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ABSTRACT

Localization is a fundamental operation for many wireless networks.
While GPS is widely used for location determination, it is unavail-
able in many environments either due to its high cost or the lack
of line of sight to the satellites (e.g., indoors, under the ground,
or in a downtown canyon). The limitations of GPS have moti-
vated researchers to develop many localization schemes to infer
locations based on measured wireless signals. However, most of
these existing schemes focus on localization in static wireless net-
works. As many wireless networks are mobile (e.g., mobile sensor
networks, disaster recovery networks, and vehicular networks), we
focus on localization in mobile networks in this paper. We ana-
lyze real mobility traces and find that they exhibit temporal sta-
bility and low-rank structure. Motivated by this observation, we
develop three novel localization schemes to accurately determine
locations in mobile networks: (i) Low Rank based Localization
(LRL), which exploits the low-rank structure in mobility, (ii) Tem-
poral Stability based Localization (TSL), which leverages the tem-
poral stability, and (iii) Temporal Stability and Low Rank based
Localization (TSLRL), which incorporates both the temporal sta-
bility and the low-rank structure. These localization schemes are
general and can leverage either mere connectivity (i.e., range-free
localization) or distance estimation between neighbors (i.e., range-
based localization). Using extensive simulations and testbed ex-
periments, we show that our new schemes significantly outperform
state-of-the-art localization schemes under a wide range of scenar-
ios and are robust to measurement errors.
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1. INTRODUCTION

Motivation: Knowledge of location is critical to many wireless
network applications, such as geographic routing [25, 41], context-
aware applications [26, 27], environment surveillance [1, 49, 52],
habitat monitoring [11, 24], vehicle tracking [48], disaster recov-
ery [14], military reconnaissance [20] and underwater surveillance
[4, 51]. Meanwhile, many wireless networks are mobile. For ex-
ample, wireless devices move with rescuers in a disaster area, move
with soldiers in a battlefield, move with tourists in a visitor center,
move with animals in a habitat, move with water in the ocean, and
move with vehicles around a city. Even sensor networks that used
to be static are becoming mobile in order to leverage mobility to
efficiently cover a large area using a small number of sensors (e.g.,
[34, 35, 38]). It is therefore important to develop effective methods
to accurately determine the locations of nodes in mobile networks.

Existing approaches and limitations: The Global Positioning Sys-
tem (GPS) [18] is widely used to obtain location information in
wireless networks. But GPS does not work in many environments
due to the lack of line of sight to the satellites (e.g., indoors, under
the ground, or in a downtown canyon). Moreover, it is often too
expensive to equip every wireless device with a GPS.

The limitations of GPS have motivated researchers to develop
many localization schemes to infer locations based on cheap hard-
ware and wireless measurements (e.g., [3, 21, 22, 29, 37, 46, 47,
55]). For these schemes, localization accuracy depends heavily on
the amount of information that one can extract to constrain the set
of possible locations that a given node belongs to.

Most existing localization schemes are designed for static wire-
less networks. For example, there are many interesting propos-
als on deriving location constraints from measurements of wire-
less network connectivity [46, 47], signal strength [3], angle of ar-
rival [37], and difference in arrival time of different types of sig-
nals [40]. To localize nodes in mobile networks, one possible ap-
proach is to treat a mobile network during different time intervals
as separate static networks and apply existing localization schemes
for static networks to the mobile network at each interval. How-
ever, such an approach is unlikely to achieve high accuracy because
(i) mobility-induced fading can make distance measurements much
less accurate in mobile networks, and (ii) it is difficult to conduct
synchronized measurements when nodes are moving.

There are only a limited number of recent works that explicitly
consider the problem of localization in mobile networks (e.g., [2,
22, 42, 50]). However, these works do not fully exploit the location
information available in each time interval. For instance, existing
localization schemes for mobile networks only use the maximum
speed to constrain the distance between a node’s positions during
two consecutive intervals. Moreover, their evaluation uses simula-
tion based on synthetic mobility traces. It is not clear how well they
perform under a real mobility pattern or in a real network.
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Our approach: In this paper, we develop novel techniques to ac-
curately localize nodes in mobile networks by exploiting structural
properties of the underlying node mobility patterns. Intuitively, the
nodes’ coordinates over time are not independent but have certain
relationships. By exploiting such relationships, we can derive ad-
ditional constraints to further narrow down the set of feasible loca-
tions and thus significantly improve localization accuracy.

To extract the relationships between nodes’ coordinates across
different time intervals, we first analyze the characteristics of a
number of real mobility traces, including (i) taxi and bus traces in
San Francisco [9], Shanghai [62], and Seattle [45], (ii) human mo-
bility traces [23], and (iii) ZebraNet traces [60]. Interestingly, while
these traces capture rather different mobility scenarios, they all ex-
hibit two pronounced structural properties: (1) low-rank structure,
i.e., the matrix formed by node coordinates over time can be well
approximated by a low-rank matrix; and (2) temporal stability, i.e.,
the direction and speed of the same mobile node is often simi-
lar at adjacent intervals. Our results suggest that these structural
properties are also present in synthetic traces generated using two
commonly used mobility models: the standard random waypoint
model [7] and the modified random waypoint model [22].

Motivated by these observations, we develop a general frame-
work that simultaneously incorporates location constraints during
each interval and exploits the low-rank structure and temporal sta-
bility in mobility. Specifically, we formulate the localization prob-
lem as an optimization problem that minimizes (i) the fitting error
between measured distance and estimated distance based on node
coordinates, (ii) the error in approximating the estimated coordi-
nate matrix using a low-rank matrix, and (iii) the total changes
in nodes’ velocity during adjacent time intervals. Essentially, (i)
leverages the location information during each time interval of the
mobile network, which can be obtained using existing localization
techniques for static networks (e.g., [3, 37, 40, 47]), (ii) reflects the
low-rank nature of the coordinate matrix in a mobile network, and
(iii) captures the temporal stability in node movement.

Using this framework, we develop three novel localization schemes
for mobile networks: (i) Low Rank based Localization (LRL), which
exploits the low-rank structure in mobility, (ii) Temporal Stabil-
ity based Localization (TSL), which leverages the temporal stabil-
ity, and (iii) Temporal Stability and Low Rank based Localization
(TSLRL), which simultaneously takes into account the temporal
stability and the low-rank structure of the mobility. These local-
ization schemes use distance estimation between neighbors and we
call them range-based localization schemes. In addition, based on
the general framework, we also develop range-free variants of these
schemes, namely, LRL-RF, TSL-RF, and TSLRL-RF. These vari-
ants use only network connectivity for localization and can there-
fore support nodes that are unable to obtain accurate distance esti-
mation (e.g., due to lack of RSS measurements).

