
February 9, 2015 Generalizing Data-flow Analysis 1

Reaching Definitions: Must or May Analysis?

Consider constant propagation

x = 5d

f(x)n

We need to know if d’

might reach node n

x = 4d’

February 9, 2015 Generalizing Data-flow Analysis 2

Improving Iterative DFA Algorithm

Problem

– If any node’s in[] or out[] set changes after an iteration, our algorithm

computes all of the equations again, even though many of the equations

may not be affected by the change

How can we do better?

Solution

– Use a work-list algorithm, which keeps track of those nodes whose out[]

sets must be recalculated

– If node n is recomputed and its out[] set is found to change, all successors

of n are added to the work list

– (For a backwards problem, substitute in[] for out[] and predecessor for

successor.)

February 9, 2015 Generalizing Data-flow Analysis 3

Work-List Algorithm for IDFA

Algorithm

for each node n

in[n] = u; out[n] = u
worklist = {entry node}

while worklist not empty

Remove some node n from worklist

out’ = out[n]

in[n] =  out[p]

out[n] = gen[n]  (in[n] – kill[n])

if out[n]  out’

for each s  succ[n]

if s  worklist, add s to worklist

Is this a forwards or backwards analysis? Is it a must or may analsyis?

p  pred[n]

February 9, 2015 Generalizing Data-flow Analysis 4

Improving Iterative DFA Algorithm (cont)

Problem

– CFG is bloated when each statement is represented by a node

Solution

– Perform IDFA on CFG of basic blocks

Approach

(1) Build CFG of basic blocks

(2) Perform local data-flow analysis within each basic block to summarize

Gen and Kill information for each node

(3) Perform global analysis on the smaller CFG

(4) Propagate global information inside of basic block: push information

throughout the basic block from the entrance to the exit (or from the exit

to the entrance if it’s a backwards problem)

a := x + y;

x := a + b;

x := c * d;

y := x / 2;

Gen:

Kill:

Gen:

Kill:

{…}

{…}

{…}

{…}

In[]

In[]

Out[]

Out[]

February 9, 2015 Generalizing Data-flow Analysis 5

{c,d}

{x,y}

Example

Liveness

a := x + y;

x := a + b;

x := c * d;

y := x / 2;

 

{b,x,y}

{b,c,d}

{b,x,y}

{}

{a,b}

{b,x}



{b,x,y}

{a}

Gen:

Kill:

Gen:

Kill:

February 9, 2015 Generalizing Data-flow Analysis 6

Reality Check!

Some definitions and uses are ambiguous

– We can’t tell whether or what variable is involved
e.g., *p = x; /* what variable are we assigning?! */

– Unambiguous assignments are called strong updates

– Ambiguous assignments are called weak updates

Solutions

– Be conservative

– For liveness analysis, if we see print (*p);

what should *p refer to? We assume that everything is referenced

– For liveness analysis, if we see *p = 4;

what should *p refer to? We assume that nothing is defined

– Compute a more precise answer:

– Pointer analysis (more in a few weeks)

February 9, 2015 Generalizing Data-flow Analysis 7

Concepts

Many data-flow analyses have the same character

Computed in the same way

Distinguished by

– Flow values (initial guess, type)

– May/must

– Direction

– Gen

– Kill

– Merge

Complication

– Ambiguous references (strong/weak updates)

February 9, 2015 Generalizing Data-flow Analysis 8

Next Time

Lecture

– Lattice theoretic foundation for data-flow analysis

February 9, 2015 Generalizing Data-flow Analysis 9

Lattice-Theoretic Framework for Data-Flow Analysis

Last time

– Generalizing data-flow analysis

Today

– Introduce lattice-theoretic framework for data-flow analysis

February 9, 2015 Generalizing Data-flow Analysis 10

Today’s Lecture

Goals

– Provide a single formal model that describes all data-flow analyses

– Formalize the notions of safe, conservative, and optimistic

– Place bounds on time complexity of data-flow analysis

Approach

– Define domain of program properties (flow values) computed by data-

flow analysis, and organize the domain of elements as a lattice

– Define flow functions and a merge function over this domain using

lattice operations

– Exploit lattice theory in achieving goals

February 9, 2015 Generalizing Data-flow Analysis 11

Lattices

Define lattice L = (V, ⊓)

