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CPU vs. GPU characteristics

CPU

e Few computation cores

— Supports many instruction streams,
but keep few for performance

e More complex pipeline
— Out-of-order processing
— Deep (tens of stages)

— Became simpler
(Pentium 4 was complexity peak)

e Optimized for serial execution

— SIMD units less so, but lower
penalty for branching than GPU

GPU

e Many of computation cores

— Few instruction streams

e Simple pipeline
— In-order processing
— Shallow (< 10 stages)
— Became more complex

e Optimized for parallel execution

— Potentially heavy penalty for
branching
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Intel Sandy Bridge
(Stampede nodes)
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Hardware Comparison
(Longhorn- and Lonestar-deployed versions)

Sandy Tesla Fermi
Bridge Quadro FX Tesla
E5-2680 5800 M2070

Nehalem Westmere
E5540 X5680

Kepler
Tesla K20

Functional

Units 8 30 14 13

Speed
(GHz)

SIMD /
SIMT
width

Instruction
Streams

Peak
Bandwidth
DRAM->Chip
(GBI/s)

2.7




A Word about FLOPS

Yesterday’s slides calculated Longhorn’s GPUs
(NVIDIA Quadro FX 5800) at 624 peak GFLOPS...

... but NVIDIA marketing literature lists peak
performance at 1?

NVIDIA’s number includes the Special Function Unit (SFU)
of each SM, which handles unusual and expectional
instructions (transcendentals, trigonometrics, roots, etc.)

Fermi marketing materials do not include SFU in FLOPs
measurement, more comparable to CPU metrics.
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The GPU’s Origins:
Why They are Made This Way

Theoretical
GFLOP/s
1500

NVIDIA GPU Single Precision
==p==NVIDIA GPU Double Precision
-—o==|ntel CPU Single Precision

Intel CPU Double Precision

Tesla C2050

Westmere

Tesla C 1060 / Bloomfield
Woodcrest

-~ O
Pentiuni4 v _ e Harpertown
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GPU Accelerates Rendering

e Determining the color to be assigned to each pixel
in an image by simulating the transport of light in
a synthetic scene.
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Shading a Fragment

sampler mySamp; sample r0, v4, t0, sO
Texture2D<float3> myTex; mul r3, vO, cb0[0]
float3 lightDir; » madd r3, v1, cb0[1], r3
float4 diffuseShader(float3 norm, float2 uv) Complle madd r3, v2, cb0[2], r3

{ ‘ clmp r3, r3, 1(0.0), I(1.0)
float3 kd; mul 00, r0, r3

kd = myTex.Sample(mySamp, uv); mul o1, r1, r3
kd *= clamp(dot(lightDir, norm), 0.0, 1.0); mul 02, r2, r3
return float4(kd, 1.0); mov 03, [(1.0)

Simple Lambertian shading of texture-mapped fragment.
Sequential code

Performed in parallel on many independent fragments
How many is “many’ ?

At least hundreds of thousands per frame

TRCC




Work per Fragment

sample r0, v4, t0, sO
mul r3, vO, cb0[0]
madd r3, v1, cb0[1], r3
madd r3, v2, cb0[2], r3
clmp r3, r3, 1(0.0), 1(1.0)
mul 00, r0, r3

mul o1, r1, r3

mul 02, r2, r3

mov 03, [(1.0)

unshaded
fragment

shaded
fragment

Do a a couple hundred thousand of these @ 60 Hz or so
How?

We have independent threads to execute, so use multiple cores
What kind of cores?

TRCC




The CPU Way

Branch

Fetch/Decode S i

Instruction
ALU Scheduler

unshaded shaded

Execution :
fragment ot Prefetch Unit fragment

Caches

Big, complex, but fast on a single thread

However, each program is very short, so do not need this
much complexity

Must complete many many short programs quickly




Simplify and Parallelize

fﬁ L

III Fetch/Decode

e Don’ tuse afew CPU style cores
e Use simpler ones and many more of them.
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But What about the Other Processing?

e A graphics pipeline does more than shading.
Other ops are done in parallel, like
transforming vertices.

So need to execute more than one program in
the system simultaneously.

If we replicate these SIMD processors, we now
have the ability to do different SIMD
computations in parallel in different parts of
the machine.

In this example, we can have 128 threads in
parallel, but only 8 different programs
simultaneously running

TRCC




What about Branches?

ALU1 ALU2 ALU3 ALU4 ALUS5 ALU6 ALUT ALUB

GPUs use predication!
<unconditional shader code>
if (x>0){

y = pow(X, exp);

y *= Ks;

refl =y + Ka;

} else {
x =0;
refl = Ka;

}

<unconditional shader code>




Efficiency - Dealing with Stalls

A thread is stalled when its next instruction to be
executed must await a result from a previous instruction.
— Pipeline dependencies

— Memory latency

The complex CPU hardware (omitted from these
machines) was effective at dealing with stalls.