We extensively evaluate our localization schemes using (i) simu-
lations based on both synthetic mobility traces and several real mo-
bility traces, and (ii) experiments in a sensor network testbed con-
sisting of 25 or 36 mica2 motes. The simulation results show that
our new schemes significantly out-perform the existing schemes
over a wide range of scenarios. For example, TSLRL reduces the
mean absolute error by a factor of 2.3-63.5 over Centroid (i.e.,
the mean absolute error of Centroid is 2.3–63.5 times of that in
TSLRL), 1.1-20.4 over MDS, 1.6-27.2 over Sextant, 1.8-49.5 over
MCL, and 1.2-17.3 over MSL* with and without measurement noise,
where Centroid, MDS, and Sextant are well-known localization
schemes for static networks, MCL and MSL* are state-of-the-art
localization schemes for mobile networks. TSL sees similar per-
formance improvement. We further compare various localization
schemes using testbed experiments, and find that our schemes re-

duce the mean absolute error by a factor of 2.5-4.1 over Centroid,
1.6-2.3 over MDS, 2.4-3.9 over Sextant, 2.8-4.4 over MCL, and
2.1-3.2 over MSL*. Moreover, our schemes are robust and can
achieve high localization accuracy even in the presence of measure-
ment noise, irregular topologies, and different mobility patterns.

Paper organization: The remainder of the paper is organized as
follows. In Section 2, we review the related work. We analyze the
characteristics of real mobility traces in Section 3. We formulate
the problem of localization in mobile networks in Section 4, and
describe our solution in Section 5. In Section 6 and Section 7,
we evaluate our approach using both simulation and testbed. We
conclude in Section 8.

2. RELATED WORK
We classify the related work into the following three categories:

(i) localization in static wireless networks, (ii) localization in mo-
bile networks, and (iii) general compressive sensing.

2.1 Localization in Static Wireless Networks
Most works on localization target static wireless networks. The

first class of works in this category focus on localization in static
single-hop wireless networks. For example, [8] proposes Centroid,
which estimates the location of a node as the center of all neighbor-
ing anchor nodes. When there are no anchor nodes nearby, a node
estimates its location as the center of the area. RADAR [3] uses
signal strength measurements from multiple base stations to locate
and track users. Cricket [40] obtains accurate distance estimates
based on the difference between the arrival time of radio and ul-
trasound signals. VORBA [37] leverages angle of arrival measure-
ments from 802.11 base stations. [29] exploits the signal strength
information from a group of clients to simultaneously locate all of
them instead of one client at a time. See [21] for an extensive sur-
vey on this subject.

The second class focuses on localization in static multi-hop wire-
less networks. For example, Savvides et al. [43] develop a dis-
tributed localization approach that iterates through two phases: rang-
ing and estimation. During the ranging phase, each node estimates
its distance to its neighbors; and during the estimation phase, it
estimates its location based on the ranging information and the lo-
cations of its neighbors whose positions have been determined. To
limit error accumulation in [43], Savvides et al. [44] formulate the
localization problem as a global non-linear optimization problem.
Shang et al. [47] apply multi-dimensional scaling (MDS) to deter-
mine location in a centralized fashion. MDS estimates the distance
matrix by computing the shortest path distance between each pair
of nodes and then finds the nodes’ coordinates by solving an opti-
mization problem: minx1,...,xn

P

i<j
(‖xi − xj‖ − dij)

2, where

‖xi − xj‖ is the Euclidean distance between two locations xi and
xj , and dij is the measured distance. MDS performs poorly when
the shortest path distance does not correlate well with the Euclidean
distance, which is common in irregularly shaped networks. In [36],
the authors propose robust quadrilateral for localization. It finds
sets of four nodes that are fully connected, and localizes the fourth
node based on the positions of the other three nodes. Robust quadri-
lateral conditions have to be satisfied by the fourth node in order to
prevent error accumulation. Therefore it improves accuracy at the
cost of leaving some nodes un-localized. Biswas et al. [6] formu-
late the localization problem as a semidefinite program, and later
develop global optimization approaches [5]. Wang et al. [54] fur-
ther propose a low-rank semi-definite programming formulation of
the localization problem. Inspired by these localization schemes
for static networks, we focus on localization in mobile networks.

Unlike most of the previous approaches, which represent inferred
locations using points, Sextant [19] denotes inferred locations as re-
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Trace name Description Matrix size Time interval

Cabspotting traces [9] Taxis in San Francisco Bay Area over a month 100 nodes × 300 intervals 1 minute

Shanghai taxi traces [62] Taxis in Shanghai on 1 day 100 nodes × 300 intervals 1 minute

Seattle bus traces [45] Buses in Seattle during 2001 545 nodes × 300 intervals 1 minute

ZebraNet traces [60] ZebraNet deployment in 2005 summer 61 nodes × 90 intervals 8 minutes

Human mobility traces [23] several students’ movement in KAIST 92 nodes × 499 intervals 30 seconds

Table 1: Real traces used in mobility characterization.

gions that satisfy distance measurements. In particular, when node
i hears from node j, it extracts a positive constraint that their dis-
tance is within the communication range. When node i does not
hear from node j, it extracts a negative constraint that their distance
is larger than the communication range. A node then estimates its
location by finding a region that satisfies both positive and nega-
tive constraints. All points in a region are considered equally likely
locations for a node. [53] proposes probabilistic region-based lo-
calization that uses a dynamic mesh to represent a region and com-
putes the probability for a node to reside in different parts of the
region. This improves accuracy over Sextant at the cost of higher
computation time.

2.2 Localization in Mobile Networks
Compared to significant related work on static network localiza-

tion, there are considerably fewer works on localization in mobile
networks. Among the few existing works, [22] is the first localiza-
tion scheme for mobile networks. It uses a sequential Monte Carlo
Localization (MCL) method to localize mobile sensors. A node
uses its previous location and maximum speed to generate possible
current coordinates. Then it filters out infeasible locations using
the current connectivity information. Since MCL only extracts in-
formation for nodes that are either direct neighbors or 2-hop neigh-
bors from anchor nodes, it requires a high anchor density to work
well. Moreover, its sampling technique converges very slowly as
reported in [42] and observed in our own evaluation. [2, 42, 50]
propose several enhancements over MCL sampling. Among them,
MSL* [42] performs the best. MCL only supports mobile net-
works, and MSL* [42] modifies the sampling procedure to sup-
port both static and mobile networks. Moreover, it lets nodes use
information only from the neighbors that have more accurate coor-
dinates to speed up convergence and improve accuracy.

2.3 Compressive Sensing
The localization problem is related to the general area of com-

pressive sensing in that both aim to recover the unknowns based on
partial observations. To cope with the under-determined nature of
the problems, many algorithms have been proposed in the area of
compressive sensing. Their effectiveness depends on their ability
to exploit the unique structure in the data. For example, [15, 16,
39] exploit sparsity, [10, 17] exploit low rank structure, and [61]
exploits spatio-temporal properties. Motivated by these works, our
work exploits the low rank and temporal stability of coordinate ma-
trices for localization in mobile networks for the first time.