– V is a set of elements of the lattice

– ⊓ (meet or greatest lower bound) is a binary

relation over the elements of V

Properties of ⊓

– x,y  V  x ⊓ y  V (closure)

– x,y  V  x ⊓ y = y ⊓ x (commutativity)

– x,y,z  V  (x ⊓ y) ⊓ z = x ⊓(y ⊓ z) (associativity)

Semi-Lattices

– Technically, these are semi-lattices

– A full lattice would also define a join function that allows us to move up

the lattice

000

100010001

110101011

111

February 9, 2015 Generalizing Data-flow Analysis 12

Lattices (cont)

Under (⊑)

– Imposes a partial order on V

– x ⊑ y  x ⊓ y = x

Top (T)

– A unique greatest element of V (if it exists)

– x  V – {T}, x ⊏ T

Bottom ()

– A unique least element of V (if it exists)

– x  V – {},  ⊏ x

Height of lattice L

– The longest path through the partial order from greatest to least element
(top to bottom)

T =

 =

000

100010001

110101011

111

February 9, 2015 Generalizing Data-flow Analysis 13

Data-Flow Analysis via Lattices

Relationship

– Elements of the lattice (V) represent flow values (in[] and out[] sets)

– e.g., Sets of live variables for liveness

– T represents best-case information (initial flow value)

– e.g., Empty set

–  represents worst-case information

– e.g., Universal set

– ⊓ (meet) merges flow values

– e.g., Set union

– If x ⊑ y, then x is a conservative approximation of y

– e.g., Superset

{}

{k}{j}{i}

{j,k}{i,k}{i,j}

{i,j,k}

Imagine a lattice at every program point

– The lattice element represents an in[] set or an out[] set

– As the analysis iterates, the flow value at each point moves down the lattice

When does the iteration stop?

{y}{x}

{x,y}

{}

{x} {y}

{x,y}

{}

{y}{x}

{x,y}

{}

February 9, 2015 Generalizing Data-flow Analysis 14

Data-Flow Analysis and the Lattice

x = y

Initially

print(y)print(x)

for liveness

{y}{x}

{x,y}

{}

{y}{x}

{x,y}

{}

{y}{x}

{x,y}

{}

February 9, 2015 Generalizing Data-flow Analysis 15

Data-Flow Analysis Frameworks

Data-flow analysis framework

– A set of flow values (V)

– A binary meet operator (⊓)

– A set of flow functions (F) (also known as transfer functions)

Flow Functions

– F = {f: VV}

f describes how each node in CFG affects the flow values

– Flow functions map program behavior onto lattices

A lattice

February 9, 2015 Generalizing Data-flow Analysis 16

2S = {{v1,v2,v3},

{v1,v2},{v1,v3},{v2,v3},

{v1},{v2},{v3}, }







u

{fn(X) = Genn  (X – Killn), n}

Example: Liveness analysis with 3 variables

S = {v1, v2, v3}



{ v1 } { v2 } { v3 }

{ v1,v2 } { v1,v3 } { v2,v3 }

{ v1,v2,v3 }

– V:

– Meet (⊓):

– ⊑:

– Top(T):

– Bottom ():

– F:

Inferior solutions are lower on the lattice

More conservative solutions are lower on the lattice

Visualizing DFA Frameworks as Lattices

Reaching Constants

– V:

– ⊓:

– ⊑:

– Top(T):

– Bottom ():

– F:

Reaching definitions

– V:

– ⊓:

– ⊑:

– Top(T):

– Bottom ():

– F:

2vc, variables v and

constants c





u



. . .