What will we do instead?

Since we expect to have lots more threads than
processors, we can interleave their execution to keep the
hardware busy when a thread stalls.

Multithreading!

TRCC




Threads 18 Multithreading

Threads 9-16

Threads 17-24

Threads 24-32




Threads 18 Multithreading

Threads 9-16

Threads 17-24

Threads 24-32




Costs of Multithreading

Storage Pool

e Adds latency to individual threads
in order to minimize time to complete all threads.

e Requires extra context storage. More contexts can mask more latency.

TRCC




=l
=l

512 (madd) ALUs @ 1 GHz = 1 Teraflop

==l
==

Example System

____________—
00T

==l
==

32 cores x 16 ALUs/core

_




Real Example — NVIDIA Tesla K20

J8jjonuoy Aocway Jajonuon Aoway Jejoauo) Aaowa

13 Cores (“Streaming Multiprocessors (SMX)”) I

192 SIMD Functional Units per Core
(“CUDA Cores”)

Each FU has 1 fused multiply-add (SP and DP)
Peak 2496 SP floating point ops per clock

4 warp schedulers and
8 instruction dispatch units

GERRRINARAROEAER RRRREARERREERDN

— Upto 32 threads concurrently executing
(called a “WARP”)

— Coarse-grained: Up to 64 WARPS interleaved per
core to mask latency to memory
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Real Example - AMD Radeon HD 7970

32 Compute Units (“Graphics
Cores Next (GCN)” processors)

4 Cores per FU (“Stream Cores”)
— 16-wide SIMD per Stream Core

1 Fused Multiply-Add per ALU
Peak 4096 SP ops per clock

2 level multithreading

— Fine-grained: 8 threads
interleaved into pipelined CU GCN
Cores

Up to 256 concurrent threads
(called a “Wavefront”)

Coarse-grained: groups of about
40 wavefronts interleaved to mask
memory latency

Up to 81,920 concurrent items

-
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Mapping Marketing Terminology to
Engineering Details

NVIDIA AMD/ATI

Streaming

Functional Unit Multiprocessor
(SM)

SIMD lane CUDA core Stream core

SIMD Engines /
Processor

Simultaneously-
processed SIMD Warp Wavefront

(Concurrent “threads”)

Functional Unit
instruction Thread Kernel Kernel

stream




Memory Architecture

e CPU style
— Multiple levels of cache on chip

— Takes advantage of temporal and spatial locality to reduce demand on
remote slow DRAM

Caches provide local high bandwidth to cores on chip
25GB/sec to main memory

e GPU style

— Local execution contexts (64KB)
and a similar amount of local memory

Read-only texture cache

Traditionally no cache hierarchy
(but see NVIDIA Fermi and Intel MIC)

Much higher bandwidth to main memory, 150—200 GB/sec

TRCC




Performance Implications of GPU Bandwidth

e GPU memory system is designed for throughput
— Wide Bus (150 — 200 GB/sec) and high bandwidth DRAM
organization (GDDR3-5)

— Careful scheduling of memory requests to make efficient use of
available bandwidth (recent architectures help with this)

e An NVIDIA Tesla K20 GPU in Stampede has 13 SMXs with
192 SIMD lanes and a 0.706 GHz clock.

— How many peak single-precision FLOPs?
e 3524 GFLOPs

— Memory bandwidth is 208 GB/s. How many FLOPs per byte
transferred must be performed for peak efficiency?
e ~17 FLOPs per byte

TRCC




Performance Implications of GPU Bandwidth

An AMD Radeon 7970 GHz has 32 Compute Units with
64 Stream Cores each and a 0.925 GHz clock.

— How many peak single-precision FLOPs?
e 3789 GFLOPs

— Memory bandwidth is 264GB/s. How many FLOPs per byte
transferred must be performed for peak efficiency?
e ~14 FLOPs per byte

AMD new GCN technology has closed the bandwidth gap

Compute performance will likely continue to outpace
memory bandwidth performance

TRCC




“Real” Example - Intel MIC “co-processor”

Many Integrated Cores: Multi-Thread core block

o In-order Scaler CPU cors 1st. level cache
originally Larrabee, now (Pentium P54C equiv.) -
Knights Ferry (dev), 1 Data:16KB

Register sets

. (Scaler Register and
Knights Corner (prod) Vector Register)

32 cores (Knights Ferry)

>50 cores (Knights Corner) High-speed 2 way
loop controller

Explicit 16-wide vector ISA
(16-wide madder unit)

Peak 1024 SP float ops per clock Fixed Function ~Memory Controller
for 32 cores

Each core interleaves four
threads of x86 instructions

Additional interleaving under
software control

Traditional x86 programming Texture Logic High-speed 2 way loop System Interface
and threading model

T &@ @ http://www.hpcwire.com/hpcwire/2010-08-05/compilers_and_more_knights_ferry versus_fermi.html




What is it?

