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ABSTRACT
Rate adaptation in WiFi networks has received significant attention
recently. However, most existing work focuses on selecting the rate
to maximize throughput. How to select a data rate to minimize en-
ergy consumption is an important yet under-explored topic. This
problem is becoming increasingly important with the rapidly in-
creasing popularity of MIMO deployment, because MIMO offers
diverse rate choices (e.g., the number of antennas, the number of
streams, modulation, and FEC coding) and selecting the appropri-
ate rate has significant impact on power consumption.

In this paper, we first use extensive measurement to develop a
simple yet accurate energy model for 802.11n wireless cards. Then
we use the models to drive the design of an energy-aware rate adap-
tation scheme. A major benefit of a model-based rate adaptation is
that applying a model allows us to eliminate frequent probes in
many existing rate adaptation schemes so that it can quickly con-
verge to the appropriate data rate. We demonstrate the effectiveness
of our approach using trace-driven simulation and real implemen-
tation in a wireless testbed.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication

General Terms
Experimentation, Performance

Keywords
IEEE 802.11, MIMO, Rate Adaptation, Energy.

1. INTRODUCTION
Motivation: Multiple Input Multiple Output (MIMO) is an ex-
citing breakthrough that offers large capacity increase for wireless
networks. For example, the current IEEE 802.11n standard [1] sup-
ports up to 4 antennas and data rates of up to 600Mbps. The up-
coming IEEE 802.11ac standard plans to increase the number of
antennas up to 8 to achieve 10Gbps.
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Figure 1: % reduction in transmission time for MIMO needed
over SISO for energy improvement.

While MIMO provides a large capacity gain, using multiple an-
tennas can consume significantly more energy, which is undesir-
able for mobile devices [11]. For a fixed number of antennas, re-
ducing the transmission time always results in a decrease in energy
consumption. But for the same transmission time, the energy con-
sumed by multiple antennas is much higher than a single antenna.
This is because MIMO transmission requires additional hardware
and RF chains for MIMO processing, which increases energy con-
sumption. On the other hand, using multiple antennas reduces
transmission time by allowing multiple data streams to transmit si-
multaneously. Hence, there is a trade-off between minimizing the
transmission time using multiple antennas and the additional en-
ergy cost associated with using multiple antennas.

Figure 1 compares transmission time of a single antenna with
that of using two and three antennas. The plot is based on the
transmitter energy model for Intel 5300 WiFi card, which is pre-
sented in Section 3. The x-axis shows transmission time of a single
antenna transmission. The y-axis shows the percentage of trans-
mission time that two and three antenna MIMO transmissions must
reduce in order for them to have the same energy as the single an-
tenna transmission. From the figure, we can see that for a single
antenna transmission time of0.2ms, using 3 antennas is only ben-
eficial if the transmission time can be reduced by more than 68%.
In comparison, for transmission time of1.3ms, the number reduces
to 50%. So in the best case scenario where the three antenna MIMO
transmission uses the same modulation and coding rate as the single
antenna transmission but transmits three streams, the transmission
time will decrease by 66% and exceed the minimum required 50%
reduction in transmission time, therefore leading to energy saving.

The above examples indicate that there is no single setting that
minimizes energy in all cases and a single antenna does not always
lead to minimum energy. The exact rate and antenna configuration



+

iwl5300

++gnd

56 mΩ
Power 
Monitor

3.3V

Figure 2: Circuit diagram of measurement setup for Intel card

that minimize energy depends on a number of factors, such as chan-
nel condition, wireless card energy profile, and frame size. These
factors explored in detail in section 5. Therefore it is essential to
have a comprehensive understanding about how energy consump-
tion relates to these factors and design a rate adaptation scheme that
automatically selects the rate to minimize energy according to the
current network condition and wireless device.

Our approach: In this paper, we first conduct extensive measure-
ments using different wireless cards to understand the relationship
between the data rate and resulting energy consumption. Our main
observation is that for a fixed number of antennas, the energy con-
sumed in transmitting or receiving a frame is proportional to the
expected transmission time (ETT) [8] (i.e., the total amount of time
required to successfully deliver a frame to the receiver), and the
slope of the energy consumption versus ETT depends on the num-
ber of antennas being used. Based on these insights, we develop a
simple yet accurate model to predict the energy consumption when
a specified rate is used. We then develop a model-driven rate adap-
tation scheme on top of the model to select the rate that optimizes
energy consumption. In addition, we also design a simple variant
that can effectively trade off between energy and throughput. We
evaluate our approach using trace-driven simulation and real im-
plementation. Our results show that our approach yields 14-35%
energy savings compared with the existing approaches.

