∞) is minimized, and
allocate redundancy packets such thatrlvm(R,N, e2,∞) is
minimized. The algorithm is illustrated in Figure 3. It searches
through all possible values ofµX andµY , and determines the
allocation that minimizesσX andσY for each givenµX and
µY . Note that the discretization may introduce some error.
However, our experience from extensive simulations suggests
that with sufficiently largeEmax (e.g., 500), the algorithm
tends to perform close to optimal.

1. solve alldlvm(d, p, e,∞) andrlvm(r, p, e,∞).
using dynamic programming

2. for e1 = 1 to Emax

3. {di} = an optimal solution ofdlvm(D,N, e1,∞)
4. for e2 = 1 to Emax

5. {ri} = an optimal solution ofrlvm(R,N, e2,∞)
6. computeµX , µY , σX , σY under{(di, ri)}
7. computeX̄≈

FEC
8. store{(di, ri)} if it is the best so far
9. end
10.end
11. return {(di, ri)} that gives the minimumX̄≈

FEC

Fig. 3. Traffic allocation under no capacity constraints.

Traffic allocation under capacity constraints. When net-
work paths have capacity constraints, allocation of redundancy
packets is dependent on the allocation of data packets to
ensure the capacity constraints are satisfied. To incorporate
capacity constraints, we modify the previous algorithm by
introducing a new capacity constraintc′ to ensure that the
rate for sending redundancy packets on pathi cannot exceed
the residual capacity of pathi (after sending its allocated data
packetdi).

The solution to the allocation problem with capacity con-
straints can be sub-optimal. Due to capacity constraints, the
allocation of data packets is now coupled with the allocation of
redundancy packets. Such coupling further increases the search
space. For efficiency, we decouple the data and redundancy
allocation by first optimizing data allocation (while ignoring
the capacity consumed by redundancy packets), and then
optimizing redundancy packet allocation based on remaining
capacity. Such decoupling may result in sub-optimal solution.
In practice, however, we find through extensive simulations
that the solution we obtain tends to perform close to optimal.

1. solve alldlvm(d, p, e, c) via dynamic programming
2. for e1 = 1 to Emax

3. {di} = an optimal solution ofdlvm(D, N, e1, c)
4. c′i = ci − di, ∀1 ≤ i ≤ N
5. solve allrlvm(r, p, e, c′) via dynamic programming
6. for e2 = 1 to Emax

7. {ri} = an optimal solution ofrlvm(R, N, e2, c
′)

8. computeµX , µY , σX , σY under{(di, ri)}
9. computeX̄≈

FEC

10. store{(di, ri)} if it is the best so far
11. end
12.end
13. return {(di, ri)} that gives the minimumX̄≈

FEC

Fig. 4. Traffic allocation problem under capacity constraints.

3) Packet Spreading Algorithm:In Section IV-B.1 and
Section IV-B.2, we derive the traffic allocation (i.e.,{(di, ri)}
for each pathi). For the same allocation, different ways of
assigning packets onto paths can result in different observed
loss burstiness. The burstiness in the observed loss increases
with the burstiness in traffic. So we should try to spread the
packets allocated on the same path as evenly as possible. This
reduces burstiness in experienced packet losses, and enhances
effectiveness of FEC. To achieve this goal, we develop a credit-
based scheme to allocate traffic. Each path is associated with a
credit. The path with the largest credits is selected to transmit



the next packet. The credit of pathi is updated as follows.
Each time a new packet is transmitted, pathi earnsdi/D
credits. If pathi is selected to transmits a packet, it consumes
1 credit. For a given allocation,{(di, ri)}, the credit-based
scheme determines exactly which packets in an FEC group
should be allocated onto which paths so that the final loss rate
is minimized. This allocation only needs to be computed once
for a given {(di, ri)}, and can be cached for future packet
processing. More details are described in our technical report
[14].

C. Estimating Parameters for the Loss Model

The effectiveness of the above traffic allocation scheme
depends on the accuracy of the loss model estimation. In our
evaluation, we use extended Gilbert loss model, and estimate
its transition matrix (in Equation 2), as shown in [20].

p01 = (

n−1
∑

i=1

mi)/m0

p(k−1)k = (

n−1
∑

i=k

mi)/(

n−1
∑

i=k−1

mi)

where mi denotes the number of loss bursts with length
i, where i = 1, 2, ..., n − 1 and m0 denote the number
of delivered packets. Since network path properties change
over time, we predict future network performance using the
measurements in the previous intervals.

