SOAR: Simple Opportunistic Adaptive Routing
Protocol for Wireless Mesh Networks

Eric Rozner
University of Texas at Austin
erozner@cs.utexas.edu

Jayesh Seshadri
VMware

jseshadr@vmware.com yogitamehta@gmail.com

Yogita Ashok Mehta
Google

Lili Qiu
University of Texas at Austin
lili@cs.utexas.edu

Abstract —Multihop wireless mesh networks are becoming a new at-
tractive communication paradigm owing to their low cost and ease
of deployment. Routing protocols are critical to the performance and
reliability of wireless mesh networks. Traditional routing protocols send
traffic along predetermined paths and face difficulties in coping with
unreliable and unpredictable wireless medium. In this paper, we propose
a Simple Opportunistic Adaptive Routing protocol (SOAR) to explic-
itly support multiple simultaneous flows in wireless mesh networks.
SOAR incorporates the following four major components to achieve high
throughput and fairness: (i) adaptive forwarding path selection to lever-
age path diversity while minimizing duplicate transmissions, (ii) priority
timer-based forwarding to let only the best forwarding node forward
the packet, (iii) local loss recovery to efficiently detect and retransmit
lost packets, and (iv) adaptive rate control to determine an appropriate
sending rate according to the current network conditions. We implement
SOAR in both NS-2 simulation and an 18-node wireless mesh testbed.
Our extensive evaluation shows that SOAR significantly outperforms
traditional routing and a seminal opportunistic routing protocol, ExOR,
under a wide range of scenarios.

Index Terms —C.2.1.k [Communication/Networking and Information
Technology]: Network Architecture and Design — Wireless communica-
tion; C.2.2.d [Communication/Networking and Information Technology]:
Network Protocols — routing protocols.

1 INTRODUCTION

Multihop wireless mesh networks are becoming a new
attractive communication paradigm. Many cities across
the world have deployed or are planning to deploy
them [34], [33], [30] to provide Internet access to resi-
dents and local businesses. Routing protocol design is
critical to the performance and reliability of wireless
mesh networks.

A natural approach to routing traffic in wireless mesh
networks is to adopt techniques similar to those in
wire-line networks, which select a best path for each
source-destination pair (according to some metric) and
send traffic along the pre-determined path. Most of the
existing routing protocols, such as DSR [16], AODV [26],
DSDV [25], and LQSR [8], fall into this category, which
we refer to as traditional routing.

This research is supported in part by by National Science Foundation grants
CNS-0546755 and CNS-0627020. We thank Szymon Chachulski, Michael
Jennings, Sachin Katti and Dina Katabi for providing ExOR source code.
Jayesh Seshadri and Yogita Ashok Mehta worked on this project while they
were students at University of Texas at Austin.

Recent studies [2], [3], [35] show that traditional rout-
ing faces difficulties in coping with unreliable and unpre-
dictable wireless medium. Motivated by these observa-
tions, researchers [2], [3], [35] developed opportunistic
routing protocols for wireless mesh networks. Oppor-
tunistic routing exploits the broadcast nature of the wire-
less medium and does not commit to a particular route
before data transmission. Instead, the sender broadcasts
its data; among the nodes that hear the transmission, the
one closest to the destination is selected to forward the
data. In this way, opportunistic routing can effectively
combine multiple weak links into a strong link and take
advantage of transmissions that reach unexpectedly near
or unexpectedly far.

In this paper, we present the design and imple-
mentation of a Simple Opportunistic Adaptive Routing
protocol (SOAR), a new addition to the opportunistic
routing protocol design space. Different from the ex-
isting opportunistic routing protocols, SOAR explicitly
supports multiple simultaneous flows by strategically
selecting forwarding nodes and employing adaptive rate
control. To demonstrate its effectiveness and feasibility,
we implement SOAR in both the NS-2 simulator [23]
and an 18-node wireless testbed. Using extensive evalu-
ation, we show that SOAR can significantly out-perform
traditional routing and a seminal opportunistic routing
protocol, ExOR [2], under a wide range of scenarios.

The rest of the paper is organized as follows. In Sec-
tion 2, we survey related work and motivate opportunis-
tic routing. In Section 3, we describe design challenges
of opportunistic routing and present the SOAR routing
protocol. We evaluate SOAR using NS-2 simulations
in Section 4. We present testbed implementation and
evaluation in Section 5. Finally, we conclude in Section 6.

2 BACKGROUND

In this section, we first review traditional routing pro-
tocols for wireless networks. Then, we explain the po-
tential benefits of opportunistic routing and introduce
existing opportunistic routing protocols.

2.1 Traditional Routing Protocols

Routing has been an active area in wireless networking
research. Most of the original work in this area targeted
high-mobility scenarios such as battlefield networks.
Therefore, the focus was on establishing and maintaining
routes under frequent and unpredictable changes in
network connectivity. A number of on-demand routing
protocols have been proposed for this purpose, as exem-
plified by DSR [16] and AODV [26], where packets are
routed along paths with the shortest hop count.

Recently, wireless mesh networks [17], [28], [30] have
emerged as a new dominant application of multihop
wireless networks. Nodes in such networks have little
or no mobility and often are not constrained by short
battery-life or limited computational power. Therefore,
improving network performance becomes the primary
focus. Researchers have found that the hop-count metric,
as used in DSR and AODV, does not provide good per-
formance since not all hops are equal. To address this is-
sue, various link-quality metrics have been proposed [1],
[7], [9], [10], [12], [13]. These metrics quantify the quality
of links using link loss rate, packet transmission time, or
signal-to-noise ratios. These works are complementary to
opportunistic routing by offering metrics for comparing
different routes. As with other opportunistic routing
protocols, SOAR uses ETX [7] as the underlying routing
metric, but it is easy for SOAR to support any alternative
routing metric.

In addition to routing metric design, there is another
thread of works that optimize routing in wireless mesh
networks by casting it as a linear program (e.g., [14],
[31]) or non-linear program (e.g., [21]).

2.2 Benefits of Opportunistic Routing

More recently, researchers have proposed opportunis-
tic routing for mesh networks. Opportunistic routing
differs from traditional routing in that it exploits the
broadcast nature of wireless medium and defers route
selection after packet transmissions. This can cope well
with unreliable and unpredictable wireless links. There
are two major benefits in opportunistic routing. First, it
can combine multiple weak links into one strong link.
Second, it takes advantage of unexpectedly short or
unexpectedly long transmissions. We further illustrate
the benefits using the following two examples.

10 G
20% 100%
(o)

Fig. 1. Opportunistic routing can take advantage of
multiple weak links.

As shown in Figure 1, a source has weak wireless
connectivity to each of the five intermediate nodes, with

a delivery rate of 20%. For ease of illustration, assume
independent loss rates on each link (This assumption
is not required for our protocol). All the intermediate
nodes have 100% delivery rate to the destination. Under
a traditional routing protocol, we have to pick one of the
five intermediate nodes as the relay node. Therefore, on
average, a packet needs to be transmitted five times in
order to reach the next hop. Then, the packet needs to
be forwarded once to reach the destination. Altogether,
six transmissions are required to deliver the packet
end-to-end. In comparison, in opportunistic routing we
can treat the five intermediate nodes as one unit that
cooperatively forwards the packet to the destination. The
combined link has a success rate of 1 —(1—0.2)% = 0.672.
Therefore, on average, only 1/0.67=1.487 transmissions
are required to reach at least one of the five intermedi-
ate nodes, and another transmission is required for an
intermediate node to forward. Therefore, opportunistic
routing achieves 2.5 times the throughput of traditional
routing.

® © 0 ©

Fig. 2. Opportunistic routing can maximize the progress
each transmission makes.

Second, a traditional routing protocol has to trade off
between link quality and the amount of progress each
transmission makes. For example, consider the network
shown in Figure 2, A sends data to D along the path
A—B—C—D.If Bis used as the next hop and the
quality of link A — B is good, then no retransmissions
are required to deliver the packet to B. But the progress
made is small. Alternatively, if C' is chosen as the next
hop, a large progress is made if the packet reaches C.
However if the quality of link A — C' is poor, multiple
transmissions are required to deliver the packet to C. In
comparison, opportunistic routing does not commit to B
or C before transmissions. Among the nodes that receive
the packet, we choose the one closest to the destination
to forward. In this way, we can opportunistically lever-
age transmissions that are either unexpectedly short or
unexpectedly long, thereby achieving high throughput.