Paper outline: The remainder of this paper is organized as fol-
lows. We describe our measurement methodology in Section 2. We
present our energy model in Section 3, and develop a model-driven
rate adaptation in Section 4. We evaluate our approach using trace-
driven simulation in Section 5 and using testbed implementation in
Section 6. We overview related work in Section 7. We conclude in
Section 8.

2. MEASUREMENT METHODOLOGY
To derive power models, we conduct fine-grained power mea-

surements for the following wireless cards: (i) Intel 5300 N series
wireless adapter [16], (ii) Atheros 802.11n wireless adapter, and
(iii) embedded IEEE 802.11b/a WiFi device on a Windows Mobile
smartphone with a single antenna. The first two are commonly used
in laptops and can transmit or receive using up to three antennas.
The third one is used to verify if the energy model carries over to
the embedded WiFi device on a phone. Since multi-antenna WiFi
devices for smartphones were not available in the market at the time
of our study, we use a single antenna device.

To measure the power consumption of the wireless adapter cards,
we use a desktop computer equipped with a PEX1-MINI PCI Ex-
press X1 Bus to PCI MINI Bus adapter [24]. It allows us to by-
pass the PCI bus power supply, and powers the wireless cards us-
ing an external source as shown in Figure 2. We supply the power

Intel Atheros Phone
A 0.24× ntx + 0.425×MIMO + 1.02 0.38× ntx + 0.108 1.53
B 0.045× ntx + 0.108 0.040× ntx + 0.062 0.036
C 0.30× nrx + 0.61 0.142× nrx + 0.30 1.23
D 0.064× nrx + 0.167 0.048× nrx + 0.106 0.002

Table 1: Parameters in the energy models.

to the wireless card using a Monsoon power monitor [26], which
measures the current using a 56 milli-Ohm resistor. The power
monitor samples instantaneous power at the rate of one reading per
microsecond and returns a maximum power value for every 200µs
period. We measure energy consumption of the embedded wire-
less adapter in a mobile phone by bypassing the battery and ground
connector and supplying power to the phone as a whole using the
same power monitor.

To control the frames involved in transmissions and to avoid un-
expected frames, we use UDP packets, set retransmission thresh-
old to zero, and turn off RTS/CTS. We vary data rate and antenna
configuration by modifying device drivers of the Intel and Atheros
cards. To force the phone into a particular data rate, we use HostAP
daemon [15] as our access point and let it advertise only the re-
quired data rate in beacons.

3. MEASUREMENT-BASED MODEL
We collect and analyze power measurements from a variety of

transmission and reception configurations. We vary the frame size
from 250 to 1500 bytes. For Intel iwl5300 card, we collect power
measurements for all high throughput (HT) 11n data rates using
one, two, and three antennas supported by the card. The same pro-
cess is repeated for the Atheros card and the phone. Figures 3 and
4 plot the energy consumption versus the expected transmission
time (ETT) [8], which is defined as the expected time required to
successfully transmit the frame from the source to the destination.
ETT can be computed as

ETT =
s

r

1

1 − p
,

wherep denotes the frame loss rate,r denotes the data rate, and
s denotes the frame size. As we can see, in all the figures, the
energy consumption is proportional to the expected transmission
time (ETT) [8]. The slope of the line depends on the number of
transmitting and receiving antennas being used. This holds for all
three cards we use.

Based on these observations, we develop simple energy models
by performing least-square fitting to find the coefficients that best
match the energy consumption of the different cards. The energy
models are as follow:

Etx = A × ETT + B (1)

Erx = C × ETT + D (2)

where the parameters in the modelsA, B, C, D vary across differ-
ent wireless cards and are shown in Table 1.

We make several observations. First, the energy consumption is
a linear function of ETT, as mentioned earlier. The slope depends
on the number of transmitting or receiving antennas. This is in-
tuitive since using more antennas consumes more energy and the
amount of extra energy that is consumed relates to how long the
antennas are used. The y-intercept of the linear function reflects a
constant processing cost for each frame regardless of their duration.
Second, the exact parameters across different cards are similar but
not identical. For example, the Intel transmitter requires an addi-
tional parameterMIMO, which indicates whether MIMO mode
is enabled. This is a well documented anomaly of the Intel card,
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Figure 3: Measured energy consumption under different transmission configurations as a function of ETT.
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Figure 4: Measured energy consumption under different reception configurations as a function of ETT.

where two antennas turn on almost all the hardware required for
three antennas, with only 5% energy difference between two and
three antennae configurations. This is also reported in [11]. The
model for the phone is similar in spirit to the other cards. But since
we do not have a smartphone with an embedded MIMO enabled
Wi-Fi card, we cannot separate which parts inA andB are from
ntx andnrx. The values for the phone are higher than those of
the other two cards under 1 antenna because the measured energy
from the phone includes everything, such as display, CPU, as well
as wireless cards. Third, the energy consumption depends on the
number of antennas, but not the number of streams. For example,
as shown in Figure 4(a), the energy consumptions under 3 antennas
using 1, 2, and 3 streams are identical and overlap; similarly for 2
antennas using 1 and 2 streams. Finally, we note that our receiver
energy model is conservative (i.e., it may sometimes over-estimate
the energy consumption). This is because depending on where the
reception fails (e.g., if preamble detection fails, the receiver will
stop further processing the signals and the energy consumption is
likely to be lower than that of a successful reception). We conser-
vatively assume every transmissions (regardless failures or success)
consumes the same amount of receiving energy. Since preambles
are quite reliable compared to data symbols, which may be sent at
a higher data rate, the approximation error is likely to be small.

