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Abstract— Reliability is critical to a variety of network appli-

To realize the potential of SmartTunnel, we analytically

cations. Unfortunately, due to lack of QoS support across ISP derive near-optimal traffic allocation schemes that optémi

boundaries, it is difficult to achieve even two 9s (99%) reliability
in today’s Internet. In this paper, we propose SmartTunnel, an
end-to-end approach to achieving reliability. A SmartTunnel is a
logical point-to-point tunnel between two end points that spans e
multiple physical network paths. It achieves reliability by strate-
gically allocating traffic onto multiple paths and performing FEC
coding. Such an end-to-end approach requires no explicit QoS
support from intermediate ISPs, and is therefore easy to deploy
in today’s Internet. To fully realize the potential of SmartTunnel,

we analytically derive near-optimal traffic allocation schemes that e
minimize loss rates. We extensively evaluate our approach using
trace-driven simulations, ns-2 simulations, and experiments on
PlanetLab. Our results clearly demonstrate that SmartTunnel is
effective in achieving high reliability.

I. INTRODUCTION

Many applications, such as Voice over IP (VMolP), video
conferencing, streaming media, gaming, and online trading
have stringent requirements on end-to-end reliabilityfdgn

end-to-end loss rates under bursty loss.

Our key contributions can be summarized as follows:

We propose SmartTunnel abstraction to provide end-to-end
reliability. This abstraction immediately supports dser
upper and lower network layer technologies without modifi-
cation. It can also be easily incorporated into VPN services
Therefore SmartTunnel is easy to deploy in today’s Internet
We analytically develop near-optimal traffic allocation
schemes to optimize end-to-end loss rate in the presence
of bursty packet losses. We further implement SmartTunnel
using the click modular router [13].

We extensively evaluate the effectiveness of SmartTun-
nel using trace-driven simulation, ns-2 simulations, and
PlanetLab experiments. Our results show that SmartTunnel
is effective in achieving high end-to-end reliability and
multiple SmartTunnels can co-exist well.

The rest of the paper is organized as follows. In Section II,

tunately, today’s Internet does not even provide two 9s (999y€ survey related work. In Section Ill, we describe Smart-

reliability [16], [10], [8]. This is considerably lower timawhat Tunnel architecture. In Section IV, we present algorithms

the public switched telephone network (PSTN) offers toddfat determine optimal traffic allocation. We describe our

(three to four 9s). evaluation methodology and results in Section V. We corelud
Achieving end-to-end reliability is hard in the Interner foin Section VI.

several reasons. First, there lack both incentives and mech

anisms for ISPs to cooperate. This implies that it is hard Il. RELATED WORK

to provide reliability guarantees across ISP boundaries. A We broadly classify the related work into the following

a result, while it may be possible to achieve high reliapilitthree areas: (i) measurement of Internet reliability, dugrlay

within an individual ISP, the reliability of end-to-end pat routing and multihoming, and (iii) FEC based loss recovery.

spanning over multiple ISPs, is significantly lower. Seconglieasurement of Internet reliability: Several measurement
numerous measurement studies [26], [3], [28] have showfydies have reported that Internet reliability is quitaited.
that Internet packet loss often exhibits burstiness (opt&al |y particular, Paxson observed a routing pathology arisé%1
dependency). Bursty losses pose significant challenges.tgo4 during 1994-1995. Jiang et al. [10], and Gummadi [8]
protect against. While forward error correction (FEC) codinconducted large-scale measurement studies of Internét pat
is useful to protect against random losses, bursty packse® fajlures, and reported that Internet reliability is oftealdw
significantly affect the effectiveness of FEC. two 9s (99%).

To address these challenges, we propSseartTunneto Overlay routing and multihoming: Several studies, such

achieve reliability in today’s Internet. A SmartTunnel is 4 [21], [24], [18], have shown that the default network
logical point-to-point tunnel between two communicatingle ath is c')ften ’subop,timal in terms of latency, loss rate, and

points that may physically span multiple Internet paths. CP throughput. To address these issues, a variety of gverla

achieves reliability by properly allocating traffic acrodi- b ; :
X : sed techniques have been proposed to improve network
ferent paths and applying FEC coding. Such an end-to-e rformance and resilience. For example, RON [18] allows

approach requires no explicit QqS support from intermed istributed applications to recover network path failutss
ISPs, and _l?ﬁn t;e d|_reg:tly applledd tol enq hozts ,orl Interr ting through alternative overlay paths. OverQoS [23sus
gateways. eretore Itis easy to dep oy in today's Intern controlled loss virtual link abstraction to bound the loss
Moreover, the simple tunnel abstraction can be natura dte. Since OverQos uses only a single path, it cannot grotec
"%?gainst highly bursty losses in a timely fashion. Zhang et al
[27] proposes mTCP, an end-to-end transport layer prottaol

Research sponsored by National Science Foundation CN&A83 CNS- enhance the robustness und.er .path failures by using neultipl
0627020, CNS-0546720, CNS-0546755 and ANI-0319168 paths. mTCP uses retransmission to recover packet loss and

private networks to improve reliability.



