CS380 C Compilers

Modern Uses of Compilers

Last time
— Pointer analysis

Today
— Compiling object-oriented languages

Avpril 1, 2015 Compiling Object-Oriented Languages

What is an Object-Oriented Programming Language?

Objects Person
— Encapsulate code and data /' \

. Student Teacher
Inheritance

— Supports code reuse and software
evolution (kind of)

Person p = new Person;

SUbtype polymorphism Student s = new Student;

— Can use a subclass wherever a parent

class is expected PrintName (p) ;
PrintName (s) ;

Dynamic binding (message sends)
— Binding of method name to code is done :
dynamically based on the dynamic type
of the (receiver) object

April 1, 2015 Compiling Object-Oriented Languages

CS380 C Compilers

Implementation: Inheritance of Instance Variables

Goal
— Lay out object for type-independent instance variable access

Solution
— Prefixing: super-class fields are at beginning of object

Example

Student Teacher

ID Salary

Multiple inheritance?
— May need to leave blanks

— Use graph coloring (one node for each distinct field, edge between
coexistent fields, color indicates layout position)

Avpril 1, 2015 Compiling Object-Oriented Languages

Implementation: Dynamic Binding

Problem

— The appropriate method depends on the dynamic type of the object
€.0., p.reprimand()

Solution

— Create descriptor for each class (not each object) encoding available methods
— Store a pointer to a class descriptor in each object
— Lay out methods in class descriptor just like instance variables

getName getName

reprimand reprimand
workhard party
Usage summary
— Load class descriptor pointer from object
— Load method address from descriptor

— Jump to method
April 1, 2015 Compiling Object-Oriented Languages

CS380 C Compilers

What is a Pure Object-Oriented Programming Language?

Everything is an object
— Even numbers, strings, constants, etc.

All work achieved by sending messages to objects
— Even simple arithmetic and control flow

Example Invoke x’s equal method

&{a.set(a.plus (1))}, :
o et) }'\ to create a control flow construct
);

Pass then computation

if (&{x.eq(3)},
d } Pass closures to the if method

Very clean and simple Pass else computation

— But very inefficient if naively implemented

Avpril 1, 2015 Compiling Object-Oriented Languages

Why are Object-Oriented Languages Slow?

Dynamism
— Code
— Data

Style
— Granularity (lots of small objects)
— Exploit dynamism

High-level (modern) features
— Closures & non-LIFO activation records
— Safety, etc.

Garbage collection

April 1, 2015 Compiling Object-Oriented Languages

Dynamism: Code

Dynamic binding
— What code gets executed at a particular static message send?
— It depends, and it may change

Example
class rectangle extends shape { ?
int length() { ... }
int width() { ... }
int area() { return (length() * width()):;
What happens with the

following?
rect.area() ;

class square extends rectangle {
int size;
int length() { return(size); }
int width() { return(size); } sq.area();

}

Avpril 1, 2015 Compiling Object-Oriented Languages

Cost of Dynamic Binding

Direct cost
— Overhead of performing dynamic method invocation

Indirect cost
— Inhibits static analysis of the code

Example

EICES R FOEERE0 Want to inline and assign to registers, etc.

int length() { ... }
int width() { ... } / /

int area() { return (length() * width())

April 1, 2015 Compiling Object-Oriented Languages

CS380 C Compilers

CS380 C Compilers

Dynamism: Data

Object instance types are not statically apparent
— Need to be able to manipulate all objects uniformly
— Boxing: wrap all data and reference it with a pointer

Example

Integer n = new Integer(33);

n

type descriptor

data (int)

Avpril 1, 2015 Compiling Object-Oriented Languages

Cost of Dynamism: Data

Direct cost
— Overhead of actually extracting data
— e.g., 2 loads versus 0 (if data already in a register)

Indirect cost
— More difficult to statically reason about data

April 1, 2015 Compiling Object-Oriented Languages

Style

Sometimes programmers write C-style code in OO languages
— Easy: just “optimize” it away