Table 2 shows mean absolute percentage error (MAPE) of our
energy models versus the measurement data, defined as

MAPE = mean(|x − x′

x
|),

wherex andx′ are the actual and estimated energy consumption,
respectively. As we can see, the error is consistently below 5%,
indicating a close match.

4. ENERGY-AWARE RATE ADAPTATION
In this section, we develop an energy aware rate adaptation pro-

tocol based on the energy models. Our goal is to select the data rate

Card transmission reception
Atheros 3.4% 1.3%
Intel 0.65% 1.4%
Phone 4.9% 3.6%

Table 2: Mean absolute percentage error of energy models.

for the next transmission in order to minimize the energy consump-
tion. In IEEE 802.11n, the data rate is defined as Modulation and
Coding Scheme (MCS), which specifies the modulation, FEC cod-
ing, and antenna configuration. To achieve this goal, the protocol
first obtains Channel State Information (CSI) seen by the receiver,
then computes the delivery ratio and energy consumption under dif-
ferent MCS, and selects the MCS that yields the lowest estimated
energy. Below we describe each step in detail.

Channel State Information (CSI): IEEE 802.11n standard spec-
ifies how to calculate and report CSI. The CSI values are a collec-
tion of M ×N matricesHs, each of which specifies amplitude and
phase between pairs ofN transmit andM receive antennas on sub-
carriers. SNR and amplitudeA have the following relationship:
SNR = 10log10(A

2/N), whereN denotes the average power of
white noise. For example, Intel Wi-Fi Link 5300 (iwl5300) IEEE
a/b/g/n wireless network adapters collects the CSI of each frame
preamble across all subcarriers for up to three antennas.

Using the CSI values, we calculate the post-processed SNR (pp-
SNR) values for each subcarrier under every supported transmis-
sion configuration. The post-processed SNR is the SNR value ob-
tained after MIMO decoding. In MIMO, since a transmitted sym-
bol is received on multiple antennas, the final SNR experienced by
the symbol is the combination of the multiple receptions and the
combined SNR dictates whether it will be decoded correctly. For
spatial multiplexing modes, we use a Minimum Mean Squared Er-
ror (MMSE) equalizer to calculate the post-processed SNR. The
SNR value for themth stream on subcarriers after MMSE equal-
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ization can be written as:
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(3)

whereEs is the total transmission energy across all transmit anten-
nas,Nt is the number of transmit antennas,N0 is the noise power,
H is the channel matrix for subcarriers (Hij is the channel coef-
ficient of thej-th transmitting antenna toi-th receiving antenna),
I is an identity matrix, andHH is the Hermitian transpose ofH
matrix. The pp-SNR expression in equation 3 is applicable for all
cases, including when the number of spatial streams is equal to the
number of transmit antennas (Nss = Nt) and when the number
of transmit antennas is less than or equal to the number of receive
antennas (Nt ≤ Nr). Hence, equation 3 is used for all receive
diversity cases sinceNt < Nr is for receive diversity.

The calculation of pp-SNR for transmit diversity modes depends
on the mechanism used to achieve diversity. The two supported
mechanisms in IEEE 802.11n are Space Time Block Coding (STBC)
and Cyclic Delay Diversity (CDD). For STBC, which provides full
diversity, the pp-SNR can be calculated as:

SNRSTBC =
Es

NtN0

Nr
X

i=1

Nt
X

j=1

|hij |2 (4)

wherehij is the channel coefficient of thej-th transmitting antenna
to i receiving antenna,Nt andNr are the numbers of transmit and
receive antennas, respectively.

For CDD modes, the SNR can be estimated by [5]:

SNRCDD
s =

Es

NtN0

Nr
X

i=1

˛

˛

˛

˛

˛

Nt
X

k=1

hike
−j 2πs

Nfft
δcy(k)

˛

˛

˛

˛

˛

2

(5)

whereδcy(k) is the delay defined by the IEEE 802.11n standard
for cyclic delay transmission for transmit antennak. Nfft is the
FFT size, ands is the subcarrier index. It should be noted that
Equation 5 depends on the subcarrier index.