3. MOBILITY CHARACTERIZATION
In this section, we analyze the characteristics of mobility patterns

using both real and synthetic traces, and find that they often exhibit
low-rank structure and temporal stability.

Low-rank structure: Our first finding concerns the low-rank na-
ture of the coordinate matrix. Specifically, consider n wireless
nodes in a 2-dimensional Euclidean space. Let M be the 2n×tmax

coordinate matrix over time, where M(i, t) and M(i+n, t) denote
node i’s x-coordinate and y-coordinate at time t (1 ≤ t ≤ tmax),
respectively. It is not difficult to see that if every node moves at
a constant velocity, even when different nodes move at different

velocities, the coordinate matrix M always has rank 2. This is be-
cause we always have M(:, t) = z + t · v, where z is a column
vector that represents the initial coordinates of all the nodes, and v

is a column vector that gives the velocities of all the nodes, and t
is the current time. As a result, M can be represented as the sum
of two rank-1 matrices: M = z · 11T + v · tT , where 11 is an all-1
column vector, and t = [1, 2, · · · , tmax]

T is the time vector.
In practice, a node may not always move at a constant veloc-

ity. However, it is common that a node may travel at a constant
velocity for some time before it changes direction or speed. This
suggests that it is quite likely that the real coordinate matrix M ex-
hibits low-rank structure. To validate this conjecture, we analyze
a number of publicly available traces as shown in Table 1. Here
the time interval is determined by the frequency of trace collection
(e.g., the vehicular traces recorded GPS readings of the vehicles
around once a minute). Since the human mobility traces and Ze-
braNet traces have only a few nodes, we pre-process these traces as
follows. The KAIST campus traces were taken from 4 students liv-
ing in a campus dormitory. There are 92 trace files, each of which
represents a daily trace from one participant. We treat each file
as a trace from a distinct person, which gives us 92 nodes. We
use ZebraNet traces from the second deployment, which has data
from 5 zebras. We generate 61 synthetic zebras from these 5 real
zebras by partitioning each trace over time and treating each par-
tition as a synthetic zebra. This gives us 61 zebras over 90 time
intervals. Since the original vehicular traces already contain a large
number of nodes over an extended period, such pre-processing is
not needed. Also note that some of these mobility traces contain
a small fraction of missing values. We fill in these missing values
using nearest-neighbor interpolation [56].

For comparison, we also generate synthetic mobility traces for
50 nodes in a 200m × 200m area over 100 time intervals using
the standard random waypoint model [7] and the modified random
waypoint model proposed in [22]. The random waypoint model is
one of the most widely used mobility models. In the standard ran-
dom waypoint model, each node picks a random location as a desti-
nation and moves towards the destination at a randomly selected ve-
locity; after reaching the destination, the node pauses for some ran-
dom amount of time and selects a new destination and repeats the
process. [22] proposes a modified random waypoint to overcome
the limitation of the standard random waypoint model, which expe-
riences decay in average speed, as reported in [59]. To maintain the
average speed, in the modified random waypoint model, each node
randomly chooses a speed every interval (instead of staying at the
same speed until reaching the destination as in the standard random
waypoint model). We use a maximum velocity of 10 m/interval
for low mobility and 30 m/interval for high mobility under both
the standard and modified random waypoint models.

For each mobility trace, we first derive the corresponding coor-
dinate matrix and mean center each row (i.e., subtract from each
row its mean value). We then apply singular value decomposi-
tion (SVD) to examine if the mean-centered coordinate matrix has
a good low-rank approximation. The metric we use is the frac-
tion of total variance captured by the top K singular values, i.e.,
“
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gives the total variance of the mean-centered coordinate

163



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20T
o
ta

l 
v
a
ri
a
n
c
e
 c

a
p
tu

re
d
 b

y
 t
h
e
 t
o
p
 K

 e
ig

e
n
v
a
lu

e
s

K

San Francisco
Shanghai
Seattle
Human
ZebraNet
RW standard (low)
RW standard (high)
RW Modified (low)
RW Modified (high)

Figure 1: Low-rank structure in mobility traces.
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Figure 2: Temporal stability in mobility traces.

matrix. Note that 1 −
“

PN

i
s2

i

”

/
`

P

i
s2

i

´

is the relative approxi-

mation error of the best rank-K approximation with respect to the
squared Frobenius norm. Figure 1 plots the fraction of total vari-
ance captured by the top K singular values for different mobility
traces. As we can see, in all traces most variance is captured by
the top few singular values. For example, the top 5 singular values
capture 76.6%-94.9% variance in the real traces and 62.1%-97.2%
variance in the synthetic traces. These results clearly suggest that
real mobility exhibits low-rank structure.

Temporal stability: We further analyze the temporal stability in
these traces. For every node i and time interval t, we compute the
normalized velocity change:

NV C(i, t)
△

=
‖~v(i, t) − ~v(i, t − 1)‖2

meani,t(‖~v(i, t)‖2)
,

where ~v(i, t) is node i’s velocity vector (in the 2-dimensional Eu-
clidean space) at time interval t, and ‖ · ‖2 is the ℓ2-norm (with

‖~z‖2 =
p

P

k
~z(k)2 for any vector ~z).

Figure 2 plots the CDF of {NV C(i, t)}. As it shows, in four
out of the five real traces, over 36% of time the velocity remains
the same for two consecutive intervals (i.e., NV C = 0), and over
42% of time NV C is within 10%. The only exception is Seattle
bus traces, which have 34% of time with NV C ≤ 10%. This is
likely due to frequent bus stops. In the standard random waypoint
traces, NV C ≤ 10% for 86%-93% of time. The modified ran-
dom waypoint traces experience lower stability because every node
chooses a random velocity at every time interval. These results in-
dicate that the real mobility often exhibits temporal stability, i.e.,
nodes move at a constant velocity for some time. The extent of
temporal stability varies with the network environment.

Implication: The presence of low-rank structure and temporal sta-
bility in a wide range of mobility traces motivates us to explicitly
exploit these structural properties to achieve better localization ac-
curacy in mobile networks. Since the extent of low-rank structure
and temporal stability may vary with the network environment, we
cannot strictly enforce these properties in the localization solution.
Instead we incorporate them into the objective function. Specifi-
cally, static localization schemes aim to minimize the fitting error
between observed and estimated distance based on nodes’ coordi-
nates. Now we further minimize (i) the approximation error be-

tween the real coordinate matrix and its low-rank approximation,
and (ii) the total change in velocity during consecutive intervals.

4. PROBLEM FORMULATION
In this section, we mathematically formulate the problem of mo-

bile sensor localization. Specifically, we consider N mobile sen-
sors moving in a d-dimensional Euclidean space. These mobile
sensors have no built-in GPS and thus need to be localized by our
localization algorithm. Meanwhile, we assume that there are Nanch

mobile anchor nodes that are equipped with built-in GPS and thus
have known locations. We divide time into tmax equal-sized time
intervals. During each time interval, we measure (i) the locations
for the anchor nodes, (ii) the distance between the sensors, and (iii)
the distance between the sensors and anchors. We then try to local-
ize the mobile sensors based on such measurements.