Sometimes programmers actually exploit dynamism
— Hard: it can’t just be “optimized away”

Programmers create many small objects
— Thwarts local analysis
— Exacerbates dynamism problem
— Huge problem for pure OO languages

Programmers create many small methods
— Methods to encapsulate data
— e.g. Methods to get and set member fields

Avpril 1, 2015 Compiling Object-Oriented Languages

Modern High-level Features

Closures and non-LIFO activation records
— Leads to much heap allocation of data

Example

foo (Integer i) {
Integer n;

return (&{n+i});

April 1, 2015 Compiling Object-Oriented Languages

CS380 C Compilers

A Concrete Example: Java

High-level and modern
— Object-oriented (not pure, but more pure than C++)
— Granularity of objects and methods can be large or small
— Mobile (standard bytecode IR)
— Multithreaded (great for structuring distributed and Ul programs)
— Garbage collected
— Dynamic class loading
— Reasonable exception system
— Rich standard libraries

Avpril 1, 2015 Compiling Object-Oriented Languages

Why is Java Slow?

Bytecode interpretation?
— Not a good answer

April 1, 2015 Compiling Object-Oriented Languages

CS380 C Compilers

Approaches to Implementing Java

Interpretation
— Extremely portable
— Simple stack machine
— Performance suffers
— Interpretation overhead
— Stack machine (no registers)

Direct compilation
— Compile the source or bytecodes to native code
— Sacrifices portability
— Can have very good performance

Avpril 1, 2015 Compiling Object-Oriented Languages

Approaches to Implementing Java (cont)

JIT compilation
— Still supports mobile code (with more effort)
— Can have very good performance
— Compilation time is critical
— Compiler can exploit dynamic information

JIT/Dynamic compilation
— Compiler gets several chances on the same code
— Compiler can exploit changes in dynamic information
— These systems are now quite sophisticated and effective

April 1, 2015 Compiling Object-Oriented Languages

CS380 C Compilers

CS380 C Compilers

Approaches to Implementing Java (cont)

Custom processor
— Direct hardware support of Java bytecodes
— This has proven to be an impractical approach

— See “Retrospective on High-Level Language Computer Architecture”
by Ditzel and Patterson (ISCA 1980)

— But maybe some hardware support (e.g., for GC) is a good idea?

Hybrids
— JIT and Interpretation
— Direct compilation and interpretation

Same-context translation
— Source-to-source or bytecode-to-bytecode

Avpril 1, 2015 Compiling Object-Oriented Languages

Why is Java Slow?

Impediments to performance
— Dynamic class loading thwarts optimization
— Even the class hierarchy is dynamic
Flexible array semantics
Run-time checks (null pointers, array bounds, types)
Precise exception semantics thwart optimization
Multithreading introduces synchronization overhead

Lots of memory references (poor cache performance)
... and all the usual OO challenges

April 1, 2015 Compiling Object-Oriented Languages

CS380 C Compilers

Analysis with a Dynamic Class Hierarchy

Approaches
— Ignore it (i.e., disable dynamic class loading)
— Exploit final classes & methods
— Conservative optimization (e.g., guarded devirtualization)
— Track validity of current code fragments and rebuild as necessary
— e.0., Resolution dependence graph
— Necessitates JIT/dynamic compilation

Avpril 1, 2015 Compiling Object-Oriented Languages

Scientific Programming and Java

Consider matrix multiplication

for (i=0; i<m; i++)
for (3=0; j<p; Jj++)
for (k=0; k<n; k++)
Cl[i][j] += A[i][k] * B[k]I[]j];

Why is this Java code slow?
— 6 null pointer checks (with just 2 floating point operations!)
— 6 index checks

Can we optimize this code?
— Precise exception model
— Exception semantics inhibit removal or reordering
— No multidimensional arrays
— Rows may alias

April 1, 2015 Compiling Object-Oriented Languages

10

More on Matrix Multiplication

Why can’t we just do this. .. ?

if (m <= C.size(0) && p <= C.size(l) &&

m <= A.size(0) && n <= A.size(l) &&

n <= B.size(0) && p <= B.size(1l)) {

for (i=0; i<m; i++)

for (3=0; j<p; j++)
for (k=0; k<n; k++)
C[i][3j] += A[i][k] * B[k][]j];
} else {
raise exception

}

No out-of-bounds checks, right?