D. FEC redundancy adaptation

We derive the allocation scheme given the number of
redundant packets R per FEC group. In practice, we can do
greedy search to find the minimum redundancy packetsR
which can satisfy target loss rate (e.g.,1e-6).

E. Handling Shared Congestion

In the previous discussion, we consider loss rates on the
physical paths are independent. In practice, we may have some
paths that share a common bottleneck. In this case, the loss
rates on these paths are highly correlated. To handle such
cases, we can apply an existing technique to detect shared
congestion. A number of techniques have been proposed for
this purpose, such as cross-correlation-based approach [19],
entropy-based approach [11] and wavelet-based approach [12].
We then treat the set of paths that have shared congestion as
one path, and apply our traffic allocation scheme to the merged
paths.

V. PERFORMANCEEVALUATION

In this section, we first introduce our evaluation methodol-
ogy and then describe evaluation results.

A. Evaluation Methodology

We evaluate the performance of SmartTunnels using the
following three ways: (i) Internet trace-driven simulation, (ii)
ns-2 simulation, and (iii) experiment on PlanetLab. These three
evaluation methods are complementary to each other. Trace-
driven evaluation allows us to extensively evaluate the perfor-
mance of SmartTunnels under realistic Internet performance

characteristics; ns-2 simulation allows us to study the inter-
actions between multiple tunnels in a controlled environment;
and real experiment allows us to understand the benefit and
overhead of SmartTunnels in a real network.

We compare the following traffic allocation schemes:

• SmartTunnel: This is the algorithm we describe in Sec-
tion IV.

• Markowitz numeric (MkwNu): This is the algorithm
proposed in [9]. It maximizes the Sharpe-Ratio by solving
a series of quadratic optimization problems.

• Round robin (RR): Traffic is assigned to multiple physical
paths in a round robin fashion.

• Greedy: Traffic is assigned to the path that has the lowest
loss rate. When multiple paths experience the same loss rate,
one path is selected randomly among them.

B. Trace-driven Simulation

We collect Internet traces by sending 16-byte ICMP echo
packets from 57 hosts on PlanetLab to 55 popular Web sites,
selected from the 100 popular websites listed at [1]. We
run zing and tcpdump concurrently on each PlanetLab host.
To capture bursty loss behavior, zing is modified to generate
ICMP echo packets with an inter-packet arrival of 2 ms.
Tcpdump is used to captured ICMP echo-reply packets. In
order to avoid PlanetLab hosts to drop packets when the
probing traffic are too bursty. We introduce 1 second idle time
every 1 second bursty traffic. Each measurement experiment
lasts at least 800 seconds. In our measurement, 78.5% of paths
have loss rates below 2%. The mean loss rates of these paths
is 0.0175.

Each trace is divided into 20 intervals, so each interval is a
40-second trace. We apply different traffic allocation schemes
on each 40-second interval. For all the evaluation, we use
FEC group size of 40 packets (including data and redundancy
packets), and adapt traffic allocation every interval. Two kinds
of evaluation results are shown. One is oracle result in which
we assume current network path performance is known and
there is no prediction errors. The other one is prediction
result in which current network path performance is predicted
from previous intervals. Table II shows probabilities of
SmartTunnel to achieve loss free reliability. When there is no
prediction error, SmartTunnel can achieve loss free reliability
with probability up to 0.9991 if it uses 6 paths. It can also
achieve loss free reliability with probability 0.94 even with
only 2 paths. If we consider prediction errors, SmartTunnel
can also achieve loss free reliability with probability from 0.85
to 0.93.

2Path 3Path 4Path 6Path
Oracle 0.94 0.9852 0.996 0.9991

Prediction 0.85 0.88 0.91 0.9267

TABLE II

PROBABILITIES OF SMARTTUNNEL TO ACHIEVE LOSS FREE RELIABILITY

1) Oracle results:We compare different traffic allocation
schemes by varying the number of available physical paths,
redundancy level used in FEC, and quality of the paths.
For each experiment configuration (e.g., a given number of
paths to the same website and a given combination of path
property), we conduct 20 random runs (i.e., selecting 20



different combinations of traces used for evaluation), and
report the summary statistics from these runs.