Notations: Our formulation uses the following notations:

• X(:, i, t) denotes the d-dimensional Euclidean coordinate for
sensor i (1 ≤ i ≤ N ) at time interval t (1 ≤ t ≤ tmax).

• A(:, a, t) denotes the d-dimensional Euclidean coordinate for
anchor a (1 ≤ a ≤ Nanch) at time interval t (1 ≤ t ≤ tmax).

• Dij(t) = ‖X(:, i, t) − X(:, j, t)‖2
2 =

Pd

k=1(X(k, i, t) −

X(k, j, t))2 is the squared Euclidean distance between sensor
i and sensor j at time interval t.

• Cia(t) = ‖X(:, i, t) − A(:, a, t)‖2
2 =

Pd

k=1(X(k, i, t) −

A(k, a, t))2 is the squared Euclidean distance between sensor
i and anchor a at time interval t.

• Deq
ij (t), Dub

ij (t), and Dlb
ij (t) are the equality, upper bound, and

lower bound constraints on Dij(t), respectively.

• Ceq
ia (t), Cub

ia (t), and C lb
ia(t) are the equality, upper bound, and

lower bound constraints on Cia(t), respectively.

Note that X is a 3-dimensional array. To formally capture the
low-rank structure and temporal stability that we observe in Sec-
tion 3, it is more convenient to represent X in the form of a 2-
dimensional coordinate matrix, which can be obtained by collaps-
ing the first two dimensions of X into a single dimension. Let
M = matricize(X) be the resulted coordinate matrix. We have:

M(k + (i − 1) ∗ N, t) = X(k, i, t). (1)

Incorporating distance measurements: We first formulate the lo-
calization problem for a static network by incorporating distance
equality and bound constraints. We capture the total violation of
distance constraints at time interval t using f(X, t) shown below:

f(X, t)
△

=
P

ij

`

Dij(t) − Deq
ij (t)

´2
+

P

ij
min

˘

0, Dij(t) − Dlb
ij (t)

¯2
+

P

ij
max

˘

0, Dij(t) − Dub
ij (t)

¯2
+

P

ia
(Cia(t) − Ceq

ia (t))2 +
P

ia
min

˘

0, Cia(t) − C lb
ia(t)

¯2
+

P

ia
max

˘

0, Cia(t) − Cub
ia (t)

¯2

(2)

Here the first and fourth terms quantify the total violation of the
equality constraints: Dij(t) = Deq

ij (t) and Cia(t) = Ceq
ia (t). The

second and fifth terms capture the total violation of the lower bound
constraints: Dij(t) ≥ Dlb

ij (t) and Cia(t) ≥ C lb
ia(t). Similarly, the

third and last terms represent the total violation of the upper bound
constraints: Dij(t) ≤ Dub

ij (t) and Cia(t) ≤ Cub
ia (t).

A few comments follow. First, we can use RSS measurements
to derive equality constraints, because RSS is a function of the dis-
tance between the sender and the receiver. Moreover, when two
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nodes can directly hear each other, we can use the communication
range as an upper bound of the distance between them. If two nodes
cannot hear each other, then the communication range becomes a
lower bound of the distance between them. In addition, if two nodes
cannot directly hear each other but are connected through some in-
direct path, we can apply the triangular inequality and use the short-
est path distance (in terms of the estimated distance based on RSS)
as the upper bound. Note that all the equality and bound constraints
on the Euclidean distance need to be squared, as Dij(t) and Cia(t)
are defined with respect to the squared Euclidean distance.

Second, to support range-free localization, which is useful when
the nodes can only get connectivity information but not the exact
distance estimation, we simply remove equality constraints from
f(X, t) and only retain the lower bound and upper bound con-
straints. The lower bound constraints remain the same as above.
As for the upper bound constraints, since the shortest path distance
in terms of the estimated distance based on RSS is unavailable, we
use a looser upper bound of H × R, where H is the shortest hop
count and R is the communication range.

Third, due to measurement errors, both the equality constraints
and the upper/lower bound constraints may not be strictly satisfi-
able. By using the total violation against these constraints as our
optimization objective (instead of trying to strictly enforcing these
constraints), we can always find feasible solutions.

Fourth, it is easy to see that function max{0, z}2 is continu-
ously differentiable with respect to variable z and the gradient is 2 ·
max{0, z}. Similarly, function min{0, z}2 is continuously differ-
entiable with respect to variable z and the gradient is 2 ·min{0, z}.
Therefore, f(X, t) is a continuously differentiable function of vari-
ables X(:, i, t). This allows us to apply a gradient-based algorithm
to minimize f(X, t) (see Section 5).

Incorporating temporal stability constraints: To capture the tem-
poral stability of sensor mobility, we introduce a temporal transfor-
mation matrix T and define a penalty function as follows:

g(X)
△

=
‚

‚

‚

M ∗ T T
‚

‚

‚

2

F
, (3)

where ‖ · ‖F is the Frobenius norm (with ‖Z‖F =
q

P

ij
Z(i, j)2

for any matrix Z), and M = matricize(X) is the coordinate matrix
obtained by collapsing the first two dimensions of X into a single
dimension according to Eq. (1).

A simple choice of the temporal transformation matrix is T =
Toeplitz(0, 1,−2, 1), which denotes the Toeplitz matrix with cen-
tral diagonal given by ones, the first upper diagonal given by nega-
tive twos, and the second upper diagonal given by ones, i.e.,

T =

2

6

6

6

6

6

4

1 −2 1 0 . . .

0 1 −2 1
. . .

0 0 1 −2
. . .

...
. . .

. . .
. . .

. . .

3

7

7

7

7

7

5

. (4)

This temporal transformation matrix intuitively expresses the fact
that the direction and the speed of the same mobile sensor are often
similar at adjacent points in time. As a result, one can well approx-
imate a sensor’s location at time interval t using the mid-point of
its locations at time intervals t−1 and t+1. With this T , we have:

g(X) =
X

k,i,t

(X(k, i, t − 1) + X(k, i, t + 1) − 2 · X(k, i, t))2 ,

where each term (X(k, i, t − 1) + X(k, i, t + 1) − 2 · X(k, i, t))2

represents the squared error between coordinate X(k, i, t) and the
mid-point of coordinates X(k, i, t − 1) and X(k, i, t + 1).

We use the above simple choice of T for mobile sensor local-
ization in our evaluation. A more sophisticated choice taking into
account domain knowledge of the nature of sensor movement is
likely to further improve the localization accuracy. We intention-
ally go with the simple choice to better illustrate the importance of
taking temporal stability into account.