is not suitalbe for real-time multimedia applications. Morpackets to the traffic distributor that stripes packets ating
recently, scalable one hop source routing (SOSR) [8] prepogo the controller’s specification. The tunnel destinatiecatles
that upon path failures the source node randomly chooses fand buffers data. Buffering is necessary to reduce packet re
nodes as relay nodes to re-route traffic. Their results shatv tordering, which can degrade TCP performance. A packet is
it can recover 20-56% failures. SOSR is a reactive approagélivered to uppper layers either when all the packets befor
and requires failure indications. Therefore it is suitafile it have been received (or recovered) or when buffer is full.
recovering long-term failures, but not for recovering Iyrs

loss, which is our main focus. ! Sender 5 ! Receiver 5

There are quite a few research studies on the design and Rawdata | N ;
evaluation of route control schemes for multihomed users.: l ;
For example, Cao et al. [4] propose using hash functions toi e | 5 I ;
achieve load balancing among multiple links. Akella et 3]. [ b | controtler |7 encoder | P | packet 5
quantify the potential performance benefits of multihoming : l : b [ buffer !
using real Internet traces. In their follow-up work, thetars : *_ v I : FEfC —!
implement a route control scheme based on either passive | "™ distributor | 1 1| decoder Montor |

or active monitoring schemes. Their experimental evabmati  =------ P F--- e R T
show that their approach provides 15% to 25% performance; ; 1
improvement. The authors in [7] develop novel smart routing o T e Prveiea) A
algorithms to simultaneously optimize cost and perforneangiy 1. smartTunnel architecture.

for multihomed users, and study the interactions betweengmarTunnel can be deployed either at the two communicat-
multihomed and single-homed users. ing end-points or at their Internet gateways. SmartTunaal ¢
SmartTunnel can be applied to both overlay paths aggl, pe easily integrated with current VPNs. Today's VPNs
multihoming paths. One of the fundamental differences bgnyy provide reachability and security, but no reliabiligy
tween SmartTunnel and the existing work is that almost allyning SmartTunnel sender and receiver at the VPN servers

the existing work uses only a single path (e.g., send traffig \he two communicating points, network providers can roffe
along the best performing path). Due to bursty packet 10SS€§,,e-added services.

in the Internet, using a single path yields limited reliapil
In comparison, SmartTunnel can achieve high reliability by
simultaneously using multiple paths.

FEC based loss recovery:Significant research work has 10 fully realize the potential of SmartTunnel, we need to
been done on the design and evaluation of forward errdfdress the following issues: (i) how to allocate trafficoont
correcting code, such as [17], [15]. Our work is orthogopal {nultiple paths to minimize loss rates under reallstu; Immer_
the development of FEC coding algorithms, and can direct§SS Models, and (ii) how to measure path properties which
apply the existing systematic FEC coding schemes (i.e., FE@N be used for the allocation schemes. In this section, we
codes that include unmodified original data packets in the FEEXa@mine these issues in turn.
roup). , ,
’ Ja?rz et al. [9] study the problem of traffic allocation ontoA' Allocatlon Problem Formulgnon _ o
multiple paths to achieve high reliability. This is a piorieg ~First we formulate the traffic allocation problem of mini-
work on this subject. It is also the work closest to ourdnizing packet loss rate. Table | summarizes our notations.
Different from our work, [9] targets delay tolerant netwsyk _
and the proposed approach is based on very different logs | MumPer o gg{:'gg'dfgg%er FEC group
models from the Internet. In particular, they do not conside| r number of redundant packets per FEC group
G
d;

IV. SMARTTUNNEL ALGORITHMS

bursty loss. As a result, their approach does not work well FECbQTOUfP S”izethdDJrR) } -
for Internet paths, as we will show in Section V. Note that number of allocated data packets on pat

. . . i number of allocated redundant packets on path
in order to cope with bursty loss, it is necessary to develop g ; number of lost data packets on path
completely different traffic allocation scheme (as oppasea Yi number of lost redundant packets on p]gth
simple extension to [9]). We will further elaborate this qi X | total number of lost data packel$ =5 ;_, z;

Y total number of lost redundant packéts= > " ; v;

and compare SmartTunnel with [9] in Section IV-A.

>

FEC | expected number of lost data packets after applying FEC:

Xrpe = 20, 0-PriX =¢AX +Y > R]

IIl. SMARTTUNNEL ARCHITECTURE X&5e | continuous approximation aKprc (see Section IV-B.1)
SmartTunnel is a logical point-to-point tunnel between two TABLE |
communicating end points that may physically span multiple NOTATIONS
Internet paths. It sits at network-layer, and is transpaieap- Consider a SmartTunnel from nodeto noded. Traffic

plications. As shown in Figure 1, a tunnel source continlyousfrom node s to noded can take several differenthysical
monitors the network paths, and provides the performance pafths which can be provided by either multihoming or overlay
network paths to the controller. The controller appliesttaé routing. Let N denote the number of physical paths available
fic allocation algorithm, described in Section 1V, to distrie to the SmartTunnel. When a packet is transmitted along a
traffic onto multiple physical paths. On the data plane, d&taphysical path, it can get lost due to a variety of reasond suc
first delivered to FEC encoder, which generates redundaray routing loops, failures, and network congestion. Toehi
packets and hands over the resulting data and redundaraliability, nodes applies forward error correction (FEC) code