2.3 Prior Opportunistic Routing Protocols

ExOR [2] is a seminal opportunistic routing protocol.
In ExOR, senders broadcast a batch of packets (10-100
packets per batch). Each packet contains a list of nodes
that can potentially forward it. In order to maximize
the progress of each transmission, the forwarding nodes
relay data packets in the order of their proximity to
the destination (Throughout the rest of this paper, prox-
imity is measured by the ETX metric [7], not in terms
of physical distance). To minimize redundant transmis-
sions, EXOR uses a batch map, which records the list of
packets each node has received; every forwarding node
only forwards data that has not been acknowledged by
the nodes closer to the destination. ExXOR imposes strict
timing constraints among the forwarders to facilitate

coordination in the relay process. Only one forwarder
can be active at a time, and spatial reuse of the wireless
spectrum is reduced. Furthermore, ExOR’s forwarding
paths can easily diverge, i.e, nodes on the different
forwarding paths may not hear from each other and
cause duplicate forwarding. These difficulties make it
unclear how well EXOR supports multiple simultaneous
flows.

MORE [3] applies network coding to opportunistic
routing in a clever way. Since random coding can ef-
fectively generate linearly independent coded packets
with a high probability, the forwarding nodes in MORE
do not need to coordinate which packets are forwarded
by which nodes. However, MORE selects forwarding
nodes in a similar way as ExOR and does not prevent
diverging paths, which can lead to waste of resource
usage. Furthermore, it does not rate-limit the initial
transmission of packet batches, and may cause degrada-
tion in aggregate network performance and fairness. We
believe that the prevention of diverging paths and rate-
limiting are necessary for efficiently supporting multiple
flows under opportunistic routing protocols.

ROMER [35], another opportunistic routing protocol,
tries to forward the packets simultaneously along multi-
ple paths. It incorporates a credit based scheme to limit
the number of transmissions that a packet is allowed
before reaching the destination. Even with the credit-
based scheme, there is still significant overhead since a
packet is allowed to be forwarded by multiple nodes at
each hop. Also, setting the credit is non-trivial and static
credit has difficulties in coping with different topologies.
As a result, ROMER only supports a single flow.

Zhong et al. [36] show that the routing metric used to
select and prioritize forwarding nodes is important. They
develop a new routing metric, called EAX, to account for
inter-candidate communication in opportunistic routing.

In addition to opportunistic routing protocols for mesh
networks, researchers have also designed opportunistic
routing protocols for ad-hoc and sensor networks. For
example, [5] and [32] both dynamically select forwarding
nodes based on recent link quality. However, in both pro-
tocols, only one forwarding node is selected before trans-
missions, and they cannot take advantage of transmis-
sions reaching nodes other than the previously selected
forwarder. [4] balances the energy consumption rates of
different nodes in a sensor network by opportunistically
incorporating forwarders’ energy consumption.

Our previous workshop paper [29] presents an ini-
tial design of an opportunistic routing protocol and
preliminary simulation results in some toy topologies.
This paper is built on our previous work, but differs in
the following important ways. First, we make several
significant new optimizations, which include (i) devel-
oping a rate control scheme for opportunistic routing,
which adapts the sending rate according to link loss
rate; (ii) adapting the number of forwarding nodes
according to link quality, (iii) adapting retransmission
timeout according to network delay, and (iv) cross-flow

ACKs to increase the efficiency of receiver feedback
in the presence of multiple flows. These optimizations
are critical to ensure SOAR performs well in a wide
range of scenarios. Second, we extensively evaluate the
performance of SOAR by simulating in a large range
of synthetic topologies and traffic demands. Third, we
implement SOAR in a wireless testbed, and demonstrate
its feasibility and effectiveness in a real network. In
doing so, we add comparisons against EXOR, a seminal
opportunistic routing protocol.

3 THE SOAR ROUTING PROTOCOL

In this section, we first describe design challenges of
opportunistic routing protocols. Then we present an
overview and the protocol details of SOAR.

3.1 Design Challenges

The goal of opportunistic routing is to maximize the
progress each transmission makes without causing du-
plicate (re)transmissions or incurring significant coordi-
nation overhead. In order to achieve this goal, several
important design issues should be addressed:

Forwarding node selection: While opportunistic rout-
ing defers the final route selection after data transmis-
sions, the candidate forwarding nodes should still be se-
lected in advance. This is necessary because the number
of duplicate transmissions and coordination overhead
tend to increase with the number of forwarding nodes.
Without judicious forwarding node selection, the over-
head of opportunistic routing might offset its benefits.

Avoid duplicate transmissions: When multiple nodes
overhear a transmission, we want to ensure that only
the node closest to the destination forwards it. The best
forwarding node should be selected in a cheap and
distributed way.

Loss recovery: In opportunistic routing, each node
broadcasts data packets, and broadcast packets are vul-
nerable to packet losses and corruption since the MAC
layer offers no reliability support for broadcast. There-
fore it is important for opportunistic routing protocols
to efficiently detect and recover packet losses.

Rate control: Determining an appropriate sending
rate is important for opportunistic routing. Without rate
control, a flow may send too many packets on the first
few hops which cannot be forwarded on the subsequent
hops. Due to wireless interference, such transmissions
take away available bandwidth from the subsequent
hops and significantly degrade performance [20].

To address the above challenges, SOAR consists of the
following four major components: (i) adaptive forward-
ing path selection to leverage path diversity while avoid-
ing diverging paths, (ii) priority timer-based forwarding
to allow only the best forwarding node to forward the
packet, (iii) local loss recovery to efficiently detect and
retransmit lost packets, and (iv) adaptive rate control to
determine an appropriate sending rate according to the
current network condition.

3.2 Overview

As ExOR and MORE, SOAR is a proactive link state
routing protocol. Every node periodically measures and
disseminates link quality in terms of ETX. Based on
this information, a sender selects the default path and
a list of (next-hop) forwarding nodes that are eligible
for forwarding the data. It then broadcasts a data packet
including this information. Upon hearing the transmis-
sion, the nodes not on the forwarding list simply discard
the packet. Nodes on the forwarding list store the packet
and set forwarding timers based on their proximity to
the destination. A node closer to the destination uses
a smaller timer and forwards the packet earlier. Upon
hearing this transmission, other nodes will remove the
corresponding packet from their queues to avoid du-
plicate transmissions. Like all the existing opportunistic
routing protocols, SOAR broadcasts data packets at a
fixed PHY data rate. How to perform automatic rate
adaptation in opportunistic routing is an interesting
topic by itself, and we plan to investigate as part of our
future work.

3.3 Adaptive Forwarding Path Selection

To support opportunistic routing, each node maintains
a routing table of the following format: (destination,
default path, forwardList), where the default path is the
shortest path from the current node to the destination
and the forwarding list includes a list of next-hop nodes
that are eligible to forward the transmission.

3.3.1 Default Path Selection

In order to compute the default path and forwarding
lists, every node measures and maintains the network
topology, as in existing wireless mesh routing protocols
(e.g., Srer [7], LQSR [8], and ExOR [2]). Several routing
metrics have been proposed in the literature to assign
link weights based on link quality. We use the ETX met-
ric, a state-of-art routing metric proposed by De Couto et
al. [7]. A link’s ETX metric measures the expected num-
ber of transmissions (including retransmissions) required
to reliably send a packet across the link. Let py and p,
denote the loss probabilities of the link in the forward
and reverse directions, respectively. Each node measures
the loss rate of its links to and from its neighbors (i.e., py
and p,) by broadcasting one probe packet every second
and counting the number of probes received in the last
10 seconds. Then, the link’s ETX metric is calculated
as m, assuming independent packet losses.
Each node maintains an exponentially weighted moving
average of ETX samples. The default path is the shortest
path between the source and destination in terms of
ETX. The ETX routing metric has been shown effective
in selecting good quality routes [7], [8].