Incorporating low-rank constraints: Finally, to capture the low-
rank nature of sensor mobility, we introduce a penalty term function

h(X, U, V )
△

=
‚

‚

‚

M − U ∗ V T
‚

‚

‚

2

F
(5)

where M = matricize(X) is the (d ·N)× tmax coordinate matrix
obtained by collapsing the first two dimensions of X according to
Eq. (1), U is a (d · N) × r unknown factor matrix, and V is a
tmax × r unknown factor matrix, and r is the desired low rank.
By keeping this penalty term small, we ensure that the coordinate
matrix M has a good rank-r approximation: M ≈ U ∗ V T .

Complete formulation: Putting everything together, we therefore
try to find X , U , V that minimize the combined objective:

c(X, U, V ) =
X

t

f(X, t) + α · g(X) + β · h(X, U, V ), (6)

where α and β give the relative weights of temporal stability and
low-rank constraints, respectively. We will show how to set α and
β in Section 5.

Note that in Eq. (6), we can incorporate either or both of the
penalty terms for temporal stability and low-rank structure (i.e.,
g(X) and h(X, U, V )). In this way, we can derive three differ-
ent localization schemes: (i) Low Rank based Localization (LRL),
which only exploits the low-rank structure in mobility (so α = 0),
(ii) Temporal Stability based Localization (TSL), which only lever-
ages the temporal stability (so β = 0), and (iii) Temporal Stability
and Low Rank based Localization (TSLRL), which simultaneously
takes into account the temporal stability and the low-rank structure
(so α 6= 0 and β 6= 0). These localization schemes use distance
estimation between neighbors and we call them range-based local-
ization schemes. In addition, based on the general framework, we
can also have range-free variants of these schemes, namely, LRL-
RF, TSL-RF, and TSLRL-RF. These variants use only network con-
nectivity for localization and can support nodes that do not have ac-
curate distance estimation (e.g., due to lack of RSS measurements).

A couple of comments follow. First, the penalty term
P

t
f(X, t),

is the fitting error over all time intervals. This assumes that we have
distance measurements from all intervals t. Our evaluation uses this
assumption. When the distance measurements from some intervals
are missing (e.g., due to measurement problems or the need to pre-
dict nodes’ coordinates in a future interval), we can simply use the
sum of f(X, t) over the intervals that have distance measurements
as the first term in the objective. Second, f(X, t) is a quartic func-
tion (i.e., function of the fourth degree) with respect to X , whereas
g(X) and h(X, U, V ) are quadratic functions (i.e., functions of the
second degree) with respect to X . So there is a mismatch between
the units of the different penalty terms in Eq. (6). To make the
formulation independent of the unit we use for X , we can first nor-
malize X such that the communication range equals 1. We assume
the use of such normalization in the rest of the paper.

5. OPTIMIZATION

Optimization algorithm: We apply a quasi-Newton optimization
algorithm L-BFGS [28] to find a local optimum of the above non-
linear objective function c(X, U, V ). Quasi-Newton methods [58]
are variants of the well-known Newton’s method [57] for finding
a stationary point (i.e., a point where the gradient is 0) of a given
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objective function. Newton’s method assumes that the objective
function can be locally approximated as a quadratic function in the
region around the optimum, and uses the first and second deriva-
tives (i.e., gradient and Hessian) to find the stationary point. How-
ever, it is often expensive to directly compute the entire Hessian
matrix for large optimization problems. To achieve better scala-
bility, quasi-Newton methods do not compute the Hessian matrix
directly. Instead, they update the Hessian matrix by analyzing suc-
cessive gradient vectors.

L-BFGS stands for “limited memory BFGS”. It is a particu-
lar quasi-Newton method that uses the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) update to approximate the Hessian matrix. L-
BFGS only maintains a short history of the most recent m updates
of the position (X, U, V ) and gradient ∇c(X, U, V ), where the his-
tory length m is typically less than 10. As a result, L-BFGS is
particularly suited for solving optimization problems with a large
number of variables.

We currently use the L-BFGS implementation in the minFunc

package [33]. We set the history length m = 5, which provides
good efficiency without compromising accuracy.

Choosing a good initial solution: Since L-BFGS is a gradient-
based local search algorithm, it is critical to have a good initial
solution. Without a good initial solution, the optimization tends to
get stuck at local optima with poor localization accuracy, especially
when d is small (e.g., d = 2 or d = 3).

After extensive experiments, we find that the following initial-
ization strategy often results in significant accuracy improvement:

1. First solve the problem in d′-dimensional Euclidean space us-
ing a random initial solution, where d′ ≥ d (e.g., d′ = 4 in our
experiments). Let the solution be X ′′.

2. Compute the pair-wise distance matrix using X ′′.

3. Use multi-dimensional scaling (MDS) [12] to map the distance
matrix obtained in step 2 into a solution in d-dimensional Eu-
clidean space. Let the solution be X ′.

4. Use X ′ as the initial solution and solve the original problem in
d-dimensional Euclidean space.

Note that each point in the d-dimensional Euclidean space can
be embedded into a d′-dimensional Euclidean space by setting its
coordinates in the additional dimensions to 0. However, the con-
verse is not true. That is, a point in a d′-dimensional space may
not reside in a d dimensional space. Thus the d′-dimensional so-
lution obtained in step 1 does not directly provide a solution for
the original d-dimensional problem. That is why we apply MDS to
project the solution back to the d-dimensional Euclidean space and
use the result as an initial solution. Note that unlike existing MDS
techniques in sensor localization [46, 47], we can directly apply the
classic MDS [12], because the pair-wise distance matrix obtained
in step 2 contains no missing entries.

The intuition behind the above initialization procedure is the fol-
lowing. When the dimension d is low, the feasible solution space
for X may get partitioned into isolated islands. As a result, local
search can easily get stuck at local optima with poor localization ac-
curacy. In a higher dimensional Euclidean space, due to the higher
degree of freedom, different regions of the feasible solution space
become better connected and it becomes harder to get stuck at a lo-
cal optimum. As a result, a random starting point often suffices to
yield a local optimum with high localization accuracy in the higher
dimensional Euclidean space. Applying MDS to project this solu-
tion back to the low dimensional space can therefore yield a good
initial solution for the original problem.

Our evaluation uses a single initial solution. One could also use
multiple starting points and choose the one that yields the lowest

error. This may further improve the localization accuracy at the
expense of larger running time.

Tuning parameters α, β, and r: α and β control the impor-
tance of temporal stability and low-rank constraints, respectively.
Their values depend on how noisy distance measurements are and
how stable and low-rank the coordinate matrix is. When there
is significant measurement noise, their values should increase to
avoid being dominated by the large fitting error term. Moreover,
α should also increase when the coordinate matrix exhibits strong
temporal stability, and decrease otherwise. Therefore α depends on

ratio =
P

t
f(X,t)

g(X)
. To automatically adapt to diverse scenarios, we

choose α using the following simple two iterations: we set α = 1
in the first iteration and solve the optimization problem in Eq. 6;
in the second iteration, if ratio > 1, we set α = min(ratio, 10).
We bound α by 10 to prevent it from being too large. Similar adap-
tation could be used in choosing β. For simplicity, our evaluation
uses a simple setting of β = 0.1, since we find it is more important
to adapt α due to the higher importance of temporal stability con-
straints. Another parameter required in low rank constraints is the
rank r. Our evaluation uses r = 3. In the future, we plan to ex-
plore methods for automatically determining the appropriate rank
r based on partial distance matrices.