to protect packets that use the SmartTunnel. Specifically, fp =1-p, P Pz Pz
every D data packets, node createsR? redundant packets,
which together with all the data packets form an FEC gro
of sizeG = D + R. The FEC code is designed to recove
from R packet losses. That is, when nodeeceives anyD
out of G packets in the group, it can reconstruct the entire
FEC group. If more thatk packets are lost, however, node iy 5 The Extended Gilbert Model
can only deliver those successfully received data packets a
cannot recover the lost data packets. for Vi > 0,¢; = 1). Suppose the current loss burst length is
Given an FEC group wittD data packets an® redundant i. For a newly transmitted packet, it will either get lost with
packets, there ar&/ P+ different ways of allocating packetsprobability pi(i+1) and cause the burst length to increment
in an FEC group ontaVv physical paths. Different allocationsby one, or get through successfully with probabiliyy =
can result in different numbers of packet losses after apgly 1 — p;; 1) and reset the burst length to No other state
FEC. The goal of the SmartTunnel is to derive an optimalansitions are allowed. So the model is fully specifiedrby
allocation that minimizes the expected number of packegss parameterg;o, and the corresponding transition matrix has
after applying FEC. This problem can be formally specifiednly 2n non-zero entries.

p(nfl)(nfl

plO

as follows.
Definition 1 (Optimal Allocation Problem)Let d; and r; Poo Pio P20 P(n-2)0 P(n—1)0
denote the number of data packets and redundant packets por 0 0 - 0 0

allocated on path. Let random variables; andy; denote the P= 0 p2 0 - 0 0
number of data packets and redundant packets that are lost on
pathi. Let random variables = Zf;l xz; andY = Zf;l Ui 0 0 - Pu-2)n-1) Pn-1)(n-1) 2
denote the total number of lost data packets and lost reaiinda

packets, respectively. The optimal allocation problemds ¥Why are new algorithms and techniques required?The
determine an allocatiofi(d;,r;)} under which the expected Problem of using redundancy to cope with failures has régent

number of lost data packets after applying FEC is minimizeB€en considered in the context of Delay Tolerant Networks
That is, (DTNs) by Jainet al. [9]. They use a similar problem

formulation to optimally allocate packets in an FEC groupoon
different paths. Given such similarity, one may be tempted
to directly apply the techniques developed in [9] to the
Internet. Unfortunately, several important reasons preus
wherel = 1, --- , D enumerates all possible values for(i.e, from applying these techniques to achieve high reliability
the total number of lost data packets), and the summatiasgivhe Internet. Therefore, we have to develop new algorithms
the expected number of lost data packets when FEC canaod techniques for use in SmartTunnel.

reconstruct the entire FEC groupe(, when X +Y > R). e Burstiness in Internet packet losbwo different loss mod-
Modeling Temporal Loss Dependency in the Internet:  €ls are considered in [9]: independent packet loss (which
To solve the above optimization problem, we first need to €xhibits no temporal loss dependency) and complete path
understand the behavior of Internet packet loss. Numeroudailure (where a path delivers either all packets succégsfu
measurement studies [26], [3], [28] have shown that Interne O no packet at all). While these models may be useful in a
packet loss often exhibits burstiness. Burstiness affgwes DTN, neither model captures the commonly observed bursty
performance of FEC because when a large burst of packetdoss behavior in the Internet. Since the goal of SmartTunnel
are lost in an FEC group, FEC cannot recover the lost datals to minimize loss in the Internet context, it is essential
packets. It is therefore important to explicitly model hyrs to use models that capture the Internet loss behavior more
loss in SmartTunnel. accurately.

A variety of models have been proposed to capture tempofall he use of different performance metridsinet al. [9] try
loss dependency, including the 2-state Gilbert Model 6 t t0 minimize the expected FEGroup loss probability (as
n-state Extended Gilbert Model, and the Markov Chain Model 0Opposed to th@acketloss probability), which is defined as
[26], [20], [3]. In this paper, we use Extended Gilbert Madel the probability for FEC to be unable to recover an entire
As shown in [20], the Extended Gilbert Model achieves a FEC group ie, Pr[X +Y > R]). While this metric
good balance between model accuracy and simplicity — it iscaptures the performance of non-systematic FEC codes, it is
much more accurate than tBestate Gilbert Model, while only ~ t00 conservative for systematic FEC codes. As noted above,
requireSn parameters to be estimated (as Oppose2tm the a ma.jor advantage of SyStematiC FEC codes is that even if
General Markov Model). the entire group cannot be recovereg.( X +Y > R),

The Extended Gilbert Model [20], as shown in Figure 2, al! the u_nmodified data packets that arrive successfully are
captures changes in the loss burst length. Specificallypim-a  Still available. To capture the performance of systematic
state Extended Gilbert Model, statg = 0,1,...,n—2) means  FEC codes, we use a new metri&{gc), which is more
that there are exactlyconsecutive losses since the beginning difficult to optimize and calls for the development of new
of the current loss burst, whereas state 1 means that, — 1 optimization algorithms (in Section IV-B).
or more consecutive losses have occurred. The corresgpndiater in Section V, we will thoroughly compare our algorithm
loss probability vector i = [0,1,---,1] (i.e, £, = 0 and with the algorithms proposed in [9] along with several other

D
minimize Xppc =Y (- PrX =(AX+Y >R] (1)
/=1



baseline algorithms, and show that our algorithms signiflga assumption, we have
out-perform the existing ones under bursty losses.

