S4: Small State and Small Stretch Routing Protocol

Routing protocols for wireless sensor networks must address the challenges of reliable packet delivery at increasingly large scale and highly constrained node resources. Attempts to limit node state can result in undesirable worst-case routing performance, as measured by stretch, which is the ratio of the hop count of the selected path to that of the optimal path.

We develop a new routing protocol, Small State and Small Stretch (S4), which jointly minimizes the state and stretch. S4 uses a combination of beacon distance-vector based global routing state and scoped distance-vector based local routing state to achieve a worst-case stretch of 3 using $O(\sqrt{N})$ routing state per node in an N-node network. Its average routing stretch is close to 1. S4 further incorporates local failure recovery to achieve resilience to dynamic topology changes. We use multiple simulation environments to assess performance claims at scale, and use experiments in a 42-node wireless sensor network testbed to evaluate performance under realistic RF and failure dynamics. The results show that S4 achieves scalability, efficiency, and resilience in a wide range of scenarios.



Source code