Time complexity: As an iterative algorithm, the time complexity
of L-BFGS depends on both the amount of time spent during each
iteration and the number of iterations.

• The time spent in each iteration. In our context, the time spent
during each iteration is dominated by the time for computing
P

t
f(X, t) and

P

t
∇f(X, t). As shown in Eq. (2), the ex-

pression for each f(X, t) comprises O((N+Nanch)·N) terms,
each involving O(d) variables. So it takes O((N + Nanch) ·
N ·d) time to compute f(X, t) and ∇f(X, t). So the total time
complexity during each iteration is O((N+Nanch)·N ·d·tmax).

• The number of iterations. In our implementation, we simply
run the L-BFGS algorithm for a fixed number of iterations (de-
noted as Niter). Currently, we conservatively set Niter = 1000,
which ensures convergence in all our simulations and experi-
ments. In our future work, we plan to incorporate less conser-
vative convergence tests that allow the L-BFGS algorithm to
terminate early.

Putting everything together, the time complexity for our current
solution is given by O((N + Nanch) · N · d · tmax · Niter). The
amortized cost per time interval is O((N + Nanch) ·N · d ·Niter).

6. SIMULATION

6.1 Simulation Methodology
We use a publicly available network simulator [32] for our evalu-

ation. As in [31, 42], we quantify node density as the average num-
ber of nodes, including both regular nodes and anchor nodes, in

one hop transmission range. It can be calculated as
πR2(N+Nanch)

area
,

where R is communication range, area is the size of the deploy-
ment area, and N and Nanch are the total numbers of regular nodes
and anchor nodes, respectively. Similarly, we quantify anchor den-
sity as the average number of anchors in one hop transmission

range, calculated as πR2Nanch

area
. Unless otherwise specified, we ran-

domly place 50 nodes (including 5 anchor nodes) in a 200m ×
200m area, and use the following default parameter setting accord-
ing to [30, 31]: node density of 10, anchor density of 1, commu-
nication range of 50m, and a maximum speed of 10 m/interval.
Furthermore, since MCL and MSL* require a warm-up period, we
use 30 intervals as input to the evaluation and quantify the localiza-
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(c) Standard random waypoint in a C-
shaped area

Figure 3: Comparison of different localization schemes using random waypoint models.

tion error during the last 10 intervals. Without such a warm-up pe-
riod, the benefit of our localization schemes over MCL and MSL*
is even higher. For each configuration, we conduct 10 random runs.
We further vary each of these parameters to understand its impact.

Our evaluation uses both synthetic and real mobility traces. We
generate synthetic node movement using the modified random way-
point model [22] (as described in Section 3) to overcome the lim-
itation of speed reduction over time. We also try the standard ran-
dom waypoint model and observe similar performance. Therefore
for most evaluation, we report the results from the former mobil-
ity model in the interest of space. In addition, we also use the real
mobility traces summarized in Table 1. In order to run 30 intervals
across 10 random runs, we extract 300 consecutive intervals from
these traces, except that ZebraNet has only 90 intervals, which al-
low us to conduct only 3 random runs.

We compare our localization schemes with the following exist-
ing localization schemes: (i) Centroid [8], (ii) Multidimensional
Scaling (MDS) [47], (iii) Sextant [19], (iv) MCL [22], and (v)
MSL* [42]. The first three are well known localization schemes for
static wireless networks and the last two are state-of-the-art local-
ization schemes for mobile wireless networks. Refer to Section 2
for the description of these localization approaches.

We quantify the localization error using the mean absolute er-
ror (MAE), which has been widely used in previous studies. It
is computed as meani,t(dist(X(:, i, t), X ′(:, i, t)), where X and
X ′ denote the actual and estimated coordinates, respectively, and
dist(X(:, i, t), X ′(:, i, t)) is the Euclidean distance between the
actual and estimated coordinates for node i at time t.

0 50 100 150 200

0

50

100

150

200

Figure 4: The C-shaped area used in simulation.

6.2 Simulation Results

Varying mobility: Figure 3(a) and (b) compare different localiza-
tion schemes using the modified and standard random waypoint
models, respectively. We make the following observations. First,
in all cases, all our localization schemes significantly out-perform
the other schemes. For example, TSLRL reduces the MAE by a

factor of 4.7-63.5 over Centroid, 1.1-20.4 over MDS, 2.2-27.2 over
Sextant, 3.2-49.5 over MCL, and 2.6-17.3 over MSL*. Second,
the localization error in the modified mobility model is slightly
higher than that in the standard mobility model due to more fre-
quent change in velocity, but their general trends and relative per-
formance across different schemes are very similar. Therefore we
use the modified random waypoint for the rest of our evaluation
since it is used in [31, 42]. Third, the errors of all mobile network
localization schemes initially decrease as we increase mobility be-
cause mobility allows us to obtain additional constraints across dif-
ferent time intervals. As we further increase mobility, the error
starts to increase, because the increased mobility reduces the ex-
tent of the low-rank structure and temporal stability. This behavior
is more prominent in the modified random waypoint model, as the
node selects a new speed every interval, whereas in the standard
random waypoint model the speed remains constant for consecu-
tive intervals until the node reaches its destination.

We also evaluate using an irregular C-shaped area shown in Fig-
ure 4. It has a 230m × 230m square with a 115m × 115m block
taken off. We generate nodes’ coordinates over time using the stan-
dard random waypoint mobility within the area. To ensure every
node’s position falls within the C-shaped region, whenever it is
about to traverse outside the region, we re-select a new destination
and move towards it at a randomly selected speed. As shown in
Figure 3(c), the results are similar to before, except that the accu-
racy of MDS degrades and sometimes under-performs MSL* and
Sextant. This is a well known issue with MDS, because in irregu-
lar topologies the true Euclidean distance between two nodes does
not correlate well with the shortest path distance, which is used as
the input to MDS. In comparison, our localization schemes only
use the distance information between direct neighbors to generate
equality constraints and are less sensitive to the above issue. As a
result, they continue to perform the best.

