
Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 1

April 13, 2015 Register Allocation 1

Traditional Uses of Compilers

Last lecture

– Field analysis

Today

– Register allocation

April 13, 2015 Register Allocation 2

Register Allocation

Problem

– Assume a load/store architecture

– Assign an unbounded number of symbolic registers to a fixed number of

architectural registers (which might get renamed by the hardware to

some number of physical registers)

– Simultaneously live data must be assigned to different architectural

registers

Goal

– Minimize overhead of accessing data

– Memory operations (loads & stores)

– Register moves

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 2

April 13, 2015 Register Allocation 3

Granularity of Allocation

What is allocated to registers?

– Variables

– Live ranges (i.e., set of basic blocks in which a variable is live)

– Values (i.e., definitions; same as variables with SSA & copy propagation)

– Webs (i.e., du-chains with common uses)

s1: x := 5

s2: y := x

s3: x := y+1

s4: ... x ...

s5: x := 3

s6: ... x ...

Variables: 2 (x & y)

Live ranges: 2 ({b1,b2,b3,b4}, {b2})

Values: 4 (s1, s2, s3, s5, (s3,s5))

Web: 3 (s1s2,s4;

s2 s3;

s3,s5 s6)

Each allocation unit is given a symbolic register name (e.g., s1, s2, etc.)

b1

b4

b2 b3

What are the tradeoffs?

Can we do better?

April 13, 2015 Register Allocation 4

Scope of Register Allocation

Expression

Local

Loop

Global

Interprocedural

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 3

April 13, 2015 Register Allocation 5

Local Register Allocation for Loops

Idea

– Estimate the benefit of allocating variables in basic blocks or loops

– Allocate variables with greatest benefit to registers

– Estimates are a function of execution frequency (from profiles, heuristics)

Surprisingly effective!

– IBM 360/370 Fortran H compiler

April 13, 2015 Register Allocation 6

Definitions

– ldcost: Cost (time) of load instruction

– stcost: Cost of store instruction

– mvcost: Cost of register-to-register transfer instruction

– usesave: Savings (time) for each use of variable in a register vs. memory

– defsave: Savings for each assignment of variable in a register vs. memory

– Static counts for variable v: li ,si, ui, di (li and si are 0 or 1)

Benefit of allocating variable v to a register in block bi is

netsave(v,i) = ui · usesave + di · defsave - li · ldcost - si · stcost

Benefit(v,L) = 10depth(L) Σ netsave(v,i)

Local Register Allocation for Loops (cont)

iblocks(L)

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 4

April 13, 2015 Register Allocation 7

s1 s3

Global Register Allocation by Graph Coloring

Idea

1. Construct interference graph G=(N,E)

– Represents notion of “simultaneously live”

– Nodes are units of allocation (e.g., variables, live ranges, webs)

– edge (n1,n2) E if n1 and n2 are simultaneously live

– Symmetric (not reflexive nor transitive)

2. Find k-coloring of G (for k registers)

– Adjacent nodes can’t have same color

3. Allocate the same register to all allocation units of the same color

– Adjacent nodes must be allocated to distinct registers

s2

April 13, 2015 Register Allocation 8

Interference Graph Exercise (Variables)

a

d

b

c

e

What does a interfere with?
What else does b interfere with?
What else does c interfere with?
What else does d interfere with?

How many colors do we need?
c := d ...

e := ...

... a ...

... e ...

... b ...

a := ...

b := ...

c := ...

... a ...

d := ...

... d ...

a := ...

... c ...

a := ...

... d ...

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 5

April 13, 2015 Register Allocation 9

a1

d

b

c

a2

e

Interference Graph Example (Webs)

a1 := ...

b := ...

c := ...

... a1 ...

d := ...

... c ...

a2 := ...

... d ...

... d ...

e := ...

... a2 ...

... e ...

... b ...

c := ...

Consider webs (du-chains w/

common uses) instead of variables

... d ...

a2 := ...

April 13, 2015 Register Allocation 10

Building the Interference Graph

Use results of live variable analysis

for each symbolic-register si do

for each symbolic-register sj (j < i) do

for each def {definitions of si} do

if (sj is live at def) then

E E (si,sj)

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 6

April 13, 2015 Register Allocation 11

Allocating Registers Using the Interference Graph

K-coloring

– Color nodes using up to k colors

– Adjacent nodes must have different colors

Allocating to k registers finding a k-coloring of the interference graph

– Adjacent nodes must be allocated to distinct registers

But. . .

– Optimal graph coloring is NP-complete

– Register allocation is NP-complete, too (must approximate)

– What if we can’t k-color a graph? (must spill)

April 13, 2015 Register Allocation 12

Spilling

If we can’t find a k-coloring of the interference graph

– Spill variables (nodes) to stack until the graph is colorable

How does spilling help?

– It reduces the live range of the spilled variable

Which variables should we spill?

– The least frequently accessed variables

– Break ties by choosing nodes with the most conflicts in the interference

graph

– Yes, these are heuristics!