N N
— . 2 — .
B. Allocation Algorithms px = ZE[%]’ Ix Z Vil
We decompose the original optimal allocation problem into N ) N
the following two sub-problems: py =Y Elyil, oy => Vil
1. Given an allocation{(d;,;)}, how to computeXggc, the ! N !
expected number of lost data packets after applying FEC? o _ Zcov[m ]
This is challenging because random variabfésand Y Xy - wYi

are convolutions of random variables and y; (i.e., the

numbers of lost data and redundant packets on Patind We can then approximate the joint distribution ¥fandY

have no close form in general. In Section [V-B.1, we addregy a bivariate normal distribution with probability funeti

the challenge by approximating the joint distribution Jf 1
]
, (3

andY as a bivariate normal distribution. P(z,y) = )
’ 2(1—p

2. How to find an allocation{(d;, r;)} that minimizesXrgc? 2roxoy/1 — p?
The key challenge here is the enormous search space. Gi\gfare
D data packets an® redundant packets, there afe’+% ) )
different ways of allocating them onty’ different physical y = (z — px) _ 2p(z — px)(y — py) 4 (y — py)

exp [—

paths. For even moderate FEC group sizes, this is already o% Ox0Oy oy
a too big search space for a brute-force approach to wgykq
(e.g., 20-packet FEC group using 3 paths has 3486784401 p=cor[X,Y] = oxY
combinations!). To address the issue, we develop an effi- OXOy
cient dynamic programming algorithm to find an optimajk the correlation ofX andY.
allocation in Section 1V-B.2. In the special case whep = 0 (i.e, X and Y are
1) Approximating Xprc: Our first task is to estimate independent), (3) can be further simplified into
Xrec, the expected number of lost data packets after applying 1 _@onx)? w-ny)?
FEC under a given allocatiof(d;,7;)}. As noted above, our P(z,y) = P—— 0% 5 (4)

basic strategy is to approximate the joint distributionXofind
Y with a bivariate normal distribution. Such normal approxi- Our experience through extensive simulations suggests tha
mation is reasonable when the number of independent pathf® correlation ofX and Y (i.e, p) is often very small
large and the allocatiofu;, r;) on each path is relatively smallwhen multiple paths and sufficiently large FEC group size are
compared to(D, R). In addition, our experience suggesté/sed. For practical purposes, its effect can be safely eghor
that even when these conditions do not hold, the allocatié@mpared to the effects fy, ox, 1y, andoy. We therefore
obtained using the normal approximation tends to work weill use (4) in the rest of the paper in the interest of simiplic

in practice. Similar positive experience has been repoiied By replacing the discrete summation in (1) with a continu-

[9]. ous integral, we can then approximategc by
We use Extended Gilbert Model to model packet loss. _ D oo
Given allocation{(d;, ;)}, we can deriveE[xz;], E[y;], V], Xrpc = / / z P(x,y) dy dx (5)
z=0Jy=R—=z

Vy:], andcov[z;, y;] from the transition matrix of the model.

Because of space limitation, a detail derivation is showoun Y T ”;53’:)2—@;52:)261 42(6)
technical report [14]. Our analysis takes into account Hut f  Jio y=R—z 2TOXOY Y

that different values ofd;, r;) can affect the burstiness of the (@—px)?

packet loss observed on a pathThis phenomenon has been D e 2% py +—R

reported by several recent studies. For example, the author — / x| 1+erf dx (7)

. P y ; s _p P z=0 2V2mox \/iay

in [22] show that burstiness of probing traffic significantly L

affect the burstiness in the observed loss rates. As the- int@here erfz) = %r Jo e " dt is the error function [25]. We
arrival time of probing packets increases, the loss becomg then numerically evaluat§ . using standard software
less bursty. package such as Matlab.

Based onFE|x;], Ely:]|, Viz:], V]y:], and covlz;,y;], we 2) Dynamic Programming Based SolutioOur second
then compute the statistics of the total numbers of lost datejor task is to find an optimal allocatiofi(d;,r;)} that
and redundancy packets as follows. et andoxy denote the minimizng?EC as defined in (7). The main challenge here
mean and standard deviation &f, respectively. Lef:y and is that X3, does not have close-form and cannot be easily
oy denote the mean and standard deviatiol pfespectively. transformed into simple objective functions. Fortunatélgm
Letoxy = cov[X,Y] be the covariance ok andY. In order (7) we can show thak 7 is monotonically decreasing with
to deriveux, ox, puy, oy, andoxy as functions of a given respect to botlwrx andoy .
allocation {(d;,r;)}, we will assume thatosses on different  Our high-level approach to traffic allocation under no ca-
paths are independent from each othkater in Section IV- pacity constraints is as follows. We enumerate all possible
E, we will discuss techniques that can be used to detect armdues ofu.x, and use dynamic programming to find the data
remove paths with shared congestion. Under the indeperdeatiocation that results in the minimumy for each given



=

ux. Similarly, for all possible values ofiy, we determine solve alldlvm(d, p, e, 00) andrlvm(r, p, e, 00).
the allocation of redundancy packets that minimizes for using dynamic programming

each givenuy. Then we plug all (ux,py,ox,0y) into 2. for e =110 Fpax

Equation 7, and find the allocation that minimiz&&;,. The 3. {d;} = an optimal solution ofllvin(D, N, e, oq)

monotonicity of X, Wwith respect toox and oy ensures 4.  for eg =110 Enax

that the final solution gives the best possibig;, . Later we 5. {r;} = an optimal solution oflvm(R, N, es, o)

will extend the idea to handle capacity constraints. 6. computeux, py, ox, oy under{(d;,r;)}
Below we first describe how to determine the allocation that| 7. computeX 7

minimizesox andoy given ux anduy. Then we show how 8. store{(d;,r;)} if it is the best so far

to use these solutions to solve the original allocation emb 9. end

Subproblem: Variance Minimization. Let E{x;|d; = k} 10.end _ o _
and V{z;|d; = k} denote the average and variance of datal_11.return {(d;,r;)} that gives the minimum¥z,
losses on path when pathi is allocatedd; = k data packets. Fig. 3. Traffic allocation under no capacity constraints.