We further evaluate using real mobility traces. We pick 100 vehi-
cles randomly from the vehicular traces and use all the nodes from
the KAIST campus traces and ZebraNet traces. For all the traces,
we scale down the distance to get an approximate node density of
10 and anchor density of 1. Figure 5 summarizes the results. As
we can see, our range-based localization schemes consistently yield
much lower errors than the other schemes across all the traces. The
range-free versions, namely, LRL-RF, TSL-RF, and TSLRL-RF,
perform worse than their corresponding range-based counterparts
due to lack of distance estimation. Among the existing schemes,
MDS, Sextant, and MSL* perform better. However, their accuracy
is still much worse than our range-based schemes since they do not
fully exploit topology and mobility information.

Varying node density: Next we evaluate the impact of node den-
sity by fixing the area to 200m × 200m as before and varying the
number of total nodes from 10 to 70. As shown in Figure 6, our lo-
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Figure 5: Comparison of different localization schemes using real traces.
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Figure 6: Comparison of different localization schemes with

varying node density.

calization schemes continue to perform the best under all node den-
sity. In addition, all the localization schemes have lower error with
increasing node density. The only exception is Centroid, which
sees similar error over all node density. This is because Centroid
extracts location information only from anchor nodes and does not
exploit the distance information between regular nodes. Therefore
its accuracy is determined only by the anchor nodes and benefits
little from higher density of regular nodes. Similar effects were
reported in [22].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.6  0.8  1  1.2  1.4  1.6  1.8  2
Anchor density

M
e

a
n

 a
b

s
o

lu
te

 e
rr

o
r

MCL

Centroid

MDS

Sextant

MSL*

LRL

TSL

TSLRL

Figure 7: Comparison of different localization schemes with

varying anchor density.

Effect of anchor density: We further vary the anchor density by
fixing the area to the default size as before and changing the number
of anchor nodes from 3 to 10. Figure 7 summarizes the results. As
we would expect, all the localization schemes benefit from increas-
ing anchor density. Moreover, all three of our localization schemes
significantly out-perform the other schemes.

Varying the amount of noise: It is important to study the ac-
curacy of all the schemes under measurement noise, since noise
is common in real deployment. Measurement noise comes from
two factors: (i) there is irregularity in transmission range, i.e., not
all nodes have the same transmission range and even for the same
node its transmission range is not the same in all directions, and (ii)
a neighboring node may estimate inaccurate distance based on its
RSS measurements. To capture the first effect, we generate a ran-
dom number rij uniformly distributed from [1−noise, 1+noise]
and we vary noise from 0 to 60%. The new transmission range
between the node pair becomes rij · R. To capture the second ef-
fect, we perturb the distance estimation as dij/rij , where dij is the
actual distance between i and j and rij is the scaling factor used
to generate noisy transmission range between i and j. In this way,
we ensure the error added to the transmission range is consistent to
the error added to the distance estimation. We then drop the entry
(i, j) in the distance matrix if the actual distance between i and j is
larger than the salted transmission range (since they are not direct
neighbors and cannot measure RSS), and input this distance matrix
to all the localization schemes. Moreover, since the localization
schemes are not aware of the injected noise, they consider R as the
actual communication range (e.g., our localization schemes use R
to generate lower bounds and upper bounds).

Figure 8 compares various localization schemes by varying the
amount of noise. Figure 8(a) shows the results under the default
network configuration, Figure 8(b) shows the results under higher
mobility, and Figure 8 (c) shows the results under lower node den-
sity. We make the following observations. First, as we would ex-
pect, increasing noise degrades the accuracy of all the localization
schemes. Among them, the error in Centroid increases slowest with
increasing noise, because it estimates its location as the center of all
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(a) Node density = 10, max speed = 10
m/interval
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(b) Node density = 10, max speed = 30
m/interval
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(c) Node density = 4, max speed = 10
m/interval

Figure 8: Varying noise in 2-D networks.
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Figure 9: Varying noise in the real vehicular traces.

anchor nodes it hears from and is not affected significantly by mea-
surement errors. Similar effects were observed in [22]. Second,
TSL and TSLRL continue to yield the lowest errors under all noise
values. They reduce the MAE by a factor of 2.3-40.9 over Centroid,
1-7.4 over MDS, 1.4-6.8 over Sextant, 1.8-27.6 over MCL, and 1.2-
8.4 over MSL*. Third, LRL initially performs similarly to TSL and
TSLRL and then slightly under-performs as noise increases. This is
likely because increasing noise may affect low rank structure and
reduce the effectiveness of low rank constraints. In comparison,
temporal stability is more robust to noise. Fourth, increasing the
maximum speed from 10 m/interval to 30 m/interval slightly
degrades the accuracy of various schemes. Among them, MSL* is
affected the most, because it uses the maximum speed to generate
feasible node positions during the next intervals and location un-
certainty increases with mobility. Finally, as we would expect, the
accuracy of all the schemes degrades as the node density decreases
due to fewer location constraints.

Figure 9 evaluates the impact of noise on real vehicular traces.
As in the synthetic traces, increasing noise degrades the accuracy
of most localization schemes. Moreover, our localization schemes
continue to out-perform the other schemes under all noise values.

To demonstrate the flexibility of our scheme, we also consider
varying noise when nodes have 3-D coordinates. We place 50 nodes
including 5 anchor nodes randomly in a cube with each side of
140m. Figure 10 compares our localization schemes with the other
schemes except Sextant, which works only in 2-D. We observe that
TSL and TSLRL perform similarly and their curves overlap. They
both yield the lowest error in all the cases. LRL performs slightly
worse as noise increases. Moreover, Centroid yields the highest
error since it only uses anchor nodes for localization, which gives
very limited location constraints.

Varying the number of time intervals: Figure 11 shows the lo-
calization error as we vary the total number of time intervals used
for localization. We use the first 5 time intervals as the warm-up
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Figure 10: Varying noise in 3-D networks.
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Figure 11: Impact of the number of time intervals.

period required by MCL and MSL*, and vary the number of time
intervals for localization from 5 to 60. As we can see, TSL, LRL
and TSLRL consistently yield the lowest errors. In comparison,
MCL incurs MAE of 0.58 even with 60 intervals. MSL* improves
the convergence over MCL by letting nodes use information only
from the neighbors that have more accurate coordinates, and re-
duces mean absolute error to 0.2-0.4. However, it still performs
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Figure 12: Running Time

much worse than our schemes because it does not fully exploit
location constraints during each time interval nor the structure in
mobility, other than the maximum speed.