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 7

April 13, 2015 Register Allocation 13

Weighted Interference Graph

Goal

– Weight(s) = f(r) is execution frequency of r

Static approximation

– Use some reasonable scheme to rank variables

– One possibility

– Weight(s) = 1

– Nodes after branch: ½ weight of branch

– Nodes in loop: 10 weight of nodes outside loop

Σ f(r)
references r of s

April 13, 2015 Register Allocation 14

Simple Greedy Algorithm for Register Allocation

for each n N do { select n in decreasing order of weight }

if n can be colored then

do it { reserve a register for n }

else

Remove n (and its edges) from graph { allocate n to stack (spill) }

Note

– Reserve 2-3 temp registers for manipulating data on stack

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 8

April 13, 2015 Register Allocation 15

Weighted order:

a1
b

c

d

a2
e

Example

a1

d

b

c

a2

e

Attempt to 3-color this graph (, ,)

What if you use a different weighting?

Problems with this approach?

April 13, 2015 Register Allocation 16

a b

Example

Weighted order:

a

b

c

Attempt to 2-color this graph (,)

c

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 9

April 13, 2015 Register Allocation 17

Improvement #1: Simplification Phase

Idea

– Nodes with < k neighbors are guaranteed colorable

Remove them from the graph first

– Reduces the degree of the remaining nodes

Must spill only when all remaining nodes have degree k

April 13, 2015 Register Allocation 18

Algorithm [Chaitin82]

while interference graph not empty do

while a node n with < k neighbors do

Remove n from the graph

Push n on a stack

if any nodes remain in the graph then { blocked with ≥ k edges }

Pick a node n to spill { lowest spill-cost or }

Add n to spill set { highest degree }

Remove n from the graph

if spill set not empty then

Insert spill code for all spilled nodes { store after def; load before use }

Reconstruct interference graph & start over

while stack not empty do

Pop node n from stack

Allocate n to a register

simplify

spill

color

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 10

April 13, 2015 Register Allocation 19

More on Spilling

Chaitin’s algorithm restarts the whole process on spill

– Necessary, because spill code (loads/stores) uses registers

– Okay, because restarts usually only happen a couple times

Alternative

– Reserve 2-3 registers for spilling

– Don’t need to start over

– But have fewer registers to work with

April 13, 2015 Register Allocation 20

Stack:

d

c

b

a2
a1
e

Example

a1

d

b

c

a2

e

Weighted order:

e

a1
a2
b

c

d

Attempt to 3-color this graph (, ,)

How are the nodes ordered here?

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 11

April 13, 2015 Register Allocation 21

Example

a1 b

d

c

a2

e

Weighted order:

e

a1
a2

b

c

d

Attempt to 2-color this graph (,)

Stack:

d

c

Spill

Set:

e

a1
a2
b

Many nodes remain uncolored even

though we could clearly do better

April 13, 2015 Register Allocation 22

Clearly 2-colorable

But Chaitin’s algorithm leads to an immediate block and spill. Why?

The algorithm assumes the worst case, namely, that all neighbors will

be assigned a different color

The Problem: Worst Case Assumptions

Is the following graph 2-colorable?

s1

s2s4

s3

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 12

April 13, 2015 Register Allocation 23

Defer

decision

Improvement #2: Optimistic Spilling

Idea

– Some neighbors might get the same color

– So nodes with k neighbors might be colorable

– Blocking does not imply that spilling is necessary

– Push blocked nodes on stack (rather than place in

spill set)

– Check colorability upon popping the stack, when

more information is available

s1

s2s4

s3

April 13, 2015 Register Allocation 24

Algorithm [Briggs et al. 89]

while interference graph not empty do

while a node n with < k neighbors do

Remove n from the graph

Push n on a stack

if any nodes remain in the graph then { blocked with ≥ k edges }

Pick a node n to block { lowest spill-cost/highest degree }

Push n on stack

Remove n from the graph

while stack not empty do

Pop node n from stack

if n is colorable then

Allocate n to a register

else

Insert spill code for n { Store after def; load before use }

Reconstruct interference graph & start over

simplify

defer decision

make decision

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 13

April 13, 2015 Register Allocation 25

Stack:

d

c

b*

a2*

a1*

e*

Example

ba1

d

c

a2

e

Weighted order:

e

a1
a2
b

c

d

Attempt to 2-color this graph (,)

* blocked node

spill

4 nodes were blocked

Only 1 node was spilled

April 13, 2015 Register Allocation 26

Improvement #3: Live Range Splitting [Chow & Hennessy 84]

Idea

– Start with variables as our allocation unit

– When a variable can’t be allocated, split it into multiple subranges for

separate allocation

– Selective spilling: put some subranges in registers, some in memory

– Insert memory operations at boundaries

Why is this a good idea?

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 14

April 13, 2015 Register Allocation 27

Improvement #4: Rematerialization

Idea

– Selectively re-compute values rather than loading from memory

– “Reverse CSE”

Easy case

– Value that can be computed in single instruction, and

– All operands are available

Examples

– Constants

– Addresses of global variables

– Addresses of local variables (on stack)

April 13, 2015 Register Allocation 28

Coalescing

Move instructions

– Code generation can produce unnecessary move instructions

mov t1, t2

– If we can assign t1 and t2 to the same register, we can eliminate the move

Idea

– If t1 and t2 are not connected in the interference graph, coalesce them into

a single variable

Problem?

– Coalescing can increase the number of edges and make a graph uncolorable

– Limit coalescing

to avoid uncolorable

graphs
t1 t2 t1t2

coalesce

Calvin Lin, The University of Texas at

Austin

CS380 C Compilers 15

April 13, 2015 Register Allocation 29

Next Time

Lecture

– More register allocation

– Allocation across procedure calls