To apply dynamic programming, we need integer values of

E{z;|d; = k} andV{xz;|d; = k}. So we scale them bj. Let
edli, k| = | E{x;|d; = k}X] andwd]i, k] = |V{z;|d; = k} ]
be the scaled, discretized mean and variance; ovhere | -|
is the floor function (i.e., taking the largest integer nayéar
than the input). We can pre-compuwté]i, k] and vd[i, k] for
V1<k<DandVl <i<N\.

Traffic allocation under capacity constraints. When net-
work paths have capacity constraints, allocation of redaog
packets is dependent on the allocation of data packets to
ensure the capacity constraints are satisfied. To incapora
capacity constraints, we modify the previous algorithm by
. . s introducing a new capacity constraint to ensure that the
We define adata loss variance minimizatiomproblem rate for sending redundancy packets on patmnnot exceed

dlvm(d, p, e, c) as the problem of allocating data packets ;.o eqiqual capacity of path(after sending its allocated data
onto the firstp paths to minimize the total variance Wh'lepacketd')

f;gffquggncg a;g;r/mc:”nstramts and the constraint that the The solution to the allocation problem with capacity con-
' Y straints can be sub-optimal. Due to capacity constraihts, t

o P allocation of data packets is now coupled with the allocatid
dlvm(d, p, e, c) : minimize Y vd]i, d;] redundancy packets. Such coupling further increases trefse
i=1 space. For efficiency, we decouple the data and redundancy
P oidi=d allocation by first optimizing data allocation (while igiiy
subject to Soijedli.d] =e the capacity consumed by redundancy packets), and then
d; < cli],Vi optimizing redundancy packet allocation based on remaginin

ﬁ;apacity. Such decoupling may result in sub-optimal sofuti
n practice, however, we find through extensive simulations
that the solution we obtain tends to perform close to optimal

Let opt(d,p,e,c) be the variance achieved by an optim
solution todlvm(d, p, e, ¢). We have

Opt(dapa €, C) :Oglklgd{vd[pa k] +Opt(d7k7p*1, B*Ed[ ’ k]a C)}

k<elp] 1. solve alldlvm(d, p, e, c) via dynamic programming

So we can apply a dynamic programming algorithm to solve 2. for e, :_1 10 Emax .
dlvmn(d, p,e,c) foral 0 <d < D, 1 <p < N,0 < e < 3. {4 =an optimal solution ofilvm(D, N, 1, )
Fax, Where_E,,m co_ntrols the gr_anularlty of the solutions. 5. solve allrlvm(r, p, e, ') via dynamic programming
The complexity for this algorithm i€ (D?N Ey.x)- 6. for e2 =110 Fmax

Similarly, we can define aedundancy loss variance mini- 7. {r:;} = an optimal solution oflvm(R, N, ez, ")
mizationproblemrlvm(r, p, e, c¢) as the problem of allocating 8. computepx, py, ox, oy under{(di,r:)}
r redundant packets onto the figspaths to minimize the total 26 g(t)onrqg{u(t;XF-E)(}j i it is the best So far
variance subject to the constraint that the total mean /e 11 end il
can solverlvm(r, p, e, ¢) again using dynamic programming. 12.end
Traffic allocation under no capacity constraints. We are 13.return {(di,r)} that gives the minimunX g

now ready to solve the original allocation problem. Let ustfir _. i i . .
. . . Fig. 4. Traffic allocation problem under capacity constisin
consider the unconstrained allocation problem, whgee oco.
In this case, data packets can be allocated independentl) Packet Spreading Algorithmin Section IV-B.1 and
from redundancy packets. So the final allocation is to atbcaSection IV-B.2, we derive the traffic allocation (i.€(d;,r;)}
data packets such thdlvm(D, N, e, c0) is minimized, and for each pathi). For the same allocation, different ways of
allocate redundancy packets such thhtm(R, N,eq,00) is  assigning packets onto paths can result in different oleserv
minimized. The algorithm is illustrated in Figure 3. It sefa@s loss burstiness. The burstiness in the observed loss sesea
through all possible values @fy and .y, and determines the with the burstiness in traffic. So we should try to spread the
allocation that minimizes x andoy for each givenuy and packets allocated on the same path as evenly as possibte. Thi
wy. Note that the discretization may introduce some erraeduces burstiness in experienced packet losses, andaashan
However, our experience from extensive simulations suggesffectiveness of FEC. To achieve this goal, we develop atered
that with sufficiently largeF... (e.g, 500), the algorithm based scheme to allocate traffic. Each path is associathdawit
tends to perform close to optimal. credit. The path with the largest credits is selected tostran



the next packet. The credit of pathis updated as follows. characteristics; ns-2 simulation allows us to study therint
Each time a new packet is transmitted, patlearnsd;/D actions between multiple tunnels in a controlled environine
credits. If pathi is selected to transmits a packet, it consumesd real experiment allows us to understand the benefit and
1 credit. For a given allocation{(d;,r;)}, the credit-based overhead of SmartTunnels in a real network.