To systematically study the performance, we categorize
results into different scenarios based on the number of low
loss paths selected. Low loss paths are paths whose loss rates
are below 2%. This classification is used in [28]. Table III and
Table IV compare percentages of intervals to achieve free loss
reliability among different algorithms. Let K denote the num-
ber of redundant packets and G denote the number of low loss
paths chosen. We make the following observations. First, in
all cases SmartTunel is the best performing algorithm. Second,
when all paths are low loss paths, SmartTunel can achieve loss
free reliability for 94.47%-99.81% of time intervals. Third,
SmartTunnel more effectively uses paths with high loss rates.
For example, when all paths are high loss paths, SmartTunnel
can achieve loss free reliability for around 6%-35% more
time intervals compared to other algorithm. It is interesting
that when high loss paths are selected, Greedy algorithm
is almost the second best algorithm. Fourth, in those cases
with three physical paths selected, the difference between
various traffic allocation schemes becomes smaller when the
number of redundancy packets increases. This suggests that
the choice of traffic allocation is more important when the
network bandwidth is limited and the number of redundancy
packets is small.

Table V and Table VI show mean loss rates of SmartTunnel
with different number of low loss paths selected and different
number of redundant packets. We can derive the expected loss
rate of N-Path SmartTunnel from these tables.

Let P denote the probability that a selected path has loss rate
lower than 2%,Pr(G = i) denote the probability that exactly
i low loss rate paths are selected, andRN (G = i,K = j)
denote the mean loss rate of a SmartTunnel whenG = i,
K = j, andN physical paths are used. In our measurement,
P = 0.785. RN (G = i,K = j) can be lookup from Table V
and Table VI. Then we can compute the expected loss rate
LN,K=j of N -path SmartTunnel using K redundant packets
as follows.

LN,K=j =

N
∑

i=0

RN (G = i,K = j) ∗ Pr(G = i)

=

N
∑

i=0

RN (G = i,K = j) ∗ Ci
N ∗ P i ∗ (1 − P )N−i

For example, when N = 2 and K = 7, we can getR2(G =
0,K = 7) = 0.0101, R2(G = 1,K = 7) = 0.0009 and
R2(G = 2,K = 7) = 0.0001 from Table V. Based on
the equation, we can get the expected loss rates of 2-Path
SmartTunnel using 7 redundant packetsL2,K=7 = 8×10−4.
Similarly, the expected loss rate of 3-Path SmartTunnel canbe
as small as5 × 10−5 when K is 14. Therefore we conclude
that SmartTunnel can achieve around four 9s reliability with
a small number of paths and redundant packets.

K=7 K=10 K=14
G = 0 0.0101 0.0071 0.0054
G = 1 0.0009 0.0004 0.0003
G = 2 0.0001 2.6 × 10−5 1.6 × 10−5

TABLE V

MEAN LOSS RATES OFSMARTTUNNEL USING 2 PATHS

K=7 K=10 K=14
G = 0 0.0067 0.0046 0.0031
G = 1 0.0003 0.0002 0.0001
G = 2 0.0001 2.6 × 10−5 1.2 × 10−5

G = 3 2.5 × 10−5 9.8 × 10−6 4.4 × 10−6

TABLE VI

MEAN LOSS RATES OFSMARTTUNNEL USING 3 PATHS

2) Predictability of Path Properties:For a traffic allocation
to work well, we should be able to predict future network
path performance. In our technical report [14], we study the
predictability of loss rates by applying Fisher exact probability
test [5].

We find out that test results are not sensitive to the length of
history traces. In practice, we prefer to use longer historytrace
to do the prediction because it is more stable. In the following
evaluation, we use the loss transition matrix of previous 320
second trace (8 intervals) as the prediction of the current
interval.

3) Trace-driven evaluation results:Table VII and Ta-
ble VIII show trace-driven results with prediction. SmartTun-
nel out-performs the other schemes in all scenarios except one
in which there are three low loss rate paths and K is 14. In
this case, the reliablity of SmartTunnel reduces from 99.81%
(in oracle) to 97.64% due to prediction errors while prediction
errors do not affect the performance of round robin.