3.3.2 Forwarding Node Selection

Forwarding node selection is critical to the performance
of SOAR. In order to leverage path diversity while

avoiding duplicate transmissions, SOAR relaxes the ac-
tual route that data traverses to be along or near the
default path. Different from traditional routing, SOAR
leverages path diversity by using more flexible routes:
nodes other than the next hop can forward the data.
Differing from existing opportunistic routing protocols,
SOAR constrains the nodes involved in routing a packet
to be near the default path, as shown in Figure 3. This
prevents routes from diverging and minimizes duplicate
transmissions. Moreover, this forwarding node selection
also simplifies coordination since all the nodes involved
are close to nodes on the default path and can hear each
other with a reasonably high probability. Therefore, we
can use overheard transmissions to coordinate between
forwarding nodes in a cheap and distributed way.

(@]
© 57 77 ©
(6] @) (@]

(0]

o

Fig. 3. The actual route in SOAR involves nodes on
or near the default path. In the figure, the nodes in the
shaded region participate in forwarding packets from A to
B.

Our forwarding list selection algorithm consists of
two steps. First, a sender selects an initial forwarding
list based on the default path. Then it further limits
the number of forwarding nodes to minimize duplicate
transmissions. These steps are taken by a sender on each
packet, allowing for the forwarding list to quickly adapt
to network conditions. Also, a sender in this case refers
to either a flow source or a forwarder within the flow
(i.e., the forwarding list is updated at each network hop).

Selecting initial forwarding lists: When node i is
on the default path, i selects the forwarding nodes that
satisfy the following conditions:

(C1) The forwarding node’s ETX to the destination is
lower than i’s ETX to the destination.

(C2) The forwarding node’s ETX to 4 is within a thresh-
old.

The first constraint ensures that the packet makes
progress. The second constraint ensures that i hears the
forwarding node’s transmissions with a high probability
to avoid duplicate retransmissions.

Selecting the correct threshold is nontrivial and using a
constant threshold can be ineffective. Consider a 4-node
network, where there is a flow from node A to D with
a default path A — B — D. Whether node C should be
included as a forwarding node not only depends on the
absolute delivery rates of links A—C and C — D, but also
depends on how they compare with the delivery rate of
links on the default paths. For example, suppose A — B,
B—D, and C'— D all have 50% delivery rate. If A—C has
delivery rate of 5%, it is not helpful to include C as a
forwarding node since in most cases when a packet does
not reach B it does not reach C either. If the delivery
rate of A — B changes to 5%, now it makes sense to

include C as a forwarding node. This example suggests
that we should adapt the threshold according to the link
to the default next hop. So we set the threshold to v x
ETX (i,nexthop) and use v = 4.0 in our evaluation. The
intuition is that the links among the forwarding nodes
and between the forwarding nodes and ¢ should not be
too much worse than the link between i and nexthop
(We also try other values of v between 2 and 6, and they
do not cause significant performance difference).

®

CICRCRCICIC)
ONO)

®
Fig. 4. Careful forwarding node selection is necessary to
prevent routes from diverging.

SOAR also allows nodes not on the default path to
forward packets. These nodes could select their for-
warding nodes in the same way as the nodes on the
default path. However, this could potentially result in
diverging forwarding paths and duplicate transmissions.
For example, in Figure 4 node A wants to send traffic to
node F. A selects B1, B2, and B3; B1 picks C1 and
C2, while B3 selects C'5 and C6 as forwarding nodes.
Then if B1 and B3 do not hear each other’s forwarding
(since the link between them has non-zero loss rate),
a copy of the packet is forwarded to C1, C2, C5, and
(6. Since C'1 and C6 cannot hear each other, the packet
will further diverge and yield redundant transmissions.
Therefore not only should we ensure that forwarding
nodes make progress and have sufficiently good link
quality from node 4, but also we want the selected
forwarding nodes to be adjacent to the default path and
every pair of forwarding nodes has sufficiently good
link quality between them to avoid diverging paths.
This leads to the following two additional constraints
in selecting forwarding nodes:

(C3) Each forwarding node is close to at least one node
on the default path (i.e., with ETX below a threshold).
(C4) The ETX of a link between any pair of forwarding
nodes is within a threshold.

These constraints ensure forwarding nodes have good
connectivity amongst themselves and to nodes on the
default path. To achieve this, we filter out the nodes
that do not satisfy (C3), and then successively add the
remaining nodes to the forwarding list in an increasing
order of ETX to the destination, continuously ensuring
that (C4) is satisfied. In Section 5.4.1, we found that
adjacent forwarders in EXOR do not always satisfy (C4),
which can lead to a partition amongst the forwarding
nodes.

Further pruning forwarding nodes: To further reduce
coordination overhead and duplicate traffic, we bound

the maximum number of forwarding nodes within a
specified threshold (Our evaluation uses 5 as the upper
bound). Meanwhile we may not need to include all
the nodes if the nodes closest to the destination are
sufficiently reliable. For example, if the links from A to
all five neighbors are 100% in Figure 1, we only need
to use one of the neighbors as the forwarding node.
This observation suggests that we should only include
enough forwarding nodes (in an increasing order of their
ETX to the destination) to bound the loss rate of the
virtual link, which consists of the physical links between
the sender and all the forwarding nodes selected so far.

Therefore we start from the forwarding node closest
to the destination and iteratively add a node to the final
forwarding list until either the loss of a virtual link is
below a threshold or the specified maximum number of
forwarding nodes is reached. We add forwarding nodes
in an increasing order of their ETX to the destination
because only when the nodes closest to the destination
have a sufficiently reliable virtual link can we prune the
remaining forwarding nodes. In the other order, even
when the forwarding nodes included so far have suffi-
ciently reliable links, there is still a benefit of including
additional forwarding nodes if they are closer to the
destination than those included so far. Finally, if the loss
rate of the virtual link is higher than the loss threshold,
we replace the last forwarding node added so far with
the forwarding node that has lowest ETX to the current
node. This reduces the virtual link loss rate and increases
the chance that the packet makes progress beyond the
current node.

3.4 Priority-based Forwarding

We use priority-based forwarding to maximize the
progress each transmission makes. A sender transmits a
packet, which specifies a list of forwarding nodes sorted
in a non-decreasing order of ETX towards the destina-
tion. The forwarding list and its priority are specified
on a per packet basis. This makes it easy to adapt to
topology changes — upon topology changes, a sender can
simply specify a different set of forwarding nodes in a
different order, and this change takes effect immediately.

Each node hearing the packet first checks if it is
included in the forwarding list. If not, it discards the
packet. Otherwise, it sets its forwarding timer as follows.
The i-th forwarding node on the list sets its forwarding
timer to (i — 1) * 0, where ¢ starts from 1. In this
way, the node with lower ETX towards the destination
forwards the packet earlier, and other nodes hearing
its forwarding will cancel their forwarding timer and
remove the packet from their queue, thereby avoiding
duplicate forwarding.

In order for priority-based forwarding to work well,
0 should be large enough to ensure that the transmis-
sion from a higher priority node precedes that from a
lower priority node even under variable queueing and
contention delay. To achieve this, we limit the maximum

number of packets queued on the wireless card to 3. We
use 6 = 45ms, which is appropriate for bulk transfer,
targeted by all opportunistic routing protocols, including
SOAR.

3.5 Local Recovery

SOAR uses per-hop network-layer ACKs and retrans-
missions to provide best effort reliability. Each node on
the forwarding path will keep retransmitting a packet
until either the packet is acknowledged by a node
closer to the destination or the maximum retry count is
reached. As with any ACK-retransmission scheme, we
need to address the following issues in our design: (i)
when to send ACKSs, (ii) what information is contained
in ACKs, and (iii) when to retransmit. We will describe
our approach to each of these issues.

3.5.1 When to send ACKs?

Sending one ACK for every packet yields significant
overhead, and may reduce throughput over a reliable
link. To reduce the overhead of ACKs, SOAR uses a
combination of piggyback ACKs and ACK compression as
follows.

A node piggybacks its ACK to a data packet whenever
possible. Moreover, an ACK piggyback occurs just before
the data packet is sent to the wireless card to allow
the ACK to carry the latest information about which
packets have been received. A node considers a packet
as received if it receives the packet itself or it hears an
ACK for this packet from a node closer to the destination
than itself.