Computing loss rate: To compute the loss rate, we first map the
pp-SNR of each subcarrier to the uncoded BER using the well-
known relationship between SNR and BER as shown in Table 3.
Then to take into account the frequency diversity (i.e., SNR varies
across different subcarriers), as [12] suggests, we compute aver-
age BER across all the subcarriers. Next we derive the BER after
FEC coding using the error-probability upper bound defined for
the Viterbi decoder to map the uncoded BER to coded BER. The
Viterbi decoder’s probability of bit error is upper bounded as fol-
lows according to [27]:

BERcoded(ρ) =

∞
X

d=dfree

ad.Pd(ρ) (6)

Pd(ρ) =

8

>

<

>

:

Pd
k=(d+1)/2

`

d
k

´

.ρk.(1 − ρ)d−k, if d is odd
1
2
.
`

d
d/2

´

.ρd/2.(1 − ρ)d/2+
Pd

k=(d+1)/2

`

d
k

´

.ρk.(1 − ρ)d−k, if d is even

(7)

whereρ is the uncoded BER,dfree is the minimal hamming dis-
tance between two coded sequences, andad is the number of in-
correct paths of hamming distanced that diverge from the cor-
rect path and then re-merge sometime later [10]. The coded BER
value can then be used to approximate the frame error rate (FER) as
1− (1−BERcoded)L assuming independent bit error rate, where
L is the frame size.

To further enhance performance, Partial Packet Recovery (PPR)[17]
is proposed to let a receiver extract correct bits from a partially cor-
rupted frame. When PPR is used, our goal is to maximize the ex-
pected number of delivered bits, which can be computed as(1 −
HeaderLoss)(1−BERuncoded)×L′, whereHeaderLoss is the
loss rate of the frame header,L′ is the payload size, andBERuncoded

is uncoded BER.BERuncoded is used since the FEC is no longer
useful for a corrupted frame.

Estimating energy consumption: To accurately estimate the en-
ergy consumption, an AP or a back-end server should keep a table
of the energy models for commonly used Wi-Fi cards. Whenever
a new client arrives, it checks the make and model of the wire-
less card based on either explicit feedback or passive detection of
802.11 wireless drivers [9] or fingerprinting techniques [22] using
802.11 protocol fields. For example, “more fragments”, “retry”, or
“power management” bits in the protocol field reveals the wireless
card information. Then it computesETT based on frame loss rate
and applies the corresponding energy model to derive the energy
consumption for the next transmission under different MCS. When
a client’s wireless card has unknown energy profile, it is possible
to infer the energy model based on data transmissions. For exam-
ple, the AP can let the client report the energy consumption at a
few data rates under different numbers of antennas to estimate the
slope in the energy model. The model is then inserted to the table
and can be updated as more measurements become available. As
part of our future work, we plan to investigate how quickly we can
infer the energy model using such online measurement.

MCS and Antenna Selection: Based on the frame error rate cal-
culated for all MCS, we identify the MCS that have a reasonable
delivery rate (e.g., 90% or above). Among these MCS, we select
the MCS that yields the minimum energy. Note that we can easily
incorporate different objectives in this process, such as minimizing
energy or minimizing energy subject to throughput constraint (e.g.,
throughput is withinX% from the optimal throughput, whereX
is a configurable knob), or other combinations of throughput and
energy. In our evaluation, we also consider several variants that
jointly optimize energy and throughput.

5. TRACE DRIVEN SIMULATION
We first evaluate various rate adaptation schemes using trace-

driven simulation. We quantify the performance of different schemes
in terms of their energy consumption and throughput.

5.1 Simulation Methodology
We develop a simulator in python using the CSI traces. For each

frame, the data rate is selected according to different rate adaption
schemes. Then we determine if the frame is successfully received
using pp-SNR and taking into account FEC. The simulator also
supports Partial Packet Recovery (PPR), which uses uncoded BER
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Figure 6: Receiver Energy comparison in static networks.

to determine the number of bits correctly received. We compare the
following rate adaptation schemes:

• Sample Rate (SRate):Sample Rate [3] is a widely used rate
adaptation scheme. It probes the network at a random rate every
10 frames and selects the rate that minimizes transmission time
including retransmission time. Its goal is to maximize through-
put without considering energy consumption. We implement an
extended version of Sample Rate which supports MIMO trans-
mission modes. The original Sample Rate starts at the highest
rate and reduces the rate based on channel conditions. We ex-
tend this idea and start at the highest rate using all antennas
and then reduce or increase the MCS or the number of antennas
based on throughput of the previous transmissions.

• Effective SNR (EffSNR): [12] proposes selecting the data rate
based on effective SNR derived from the CSI values. It com-
putes the post-processed SNR for each subcarrier and maps it
to BER. Then it calculates the average BER across all subcar-
riers and converts the average BER to effective SNR with the
same BER. Effective SNR also aims to maximize throughput
and does not consider energy consumption.