Avpril 1, 2015 Compiling Object-Oriented Languages

Exceptions in Java

Exceptions in Java are precise

— The effects of all statements and expressions before a thrown exception
must appear to have taken place, and

— The effects of all statements or expressions after a thrown exception must
appear not to have taken place

Implications
— Must be very careful or clever when
— Eliminating checks or
— Reordering statements

April 1, 2015 Compiling Object-Oriented Languages

CS380 C Compilers

CS380 C Compilers

Safe Regions [Moreira et al. TOPLAS 2000]

Idea
— Create two versions of a block of code
— One is guaranteed not to except and is optimized accordingly
— The other is used when the code might except

if (m <= C.size(0) && p <= C.size(l) &&
m <= A.size(0) && n <= A.size(l) &&
n <= B.size(0) && p <= B.size(1l)) {
for (i=0; i<m; i++) // safe region
for (j=0; j<p; j++)
for (k=0; k<n; k++)
C[i][3j] += A[i][k] * B[k][]j];
} else {
for (i=0; i<m; i++) // unsafe region
for (3=0; j<p; j++)
for (k=0; k<n; k++)
C[il[3]1 += A[i][k] * B[k][3j];

Java Arrays and Loop Transformations

Java arrays
— No multidimensional arrays
— Instead use arrays of arrays (can be ragged)
— Requires one memory reference for each array dimension
— Rows may alias with one another

Arrays are common in scientific applications
— Their use requires optimization for good performance
— Large body of work on loop transformations makes assumptions
— Arrays stored in contiguous memory
— No aliasing among array elements
— (Arrays are not ragged)

April 1, 2015 Compiling Object-Oriented Languages

12

CS380 C Compilers

Comparing Arrays

A 2D array in C

An array of arrays in Java

type

G e e[z [s[4fs[e]7]¢]
length
B o o[[m]
length

Avpril 1, 2015 Compiling Object-Oriented Languages

Java Arrays

Elements within an array can alias with one another

type

=B DHOUOOUD
length

B o [

length

A[1][i] aliases to A[2][i]

Implications?
— Complicates dependence testing

April 1, 2015 Compiling Object-Oriented Languages

13

CS380 C Compilers

Java Arrays (cont)
An array of arrays of complex numbers

type
length

complex complex complex complex
BEEE
type
length
complex complex complex complex

o

What are the implications of this structure?

Avpril 1, 2015 Compiling Object-Oriented Languages

Semantic Expansion [Artigas et al. LCPC *99]

Idea
— Introduce a new final array class with simpler semantics
— Treat the new class as a primitive in the compiler

doubleArray2D C = new doubleArray2D (m,p) ;
doubleArray2D A new doubleArray2D (m,n) ;
doubleArray2D B new doubleArray2D (n,p) ;

for (i=0; i<m; i++)
for (j=0; j<p; j++)
for (k=0; k<n; k++)
C.set(i,j,C.get(i,j)+A.get(i,k)*B.get(k,]j)):

Look at this ugly syntax

April 1, 2015 Compiling Object-Oriented Languages

14

CS380 C Compilers

Semantic Expansion (cont)

Pros
— Yields good performance
— Doesn’t officially change the language
— Can be used for other pseudo primitive classes (e.g., Complex)

Cons
— Inelegant (ugly syntax)
— Not general
— Does in fact change the language
— Loses syntactic benefits of true primitives
— At odds with the spirit of the language

— Can’t extend these special classes

Are there more elegant and general solutions?

Avpril 1, 2015 Compiling Object-Oriented Languages

Concepts

Dynamism

— Direct costs

— Indirect costs
Exception semantics
Array semantics
Object overhead

April 1, 2015 Compiling Object-Oriented Languages

15

