CS380 C Compilers

Modern Uses of Compilers

Last time
— Pointer analysis

Today
— Compiling object-oriented languages
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What is an Object-Oriented Programming Language?

Objects Person
— Encapsulate code and data /' \

. Student Teacher
Inheritance

— Supports code reuse and software
evolution (kind of)

Person p = new Person;

SUbtype polymorphism Student s = new Student;

— Can use a subclass wherever a parent

class is expected PrintName (p) ;
PrintName (s) ;

Dynamic binding (message sends)
— Binding of method name to code is done :
dynamically based on the dynamic type
of the (receiver) object
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Implementation: Inheritance of Instance Variables

Goal
— Lay out object for type-independent instance variable access

Solution
— Prefixing: super-class fields are at beginning of object

Example

Student Teacher

ID Salary

Multiple inheritance?
— May need to leave blanks

— Use graph coloring (one node for each distinct field, edge between
coexistent fields, color indicates layout position)

Avpril 1, 2015 Compiling Object-Oriented Languages

Implementation: Dynamic Binding

Problem

— The appropriate method depends on the dynamic type of the object
€.0., p.reprimand()

Solution

— Create descriptor for each class (not each object) encoding available methods
— Store a pointer to a class descriptor in each object
— Lay out methods in class descriptor just like instance variables

getName getName

reprimand reprimand
workhard party
Usage summary
— Load class descriptor pointer from object
— Load method address from descriptor

— Jump to method
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What is a Pure Object-Oriented Programming Language?

Everything is an object
— Even numbers, strings, constants, etc.

All work achieved by sending messages to objects
— Even simple arithmetic and control flow

Example Invoke x’s equal method

&{a.set(a.plus (1))}, :
o et ) }'\ to create a control flow construct
);

Pass then computation

if ( &{x.eq(3)},
d } Pass closures to the if method

Very clean and simple Pass else computation

— But very inefficient if naively implemented
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Why are Object-Oriented Languages Slow?

Dynamism
— Code
— Data

Style
— Granularity (lots of small objects)
— Exploit dynamism

High-level (modern) features
— Closures & non-LIFO activation records
— Safety, etc.

Garbage collection
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Dynamism: Code

Dynamic binding
— What code gets executed at a particular static message send?
— It depends, and it may change

Example
class rectangle extends shape { ?
int length() { ... }
int width() { ... }
int area() { return (length() * width()):;
What happens with the

following?
rect.area() ;

class square extends rectangle {
int size;
int length() { return(size); }
int width() { return(size); } sq.area();

}
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Cost of Dynamic Binding

Direct cost
— Overhead of performing dynamic method invocation

Indirect cost
— Inhibits static analysis of the code

Example

EICES R FOEERE0 Want to inline and assign to registers, etc.

int length() { ... }
int width() { ... } / /

int area() { return (length() * width())
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Dynamism: Data

Object instance types are not statically apparent
— Need to be able to manipulate all objects uniformly
— Boxing: wrap all data and reference it with a pointer

Example

Integer n = new Integer(33);

n

type descriptor

data (int)
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Cost of Dynamism: Data

Direct cost
— Overhead of actually extracting data
— e.g., 2 loads versus 0 (if data already in a register)

Indirect cost
— More difficult to statically reason about data
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Style

Sometimes programmers write C-style code in OO languages
— Easy: just “optimize” it away

Sometimes programmers actually exploit dynamism
— Hard: it can’t just be “optimized away”

Programmers create many small objects
— Thwarts local analysis
— Exacerbates dynamism problem
— Huge problem for pure OO languages

Programmers create many small methods
— Methods to encapsulate data
— e.g. Methods to get and set member fields
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Modern High-level Features

Closures and non-LIFO activation records
— Leads to much heap allocation of data

Example

foo (Integer i) {
Integer n;

return (&{n+i});
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A Concrete Example: Java

High-level and modern
— Object-oriented (not pure, but more pure than C++)
— Granularity of objects and methods can be large or small
— Mobile (standard bytecode IR)
— Multithreaded (great for structuring distributed and Ul programs)
— Garbage collected
— Dynamic class loading
— Reasonable exception system
— Rich standard libraries
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Why is Java Slow?

Bytecode interpretation?
— Not a good answer
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Approaches to Implementing Java

Interpretation
— Extremely portable
— Simple stack machine
— Performance suffers
— Interpretation overhead
— Stack machine (no registers)

Direct compilation
— Compile the source or bytecodes to native code
— Sacrifices portability
— Can have very good performance
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Approaches to Implementing Java (cont)

JIT compilation
— Still supports mobile code (with more effort)
— Can have very good performance
— Compilation time is critical
— Compiler can exploit dynamic information

JIT/Dynamic compilation
— Compiler gets several chances on the same code
— Compiler can exploit changes in dynamic information
— These systems are now quite sophisticated and effective
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Approaches to Implementing Java (cont)

Custom processor
— Direct hardware support of Java bytecodes
— This has proven to be an impractical approach

— See “Retrospective on High-Level Language Computer Architecture”
by Ditzel and Patterson (ISCA 1980)

— But maybe some hardware support (e.g., for GC) is a good idea?