Piggyback ACKs are effective when there are enough
data packets to transmit. When a node does not have
much data to send, it should also send stand-alone ACKs
to provide timely feedback. To reduce the overhead of
ACKs, SOAR uses ACK compression, where an ACK
is scheduled either when K data packets have been
received or an ACK timer expires. As a further optimiza-
tion, before a stand-alone ACK is sent to the wireless
card, if another data packet coming from the same flow
arrives and is within P packets away from the ACK, we
cancel the stand-alone ACK since the data packet can
carry the ACK. Our evaluation uses an ACK timer of
30 ms, K = 10, and P = 2. Our results show that the
combination of piggyback ACKs and ACK compression
is effective in reducing feedback overhead.

3.5.2 What to send in ACKs?

SOAR uses cumulative/selective ACKs to minimize the
impact of ACK loss. The ACKs for each flow contain
two fields: (i) the starting sequence number of the out
of order ACKs (start) and (ii) a bit-map of out of order
ACKs. (We use a fixed length bit-map with 256 bits). All
the packets up to start are assumed to be received, and
i-th position in the bitmap is 1 if and only if start 4 i-th
packet is received. We update start so that the largest
received packet is no more than start+ 256. This implies

that it is possible that a node may not have received
all packets up to start even though it assumes so. The
likelihood of such occurrence is low since the bit-map
size of 256 bits is generally large enough. Moreover,
SOAR is designed to provide best-effort reliability and
leaves the upper-layer to ensure full reliability if needed.

When there are multiple flows, a simple approach is
to ACK each flow separately. However this would have
higher ACK delay and potentially result in unnecessary
retransmissions. To address this issue, SOAR uses cross-
flow ACKs. Whenever a node sends an ACK (regardless
of whether it is a piggyback ACK or stand-alone ACK),
it includes not only the ACK for the current flow but
also ACKs for some other flows.

Now the questions are how many flows to ACK each
time and which flows to include in the ACK. We use
the following constraints to limit the size of cross-flow
ACKs. (i) The final packet size (including payload) is
within MTU. (ii) The maximum number of flows to be
ACKed is no more than a specified number of flows.
The limit is set to 4, including the current flow, in
our evaluation. (iii) Senders only include an ACK for
another flow when that flow has new packets to be
acknowledged since the last transmission of an ACK
for that flow. The last constraint not only reduces cross-
flow ACK overhead in the normal situation, but also
automatically times out flows that become inactive or
change route (We use the last constraint to conservatively
send cross-flow ACKs. When the previous ACK for flow
1 is lost, the cross-flow ACK does not include an ACK for
flow i, since flow ¢ will generate its own ACKs anyway).
When picking which flows to ACK, SOAR favors the
flows that have the largest number of new packets to
acknowledge since their last ACKs.

3.5.3 When to retransmit data?

In SOAR, each node estimates its retransmission timeout
(RTO) in a similar way as done in TCP. Specifically, for
every packet that has not been retransmitted, a node
measures the time difference between when the packet
is transmitted and when the corresponding ACK (in
SOAR) is received. Let T' denote the measured round-
trip time of the current packet over a virtual link. Then
the node updates its RT'O as shown in Figure 5. RT'O is
initialized to 30 ms. Our evaluation uses K =4, o = 1/8,
and 3 =1/4 as in TCP [24].

if (T is the first RTT measurement)
SRIT = T;
RTTVAR = T/2;
RTO = SRTT + K*RTTVAR;
else
RTTVAR = (1 - 8) x RTTVAR+ 8 x |SRTT — T|;
SRTT = (1 —a) X SRTT + a x T;
RTO = SRTT + K « RTTV AR,
end

Fig. 5. Estimation of RTO.

As in TCP, after each retransmission, the timeout of
the packet is increased exponentially. We update RT'O as
RTO(i) = RTO(i — 1) % 1.5 where RT'O(7) is the timeout

of i-th retransmission. We use 1.5 instead of a commonly
used 2 to reduce the retransmission time, while quickly
adapting to the current network condition.

3.6 Rate Control

Another important design issue is how fast a flow source
should transmit data. For both a single flow and multiple
simultaneous flows, not controlling the senders’ data
rates can severely degrade network throughput when
they send more than what the path can support. This
occurs because any additional traffic reduces the capacity
of the bottleneck links due to wireless interference. For
multiple simultaneous flows, rate control is also useful to
improve fairness and avoid starvation, as shown in [11],
[27], [19]. While traditionally rate control is typically
considered the responsibility of a transport layer proto-
col, previous works [11], [27], [19] have shown that the
existing congestion control at the transport layer is not
effective for multihop wireless networks. A joint opti-
mization of rate limiting and routing is more promising.
This is also the approach taken by SOAR. In SOAR each
flow uses end-to-end ACKs from its destination node to
control its source’s sending rate.

Sending end-to-end ACKs: A destination sends an
end-to-end ACK after receiving every K unique packets
or when a timer expires. The format of an end-to-
end ACK is similar to a per-hop ACK in Section 3.5.2.
The only difference is an end-to-end ACK contains an
additional total Received field, indicating the cumulative
number of unique packets the destination has received
so far. This explicit counter helps the source to determine
an appropriate sending rate and is more accurate than
using an ACK bit-map.

Different from per-hop ACKs, end-to-end ACKs are
forwarded beyond the immediate neighbors. Since end-
to-end ACKs can traverse multiple hops, they are sent
less frequently than per-hop ACKs. Our evaluation uses
K = 20 and a timeout of 100ms. To reduce the delay
in transmitting an end-to-end ACK, the flow destination
transmits end-to-end ACKs along the shortest path via
MAC-layer unicast to the flow source.

Updating sending rate: In SOAR, a flow source has
a limit on the maximum number of packets sent during
the current time interval, denoted as Window. During
transfers, the sender uses the total Received field in the
end-to-end ACKs from its destination to update Window
at the beginning of each time interval. As shown in
Figure 6, when the number of packets acknowledged
in the previous interval (ACKed(i — 1)) is smaller than
the minimum window (Min), Window is set to Min.
Otherwise, Window is set to ACKed(i — 1) plus a small
increment (Incr). The rationale is that the network can
support at least ACKed(i—1) since this is the number of
packets successfully delivered in the previous interval,
and we increment it by Incr to allow the rate to grow
when the network condition improves. Finally, when
a sender is unable to send as many packets as were

acknowledged in the previous interval (due to MAC
scheduling), a Credit is accrued to Window in the suc-
cessive interval. Figure 6 shows the pseudo-code. While
many rate-control solutions are possible, we choose this
for its simplicity and effectiveness.

In Interval ::
if (ACKed(i — 1) < Min)
Window(i) = Min;
else
Window(i) = ACKed(i — 1) 4+ Incr ;

if (Sent(i — 1) < ACKed(i — 2))

Credit(i — 1) = ACKed(i — 2) - Sent(i — 1);
else

Credit(i — 1) = 0;

Window(i) = Window(i) + Credit(i — 1);

Fig. 6. SOAR rate control algorithm. (Our evaluation uses
200 ms intervals, Min = 1, and Incr = 1.)

4 SIMULATION RESULTS

We evaluate SOAR using NS-2 simulations and testbed
experiments. The former lets us evaluate under a broader
range of scenarios, while the latter provides a more
realistic setting. In this section, we use NS-2 simulations
to compare SOAR with traditional shortest path routing.
In the next section, we will further compare SOAR with
traditional shortest path routing and ExOR using testbed
experiments. Below, we first describe our evaluation
methodology and then present performance results. Our
results show that SOAR significantly improves goodput
and fairness of bulk transfer over traditional routing.

4.1 Evaluation Methodology

We implement SOAR in NS-2 (version 2.29) [23]. We use
an ETX-based shortest-path routing protocol as a baseline
comparison. In our ETX implementation, each node
sends one broadcast probe per second, and its neighbors
measure link loss rates by counting the number of probes
received over a 10-second time window.

To capture wireless medium losses in real networks,
we augment NS-2 to generate packet losses by drop-
ping packets received at the MAC layer according to a
Bernoulli distribution.

Evaluation scenarios: Our evaluation uses 802.11a and
disables RTS/CTS, which is the default setting in most
wireless networks. As in ExXOR, we disable auto-rate and
set the data rate to 6 Mbps. We generate 6 Mbps CBR
traffic and use a 1000-byte packet size. We use a warm-
up period of 500 seconds to let the ETX metrics converge,
and then measure network performance over the next
110 seconds.