scheme determines exactly which packets in an FEC groupMe compare the following traffic allocation schemes:
should be allocated onto which paths so that the final l08s rgt smartTunnel: This is the algorithm we describe in Sec-

is minimized. This allocation only needs to be computed oncetjgn |v.

for a given {(d;,r;)}, and can be cached for future packef markowitz numeric (MkwNu): This is the algorithm
processing. More details are described in our technicairtep proposed in [9]. It maximizes the Sharpe-Ratio by solving
[14]. a series of quadratic optimization problems.

C. Estimating Parameters for the Loss Model ¢ E;Lrl]gdir:(): 'Pofﬁg);olgﬁf]tﬁs'ﬁigﬁls'gned to multiple physical
The effectiveness of the above traffic allocation scheme Greedy: Traffic is assigned to the path that has the lowest
depends on the accuracy of the loss model estimation. In ouloss rate. When multiple paths experience the same loss rate,
evaluation, we use extended Gilbert loss model, and estimat one path is selected randomly among them.

its transition matrix (in Equation 2), as shown in [20].

B. Trace-driven Simulation

n—1
por = (Zmi)/mo We collect Internet traces by sending 16-byte ICMP echo
=1 packets from 57 hosts on PlanetLab to 55 popular Web sites,

n—1 n—1 selected from the 100 popular websites listed at [1]. We

Pl—1)k = (Z m;)/( Z m;) run zing and tcpdump concurrently on each PlanetLab host.

i=k i=k—1 To capture bursty loss behavior, zing is modified to generate

where m; denotes the number of loss bursts with lengtf°MP €cho packets with an inter-packet arrival of 2 ms.
i, wherei — 1,2....n — 1 and mg denote the number Tcpdump is used to captured ICMP echo-reply packets. In

of delivered packets. Since network path properties changféder to avoid PlanetLab hosts to drop packets when the

over time, we predict future network performance using tHgobing traffic are too bursty. We introduce 1 second idIeeFim
measurements in the previous intervals. every 1 second bursty traffic. Each measurement experiment

lasts at least 800 seconds. In our measurement, 78.5% af path
D. FEC redundancy adaptation have loss rates below 2%. The mean loss rates of these paths

We derive the allocation scheme given the number b§0.0lh7t5. i divided into 20 int | hint i
redundant packets R per FEC group. In practice, we can g8l_5ac race IS divided into Intervals, so each intervalis a

greedy search to find the minimum redundancy packets second trace. We _apply different traffic aIIocati_on sobe
which can satisfy target loss rate (e.g.,1e-6) on each 40-second interval. For all the evaluation, we use

FEC group size of 40 packets (including data and redundancy
E. Handling Shared Congestion packets), and adapt traffic allocation every interval. Turalk

ﬂf evaluation results are shown. One is oracle result in lwhic

In _the previous _dlscussmn, we cons!der loss rates on tw% assume current network path performance is known and
physical paths are independent. In practice, we may have S9%re is no prediction errors. The other one is prediction
paths that share a common bottleneck. In this case, the I?

. S3ult in which current network path performance is preict
rates on these paths are h}ghly correlgted. To handle s previous intervals. Tablep Il pshows probabiﬁties of
cases, t\_/ve cz‘m ap%ly ar} tex'f]t".]g tecEnlquE to detect Sr:j artTunnel to achieve loss free reliability. When thereds n
congestion. A number of techniques have been proposed QL jiction error, SmartTunnel can achieve loss free riditiab
this purr;)ose,dsuch as r(]:r[osT-co(;relatloln-btc;;\seddapprozﬂ%:hh{ ith probability up to 0.9991 if it uses 6 paths. It can also
entropy-based approach [11] and wavelet-based approd . I . o ) .
We then treat the set of paths that have shared Congestiorbch|eve loss free reliability with probability 0.94 eventhwi

th and | traffic allocat h o the nde 2 paths. If we consider prediction errors, SmartTunnel
oneé path, and apply our traffic aflocation scheme 1o the Nerge, ) 5150 achieve loss free reliability with probabilityrfr®.85

paths. 0 0.93.
V. PERFORMANCEEVALUATION 2Path | 3Path | 4Path | 6Path
. . . . Oracle 0.94 | 0.9852| 0.996 | 0.9991
In this section, we first introduce our evaluation methodol- Prediction| 0.85 | 0.88 | 0.91 | 0.9267
ogy and then describe evaluation results. TABLE Il

. PROBABILITIES OF SMARTTUNNEL TO ACHIEVE LOSS FREE RELIABILITY
A. Evaluation Methodology