Hybrids
— JIT and Interpretation
— Direct compilation and interpretation

Same-context translation
— Source-to-source or bytecode-to-bytecode
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Why is Java Slow?

Impediments to performance
— Dynamic class loading thwarts optimization
— Even the class hierarchy is dynamic
Flexible array semantics
Run-time checks (null pointers, array bounds, types)
Precise exception semantics thwart optimization
Multithreading introduces synchronization overhead

Lots of memory references (poor cache performance)
... and all the usual OO challenges
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Analysis with a Dynamic Class Hierarchy

Approaches
— Ignore it (i.e., disable dynamic class loading)
— Exploit final classes & methods
— Conservative optimization (e.g., guarded devirtualization)
— Track validity of current code fragments and rebuild as necessary
— e.0., Resolution dependence graph
— Necessitates JIT/dynamic compilation
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Scientific Programming and Java

Consider matrix multiplication

for (i=0; i<m; i++)
for (3=0; j<p; Jj++)
for (k=0; k<n; k++)
Cl[i][j] += A[i][k] * B[k]I[]j];

Why is this Java code slow?
— 6 null pointer checks (with just 2 floating point operations!)
— 6 index checks

Can we optimize this code?
— Precise exception model
— Exception semantics inhibit removal or reordering
— No multidimensional arrays
— Rows may alias

April 1, 2015 Compiling Object-Oriented Languages

10



More on Matrix Multiplication

Why can’t we just do this. .. ?

if (m <= C.size(0) && p <= C.size(l) &&

m <= A.size(0) && n <= A.size(l) &&

n <= B.size(0) && p <= B.size(1l)) {

for (i=0; i<m; i++)

for (3=0; j<p; j++)
for (k=0; k<n; k++)
C[i][3j] += A[i][k] * B[k][]j];
} else {
raise exception

}

No out-of-bounds checks, right?
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Exceptions in Java

Exceptions in Java are precise

— The effects of all statements and expressions before a thrown exception
must appear to have taken place, and

— The effects of all statements or expressions after a thrown exception must
appear not to have taken place

Implications
— Must be very careful or clever when
— Eliminating checks or
— Reordering statements
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Safe Regions [Moreira et al. TOPLAS 2000]

Idea
— Create two versions of a block of code
— One is guaranteed not to except and is optimized accordingly
— The other is used when the code might except

if (m <= C.size(0) && p <= C.size(l) &&
m <= A.size(0) && n <= A.size(l) &&
n <= B.size(0) && p <= B.size(1l)) {
for (i=0; i<m; i++) // safe region
for (j=0; j<p; j++)
for (k=0; k<n; k++)
C[i][3j] += A[i][k] * B[k][]j];
} else {
for (i=0; i<m; i++) // unsafe region
for (3=0; j<p; j++)
for (k=0; k<n; k++)
C[il[3]1 += A[i][k] * B[k][3j];

Java Arrays and Loop Transformations

Java arrays
— No multidimensional arrays
— Instead use arrays of arrays (can be ragged)
— Requires one memory reference for each array dimension
— Rows may alias with one another

Arrays are common in scientific applications
— Their use requires optimization for good performance
— Large body of work on loop transformations makes assumptions
— Arrays stored in contiguous memory
— No aliasing among array elements
— (Arrays are not ragged)
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Comparing Arrays

A 2D array in C

An array of arrays in Java

type

G e e[z [s[4fs[e]7]¢]
length
B o o[ [ m]
length
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Java Arrays

Elements within an array can alias with one another

type

=B DHOUOOUD
length

B o [

length

A[1][i] aliases to A[2][i]

Implications?
— Complicates dependence testing
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Java Arrays (cont)
An array of arrays of complex numbers

type
length

complex complex complex complex
BEEE
type
length
complex complex complex complex

o

What are the implications of this structure?
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Semantic Expansion [Artigas et al. LCPC *99]

Idea
— Introduce a new final array class with simpler semantics
— Treat the new class as a primitive in the compiler

doubleArray2D C = new doubleArray2D (m,p) ;
doubleArray2D A new doubleArray2D (m,n) ;
doubleArray2D B new doubleArray2D (n,p) ;

for (i=0; i<m; i++)
for (j=0; j<p; j++)
for (k=0; k<n; k++)
C.set(i,j,C.get(i,j)+A.get(i,k)*B.get(k,]j)):

Look at this ugly syntax
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Semantic Expansion (cont)

Pros
— Yields good performance
— Doesn’t officially change the language
— Can be used for other pseudo primitive classes (e.g., Complex)

Cons
— Inelegant (ugly syntax)
— Not general
— Does in fact change the language
— Loses syntactic benefits of true primitives
— At odds with the spirit of the language

— Can’t extend these special classes

Are there more elegant and general solutions?
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Concepts

Dynamism

— Direct costs

— Indirect costs
Exception semantics
Array semantics
Object overhead
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