Performance metrics: We quantify the performance
using two metrics: (i) the average end-to-end goodput of
all flows, where all flows are routed using either shortest
path or SOAR, and (ii) fairness using the traditional Jain’s
fairness index [15]. The goodput (i.e., total number of non-
duplicate received bits per second) is measured over a

110-second transfer. Jain’s fairness index is defined as
(> xi)?/(n* Y x;?), where z; is the goodput of flow i
and n is the total number of flows in the network. For
both metrics, higher values indicate better performance
and fairness.

4.2 Evaluation Results

We evaluate SOAR using a range of network topologies
and traffic demands. First, we study the performance of
a single flow over simple canonical topologies, and then
evaluate the performance of multiple flows using grid
and random network topologies.

4.2.1 Single Flow

First, we use diamond and linear chain topologies to
evaluate the performance under a single flow.

SOAR —+—

Shortest Path -

SOAR —+—
Shortest Path -~

2000 2000

1500 1500

1000 1000

Goodput (Kbps)
Goodput (Kbps)

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8

(a) 2 intermediate nodes (b) 6 intermediate nodes

Fig. 7. Diamond Topology.

Diamond topologies: In the diamond topologies (sim-
ilar to Figure 1), the delivery rate from the source to
each intermediate node (denoted as pl) is varied from
0.1 to 1 and all the other links (including the links from
the intermediate nodes to the source) have delivery rate
of 1 (i.e., no loss). Note that there are contention losses
in addition to the above inherent wireless link losses.
This is true for all the other evaluation as well. Figure 7
compares the goodput of SOAR with the shortest path
routing for 2 and 6 intermediate nodes. SOAR performs
significantly better for all the values of loss rates. Im-
provement ranges from 18.37% to 578.62%. For smaller
values of pl, having more intermediate nodes gives
more opportunism for forwarding packets and results
in higher goodput improvement. For larger values of p1,
we restrict the number of forwarding nodes selected (as
discussed in Section 3.3.2), so we see similar improve-
ment for different numbers of intermediate nodes. When
pl =1, we see SOAR slightly out-performs shortest path
routing. The performance gain comes from two factors:
(i) even when pl = 1, there are still collision losses, which
SOAR can help to recover via opportunistic routing,
and (ii) SOAR uses broadcast transmissions and has no
ACK overhead, while shortest path routing uses unicast
transmissions and incurs ACK overhead.

Linear chain topologies: Next we use linear chain
topologies to evaluate the effectiveness of SOAR in
leveraging unexpectedly long transmissions. The one-
hop links are perfect, i.e. the delivery rate of the one-
hop link in forward and reverse direction is 1. The two-
hop link has p2 delivery rate. In the case of asymmetric

5000

SOAR-2 hops —+—
Shortest Path-2 hops -3 Koo
| SOAR-4 hops ¥
Shortest Path-4 hops =)
SOAR-6 hops --—-#--

4000

ﬁ Shortest Path-6 hops -0 ><
g 3000 x
5 X
¥ *
B 2000 7 R A e gD
3 -
8 e o 1
1000 gt g ,A.!,,,,!,,_B,A\,,g:,;s_,:,,,,
Bl B GO @
S
0 . .)
0 0.2 0.4 0.6 0.8 1

2
(a) Symmetrpic losses

L SOAR-2 hops —+—
Shortest Path-2 hops - o
F SOAR-4 hops %
Shortest Path-4 hops =)
[SOAR-6 hops -~
| Shortest Path-6 hops ---0---

Goodput (Kbps)
)
o
=3
IS)

(b) Asymmetpl)rzic losses

Fig. 8. Linear Topology - goodput for 2-hop, 4-hop, and
6-hop linear chains.

loss rates, p2 is the delivery rate of the two-hop links
in the forward direction (dy), and the delivery rate of
the reverse direction (d,) is 1. In the case of symmetric
loss rates, p2:df£:d$ to ensure the bi-directional delivery
rate of p2. Figure 8 compares SOAR with shortest path
routing for linear chain topologies with symmetric and
asymmetric loss rates. We vary p2 from 0.0 to 1.0. The
improvement is largest (as high as 157.1%) when p2 has
a moderate delivery rate (around 0.5). This is because
when p2 is low, there are few long transmissions for
SOAR to take advantage of, and when p2 is too high, the
shortest path routing already directly uses the reliable
“two-hop” path, which is close to optimal in this case.
Note that when p2 = 1, SOAR slightly out-performs
shortest path routing since SOAR helps to recover colli-
sion losses and has no ACK overhead.

We see larger improvement under symmetric losses
than asymmetric losses. This is because for a fixed p2,
dy is higher under symmetric losses than asymmetric
losses, thereby providing more opportunities for pack-
ets to make progress. Furthermore, d, does not affect
SOAR significantly because cumulative/selective ACKs
mitigate the effect of ACK losses.

Figure 9 compares SOAR with shortest path routing
by varying the number of hops between the source and
destination with p2 = 0.5. Compared to shortest path
routing, SOAR yields an improvement of 37.2% to as
high as 256.9%. A 3.5-fold increase occurs in the 8-
hop topology, where SOAR has more p2 links to take
advantage of. We again observe a higher improvement
under symmetric losses for the similar reason as above.

3500

SOAR —+——
,,,,, .
3000 1 Shortest Path
—~ 2500 |
®
o1}
Q
& 2000 f
5 1500 | -
Q T
ksl
5 1000 |
j0]
500 f
0 .
2 3 4 5 6 7 8
Number.of hops
(a) Symmetric losses
3000 i ‘
SOAR —+——
4 Shortest Path -3 Koo
2500 |
@ 2000 |
Q
£
1500 |
o
5
Q
% 1000t
o
j0]
500 f

Number of hops
(b) Asymmetric losses
Fig. 9. Linear Topology - goodput comparison across
different numbers of hops under p2=0.5.

4.2.2 Multiple Flows

Next we evaluate the performance of multiple flows
by randomly choosing source and destination pairs in
either grid or random topologies. For each scenario,
we report average goodput and average fairness over
five different runs. In addition, we also report the av-
erage improvement in goodput and Jain’s fairness in-

dex, which are calculated as: mean(So0dPulsoar _ 1)

. Goodputshortest
and mean(ALnesssoan _ 1) respectively. In all the
AITNESSshortest

figures, the length of the error bars in the graphs show
the standard deviation. The improvement in (absolute)
average goodput and fairness differs from average im-
provement in goodput and fairness in that the former
is dominated by the runs with large absolute values
whereas the latter weighs all the runs equally. Reporting
both metrics allow us to get a more complete picture
on where the improvement comes from. As a concrete
example, consider SOAR’s throughput are 4Mbps in the
first run and 2Mbps in the second run, whereas the
corresponding values for shortest path are 4Mbps and
1Mbps. The average goodput for SOAR is 6Mbps and for
shortest path is 5Mbps, which gives 20% improvement in
(absolute) average goodput. In comparison, the average
improvement over the two runs are 50%, since 0%
improvement for the first run and 100% improvement
for the second run.

Grid topology: Figure 10 shows the goodput results
for different numbers of random flows in a 5x5 grid
topology, where delivery rates of one-hop and two-hop
links, denoted as pl and p2, are 1 and 0.5, respectively.
SOAR out-performs shortest path routing — its average
improvement in goodput ranges from 19.9% to 127%.
The only exception occurs in 10 simultaneous flows,

200
180
160
140 |
120
100 |

80
60
40
20 r
0

-20

Percentage Improvement

T
1 2 3 4 6 8 10 12
Number of flows

(a) Average improvement

SOAR C—
2000 r shortest Path (TG

1500 r

1000 | f

Goodput (Kbps)

500

1 2 3 4 6 8 10 12

Number of flows

(b) Average goodput
Fig. 10. Goodput results for random flows in a 5x5 grid.