2S (S = set of all defs)







u

. . .

February 9, 2015 Generalizing Data-flow Analysis 17

More Examples

February 9, 2015 Generalizing Data-flow Analysis 18

Tuples of Lattices

Problem

– Simple analyses may require very complex lattices

(e.g., Reaching constants)

Solution

– Use a tuple of lattices, one per variable

L = (V, ⊓)  (LT = (VT, ⊓T))N

– V = (VT)N

– Meet (⊓): point-wise application of ⊓T

– (, vi, ) ⊑ (, ui, )  vi ⊑T ui,  i

– Top (T): tuple of tops (TT)

– Bottom (): tuple of bottoms (T)

– Height (L) = N × height(LT)

February 9, 2015 Generalizing Data-flow Analysis 19

Tuples of Lattices Example

Reaching constants (previously)

– P = vc, for variables v & constants c

– V: 2P

Alternatively

– V = c  {T, }

The whole problem is a tuple of lattices, one lattice for each variable

T

0



1 2 ...-1-2...

February 9, 2015 Generalizing Data-flow Analysis 20

Examples of Lattice Domains

Two-point lattice (T and )

– Examples?

– Implementation?

Set of incomparable values (and T and )

– Examples?

Powerset lattice (2S)

– T =  and  = S, or vice versa

– Isomorphic to tuple of two-point lattices

February 9, 2015 Generalizing Data-flow Analysis 21

Solving Data-Flow Analyses

Goal

– For a forward problem, consider all possible paths

from the entry to a given program point, compute

the flow values at the end of each path, and then

meet these values together

– Meet-over-all-paths (MOP) solution at each

program point

– ⊓all paths n1, n2, ..., ni (fni(...fn2(fn1(ventry))))

Problems with this goal?

entry

ventry

???

February 9, 2015 Generalizing Data-flow Analysis 22

Solving Data-Flow Analyses (cont)

Problems

– Loops result in an infinite number of paths

– Statements following merge must be analyzed for all preceding paths

– Exponential blow-up

Solution

– Compute meets early (at merge points) rather than at the end

– Maximum fixed-point (MFP)

Questions

– Is this solution legal?

– Is this solution efficient?

– Is this solution accurate?

February 9, 2015 Generalizing Data-flow Analysis 23

Legality

“Is vMFP legal?”  “Is vMFP ⊑ vMOP?”

Look at Merges

– vMOP = Fr(vp1) ⊓ Fr(vp2)

– vMFP = Fr(vp1 ⊓ vp2)

– vMFP ⊑ vMOP  Fr(vp1 ⊓ vp2) ⊑ Fr(vp1) ⊓ Fr(vp2)

Observation

x,yV

f(x ⊓ y) ⊑ f(x) ⊓ f(y)  x ⊑ y  f(x) ⊑ f(y)

 vMFP legal when Fr (really, the flow functions) are monotonic

p1 p2

vp2vp1

Fr

vMFP vMOP

February 9, 2015 Generalizing Data-flow Analysis 24

Reading Assignments

Written responses

– Your reading responses can discuss any of a variety of topics, including

the following:

– You can ask questions about aspects of the paper that you do not

understand

– You can criticize or praise aspects of the paper, including its goals,

assumptions, approach, methodology, evaluation, or presentation

– You can pose questions or suggestions for improving upon or

extending the work

– You can draw connections with previously read papers, previously

discussed topics, or previously submitted programming assignments

– Your response does not have to be long (though it might be), but we do

hope that it’s thoughtful

– Submit your responses using Canvas

February 9, 2015 Generalizing Data-flow Analysis 25

Next Time

Assignments

– Assignment 2 is due Friday February 13th at 5:00pm

Reading

– “Finding and Understanding Bugs in C Compilers”

– The reading response is due 5:00pm on Sunday February 15th

Lecture

– Program representations (static single assignment)