C. NS-2 Simulation

In this section, we study the interactions between multiple
SmartTunnels using ns-2 simulations. Figure 5 shows the
network topology used in the evaluation. Both senders use
3 redundancy packets per FEC group, where each FEC group
consists of 13 packets in total. Figure 6 shows the evolutionof
loss rates experienced by 2 SmartTunnels that share physical
paths. To stress test, we initialize their allocation to both
use path A-B-D. Due to poor initial allocation, both tunnels
initially experience high loss rates before and after FEC. This
also highlights the importance of appropriate traffic allocation
on end-to-end reliability. Then the two tunnels continuously
adapt their traffic allocation according to their monitored
performance every time interval. At interval 7, both tunnels
converge to low loss rates before FEC, and close to 0 loss rate
after applying FEC. Figure 7 further plots the data allocation of
two tunnels on these paths. As we can see, they converge to an
even share of network resources, both allocating 5 data packets
on two paths. Similar fair allocation is achieved for redundancy
packets (not shown in the interest of space). Overall both
reliability and fairness are achieved.
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Fig. 5. Network topology used in n2-simulation. Two tunnels S1-R1 and S2-
R2 share two physical paths. S1 sends 0.7 Mbps CBR traffic, andS2 sends
0.5 Mbps CBR traffic. Low-rate Pareto traffic is introduced asbackground
traffic on links BD and CD. In addition, links BD and CD use Gilbert-loss
models to drop traffic, where the loss transition matrix at B is [0.985 0.015;
0.45 0.55], and that at C is [0.99 0.01; 0.35 0.65].



K = 7 K = 10 K = 14
G=2 G=1 G=0 G=2 G=1 G=0 G=2 G=1 G=0

SmartTunnel 94.47% 79.45% 31.12% 98.88% 89.62% 52.95% 99.09% 93.81% 63.30%
MkwNU 87.91 % 75.40% 25.51% 95.36% 84.58% 40.84% 98.20% 90.93% 53.40%

RR 82.82% 48.09% 16.73% 91.52% 64.51% 40.11% 92.04% 74.80% 49.53%
Greedy 88.86% 77.71% 27.85% 94.79% 85.87% 44.53% 97.80% 90.60% 53.21%

TABLE III

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER 2 PATHS RANDOMLY CHOSEN FROM THE TRACES

K = 7 K = 10 K = 14
G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0

SmartTunnel 98.71 % 96.80 % 88.20 % 48.82 % 99.61 % 98.82 % 93.58 % 65.86 % 99.81 % 99.62 % 97.25 % 77.84 %
MkwNU 96.35 % 93.84 % 84.96 % 33.09 % 98.80 % 97.26 % 90.76 % 47.73 % 99.67 % 99.02 % 94.78 % 64.79 %

RR 90.53 % 64.51 % 35.73 % 14.77 % 93.84 % 79.05 % 55.22 % 33.27 % 99.78 % 96.93 % 82.88 % 61.60 %
Greedy 96.00 % 94.49 % 86.08 % 42.82 % 97.73 % 96.60 % 90.43 % 53.23 % 98.92 % 98.44 % 93.94 % 61.08 %

TABLE IV

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER 3 PATHS RANDOMLY CHOSEN FROM THE TRACES

K = 7 K = 10 K = 14
G=2 G=1 G=0 G=2 G=1 G=0 G=2 G=1 G=0

SmartTunnel 90.46 % 77.25% 27.76% 96.18% 87.12% 50.21% 97.35% 91.25% 59.25%
MkwNU 83.66 % 73.53% 20.47% 91.27% 83.30% 37.47% 96.22% 89.25% 49.81%

RR 82.76% 48.19% 17.38% 91.36% 64.41% 39.89% 91.95% 74.45% 48.87%
Greedy 84.85% 76.18% 27.10% 90.82% 85.07% 42.63% 95.15% 89.22% 52.26%

TABLE VII

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER 2 PATHS RANDOMLY CHOSEN FROM THE TRACES

K = 7 K = 10 K = 14
G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0

SmartTunnel 94.42 % 92.31 % 85.46 % 41.77 % 96.39 % 95.39 % 90.49 % 58.18 % 97.64 % 97.06 % 94.14 % 71.08 %
MkwNU 91.32 % 89.31 % 82.61 % 25.77 % 95.03 % 93.61 % 88.79 % 40.68 % 97.22 % 96.28 % 93.31 % 59.67 %

RR 90.52 % 64.48 % 35.43 % 15.27 % 93.84 % 78.54 % 54.90 % 33.05 % 99.76 % 96.92 % 82.46 % 61.31 %
Greedy 91.37 % 90.62 % 84.69 % 39.36 % 93.82 % 93.37 % 89.03 % 49.23 % 96.09 % 95.56 % 92.42 % 57.14 %

TABLE VIII

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY UNDER 3 PATHS RANDOMLY CHOSEN FROM THE TRACES
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Fig. 6. (a) Loss rates before applying FEC. (b) Loss rates after applying
FEC.
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Fig. 7. (a) S1-R1 data allocation on 2 paths.(b) S2-R2 data allocation on 2
paths.