140
120
100
80
60

sl

20 L L L L L
1 2 3 4 6 8 10 12

Fairness Index
5]

o

Number of flows

(a) Average improvement

SOAR C——1
Shortest Path BEXEE
1r e

Fairness Index

1 2 3
Number of flows

(b) Average fairness

Fig. 11. Fairness results for random flows in a 5x5 grid.

where the average goodput of shortest path routing is
slightly more than SOAR. However SOAR has 14.4% av-
erage improvement for 10 flows. This is because among
the five runs, one run has several source/destination
pairs that are one hop away. Shortest path routing
favors these flows and starves the other flows, hence
it has higher average goodput. However, SOAR uses
rate-limiting to give fair share across the flows. This
fact is evident in Figure 11, which shows that SOAR
consistently has a significantly higher fairness index.
Random topology: Next we evaluate random flows
using 25 nodes in 400m x 400m random topologies. To

Percentage Improvement
N
o
IS

100 |
50 r
0

1 2 4 6 8 10 12

Number of flows

(a) Average improvement

SOAR
2000 [shortest Path

1500

1000

Goodput (Kbps)

500

1 2 4 6
Number of flows

(b) Average goodput

Fig. 12. Goodput results for random 25 nodes placed in
a 400 m x 400 m grid.

200
180
160
140
120
100 |

60
40 r
20 r
.
0 T

1 2 4 6 8 10 12

Fairness Index
o
o

Number of flows

(a) Average improvement

SORR 1
Shortest Path GE&id

Fairness Index

1 2 4 6 8 10
Number of flows

(b) Average fairness

Fig. 13. Fairness results for random 25 nodes placed in
a 400 m x 400 m grid.

create each topology, we first randomly place a node
and then iteratively add nodes as long as they’re in
transmission range of an existing node. Transmission
range is 50 m and the interference range is 100 m. The
loss rates on the links vary from 0% to 80%. The average
neighbors per node is 6.76, which is consistent with
previous evaluations [18]. Figures 12 and 13 show the av-
erage goodput and fairness indices of 10 random runs as
the number of flows varies. SOAR out-performs shortest
path routing in both metrics. The average improvement

in goodput ranges from 65.6% to 199.4%, and the average
improvement in Jain’s fairness index is as high as 144.4%.

4.3 Summary

Our evaluation shows that SOAR yields significant
improvement over shortest path routing. Furthermore,
SOAR effectively supports multiple simultaneous flows
by improving both goodput and fairness. The benefit of
SOAR is highest under networks with medium link loss
rates.

5 TESTBED EVALUATION

We implement SOAR in a wireless testbed, and compare
it with a traditional shortest-path routing protocol (either
LQSR or SPP, see below) and a seminal opportunistic
routing protocol (ExOR). Furthermore, we disable the
rate control in SOAR and compare it against each of
the above protocols. In this section, we first present our
implementation, and then describe evaluation method-
ology and performance results.

Note that MORE [3] is a new opportunistic routing
protocol proposed recently. As shown in [3], its per-
formance under multiple flows is very close to that
of EXOR. Given MORE’s similar performance to ExOR,
we expect its performance difference from SOAR under
multiple flows to be similar to the difference between
SOAR and ExOR.

5.1 Implementation

We implement SOAR in Microsoft Windows XP Profes-
sional. Both SOAR and LQSR are implemented in the
Microsoft Research Mesh Connectivity Layer (MCL) [22],
which is a 2.5 layer device that resides as a driver for the
wireless card. We configure both LQSR and SOAR to use
the ETX metric in the testbed. We use the default MCL
ETX implementation to periodically obtain topology and
link quality information. Probe packets are sent once
per second, and nodes broadcast their link-state once
every ten seconds. We set the initial loss rate on a newly
discovered link to 80%, and provide sufficient warmup
period for the metrics to converge.

We use the ExOR and SPP implementation in [3].
Both are implemented in the Click modular router [6],
which runs in Linux. To ensure that the performance of
ExOR in Linux and SOAR in Windows is comparable,
we compare their performance over a set of controlled
topologies, including 1-hop, 2-hop, and 3-hop linear
topologies. As shown in Table 1, the performance dif-
ference due to different implementation platforms is
negligible. We also compare the performance of LQSR
and SPP over all the runs. We find that the two shortest
path protocols perform within 10% of each other, further
validating that the difference in operating systems does
not account for the difference observed between SOAR,
ExOR and shortest path. Therefore the difference in
the following performance numbers of SOAR versus
ExOR is due to efficiency of these protocols rather than
different implementation platforms.

Hops | pl | p2 | SOAR | ExOR

T 1| 0| 4093 | 4138

2| 1| 0] 203 | 2029

3] 1]05] 1894 | 1885
TABLE 1

Average goodput (Mbps) of one flow in controlled linear
topologies, where pl and p2 denote the delivery rates of
one-hop and two-hop links, respectively.

-~ FLOOR 6

= = FLOOR 5

Fig. 14. Node placement in the testbed topology.

5.2 Testbed Description

Our testbed consists of 18 DELL dimensions 1100 PCs,
located on two adjacent floors of an office building (see
Figure 14). Each machine has a 2.66 GHz Intel Celeron D
Processor 330 with 512 MB of memory and is equipped
with a 802.11 a/b/g NetGear WAG511 wireless card. To
avoid interference with the campus 802.11b/g network,
we set the nodes to use 802.11a. Our building has no
other 802.11a users. The RTS/CTS handshake is disabled,
which is the default setting of the drivers. We disable
auto-rate and set the data rate to 6Mbps. Each node uses
the lowest transmission power so that we can get up to 6
hops in the network. We keep other parameters, such as
the number of unicast retransmission attempts, to their
default values.

5.3 Evaluation Methodology

We conduct experiments in our testbed as follows. Each
of our experiments consists of a warm-up period and
a data transfer period. During the warm-up period,
we upload the routing protocol’s driver to all nodes
(either SOAR, LQSR, SPP or EXOR) and let the routing
metrics converge. We use 10 minutes as the warm up
period. During the data transfer period, we evaluate the
performance of each protocol with a varying number of
network flows. As in the evaluation of previous routing
protocols for mesh networks (e.g., ETX [7], EXOR [2],
LQSR [8]), the source and destination nodes of each flow
are randomly selected. Transfers start in parallel and we
run a l-minute transfer for each pair. We augment the
ttcp tool included with MCL to generate CBR traffic
at 6 Mbps and measure the goodput of each flow.
The ExOR and SPP implementations also generate CBR
traffic and measure goodput via Click. All measurements

and transfers are run during the nights and weekends
in order to control the topology as much as possible.

As previously mentioned, we find the performance
of the two shortest path protocols to be within 10% of
each other. Therefore, when we present the performance
of the shortest path, we present the maximum between
LQSR and SPP. We take great care to ensure that con-
sistent topologies are used by the Windows protocols
and the Linux protocols. The consistency between the
protocols within a given operating system is easy to
achieve because they both run on the same operating
system and temporal variation in topologies is small and
easily smoothed out over multiple random runs. Ensur-
ing consistency across operation systems is harder to
guarantee since SOAR and LQSR run on Windows and
ExOR and SPP run on Linux. Even though on both plat-
forms we use an equivalent transmission power level,
which results in similar received signal strength, we
still observe substantial difference in the delivery rates
of the links across the platforms. To ensure consistent
topologies, before experiments we measure the delivery
ratio of every link in the network. Whenever the links in
Windows have higher delivery rates than those in Linux
by 0.4, we use MCL's artificialdrop functionality [22]
to generate additional artificial loss to compensate for
the difference in their delivery rates (We do not impose
artificial losses to the links under Linux even if they are
significantly better to favor ExOR). With the imposed
artificial losses, the delivery rates of links in Windows
are similar to those in Linux — the average difference of
all entries in the connectivity matrices under Windows
and Linux is 0.0206, where an entry in the connectivity
matrix (i,j) denotes the delivery rate from node i to
node j.

5.4 Evaluation Results

We compare the performance of SOAR, ExOR and short-
est path. In all cases, we vary the number of simul-
taneously active flows. For each scenario, we conduct
30 random runs, where each run consists of a different
set of source/destination pairs. We report the average
goodput and average fairness index, along with average
improvement in goodput and fairness index. The length
of error bars in the graphs corresponds to standard
deviation.