• Maximum Throughput (MaxTput): Maximum Throughput
rate adaptation uses the rate selection scheme in Section 4. Un-
like energy minimization scheme, it picks the MCS that maxi-
mizes throughput.

• Minimum Energy (MinEng): Minimum Energy is our pro-
posed rate adaptation scheme from Section 4. It picks the MCS
that minimizes the energy consumption while ensuring the frame
delivery rate is above 90%.

• Minimum Energy with Throughput Constraint (ETput X):
This scheme aims to select the MCS that minimizes the energy
provided the throughput is no less thanX% of the maximum
throughput. We varyX to yield different variants. For example,

ETput80 means minimizing energy while ensuring throughput
is at least 80% of the maximum throughput.

The energy consumption is derived using the energy models for
Intel and Atheros as described in Section 3. We collect three chan-
nel traces from static environments, and another three traces from
mobile environments with human walking speed. The three mo-
bile traces are collected in an office environment using 1 moving
receiver and 3 static senders. The three static senders are 7m away
from each other. Each trace corresponds to one of the three senders
transmitting while the receiver is moved at a walking speed.

We use Intel Wi-Fi Link 5300 (iwl5300) IEEE a/b/g/n wireless
network adapters to collect the CSI of each frame preamble across
all subcarriers. These NICs have three antennas. We enable all
three antennas at both the sender and receiver. The modified driver[13]
reports the channel matrices for 30 subcarrier groups, which is
about one group for every two subcarriers in a 20 MHz channel
according to the standard [1] (i.e., 4 groups have one subcarrier
each, and the other 26 groups have two subcarriers each). We use
1000-byte packets and MCS-16, with a transmission power of 15
dBm. MCS-16 has 3 streams, so the NICs report CSI in the form
of 3 × 3 matrices for each frame.

5.2 Simulation Results
Static networks: First, we evaluate the performance in static net-
works using three traces collected in a static environment. Each
trace contains 2000 CSI samples. Figure 5 plots the throughput
and energy consumption for the transmitter. As we can see, com-
pared to the scheme that maximizes throughput, the energy-aware
rate adaptation scheme consumes 14-24% less energy for the Intel
card and 25-35% less energy for the Atheros card. The through-
put loss for both cards is 10-22%. Compared with Effective SNR
and Sample Rate, minimum energy reduces transmitter energy by
17-31% for the Intel card and 26-39% for the Atheros card while
the throughput loss is 1-19%. The energy saving is higher and
throughput reduction is lower in the latter cases because Effec-



MaxTput MinEng ETput80 ETput60

 0

 10

 20

 30

 40

 50

 60

static 1 static 2 static 3

T
hr

ou
gh

pu
t (

M
bp

s)

(a) Transmitter throughput

 0

 10

 20

 30

 40

 50

 60

static 1 static 2 static 3

E
ne

rg
y 

(n
J/

bi
t)

(b) Intel transmitter energy

 0
 5

 10
 15
 20
 25
 30
 35
 40

static 1 static 2 static 3

E
ne

rg
y 

(n
J/

bi
t)

(c) Atheros transmitter energy

Figure 7: Transmitter Energy comparison in static networks using PPR.

MaxTput MinEng ETput80 ETput60

 0

 10

 20

 30

 40

 50

 60

static 1 static 2 static 3

T
hr

ou
gh

pu
t (

M
bp

s)

(a) Receiver throughput

 0

 10

 20

 30

 40

 50

 60

 70

static 1 static 2 static 3

E
ne

rg
y 

(n
J/

bi
t)

(b) Intel receiver energy

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

static 1 static 2 static 3

E
ne

rg
y 

(n
J/

bi
t)

(c) Atheros receiver energy
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tive SNR or Sample Rate are not optimal for either throughput or
energy. ETputX balances the throughput and energy. For exam-
ple, compared with the maximum throughput scheme, ETput80,
which minimizes energy while ensuring at least 80% of the maxi-
mum throughput, saves energy of up to 10% and 13% for the Intel
and Atheros transmitters, respectively, while reducing throughput
within 1%. Moreover, OracleMinEng and OracleMaxTput know
the exact CSI of the next frame and eliminate the performance
degradation caused by prediction error. As we can see, the CSI
prediction error causes only 1-2% more energy consumption and
1-2% throughput reduction, indicating the impact of prediction er-
ror is small.