D. Experiments on PlanetLab

We implement SmartTunnel using click [13] on PlanetLab.
The following elements are added to click to provide Smart-
Tunnel functionalities: (i) monitors at both sender and receiver
to cooperatively monitor network performance using either
active probing or passive probing, (ii) a traffic distributor that
stripes traffic according to the controller’s specification, (iii)
an encoder and decoder that apply FEC encoding /decoding

and add/remove SmartTunnel header, and (iv) packet buffering.
Figure 8 shows the diagram of different components in our
implementation. ToSocket and FromSocket in the figure are
the existing elements in click to provide sending and receiving
functionalities, and the other elements in the figures are what
we implement. At the sender side, the controller, implemented
outside the click, coordinates with different click elements by
specifying monitoring instructions, an FEC coding scheme,a
traffic allocation scheme. The sender side receives and encodes
data from the upper layer and stripes them onto multiple
physical paths. The receiver logic is much simpler: it decodes
and buffers packets before delivering them to the upper layer.
The monitor at the receiver side responds to active probes
from the sender, and also periodically sends back performance
information for the paths that carry traffic.

DataController

encoder

Monitor
Traffic

distributor

Packet
buffer

Data

decoder Monitor

Click
receiver

ToSocket FromSocket

Click 
sender

Fig. 8. SmartTunnel implementation in click.

In the experiment, we construct a SmartTunnel on top of



0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

minutes

lo
ss

 r
at

e

Path I
Path II
Path III
SmartTunnel

0 5 10 15
0

5

10

15

20

25

30

35

40

minutes

al
lo

ca
tio

n

Path I
Path II
Path III

Fig. 9. (a)Evolution of loss rates before and after FEC (b) Evolution of
traffic allocation across three paths

three overlay paths between two hosts. The SmartTunnel uses
10 redundancy packets per FEC group (each group with 40
packets). Figure 9 (a) shows 15 minutes time series of path
loss rates before FEC and SmartTunnel loss rate after FEC. As
we can see, these three paths experience substantial loss rates.
Figure 9 (b) further shows the traffic allocation on these paths
over time. Initially all traffic are allocated on Path I. FEC does
not work well because the loss is too bursty. Every one minute,
SmartTunnel computes the new traffic allocation based on its
observed performance. Among these three paths, Path III has
lowest loss rate and smallest loss variance. SmartTunnel put
around 60 % traffic on it. Instead of putting all traffic on the
best path, SmartTunnel also uses worse paths (i.e, put around
13% traffic on Path I). After 4 minutes, SmartTunnel achieves
almost full reliability.

E. Summary

To summarize, in this section we evaluate the performance
of SmartTunnels using trace-driven simulation, ns-2 simu-
lation, and PlanetLab experiments. Our results show that
SmartTunnel can achieve high reliability over a diverse setof
scenarios. Moreover our initial study of interactions between
multiple smart tunnels suggests that they can co-exist well. We
plan to further investigate their interactions more thoroughly
in the future.

VI. CONCLUSION

In this paper, we proposeSmartTunnel, an end-to-end ap-
proach to achieving high reliability. It applies FEC and allo-
cates traffic onto multiple physical paths to minimize loss rates
under realistic Internet loss models. Using extensive simulation
and real implementation, we demonstrate that SmartTunnel is
effective in achieving high reliability.

As part of our future work, we are interested in applying
SmartTunnel to wireless networks. An increasing number of
wireless devices have multiple interfaces. Effectively utilizing
these interfaces simultaneously has the potential to signifi-
cantly improve reliability in wireless networks. Wirelesslink
loss characteristics differ significantly from those of wireline
links. In particular, network paths involving wireless links may
experience extended outage periods (e.g., due to mobility or
environmental changes). Such outages may span multiple FEC
groups, and significantly reduce the effectiveness of FEC. We
are interested in extending SmartTunnel to handle such outages
in addition to bursty losses.
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