* Co-processor
— PCI Express card
— Stripped down Linux operating system

* Dense, simplified processor
— Many power-hungry operations removed
— Wider vector unit
— Wider hardware thread count

* Lots of names
— Many Integrated Core architecture, aka MIC
— Knights Corner (code name)
— Intel Xeon Phi Co-processor SE10P (product name)

TACG TEXAS ADVANCED COMPUTING CENTER



What is it?

* Leverage x86 architecture (CPU with many cores)
— x86 cores that are simpler, but allow for more compute throughput

* Leverage existing x86 programming models

* Dedicate much of the silicon to floating point ops
* Cache coherent

* Increase floating-point throughput

* Strip expensive features
— out-of-order execution
— branch prediction

 Widen SIMD registers for more throughput
* Fast (GDDR5) memory on card

TAGCC TEXAS ADVANCED COMPUTING CENTER



Intel Xeon Phi Chip

* 22 nm process

* Based on what |
Intel learned | e ety ateatsal [ e
from kal atall 11 -
— Llarrabee I T ; B
e ‘ o

— TeraFlops :
Research Chip , TR
A

i {
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MIC Architecture

VECTOR VECTOR VECTOR
IA CORE IA CORE IA CORE

INTERPROCESSOR NETWORK

COHERENT  COHERENT COHERENT
CACHE CACHE CACHE

e Bidirectional ring
network for L2

e Memory and
PCle connection

COHERENT  COHERENT COHERENT
CACHE CACHE CACHE

INTERPROCESSOR NETWORK

VECTOR | VECTOR VECTOR
IACORE | IACORE ... IACORE

S
O
o
=
=
Q
=
-
o
(-
W
25
o

MEMORY and I/0 INTERFACES
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Knights Corner Core

TOIP \

L1TLB :
TP Code Cache M
21 ‘ and 32KB S

16B/Cycle (2 IPC)
4 Threads ‘

In-Order Decode uCode
TLB Miss

‘ Handler

Pipe 0 Pipe 1
L2 TLB

VPU RF X87 RF | Scalar RF

VPU X87 ‘ ALUO ‘ ALU1 To On-Die Interconnect
512b SIMD

TLB Miss

L1 TLB and 32KB Data Cache

DCache Miss

X86 specific logic < 2% of core + L2 area

Visual and Parallel Computing Group Copyright * 2012 Intel Corporation. All rights reserved.

George Chrysos, Intel, Hot Chips 24 (2012):

http://www.slideshare.net/IntelXeon/under-the-armor-of-knights-corner-intel-mic-architecture-at-hotchips-2012
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Vector Processing Unit

PPF

PF DO D1

D2 € wB

D2 E vl vz Vi-v4 WwB

D2

E

VvCi

I
LD

VC2 Vi
|

\'/r4 \'E} V4
| I

Vector ALUs

16 Wide x 32 bit
8 Wide x 64 bit

Fused Multiply Add

arallel Computing Group

Copyright © 2012 Intel Corporation. All rights reserved.

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER




Speeds and Feeds

* Processor

— ~1.1 GHz

— 61 cores

— 512-bit wide vector unit

— 1.074 TF peak DP
 Data Cache

— L1 32KB/core

— L2 512KB/core, 30.5 MB/chip
* Memory

— 8GB GDDR5 DRAM

— 5.5 GT/s, 512-bit*
* PCle

— 5.0 GT/s, 16-bit

TACG TEXAS ADVANCED COMPUTING CENTER



Advantages

* Intel’s MIC is based on x86 technology
— x86 cores w/ caches and cache coherency
— SIMD instruction set

* Programming for MIC is similar to programming for CPUs
— Familiar languages: C/C++ and Fortran
— Familiar parallel programming models: OpenMP & MPI
— MPI on host and on the coprocessor
— Any code can run on MIC, not just kernels
* Optimizing for MIC is similar to optimizing for CPUs
— “Optimize once, run anywhere”

— Our early MIC porting efforts for codes “in the field” are frequently
doubling performance on Sandy Bridge.