Running time: Finally we compare the running time of differ-
ent approaches on a Linux machine with Intel(R) Core(TM)2 Duo
CPU E8200 2.66GHz processor, 2GB memory, and 6 MB cache.
Figure 12 shows the average running time per interval as we vary
the number of intervals for the default configuration (i.e., 50 nodes
including 5 anchor nodes, node density of 10, anchor density of
1, and a maximum speed of 10 m/interval). Our schemes (i.e.,
LRL, TSL, TSLRL) and MDS are implemented in Matlab, while
the other schemes were implemented in Java by other researchers.
Java implementation is generally faster than Matlab. As shown
in Figure 12, all of the schemes have close to constant running
time per interval. In other words, their total running time increases
linearly with the number of intervals. The ranking of their run-
ning time is as follows: Centroid < MDS < MSL* ≈ MCL <
LRL ≈ TSL ≈ TSLRL < Sextant. Sextant has highest running
time: around 1 minute per interval, because computing the regions
that satisfy all the measurement constraints is expensive. Our ap-
proaches (i.e., LRL, TSL, and TSLRL) take 1-2 seconds per inter-
val. This is longer than the existing schemes except Sextant be-
cause we try to fully exploit the location information within each
interval and mobility structure across intervals. However this run-
ning time is still sufficient for practical use. Moreover, our imple-
mentation has considerable room for optimization (e.g., adaptively
choosing the number of iterations as mentioned in Section 5 and
converting Matlab to C implementation), which we plan to explore
as part of our future work.

Summary: Our simulation results show that our localization schemes
significantly out-perform the existing schemes under a wide range
of scenarios. They are highly robust to measurement errors. They
are also sufficiently efficient for practical use.

7. TESTBED EXPERIMENTS

7.1 Experimental Methodology
In this section, we evaluate our localization scheme in a sensor

testbed. We deploy a testbed consisting of either 25 or 36 mica2
motes with 915MHz radios on a single floor of an office building.
This allows us to evaluate our localization algorithm under realistic
radio characteristics. In our first experiment, we randomly place
them in a square with 5.5m × 5.5m. This gives node density of
20. We use the standard random waypoint [22] to generate the
motes’ coordinates at different time intervals. We use two types of
mobility: low mobility with a maximum speed of 0.2R per time
interval and high mobility with a maximum speed of 0.6R per time
interval. In our second experiment, we place the motes in a C-
shaped topology shown in Figure 15(a), occupying a total area of
6.5m×6.5m with a smaller square of 3.4m×3.4m taken away. It
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Figure 13: Comparison of various location schemes in the

testbed when nodes are located in a square.

has a node density of 15. We again use the standard random way-
point to generate the coordinates in the subsequent time intervals
while ensuring that the motes move within the region. For diver-
sity, we use medium mobility with a maximum speed of 0.4R. In
both topologies, we use 15 time intervals and move these motes by
hand at the beginning of each interval to ensure the actual locations
of the motes correspond to the generated locations.

Among these motes, we randomly choose 6 anchor nodes in both
topologies. We adjust the transmission power to −24dBm for all
control and data traffic. This gives the communication range of
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(b) 25 nodes, irregular topologies
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(c) 36 nodes, irregular topologies

Figure 15: Comparison of various location schemes in the testbed when nodes are located in a C-shaped region.
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Figure 14: CDF of measurement error in the testbed.

about 2.3m, and yields multi-hop topologies with up to 3 hops.
One mote, referred as the sink, is attached to the MIB600 Ethernet
board, which is connected to a power outlet. We use the sink to log
all measurement data. The other motes are powered by batteries.

During each time interval, the sink first broadcasts a route es-
tablishment frame (REF), which is flooded throughout the network
so that every other node can route towards the sink by reversing the
shortest path along which REF traversed. To improve the reliability
of the route, every node selects the path with the smallest ETX to
route towards the sink. ETX quantifies the total number of expected
transmissions from a source to a destination [13]. To support such
a route selection, an intermediate node i appends the ETX between
the sink and node i to REF before forwarding.

Next every mote broadcasts several packets at a random time so
that its neighbors can measure the received signal strength (RSS)
from it. Each mote broadcasts once every 1.5 seconds. The starting
time of each broadcast packet is randomized to minimize collisions
with other broadcast packets. Every mote periodically sends a re-
port to the sink to summarize the measured received signal strength
from all nodes it hears during the current period. The report is
routed using the shortest ETX path selected above. We then take
measurements collected from the sink over 15 intervals and use
them to evaluate the performance of various localization schemes.
We estimate the distance between neighboring nodes during a given
time interval using average RSS of all the packets received during
that time interval.

7.2 Experimental Results
Figure 13 shows the mean absolute error for 25-node and 36-

node networks in the first topology. We make the following ob-
servations. First, all our range-based localization schemes signifi-
cantly out-perform the other schemes. In particular, TSL and TSLRL
reduce the MAE by a factor of 2.8-4.1 over Centroid, 1.6-2.3 over
MDS, 2.4-3.9 over Sextant, 3.1-4.4 over MCL, and 2.3-3.2 over
MSL*. Second, our range-free versions also perform well: TSL-RF
and TSLRL-RF both yield lower errors than the existing schemes.
LRL-RF occasionally performs worse than MDS, the best of the ex-

isting schemes, because it only exploits low rank structure, which
may be affected by measurement noise in the testbed. Third, the
gap between the range-free and range-based schemes is smaller
than in simulation. This is because the testbed experiments have
significant errors in estimating the distances based on RSS mea-
surements. This is further confirmed by Figure 14, which plots
the CDF of the normalized error in RSS-based distance estimation
(i.e., the difference between the estimated and actual distances nor-
malized by the actual distance). Such measurement noise makes
the equality constraints noisy. Finally, comparing the five existing
localization schemes, MDS performs the best among the static lo-
calization schemes, and MSL* significantly improves accuracy of
MCL in mobile network localization due to its faster convergence.
It is interesting to note that even though MSL* leverages mobil-
ity information, it still does not perform as well as MDS because it
does not fully take advantage of network topology during each time
interval. By exploiting both the topology information at individual
intervals and the structural properties in mobility, our approaches
achieve much better accuracy.

Figure 15 (b) and (c) further plot the localization errors in 25-
node and 36-node networks deployed in a C-shaped region, as
shown in Figure 15(a). Both range-free and range-based versions
of our localization schemes out-perform the existing schemes. The
ranged-based of TSL and TSLRL continue to perform the best:
they reduce the MAE by a factor of 2.5-3.6 over Centroid, 2.1-2.3
over MDS, 2.5-3.6 over Sextant, 2.8-3.7 over MCL, and 2.1-2.3
over MSL*. In addition, as we would expect, the accuracy of MDS
degrades in irregular topologies due to lack of strong correlation
between the shortest path distance and Euclidean distance, as de-
scribed in Section 6.2.

Summary: Our testbed experiments show that our localization
schemes out-perform the existing schemes in a range of settings.
Among them, the range-based versions of TSL and TSLRL consis-
tently perform the best due to the effectiveness and robustness of
temporal stability constraints.

8. CONCLUSION
In this paper, we analyze both real and synthetic mobility traces

and show that they all exhibit temporal stability and low-rank struc-
ture. Motivated by these observations, we develop novel localiza-
tion schemes for mobile networks. Our schemes explicitly exploit
these structural properties in mobility while leveraging network
topology information during each time interval. Using extensive
simulation based on real and synthetic mobility traces, we show
that our localization schemes significantly out-perform the existing
schemes. Our testbed experiments further confirm the effectiveness
of our approaches.
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