We evaluate the performance of SmartTunnels using thel) Oracle results:We compare different traffic allocation
following three ways: (i) Internet trace-driven simulatjqii) schemes by varying the number of available physical paths,
ns-2 simulation, and (iii) experiment on PlanetLab. Thésed redundancy level used in FEC, and quality of the paths.
evaluation methods are complementary to each other. TraBer each experiment configuration (e.g., a given number of
driven evaluation allows us to extensively evaluate thégper paths to the same website and a given combination of path
mance of SmartTunnels under realistic Internet performangroperty), we conduct 20 random runs (i.e., selecting 20



different combinations of traces used for evaluation), and ool o007 s vl

report the summary statistics from these runs. G=1 0.0003 0.0002 0.0001
To systematically study the performance, we categorize G=2 0.0001 2.6 x 107> | 1.2x 1075

results into different scenarios based on the number of low G=3]25x107° | 9.8x107° | 44 x107°

loss paths selected. Low loss paths are paths whose loss rate TABLE VI

are below 2%. This classification is used in [28]. Table litan MEAN LOSS RATES OFSMART TUNNEL USING 3 PATHS

Table IV compare percentages of intervals to achieve freg lo
reliability among different algorithms. Let K denote thenmu ~ 2) Predictability of Path PropertiesFor a traffic allocation
ber of redundant packets and G denote the number of low Ié@swork well, we should be able to predict future network
paths chosen. We make the following observations. First, R@th performance. In our technical report [14], we study the
all cases SmartTunel is the best performing algorithm. Seco predictability of loss rates by applying Fisher exact piuiliy
when all paths are low loss paths, SmartTunel can achiese 1&8st [5]-
free reliability for 94.47%-99.81% of time intervals. Tjr ~ We find out that test results are not sensitive to the length of
SmartTunnel more effectively uses paths with high losssratdistory traces. In practice, we prefer to use longer histage
For example, when all paths are high loss paths, SmartTunt@Ho the prediction because it is more stable. In the folgwi
can achieve loss free reliability for around 6%-35% morevaluation, we use the loss transition matrix of previou@ 32
time intervals compared to other algorithm. It is intenegti second trace (8 intervals) as the prediction of the current
that when high loss paths are selected, Greedy algorithinterval.
is almost the second best algorithm. Fourth, in those case$8) Trace-driven evaluation resultsTable VII and Ta-
with three physical paths selected, the difference betweble VIII show trace-driven results with prediction. SmamF
various traffic allocation schemes becomes smaller when the out-performs the other schemes in all scenarios except o
number of redundancy packets increases. This suggests thawhich there are three low loss rate paths and K is 14. In
the choice of traffic allocation is more important when ththis case, the reliablity of SmartTunnel reduces from 9981
network bandwidth is limited and the number of redundandjn oracle) to 97.64% due to prediction errors while predict
packets is small. errors do not affect the performance of round robin.

Table V and Table VI show mean loss rates of SmartTunnel
with different number of low loss paths selected and diffiere
number of redundant packets. We can derive the expected 16ssNS-2 Simulation
rate of N-Path SmartTunnel from these tables. In this section, we study the interactions between multiple

Let P denote the probability that a selected path has loss r&@gmartTunnels using ns-2 simulations. Figure 5 shows the
lower than 2%,P,.(G = i) denote the probability that exactlynetwork topology used in the evaluation. Both senders use
i low loss rate paths are selected, aRg (G = i, K = j) 3 redundancy packets per FEC group, where each FEC group
denote the mean loss rate of a SmartTunnel wber= 4, consists of 13 packets in total. Figure 6 shows the evolufon
K = j, and N physical paths are used. In our measuremengss rates experienced by 2 SmartTunnels that share physica
P =0.785. Ry(G =i, K = j) can be lookup from Table V paths. To stress test, we initialize their allocation tohbot
and Table VI. Then we can compute the expected loss rai€e path A-B-D. Due to poor initial allocation, both tunnels
Ly, k=; of N-path SmartTunnel using K redundant packetgitially experience high loss rates before and after FERIsT

as follows. also highlights the importance of appropriate traffic aion
on end-to-end reliability. Then the two tunnels continupus
Lyk—j = ZRN(G =i, K =7)% P.(G =1) adapt their traffic allocation according to their monitored

performance every time interval. At interval 7, both turnel

converge to low loss rates before FEC, and close to O loss rate
Z Rn(G =i, K = j)* C4 * P' x (1 — P)N~ after applying FEC. Figure 7 further plots the data allcwatf
two tunnels on these paths. As we can see, they converge to an
even share of network resources, both allocating 5 dateepsck
on two paths. Similar fair allocation is achieved for redancly
packets (not shown in the interest of space). Overall both
kablhty and fairness are achieved.

For example, when N = 2 and K = 7, we can det(G =

0,K = 7) = 0.0101, Ry(G = 1,K = 7) = 0.0009 and

Ro(G = 2,K = T7) = 0.0001 from Table V. Based on
the equation, we can get the expected loss rates of 2- Pat
SmartTunnel using 7 redundant packétsy_; = 8x107%,

Similarly, the expected loss rate of 3-Path SmartTunneItxean 10ms  50ms soms 02ms ()
as small ash x 10~° when K is 14. Therefore we conclude OMbps 1% pe
that SmartTunnel can achieve around four 9s reliabilityhwit
a small number of paths and redundant packets. O/O
10ms 50ms SOms 10.3ms
10Mbps 10Mbps 1Mbps lOMbps
G=0 05):1701 OK(:)(%% ng334 Fig. 5. Network topology used in n2-5|mulat|on. Two tunnelsf&l and S2-
G _ 1 0'0009 0'0004 0'0003 R2 share two physical paths. S1 sends 0.7 Mbps CBR traffic.S2ndends
G - 5 0'0001 9 6' 10-5 | 1.6 ’ 10-5 0.5 Mbps CBR traffic. Low-rate Pareto traffic is introducedbeskground
- . O X b X traffic on links BD and CD. In addition, links BD and CD use @&itbloss
TABLE V models to drop traffic, where the loss transition matrix at BOi®85 0.015;

MEAN LOSS RATES OFSMART TUNNEL USING 2 PATHS 0.45 0.55], and that at C is [0.99 0.01; 0.35 0.65].



