
Calvin Lin

The University of Texas at Austin

CS380 C Compilers 1

March 9, 2015 Interprocedural Analysis 1

Flow-Insensitive Pointer Analysis

Last time

– Interprocedural analysis

– Dimensions of precision (flow- and context-sensitivity)

– Flow-Sensitive Pointer Analysis

Today

– Flow-Insensitive Pointer Analysis

March 9, 2015 Interprocedural Analysis 2

Flow-Insensitive Pointer Analysis

The defining characteristics

– Ignore the control-flow graph, and assume that statements can execute in

any order

– Rather than producing a solution for each program point, produce a single

solution that is valid for the whole program

Flow-insensitive pointer analyses

– Andersen-style analysis: the slowest and most precise

– Steensgaard analysis: the fastest and least precise

– All other flow-insensitive pointer analyses are hybrids of these two

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 2

March 9, 2015 Interprocedural Analysis 3

Andersen-Style Pointer Analysis [1994]

Basic idea

– View pointer assignments as constraints

– Use these constraints to propagate points-to information

Andersen-Style Pointer Analysis [1994]

March 9, 2015 Interprocedural Analysis 4

void foo()

{

c = &f;

e = &c

b = a;

if (C) { *e = b; d = *e; a = d; }

}

c ⊇ {f}

e ⊇ {c}

a ⊇ d

b ⊇ a

d ⊇ *e

*e ⊇ bGoal: compute the smallest points-to sets that

satisfy these constraints

Derive set of constraints

on program variables

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 3

Andersen-Style Pointer Analysis

March 9, 2015 Interprocedural Analysis 5

c ⊇ {f}

e ⊇ {c}

a ⊇ d

b ⊇ a

d ⊇ *e

*e ⊇ b

f

d

a

b

c

e

c

f

Constraint Graph

f

ff

Notice that the constraint graph grows dynamically

Andersen-Style Pointer Analysis

March 9, 2015 Interprocedural Analysis 6

c ⊇ {f}

e ⊇ {c}

a ⊇ d

b ⊇ a

d ⊇ *e

*e ⊇ b

f

d

a

b

c

e

c

f

Constraint Graph

f

ff

Key Point

Performance depends on

1. number of edges added

2. propagation across edges

Notice that the constraint graph grows dynamically

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 4

March 9, 2015 Interprocedural Analysis 7

Inclusion-based Pointer Analysis

Essentially

– Computes the transitive closure of a dynamic graph

Naïve algorithm doesn’t scale— O(n3)

– Too many edges added

– Quickly runs out of memory

Optimizations

– Cycle detection

– Location equivalence

PLDI'07

SAS'07

e

Cycle Detection

March 9, 2015 Interprocedural Analysis 8

f

a

c ff

d b

c

f

f ff

f

f

a' a' = {a,b,c,d}

Faehndrich et al 1998

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 5

Cycle Detection

How do we detect cycles?

– They appear dynamically during the analysis

– Check for cycles too often Too much overhead

– Check for cycles too infrequently Lost opportunities

– Need to find a sweet spot

Two solutions [Hardekopf & Lin ‘07]

– Lazy Cycle Detection

– Hybrid Cycle Detection

March 9, 2015 Interprocedural Analysis 9

Lazy Cycle Detection

Fact

– Cycles cause identical points-to sets

Heuristic

– Identical points-to sets indicate possible cycles

– Don’t look for a cycle unless we have evidence that one might exist

– Perform cycle detection when two nodes have identical points-to sets

Result

– Faster than all previous cycle detection schemes

– See paper for details

March 9, 2015 Interprocedural Analysis 10

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 6

Hybrid Cycle Detection

March 9, 2015 Interprocedural Analysis 11

During the

Analysis

Hybrid Cycle

Detection

Before the

Analysis

few cycles many cycles

cheap

expensive

Idea: Pre-process the constraint graph with an offline

component to make the online component more efficient

Two components

– Offline component (before the analysis)

– Online component (during the analysis)