TACG TEXAS ADVANCED COMPUTING CENTER



Stampede Programming Models

* Traditional Cluster
— Pure MPI and MPI+X
* X: OpenMP, TBB, Cilk+, OpenCL, ...
Native Phi
— Use one Phi and run OpenMP or MPI programs directly

MPI tasks on Host and Phi

— Treat the Phi (mostly) like another host
* Pure MPI and MPI+X

 MPI on Host, Offload to Xeon Phi
— Targeted offload through OpenMP extensions
— Automatically offload some library routines with MKL

TACG TEXAS ADVANCED COMPUTING CENTER



Traditional Cluster

e Stampede is 2+ PF of FDR-connected Xeon E5
— High bandwidth: 56 Gb/s (sustaining >52 Gb/s)
— Low-latency

e ~1 us on leaf switch
e ~2.5 us across the system

* Highly scalable for existing MPI codes

* |IB multicast and collective offloads for
improved collective performance

TACG TEXAS ADVANCED COMPUTING CENTER



Native Execution

e Build for Phi with —mmic
e Execute on host
e ...or sshto micO and run on the Phi

e Can safely use all 61 cores

— Offload programs should stay away from the 615t
core since the offload daemon runs here

TACG TEXAS ADVANCED COMPUTING CENTER



Symmetric MPI

* Host and Phi can operate symmetrically as MPI
targets

— High code reuse
— MPI and hybrid MPI+X

* Careful to balance workload between big cores
and little cores

e Careful to create locality between local host,
local Phi, remote hosts, and remote Phis

 Take advantage of topology-aware MPI interface
under development in MVAPICH?2

— NSF STCI project with OSU, TACC, and SDSC

TACG TEXAS ADVANCED COMPUTING CENTER



Symmetric MPI

e Typical 1-2 GB per task on the host

* Targeting 1-10 MPI tasks per Phi on Stampede
— With 6+ threads per MPI task

TACG TEXAS ADVANCED COMPUTING CENTER



MPI| with Offload to Phi

* Existing codes using accelerators have already
identified regions where offload works well

* Porting these to OpenMP offload should be
straightforward

e Automatic offload where MKL kernel routines
can be used
— XGEMM, etc.

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ TEXAS ADVANCED COMPUTING CENTER



What we at TACC like about Phi

* Intel’s MIC is based on x86 technology
— x86 cores w/ caches and cache coherency
— SIMD instruction set

* Programming for Phi is similar to programming for CPUs
— Familiar languages: C/C++ and Fortran
— Familiar parallel programming models: OpenMP & MPI
— MPI on host and on the coprocessor
— Any code can run on MIC, not just kernels
* Optimizing for Phiis similar to optimizing for CPUs
— “Optimize once, run anywhere”

— Our early Phi porting efforts for codes “in the field” have doubled
performance on Sandy Bridge.

TACG TEXAS ADVANCED COMPUTING CENTER



Will My Code Run on Xeon Phi?

* Yes

e ... but that’s the wrong question
— Will your code run *best™* on Phi?, or

— Will you get great Phi performance without
additional work?

TACG TEXAS ADVANCED COMPUTING CENTER



Early Phi Programming Experiences at

TACC
* Codes port easily

— Minutes to days depending mostly on library
dependencies

* Performance can require real work

— While the software environment continues to evolve

— Getting codes to run *at all* is almost too easy; really
need to put in the effort to get what you expect

e Scalability is pretty good
— Multiple threads per core is really important
— Getting your code to vectorize is really important

TACG TEXAS ADVANCED COMPUTING CENTER



LBM Example

e Lattice Boltzmann
Method CFD code

— Carlos Rosales,
TACC

— MPI code with
OpenMP

* Finding all the right

routines to

parallelize is critical

Time (seconds)

100 [

10 [

Execution times KNC(B0,1.0GHz) vs SB(3.1GHz)

! ! ! oo ! ! ! T
e ........ ...... ..... ..... ..................... .......... NB 3lGHZ . ..
.................. bbb b .OLD KNC 1.0GHZ —%— -
S N P VO T UL . NEWKNC 1.0GHz——

OO SUSUUOUNE SRS SO SO ONN ON OO e o s
1 10 100
OMP Threads

TACC

THE UNIVERSITY OF TEXAS AT AUSTIN
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PETSc/MUMPS with AO

* Hydrostatic ice

sheet modeling 3D Geometric Multigrid code

* MUMPS solver (PETSc/MUMPS)
(called through | > ¢
PETSC) T |

e BLAS caII.s Eﬁi \F —
automatically 220 —— —+—
offloaded behind ® Y et
the scenes

THE UNIVERSITY OF TEXAS AT AUSTIN
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Publishing Results

 Published results about Xeon Phis should
include

— Silicon stepping (BO or B1)
— Software stack version (Gold)

— Intel Product SKU
(Intel Xeon Phi Co-processor SE10P)

— Core count: 61
— Clock rate (1.09 GHz or 1.1 GHz)
— DRAM Rate (5.6 GT/s)

TACG TEXAS ADVANCED COMPUTING CENTER