5.4.1 Protocol Results

Figure 15(a) shows the average goodput improvement of
SOAR and ExOR over shortest path (i.e., averaging the
percentage of goodput improvement across 30 random
pairs), and Figure 15(b) shows the average goodput. As
we can see, in all cases SOAR out-performs shortest path
and ExOR. The improvement of SOAR over shortest
path ranges from 11.2% (1 flow) to 85.3% (8 flows).
The improvement of SOAR over ExXOR ranges from
7.1% (1 flow) to 83.1% (8 flows). Generally, SOAR has
a larger difference in the average goodput for larger

ExbR [
SOAR = |

Percentage Improvement

Number of Flows

(a) Average goodput improvement over shortest path

5000

Shorlest Path
ExOR
| SOAR

[

4000
3000 - B

2000 - | ; 1

Goodput (Kbps)

1000 4

0

1 2 4 6 8 10 12
Number of Flows

(b) Average goodput
Fig. 15. Protocol goodput results in the testbed.

sets of flows. This is because SOAR judiciously selects
forwarding nodes to limit resource consumption and
rate limits the source; these features are especially im-
portant under a larger number of flows. We see the
average goodput of ExOR is comparable to that of
shortest path in our testbed. We find in a very small
number of instances ExOR yields close to 0 goodput.
After taking a closer look, we find that ExOR selects
nodes as forwarders if they forward at least 10% of
the total transmissions in simulation but it does not
guarantee the selected forwarding nodes are connected.
Disconnection among forwarding nodes can result in se-
rious performance degradation because the data packets
cannot make progress across the partition. Even though
the occurrence of such disconnection is very low in a
dense network, including our testbed, the forwarding list
selection in ExOR is inadequate for general topologies.
SOAR explicitly ensures forwarding nodes are connected
and achieves reasonable goodput in all cases. We also
find that the strict timing constraints imposed on ExOR’s
forwarders inhibits spatial reuse on multi-hop flows,
which can limit the effectiveness of opportunistic trans-
missions. Figure 15(a) shows the improvement of SOAR
over shortest path is consistently high. While this graph
shows ExOR can provide improvement over shortest
path, this improvement is still less than SOAR’s.

To further understand the performance benefit of
SOAR across different numbers of flows, we study the
link loss characteristics in our testbed. We classify a link
as a binary link if its loss rate is < 20% or > 80%, and clas-
sify a link as a non-binary link if its loss rate is between
20% and 80%. The number of non-binary links in the
network directly affects the performance improvement

1

T
100 Kbps CBR —+—
200 Kbps CBR ~--%---
500 Kbps CBR ------

1000 Kbps CBR &

08 No Traffic —-=- 2

09

07| o Py R
06 T 4

05 - / 4

Cumulative fraction

o4t 7 = E

03/ * i

02 | T B

01f e i

0 £ L L L L
0 0.2 0.4 0.6 0.8 1

Link Loss Rate

Fig. 16. CDF of link loss rates with and without traffic in
our testbed using 802.11a.

of SOAR. Figure 16 shows the cumulative distribution
(CDF) of loss rates across different links in our testbed
as we vary the amount of traffic. As it shows, there
are only 15% non-binary links without traffic. We then
measure link loss rates when there are 10 simultaneous
flows in the network and each flow generates CBR traffic
varying from 100 Kbps to 1000 Kbps. We observe that
injecting traffic turns many reliable links into lossy links,
thereby creating more non-binary links. For example,
when there are 10 random flows, each with 200 Kbps,
almost 55% links are non-binary. The larger number of
non-binary links creates more opportunism and enlarges
the performance benefits of SOAR. ExOR has a tougher
time realizing these benefits because the fine-grained
timing constraints are hard to enforce on forwarders over
many flows. This matches the performance results in
Figure 15.

140 T T
ExOR ——
120 |SOAR i

100 -] g
80 - 1 |
60 |-

40 |
20 | ﬁl
0 i

20 1 5 1 1 1 1 1

Percentage Improvement

Number of Flows

(a) Average improvement over shortest path in fairness index

1 Shortest Path |
B ExOR [——
SOAR ————

3 08 |
o
=
@ i
8 06 E
S -
© |
w |
o 04 T B
£ |
© -
- I

0.2 7 b

1 2 3 5 8 10 12
Number of Flows

(b) Average fairness index
Fig. 17. Protocol fairness results in the testbed.

Next we study the fairness index. Figure 17(a) shows

the improvement of Jain’s Fairness Index as we vary
the number of simultaneous flows in the network, and
Figure 17(b) further shows the average Jain’s Fairness
Index for each number of flows. We see that SOAR gen-
erally provides better fairness than ExOR and shortest
path. For instance, the average fairness of SOAR in the
eight flow cases is about 60% higher than the average
fairness of shortest path and about 50% higher than the
average fairness of EXOR. The rate control in SOAR often
prevents the starvation of flows and provides better
opportunities for equal medium access across different
flows.

SOAR
ExOR]
‘Shorte§t Path‘ *****

Cumulative Fraction
coooocooooo

O N WE GO o
= e s T e

0 1000

2000 3000
Goodput (Kbps)

(a) 4 flows

4000 5000

SOAR
ExOR]
‘Shorteﬁt Path‘ *****

Cumulative Fraction
cooocoocooooo

O N WE GO o
— = =TT

0 1000 2000 3000

Goodput (Kbps)

(b) 8 flows

Fig. 18. CDFs of protocol goodput over all flows under 4
or 8 simultaneous flows in the testbed.

Figures 18(a) and (b) show CDFs of the goodput for
all the flows included over 30 random runs under 4 and
8 simultaneous flows, respectively. In all the scenarios,
SOAR out-performs EXOR and shortest path routing. In
the 4-flow case, the median per-flow goodput of SOAR is
72% higher than the median goodput of ExOR (300 Kbps
vs. 174 Kbps). The 90th percentile goodput improves by
17% (951 Kbps vs. 807 Kbps). In the 8-flow case, the
median goodput of SOAR is 2.63 times higher than the
median goodput for ExOR (100 Kbps vs. 38 Kbps). The
90th percentile goodput of SOAR again nearly doubles
that of ExOR (1339 Kbps vs. 681 Kbps). In addition, we
observe that 25% of the flows in ExXOR get starved (i.e.,
throughput < 10 Kbps), and SOAR reduces the number
of starved flows to 10%.

Next, Figure 19 plots goodput as we vary the number
of nodes while fixing the number of flows to 4. As we
can see, increasing the number of nodes significantly in-
creases SOAR'’s throughput, since it has more forwarders
to take advantage of path diversity. In comparison, the
performance improvement for shortest path and ExOR
is much smaller.

Finally, Figure 20 further compares the performance of
ExOR and shortest path with two versions of SOAR: one

4000 5000

5000

Shortest ‘Path
ExOR
| SOAR

[

4000

3000 - 1

Goodput (Kbps)

2000 |-) - - a R

1000 b

8 12 16 18
Number of Nodes

Fig. 19. Goodput under a varying number of nodes when
the number of flows is fixed to 4 in the testbed.

enabling the rate limiting in Figure 6 and one disabling
the rate limiting (SOAR-nrl). Since the comparison was
conducted at a later time, the topology in use was dif-
ferent from the one used in Figure 15. As before, SOAR
out-performs ExOR, which in turn out-performs shortest
path. Comparing SOAR with SOAR-nrl, we observe that
SOAR-nrl performs slightly better under the 1-flow case,
since SOAR'’s rate limiting is a little conservative. How-
ever, SOAR out-performs SOAR-nrl under more flows
as the importance of rate limiting increases with more
flows. In addition, SOAR-nrl out-performs ExOR and
shortest path due to better selection of forwarding paths
and avoiding strict timing constraints on the forwarders.
SOAR-nrl improves ExOR by up to 13%, and improves
shortest path by 9-27%. As we would expect, SOAR
yields better fairness than all the other schemes, while
SOAR-nrl provides similar fairness as ExXOR and shortest
path. We omit the figure in the interest of brevity. These
results suggest that both routing and rate limiting design
in SOAR are useful and they each help to contribute to
the final performance gain.

3500 sportest Path

ExOR e
3000 |-SOAR —— E
SOAR-nrl EETETR

2500

2000

1500

Goodput (Kbps)

1000

500

0

1 2 4 6 8 10 12
Number of Flows

Fig. 20.
testbed.