Hybrid Cycle Detection– Offline Component

March 9, 2015 Interprocedural Analysis 12

c ⊇ {f}

e ⊇ {c}

a ⊇ d

b ⊇ a

d ⊇ *e

*e ⊇ b

d

a

b

*e

Constraint Graph *e {a,b,d}

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 7

e

Hybrid Cycle Detection– Online Component

March 9, 2015 Interprocedural Analysis 13

*e {a,b,d}

c ⊇ {f}

e ⊇ {c}

a ⊇ d

b ⊇ a

d ⊇ *e

*e ⊇ b

a

d b

c

d b

c

aa'

f

e

f

c

e

Hybrid Cycle Detection– Online Component

March 9, 2015 Interprocedural Analysis 14

*e {a,b,d}

c ⊇ {f}

e ⊇ {c}

a ⊇ d

b ⊇ a

d ⊇ *e

*e ⊇ b

Finds cycles at earliest

possible opportunity

aaa'

f

e

c f

Never has to traverse

the constraint graph

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 8

March 9, 2015 Interprocedural Analysis 15

Evaluation

Compare our work with previous state of the art

– First need to identify the state of the art

– For a fair comparison, we implement algorithms from scratch using the

same infrastructure

– Compare analysis time and memory consumption on 10 C benchmarks

with 100K – 2M LOC

Heintze et al 2001 (HT)

Berndl et al 2003 (BLQ)

Pearce et al 2004 (PKH)

Rountev et al 2000 (OVS)

16

Our Alg's HT/OVS PKH/OVS BLQ/OVS
0

5

10

15

20

25

30

Analysis Time

Memory Con-
sumpt ion

Evaluation

Normalized

4 faster

7 less memory

Analysis Time

Memory Consuumption

Scales to 2M LOC

Higher represents

worse performance

March 9, 2015 Interprocedural Analysis

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 9

March 9, 2015 Interprocedural Analysis 17

Impact

Academic

– PLDI 2007 Best Paper Award

– Raised the bar for empirical evaluation

Industrial

– Implemented in gcc and LLVM compilers

– Implemented by Semantic Designs, Inc

– Some of their software engineering tools can now scale to over 12M

lines of C (previously stuck at 1M)

March 9, 2015 Interprocedural Analysis 18

How do we handle procedure calls?

– Insert constraints for copying actual parameters to formal parameters

– Insert constraints for copying return values

Andersen-style Pointer Analysis – Procedure Calls

Program

foo(int* x){

. . .

return x;

}

a := foo(&b)

Constraints

x b

a x

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 10

March 9, 2015 Interprocedural Analysis 19

Steensgaard Pointer Analysis [1996]

Basic idea

– Further reduce precision by using equality constraints

– That is, information flows both ways, rather than from the right-hand side

to the left-hand side of the constraint

Tradeoffs

– Extremely imprecise

– A system of equality constraints can be solved in near-linear time

– Running time is O(n·α(n)), where α(n) is the inverse Ackermann’s

function.

– α(2132) < 4

Key idea

– The key to this algorithm is the Union-Find data structure.

March 9, 2015 Interprocedural Analysis 20

Steensgaard Pointer Analysis – Union-Find

The Union-Find data structure

– Maintains a set of disjoint sets and supports two operations:

– Find(x) : return the set containing x.

– Union(x,y) : union the two sets containing x and y.

Set Representation

– Sets are represented by a distinguished element called the set

representative

– Each set is an inverted tree, with nodes pointing to their parents and the

set representative as the root

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 11

March 9, 2015 Interprocedural Analysis 21

Steensgaard Pointer Analysis – Union-Find

a b c d

Union(a, b)

- Find(a)
- Find(b)

March 9, 2015 Interprocedural Analysis 22

Steensgaard Pointer Analysis – Union-Find

a b c d

Union(a, c)

- Find(a)
- Find(c)

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 12

March 9, 2015 Interprocedural Analysis 23

b c

Steensgaard Pointer Analysis – Union-Find

a d

Union(a, d)

- Find(a)
- Find(d)