Figure 6 shows the performance results for the receiver. Com-
pared with the scheme that maximizes throughput, the energy-aware
rate adaptation scheme reduces the receiver’s energy by 25-35%
for the Intel card and 30-37% for the Atheros card at the cost of
10-26% throughput reduction. Compared with Effective SNR and
Sample Rate, minimum energy reduces receiver energy by 26-42%
for the Intel card and 30-44% for the Atheros card while the through-
put loss is 1-23%. As before, ETputX balances energy and through-
put: ETput80 reduces energy by 10% and 13% for the Intel and
Atheros receivers, respectively, with almost no throughput loss. In
addition, compared with OracleMinEng and OracleMaxTput, Mi-
nEng incurs only 1-4% more energy and 1-5% throughput loss.

Figure 11 shows the number of antennas used by each scheme.
We can see that the energy-aware rate adaptation tends to use one
antenna to minimize energy consumption. Meanwhile, it also uses
two antennas in some cases whenever the reduced transmission
time can offset the additional energy required by an extra antenna.
The maximum throughput scheme, on the other hand, does not care
about the energy consumption and uses as many antennas as pos-
sible to achieve better throughput. ETputX schemes try to balance
MinEng and MaxTput schemes and the number of antennas they
use is between those used by the two schemes.

We also ran simulations using a Partial Packet Recovery(PPR).
As shown in Figure 7, in this case the energy-aware rate adaptation
reduces the transmission energy by 22-24% for the Intel card and
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Figure 11: Number of antenna used in static networks.

by 40-42% for the Atheros card. These energy savings are achieved
at the cost of 26-28% throughput reduction for both cards.

As shown in Figure 8, the energy savings for the PPR receiver
are 26-28% and 31-33% for the Intel and Atheros cards, respec-
tively. The throughput loss for these cards is 26-28%. To trade off
between throughput and energy savings, ETput80 saves energy by
9% and 21% for Intel and Atheros, respectively. The throughput
reduction is within 9%. Moreover, comparing PPR energy saving
with non PPR energy savings, we see PPR based scheme improves
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Figure 9: Transmitter Energy comparison in mobile networks.
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Figure 10: Receiver Energy comparison in mobile networks.

the energy by 6-23% by extracting correct symbols from partially
corrupted frames.

Mobile networks: Next we evaluate the different schemes us-
ing the three mobile traces. Figure 9 and 10 summarize the re-
sults. Compared with the scheme that maximizes throughput, min-
imum energy reduces transmitter energy by 15-21% for the Intel
card and 22-29% for the Atheros card. For both Intel and Atheros,
the throughput loss is 3-10%. Compared with Effective SNR and
Sample Rate scheme, minimum energy reduces transmitter energy
by 9-35% for the Intel card and 5-49% for the Atheros card. The
throughput of minimum energy is higher than Effective SNR and
Sample Rate in some mobile traces since the latter two are not op-
timal for throughput.

For the receiver, minimum energy reduces energy by 29-31% for
the Intel card and 32-34% for the Atheros card while reducing the
throughput by 15-19% compared to maximum throughput scheme.
Compared with Effective SNR and Sample Rate scheme, minimum
energy reduces receiver energy by 34-40% for the Intel card and
36-41% for the Atheros card. To trade off between throughput and
energy savings, ETput80 scheme reduces the throughput by 2%
compared to maximum throughput scheme while providing energy
savings of 16% and 18% for Intel and Atheros receivers, respec-
tively. Compared with OracleMinEng and OracleMaxTput, the CSI
prediction error causes only 2-6% more energy consumption and
3-6% throughput reduction. The degradation in mobile traces is
slightly larger than that in static traces as expected since the chan-
nel variation in mobile traces increases the CSI prediction error.
Nevertheless, the degradation in this case is still small. As in the
static networks, the energy-aware rate adaptation uses one antenna
in most cases, and uses more antennas to reduce transmission time
if possible. The maximum throughput scheme uses as many anten-
nas as the channel condition allows.

Figure 12 and 13 further show the performance of various PPR
versions of rate adaptation schemes. In this case, the minimum
energy scheme reduces Intel transmitter energy by 26-28% and
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Figure 12: Transmitter Energy comparison in mobile networks
using PPR.

Atheros energy by 43-45%. The throughput loss is 22-24%. For
receiver, the energy savings for Intel are 30-32% and for Atheros
are 34-36%. The throughput loss is 22-24%. Compared with non-
PPR counterparts, the PPR versions lead to 13-20% energy savings.
To balance the throughput and energy savings, ETput80 scheme re-
duces the throughput by 8% while providing energy savings of 10%
and 22% for Intel and Atheros transmitters, respectively.

Impact of frame sizes: In order to take full advantage of the high
data rates offered by IEEE 802.11n, using large frames is strongly
recommended. Therefore, we further evaluate the impact of frame
sizes. Figure 14 shows the number of antennas selected by MinEng
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Figure 13: Receiver Energy comparison in mobile networks us-
ing PPR.