Comparing SOAR without rate limit in the

6 CONCLUSION

In this paper, we develop SOAR, a novel opportunistic
routing protocol. SOAR effectively realizes opportunistic
forwarding by judiciously selecting forwarding nodes
and employing priority-based timers. It further incorpo-
rates adaptive rate control to dynamically adjust send-
ing rates according to network conditions and recovers
lost packets using efficient local feedback and recovery.

The combination of these techniques enables SOAR to
achieve high efficiency and effectively support multiple
bulk transfer flows. Our simulations and testbed exper-
iments demonstrate the effectiveness of SOAR.

Through the design and implementation of SOAR, we
gain the following insights. First, judiciously selecting
forwarding nodes and avoiding diverging paths are im-
portant especially for supporting multiple simultaneous
flows. Second, rate control is important to the perfor-
mance of a routing protocol. It improves both aggregate
goodput and fairness among multiple competing flows.
The joint design of routing and rate limiting as in SOAR
is useful, and may be useful to the design of other
opportunistic routing protocols. Finally, the default path
selection algorithm is important to the performance of
opportunistic routing. In this paper, we use the ETX
metric to select the default path, but SOAR can easily
accommodate other default path selection metrics. The
performance of SOAR could further improve with en-
hanced default path selection, which we plan to investi-
gate as part of our future work.

REFERENCES

[1] B. Awerbuch, D. Holmer, and H. Rubens. Provably secure
competitive routing against proactive Byzantine adversaries via
reinforcement learning. In JHU Tech Report Version 1, May 2003.

[2] S. Biswas and R. Morris. ExOR: opportunistic multi-hop routing
for wireless networks. In Proc. of ACM SIGCOMM, Aug. 2005.

[3] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading
structure for randomness in wireless opportunistic routing. In
Proc. of ACM SIGCOMM, Aug. 2007.

[4] C. Chen, D. Aksoy, and T. Demir. Processed data collection using
opportunistic routing in location aware wireless sensor networks.
In Proc. of International Conference on Mobile Data Management, May
2006.

[5] R. Choudhury and N. Vaidya. MAC-layer anycasting in wireless
ad hoc networks. In Proc. of Hot Topics in Networks (HotNets), Nov.
2003.

[6] Click. http://pdos.csail.mit.edu/click/.

[71 D. D. Couto, D. Aguayo,]J. Bicket, and R. Morris. A high-
throughput path metric for multi-hop wireless routing. In Proc.
of ACM MOBICOM, Sept. 2003.

[8] R. Draves,]J. Padhye, and B. Zill. Comparison of routing metrics
for multi-hop wireless networks. In Proc. of ACM SIGCOMM,
Aug. 2004.

[9] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-

hop wireless mesh networks. In Proc. of ACM MOBICOM, Sept.

- Oct. 2004.

R. Dube, C. Rais, K-E. Wang, and S. Tripathi. Signal stability

based adaptive routing (SSA) for ad-hoc mobile networks. In

IEEE Personal Comm, Feb. 1997.

Z.Fu, H. Luo, P. Zerfos, S. Lu, L. Zhang, and M. Gerla. The impact

of of multihop wireless channel on TCP performance. IEEE Trans.

on Mobile Computing, Mar. 2005.

T. Goff, N. Abu-Aahazaleh, D. Phatak, and R. Kahvecioglu. Pre-

emptive routing in ad hoc networks. In Proc. of ACM MOBICOM,

Jul. 2001.

Y. C. Hu and D. B. Johnson. Design and demonstration of live

audio and video over multi-hop wireless networks. In Proc. of

MILCOM, Oct. 2002.

K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of

interference on multi-hop wireless network performance. In Proc.

ACM MOBICOM 2003, Sept. 2003.

R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness

and discrimination for resource allocation in shared computer

systems. DEC Research Report TR-301, Sep 1984.

D. B. Johnson, D. A. Maltz, and J. Broch. DSR: The dynamic

source routing protocol for multihop wireless ad hoc networks.

In Ad Hoc Networking, 2001.

R. Karrer, A. Sabharwal, and E. Knightly. Enabling large-scale

wireless broadband: The case for TAPs. In Proc. of HotNets, Nov.

2003.

[10]

[11]

(12]

[13]

[14]

(15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]
[29]

[30]
[31]
[32]
(33]
[34]
(35]

[36]

L. Kleinrock and]. Silvester. Optimum transmission radii for
packet radio networks or why six is a magic number. In NTC,
Dec. 1978.

Y. Li, L. Qiu, Y. Zhang, R. Mahajan, and E. Rozner. Predictable
performance optimization for wireless networks. SIGCOMM
Comput. Commun. Rev., 38(4):413-426, 2008.

Y. Li, L. Qiu, Y. Zhang, R. Mahajan, Z. Zhong, G. Deshpande,
and E. Rozner. Effects of interference on throughput of wireless
mesh networks: Pathologies and a preliminary solution. In Proc.
of HotNets-V1, Nov. 2007.

R. Madan, S. Cui, S. Lall, and A. Goldsmith. Cross-layer design
for lifetime maximization in interference-limited wireless ad hoc
networks. IEEE trans. Wireless Communications, 2006.

Mesh connectivity layer. http:/ /research.microsoft.com/mesh/#software.

The network simulator — ns-2. http://www.isi.edu/nsnam/ns/.
V. Paxson and M. Allman. Computing tcp’s re-
transmission timer. IETF Internet DRAFT, 2000.

http:/ /www3 ietf.org/proceedings /00jul /I-D /paxson-tcp-
rto-01.txt.

C. E. Perkins and P. Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (dsdv) for mobile computers.
In Proc. of ACM SIGCOMM, Aug.-Sept. 1994.

C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector
routing. In Proc. of the Workshop on Mobile Computing Systems and
Applications, Feb. 1999.

S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis.
Interference-aware fair rate control in wireless sensor networks.
In Proc. of ACM SIGCOMM, Sept. 2006.

MIT Roofnet. http://www.pdos.lcs.mit.edu/roofnet/.

E. Rozner, J. Seshadri, Y. Mehta, and L. Qiu. Simple opportunistic
routing for wireless mesh networks. In Second IEEE Workshop on
Wireless Mesh Networks, Sept. 2006.

Seattle wireless. http://www.seattlewireless.net.

W. Wang, X. Liu, and D. Krishnaswamy. Robust routing and
scheduling in wireless mesh networks. In Proc. of IEEE SECON,
2007.

C. Westphal. Opportunistic routing in dynamic ad hoc networks:
The oprah protocol. In Proc. of IEEE MASS, Oct. 2006.

City-wide Wi-Fi rolls out in UK. http://news.bbc.co.uk/2/hi/
technology /4578114.stm.

Cities unleash free Wi-Fi. http://www.wired.com/gadgets/
wireless/news/2005/10/68999.

Y. Yuan, H. Yuan, S. H. Wong, S. Lu, and W. Arbaugh. ROMER:
resilient opportunistic mesh routing for wireless mesh networks.
In Proc. of IEEE WiMESH, Sept. 2005.

Z. Zhong and S. Nelakuditi. On the efficacy of opportunistic
routing. In Proc. of IEEE SECON, Jun. 2007.

Eric Rozner is a Ph.D. candidate in the Depart-
ment of Computer Sciences at the University
of Texas at Austin. He received B.S. degree
from University of Wisconsin at Madison in 2005.
His research interests are Internet and wireless
networking.

Jayesh Seshadri received his M.A. in Computer
Sciences from the University of Texas at Austin
in 2007. He is a Software Engineer at VMware,
Inc, Palo Alto, CA, with a specific focus on dis-
tributed systems management. He also has a
B.E. in Computer Science and Engineering from
Anna University, India.

Yogita Ashok Mehta received her Masters de-
gree from University of Texas at Austin in 2007.
She received her Bachelor’s in Engineering from
University of Mumbai in 2005. She is currently
working as Software Engineer at Google Inc.

Lili Qiu received her Ph.D. from Cornell Uni-
versity in 2001. She is an Assistant Professor
in the Department of Computer Sciences at the
University of Texas at Austin. Her research area
is computer networks, with special focuses on
wireless network management, content distri-
bution, Internet measurement, and overlay net-
works. She is a recipient of NSF career award
(2006), and a senior IEEE member. She was a
researcher at Microsoft Research during 2001-
2004.