March 9, 2015 Interprocedural Analysis 24

Union-Find Optimizations

Two key optimizations

– Path compression

– Union-by-rank

– Together these optimizations yield near-linear time operations

Path compression

– Avoid redundant searches for the set representative

Union-by-rank

– When performing the Union operation, choose the set representative based

on the sizes of the two sets

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 13

March 9, 2015 Interprocedural Analysis 25

Steensgaard Pointer Analysis – Path Compression

a b c d

Union(a, b)

- Find(a)
- Find(b)

March 9, 2015 Interprocedural Analysis 26

Steensgaard Pointer Analysis – Path Compression

a b c d

Union(a, c)

- Find(a)
- Find(c)

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 14

March 9, 2015 Interprocedural Analysis 27

b c

Steensgaard Pointer Analysis – Path Compression

a d

Union(a, d)

- Find(a)
- Find(d)

March 9, 2015 Interprocedural Analysis 28

Steensgaard Pointer Analysis – Union-by-Rank

a b c d

Union(a, b)

- Find(a)
- Find(b)

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 15

March 9, 2015 Interprocedural Analysis 29

Steensgaard Pointer Analysis – Union-by-Rank

a b c d

Union(a, c)

- Find(a)
- Find(c)

March 9, 2015 Interprocedural Analysis 30

b c

Steensgaard Pointer Analysis – Union-by-Rank

a d

Union(a, d)

- Find(a)
- Find(d)

What is the benefit of union-by-rank?

– It ensures that we update as few parent pointers as possible

– Consider the cost of selecting d as the new set representative in this last

union operation

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 16

a

Points-to Relations

a,ca,c,e

March 9, 2015 Interprocedural Analysis 31

Steensgaard Pointer Analysis – Example 1

Program

a := &b

c := a

a := &d

e := a

Constraints

a = { b, d }

c = a

e = a

b,d

March 9, 2015 Interprocedural Analysis 32

Steensgaard Pointer Analysis – the Algorithm

merge(x, y)

{

x = Find(x); y = Find(y);

if (x == y) then return;

Union(x,y);

merge(points-to(x),points-to(y));

}

for each constraint LHS = RHS

merge(LHS,RHS)

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 17

March 9, 2015 Interprocedural Analysis 33

a

bb,d

Steensgaard Pointer Analysis – Example 2

Program

a := &b

c := &d

e := &a

f := a

*e := c

Constraints

a = { b }

c = { d }

e = { a }

f = a

*e = c

Points-to Relations

e

c

d

a,f

March 9, 2015 Interprocedural Analysis 34

a

bb,d

Steensgaard Pointer Analysis – Example 2

Program

a := &b

c := &d

e := &a

f := a

*e := c

Constraints

a = { b }

c = { d }

e = { a }

f = a

*e = c

Points-to Relations

e

c

d

a,fa,f,c

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 18

March 9, 2015 Interprocedural Analysis 35

Andersen-style analysis

Steensgaard analysis

int **a, *b, c, *d, e;

1: a = &b;

2: b = &c;

3: d = &e;

4: a = &d;

Andersen vs. Steensgaard

a b c

d e

due to statement 4

a b c

d e

due to statement 4 c

ed
a

b

a b c

d e

The Big Picture

Precision vs. Performance

– Steensgaard’s analysis and Andersen’s analysis operate on abstractions of

the program text

– Instead of the CFG, they operate on sets

– These abstractions trade off precision for performance

March 9, 2015 Interprocedural Analysis 36

Calvin Lin

The University of Texas at Austin

CS380 C Compilers 19

March 9, 2015 Interprocedural Analysis 37

Concepts

Flow-insensitive pointer analysis

Andersen-style analysis

– Inclusion-based, subset-based

– Compute transitive closure of a dynamic graph

– Constraint graph

– Cycle elimination optimization

Steensgaard-style analysis

– Unification-based, equality-based

– Union-find data structure

March 9, 2015 Interprocedural Analysis 38

Next Time

Lecture

– Context-Sensitive Pointer Analysis