1 antenna 2 antennas 3 antennas

 0

 0.2

 0.4

 0.6

 0.8

 1

10
00

20
00

30
00

40
00

50
00

10
00

20
00

30
00

40
00

50
00

10
00

20
00

30
00

40
00

50
00

ra
tio

static 3static 2static 1

(a) # tx antennas used for Intel transmitter

 0

 0.2

 0.4

 0.6

 0.8

 1

10
00

20
00

30
00

40
00

50
00

10
00

20
00

30
00

40
00

50
00

10
00

20
00

30
00

40
00

50
00

ra
tio

static 3static 2static 1

(b) # rx antennas used for Intel receiver

Figure 14: Number of antennas used for different frame sizes.

for the Intel card as we vary the frame sizes from 1000 bytes to
5000 bytes. As we can see, MinEng always selects the one antenna
rate for 1000-byte frames in our traces. However, as the frame size
increases, we see more transmissions use multiple antennas. For
5000-byte frames almost all transmissions use two antennas. This
indicates as frame size increases, it becomes more advantageous to
use multiple antenna rates to minimize energy.

Multiple antennas provide energy saving for larger frames be-
cause for small frames the preamble transmission time dominates
the total transmission time. Hence, using multiple antennas only re-
sults in small reduction in ETT, which does not offset the additional
energy required to power up multiple antennas. As the frame size
increases, using multiple antennas leads to larger reduction in ETT,

which more than offsets the additional energy required to power up
more antennas.

Other energy objectives: Our scheme is general and can eas-
ily support other energy objectives. To give another example, here
we consider minimizing the total energy consumption from both
sender and receiver, which is especially interesting in ad hoc net-
works where the sender and receiver are both mobile nodes with
limited energy. Figure 15 shows the performance of MaxTput and
MinEng scheme with different objectives in static traces. The per-
formance of mobile traces is similar and omitted for brevity. As
it shows, MinEng leads to 19-30% total energy saving with 10-
26% throughput reduction. ETput80 balances the total energy con-
sumption and throughput, and reduces energy by 1-13% at a 1-2%
throughput loss. ETput60 reduces the total energy by 2-28% with
a 5-9% throughput reduction.
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Figure 15: Comparing total energy consumption in static net-
works.

6. TESTBED EVALUATION
Testbed implementation: We implement different rate adaptation
schemes in the Intel Wi-Fi link 5300 driver. We use the tool in
[12] to extract CSI from the Intel card at the receiver. The receiver
uses the extracted CSI information to calculate the throughput and
energy consumption for each MCS. The receiver then uses these
calculated values to select the appropriate MCS and informs the
transmitter to use the selected MCS.

We conduct testbed experiments using two desktop machines.
For each experiment, we send 200 UDP packets with 1000-byte
payload. The experiments are conducted in static and mobile sce-
narios. For mobile experiments, initially the machines are placed
close to one another and then the receiver is moved away from the
transmitter at a walking speed. For each configuration, we report
the average throughput and energy consumption across 10 runs for
static experiments and across 5 runs for mobile experiments.

Testbed results: Figure 16 shows the throughput and energy con-
sumption for static experiments. As we can see, MinEng reduces
the energy consumption by 19% for the transmitter and by 28%
for the receiver. The throughput reduction is 24% for the transmit-
ter and 22% for the receiver. ETputX smoothly trades-off between
the two objectives. For example, ETput80 reduces energy by 6%
at a 11% throughput loss for the transmitter. For the receiver, ET-
put80 reduces the energy by 16% with a throughput reduction of
2%. Figure 17 shows the number of transmit and receive antennas
used during the experiment. Due to the static channel, the schemes
use the same MCS for most transmissions which is expected. Mi-
nEng uses a single antenna at both the transmitter and receiver to
reduce energy. In comparison, MaxTput utilizes two and three an-
tennas to achieve higher throughput at the cost of additional energy.
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Figure 16: Comparison of performance of the static trace in the
testbed.
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Figure 18 shows how MCS changes over an mobile experiment
for MaxTput and MinEng. MCS 0 to 7 use 1 antenna, MCS 8 to
15 use 2 antennas, and MCS 16 to 23 use 3 antennas. In each case,
the number of spatial streams is equal to the number of antennas.
In region 1, when the channel is good, MaxTput transmits using all
3 antennas at MCS 22. Since MinEng tries to minimize energy, it
uses MCS 6, the highest 1-antenna rate that can be supported by the
current channel. MinEng saves 16.9% energy over MaxTput in this
region. As the receiver moves away from the transmitter, the chan-
nel condition degrades and forces MaxTput to drop to MCS 14,
while MinEng continues to use MCS 6. The energy improvement
reduces to 11.9% because MCS 14 used by MaxTput consumes less
energy than its previous MCS 22 due to a fewer number of anten-
nas used. In region 3, MaxTput drops from MCS 14 to MCS 12.
Since MCS 12 still uses 2 antennas but takes longer to transmit than
MCS 14, MCS 12 consumes 15.5% more energy than MCS 14. In
comparison, MinEng continues to use MCS 6 and its energy saving
jumps to 21%. In region 4, the MinEng drops to MCS 5, resulting
in longer transmission time. Since MaxTput still uses MCS 12, the
energy saving of MinEng reduces to 20.06%. It is interesting to
note that even though the channel degrades continuously, the en-
ergy savings do not follow the trend. In fact, region 2 has the least

gap between MaxTput and MinEng while region 3 has the highest.
In all cases, MinEng yields significant energy savings.
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MaxTput in a mobile experiment.