K=7 K =10 K=14
G=2 G=1 G=0 G=2 G=1 G=0 G=2 G=1 G=0
SmartTunnel| 94.47%  79.45%  31.12% 98.88%  89.62% 52.95% 99.09%  93.81% 63.30%
MkwNU 87.91 % 75.40% 25.51% 95.36% 84.58%  40.84% 98.20% 90.93%  53.40%
RR 82.82%  48.09%  16.73% 91.52% 64.51% 40.11% 92.04% 74.80%  49.53%
Greedy 88.86%  77.71% 27.85% 94.79% 85.87% 44.53% 97.80% 90.60% 53.21%
TABLE Il

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY URER 2 PATHS RANDOMLY CHOSEN FROM THE TRACES

K=7 K =10 K=14
G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0
SmartTunnel| 98.71 % 96.80 % 88.20 % 48.82%99.61 % 98.82% 9358 % 65.86%99.81% 99.62% 97.25% 77.84 %
MkwNU 96.35% 93.84% 8496 % 33.09 %98.80% 97.26 % 90.76 % 47.73 % 99.67 % 99.02% 94.78 % 64.79 %
RR 9053 % 6451 % 35.73% 14.77 %93.84 % 79.05% 55.22% 33.27 %99.78 % 96.93 % 82.88% 61.60 %
Greedy 96.00 % 94.49% 86.08% 42.82%97.73% 96.60% 90.43 % 53.23%98.92% 98.44 % 93.94% 61.08 %
TABLE IV
PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY URER 3 PATHS RANDOMLY CHOSEN FROM THE TRACES
K=7 K =10 K=14
G=2 G=1 G=0 G=2 G=1 G=0 G=2 G=1 G=0
SmartTunnel| 90.46 % 77.25% 27.76% 96.18% 87.12% 50.21% 97.35% 91.25%  59.25%
MkwNU 83.66 % 73.53% 20.47% 91.27% 83.30% 37.47% 96.22% 89.25%  49.81%
RR 82.76%  48.19% 17.38% 91.36% 64.41% 39.89% 91.95% 74.45% 48.87%
Greedy 84.85%  76.18% 27.10% 90.82% 85.07% 42.63% 95.15% 89.22% 52.26%
TABLE VII
PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY URER 2 PATHS RANDOMLY CHOSEN FROM THE TRACES
K=7 K =10 K = 14
G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0 G=3 G=2 G=1 G=0
SmartTunnel| 94.42 % 92.31 % 85.46 % 41.77 %96.39 % 95.39% 90.49 % 58.18 % 97.64% 97.06 % 94.14% 71.08 %
MkwNU 91.32% 89.31% 8261% 2577 %95.03% 93.61% 88.79% 40.68%97.22% 96.28% 93.31 % 59.67 %
RR 90.52 % 64.48% 3543 % 15.27 %93.84 % 7854 % 54.90% 33.05%99.76 % 96.92% 8246 % 61.31 %
Greedy 91.37 % 90.62% 84.69% 39.36 %93.82% 93.37 % 89.03% 49.23%96.09 % 9556 % 9242 % 57.14 %
TABLE VIII

PERCENTAGES OF INTERVALS TO ACHIEVE LOSS FREE RELIABILITY URER 3 PATHS RANDOMLY CHOSEN FROM THE TRACES

and add/remove SmartTunnel header, and (iv) packet bogferi
Figure 8 shows the diagram of different components in our
implementation. ToSocket and FromSocket in the figure are
the existing elements in click to provide sending and réngiv
functionalities, and the other elements in the figures aratwh
we implement. At the sender side, the controller, implemént
outside the click, coordinates with different click elertehy
specifying monitoring instructions, an FEC coding scheme,
traffic allocation scheme. The sender side receives andlesco
- — data from the upper layer and stripes them onto multiple
P physical paths. The receiver logic is much simpler: it desod
and buffers packets before delivering them to the upperlaye
The monitor at the receiver side responds to active probes
from the sender, and also periodically sends back perfacman
information for the paths that carry traffic.
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(a) S1-R1 data allocation on 2 paths.(b) S2-R2 déveation on 2

D. Experiments on PlanetLab

Monitor

I i

FromSocket

Monitor

i
The following elements are added to click to provide Smart- distributor decoder
Tunnel functionalities: (i) monitors at both sender anceeer lfj |
to cooperatively monitor network performance using either
active probing or passive probing, (ii) a traffic distributbat e EELTTTErrEErrrErr -
stripes traffic according to the controller’s specificati¢iii) ~Fig- 8- SmartTunnel implementation in click.
an encoder and decoder that apply FEC encoding /decodindgn the experiment, we construct a SmartTunnel on top of

We implement SmartTunnel using click [13] on PlanetLab.
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