

Lazy Cycle Detection

Fact

- Cycles cause identical points-to sets

Heuristic

- Identical points-to sets indicate possible cycles
- Don't look for a cycle unless we have evidence that one might exist
- Perform cycle detection when two nodes have identical points-to sets

Result

- Faster than all previous cycle detection schemes
- See paper for details

March 9, 2015

Interprocedural Analysis

10

	le Detection			
		few cycles	many cycles	
c	heap	Before the Analysis	Hybrid Cycle Detection	
expe	nsive		During the Analysis	
dea: Pre-pro	ocess t make	he constraint gr	aph with an offlin ponent more effic	ne vient
7				
o components Offline compo Online compo	onent (bo	efore the analysis) ring the analysis)		

Steensgaard Pointer Analysis [1996]

Basic idea

- Further reduce precision by using equality constraints
- That is, information flows both ways, rather than from the right-hand side to the left-hand side of the constraint

Tradeoffs

- Extremely imprecise
- A system of equality constraints can be solved in near-linear time
- Running time is $O(n \cdot \alpha(n))$, where $\alpha(n)$ is the inverse Ackermann's function.
- $-\alpha(2^{132}) < 4$

Key idea

- The key to this algorithm is the Union-Find data structure.

March 9, 2015

Interprocedural Analysis

19

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item>

Two key optimiza	tions				
– Path compression					
– Union-by-rank					
- Together these optimizations yield near-linear time operations					
Path compression					
– Avoid redunda	nt searches for the set representative				
Union-by-rank					
 When perform on the sizes of 	ing the Union operation, choose the set repre the two sets	sentative based			