7. RELATED WORK
We classify related work into the following areas: (i) energy

measurement and models, (ii) power saving, (iii) rate adaptation.

Energy measurement and models:Carvalhoet al. [4] present a
simple model for power consumption in 802.11 ad-hoc networks
as a function of the number of bytes and a constant radio overhead
for all antenna configurations. They also augment it to account
for channel contention costs. Balasubramanianet al. [2] present
an empirical study of energy consumption on mobile phones for
3G, GSM, and WiFi energy consumption, and formulate an en-
ergy model for WiFi based on the transfer energy cost (per transfer
size) and the maintenance cost of WiFi. Neither model consid-
ers the effects of multiple antennas, data rate, and transmit power.
Sesame [7] is a system in which a mobile device creates its own en-
ergy model by using the battery interface with high accuracy. The
scheme does not specifically model the energy consumption of the
WiFi Adapter. Halperinet al. [11] study power consumption of the
iwl5300 under different transmit power levels, card mode (e.g.,
sleep, idle, transmit, receive), the number of active antennas and
spatial streams, channel width and data rate. While their empirical
observations are insightful, they do not develop an energy model.

Power saving: Motivated by the power-hungry nature of net-
work interfaces, several works try to minimize time in idle listening
mode. Rozneret al. [28] use virtualization techniques and energy-
aware scheduling algorithm to reduce background traffic and allow
802.11 cards to enter Power Saving Mode (PSM) to save energy
by 70%. Janget al. [18] propose an energy management technique
for 802.11n by configuring a client’s sleep duration and antenna
configuration.Sleepwell [21] is a system that achieves energy effi-
ciency by evading network contention among multiple APs in the
vicinity of a mobile client. E-mili [31] is a scheme that reduces
power consumed in idle listening by down-clocking radio. Cat-
nap [6] allows a device to sleep by combining small gaps between
packets into meaningful intervals, while [23] detects mobile phone
bugs that prevent the phone from sleeping. DozyAp [14] allows
power-efficient WiFi Tethering. All these works are complimentary
to our work, which focuses on optimizing MIMO transmissions to
save energy.

Rate Adaptation: Many rate adaptation algorithms have been pro-
posed for SISO systems, including commonly used SampleRate [3]
and RRAA [30]. [12] shows effective SNR is a good metric for
rate adaptation to maximize throughput. More recently, the suc-
cess of IEEE 802.11n has motivated researchers to develop rate
adaptation for IEEE 802.11n. Since IEEE 802.11n offers a wide



range of rate configurations, rate adaptation becomes more chal-
lenging. [25] proposes an interesting ZigZag search to find the rate
to optimize throughput. Turborate [29] is another MIMO rate adap-
tation algorithm. All the above works, however, focus on maximiz-
ing throughput and do not consider energy consumption. [19] is
one of the few that considers energy in rate adaptation. It formu-
lates the MIMO-OFDM minimum energy link adaptation problem
as a geometric programming (GP) problem with an augmented pa-
rameter set under the control of the link adaptation protocol, but
they do not empirically measure or derive energy models for wire-
less adapters. [20] also studies rate adaptation to reduce energy
consumption. But unlike our work, which optimizes power based
on the energy model, [20] uses probes to search for the rate that
reduces energy. In general, it takes a longer time for a probing-
based scheme to converge to a desirable rate than a model-based
approach, which directly computes the rate that minimizes the en-
ergy. Moreover, the data rate used by the probes may not be appro-
priate (e.g., it may incur losses or consume higher energy), which
limits its effectiveness.

8. CONCLUSION
In this paper, we collect and analyze power measurement from

different wireless cards and derive simple energy models for trans-
mission and reception. Based on the models, we develop a model-
driven energy-aware rate adaptation scheme. Our simulation and
experiments show our approach reduces energy by 14-37% over
the existing approaches. The PPR version is even more effective:
it leads to 22-45% energy reduction over the PPR extension of the
existing rate adaptation schemes and 6-23% energy reduction over
the non-PPR version of MinEng. As part of our future work, we
plan to explore energy minimization under more extensive scenar-
ios, such as under multiple clients and more diverse traffic patterns.
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