
CS 380P Parallel Systems — Spring 2013 Programming Assignment #1
Parallel Prefix in Pthreads Due January 23, 2013

In this assignment, you will use Pthreads to implement a generalized parallel prefix framework. The primary goal
is to give you experience in using Pthreads on the TACC cluster, so you may work in pairs, andthis assignment will
not count much. You may also consult with other students—even those outsideyour pair—on this assignment, but
your team of two should write your own code, and you should acknowledge any help that you have received.

In addition to learning some basics of Pthreads, we hope thatthis assignment will give you an appreciation for the
power of the parallel prefix operation, so you will use your framework to solve two specific problems. The textbook
provides several examples of such problems on pages 117 and 118 (compute team standings, etc), but we encourage
you to show some creativity and solve some other problems with this framework.We will provide extra credit for
particularly creative uses of this framework.

You should produce a written report that describes the problem that you solved, your approach to solving this
problem (which for this assignment can be quite brief, sinceyou can cite the textbook), your method of testing your
code, any tricky or interesting aspects of your effort, and any insights that you have.

1 Details

You may write your Pthreads code in either C or C++, and you should run it on the TACC Lonestar cluster
(lonestar.tacc.utexas.edu), particularly if you wish to time your program (which we strongly encourage).
This cluster runs Linux and provides compute nodes with 8 Intel Nehalem processors and 48GB of RAM (sixteen of
the nodes have 144GB of RAM). Each node also has 2 nVidia GPUs,but for this assignment you will not need to
use these. You can login to this machine through ssh using your TACC username and password. If you have trouble
accessing this machine, please email the TA with your name and TACC username.

The webpagehttps://portal.tacc.utexas.edu/group/tup/user-guides/lonestar provides addi-
tional info about setting up your environment (shell, etc.), writing and building programs on Linux, and so on.

2 Hints

Before you get started, be sure to read the notes that the TA has posted on our Piazza page, which contains all sorts of
useful details and hints.

Figures 5.6 and 5.7 of the textbook provide sketches of your code. The code given in Figure 5.7 of the first print-
ing is incomplete; seehttp://www.cs.utexas.edu/users/lin/revfig/Fig5-7Corrected.pdf for
a correct version. For background on the Peril-L notation, read pages 88-100 (Chapter 4) of the textbook. Chapter 6
of the book provides background on Pthreads. For more details on Pthreads, visit the following web sites:

https://computing.llnl.gov/tutorials/pthreads/

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

We strongly recommend that you develop and debug your programs locally (on departmental or other linux sys-
tems) before moving on to Lonestar. You should be able to run POSIX threads on any of the departmental worksta-
tions, albeit with no true parallelism. If you need a UTCS account, please visit the following web site, and note that it
typically takes a day or two to get your account:

https://apps.cs.utexas.edu/udb/newaccount/

Lonestar is a batch system with possibly uncertain queue lengths. Please submit your jobs well in advance of the
deadline. For best results in this class, we recommend that you use the Development Queue, which places restrictions
on the running time of your program and the number of processors used in exchange for faster turnaround time. Again,
see the TA’s web page for more details.

As with any problem, we suggest that you start with a simple problem, perhaps prefix sum, before you move on to
other problems. We also suggest that you experiment with different number of threads and different data set sizes.

1



What to Turn In

• Explain your work by writing a brief statement that states what you did and how you did it. This is also your
chance to point out your clever tricks, your assumptions, and any difficulties that you encountered. Don’t forget
to acknowledge any collaborators.

• Explain your testing methodology. How confident are you thatyou have no race conditions or bugs?

• Provide some evidence that your program is correct by providing sample program output.

• Optionally document the performance of your program’s execution onlonestar.

• Turn in your brief statement, your documented program listing, any timing results, and any other additional
exposition that you deem relevant.

3 Late policy

Your assignment is due at11:59pmon the due date. Late submissions will be penalized 10% per day.

2


