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Abstract

In this paper we describe a parallel programming paradigm called
problem space promotion (PSP), a technique that increases paral-
lelism by reducing communication and synchronization. We present
four algorithms that exploit PSP and evaluate their communication
characteristics relative non-PSP solutions. Our analysis is aided
by the use of parallel algorithm notation that is concise, yet accu-
rately reflects parallelism and communication costs. Our analysis
illustrates circumstances under which the use of PSP is beneficial
and detrimental to performance, and experiments on the Cray T3E
attest to the validity of the analysis. We find that PSP can signif-
icantly improve the performance and scaling behavior of certain
computations, even when compared to existing high quality paral-
lel algorithms.

1 Introduction

Problem space promotion (PSP) is a parallel solution technique for
problems involving combinatorial interactions of array data. PSP
reformulates algorithms that operate over d-dimensional data as a
computation in a d0-dimensional problem space, where d0 > d. The
goal of PSP is to increase the parallelism of the solution by reducing
the algorithm's communication and synchronization requirements.
For instance, consider an algorithm in which all n elements of a
1-dimensional array require pairwise interactions. Figure 1(a) il-
lustrates a straightforward parallel solution that cyclically shifts a
copy of the array, so that after n shifts, all n2 interactions have been
considered. In contrast, the PSP solution illustrated by Figure 1(b)
promotes the problem space to a 2-dimensional n� n space and
uses the 1-dimensional array as the rows and columns of this space,
thereby implicitly representing all n2 comparisons without an iter-
ative loop.

As a concrete example of problem space promotion, consider
the following PSP algorithm for sorting a vector, V , of n unique
numbers.
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C  V T �V compare all pairs, (1 if true, 0 if false)
P  Sum cols(C) column sums give sorted index position
V  V [P] permute elements of V into order

This solution, which requires quadratic work, is an instance of
problem space promotion, because it performs all n2 comparisons
simultaneously. Though it accepts 1-dimensional input, it performs
operations in terms of 2-dimensional arrays, e.g., array C. This
is in contrast to an algorithm which iteratively transforms the 1-
dimensional input directly. The question of interest here is, Can
problem space promotion be an effective technique for writing effi-
cient parallel programs?

The chief advantage of PSP in the sorting example, above, is
that it specifies that all comparisons can be performed simultane-
ously, and that all columns can be summed independently. Specif-
ically, a parallel implementation of this algorithm broadcasts the
data and its transpose to the processors, which are conceptually
arranged in a 2-dimensional mesh, allowing them to work inde-
pendently of each other with little or no synchronization. This
yields much greater concurrency than, say, the odd-even transposi-
tion sort [11], which requires the processors to synchronize repeat-
edly throughout the computation. It is this increase in parallelism
with the simultaneous relaxation of synchronization constraints that
motivates interest in PSP algorithms. The fact that PSP algorithms
are frequently specified in a clean and elegant form is a significant
added advantage.

There are apparent disadvantages, too. First, it appears that
storage requirements grow to the size of the promoted problem
space, e.g., the C array is n� n. In fact, this storage can be elimi-
nated, restoring the storage requirements to the order of the prob-
lem input. Second, there is a potential increase in the amount
of work required to compute the result. This problem has two
forms. One form concerns non-asymptotic complexity, such as
missed opportunities to exploit problem symmetry, e.g., the sort
above could perform n2=2 comparisons. The other form concerns
asymptotic complexity, e.g., for sorting, Θ(n log n) comparisons
suffice. Though this may be a potential shortcoming with PSP
solutions, a suitable complexity model for practical portable par-
allel computations remains to be worked out, leaving it unclear
whether facts like “Θ(n log n) comparisons suffice” lead to signif-
icantly more efficient parallel solutions. Issues of synchronization
and communication complexity may dominate work complexity for
certain algorithms.

In this paper, we make the following contributions.

� We introduce a new parallel solution technique called prob-
lem space promotion for increasing parallelism in certain
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Figure 1: Illustration of problem space promotion. (a) Conven-
tional solution versus (b) problem space promotion.

computations.

� We analytically and experimentally show its potential perfor-
mance improvement.

� We demonstrate the use of the ZPL parallel programming
language as an algorithmic notation to assist in evaluating
the parallel performance of algorithms.

The remainder of this paper is organized as follows. The next
section introduces the ZPL-based notation we use to describe al-
gorithms. Section 3 describes problem space promotion by way of
four computations. We evaluate the performance implications of
PSP both analytically and experimentally in Section 4. Section 5
considers related work, and the final section gives conclusions.

2 Brief Summary of ZPL

In order to describe and study problem space promotion we adopt
an algorithmic notation based on the ZPL parallel, array-based pro-
gramming language [20, 23]. The notation has the advantage that
it is succinct for presentational purposes, it can be executed on
parallel computers with excellent performance [6, 17], and it ex-
poses issues of parallelism and communication overhead without
requiring the programmer to manage complex details. This section
briefly introduces the core components of the ZPL language and
its performance model. Complete treatments are available in the
literature [20, 5].

Basics. ZPL is an imperative programming language supporting
all the usual (i.e., Fortran, C or Pascal) data types, scalar opera-
tors, and control structures. Like Fortran 90 and APL, it is an array
language, permitting atomic operation on whole arrays or subar-
rays. ZPL is distinguished from other array languages by its use of
regions in describing parallel, array computations [7].

Regions. Regions represent index sets. The region
[1..n,1..n] is a 1-origin n� n index set, while [1..n,1]
is a subregion describing its first column, and [1,1..n] is a sub-
region describing its first row. Regions can be named and referred
to symbolically as follows: region R = [1..n,1..n]. Re-
gions are used in declarations to specify the size and shape of arrays
as follows: var A,B,C: [R] float. These arrays will have
an element for each index in region R.

Regions are also used to determine the indices of arrays in-
volved in an array statement's computation. Specifically, a region
preceding a statement establishes the extent of all array computa-
tions in its dynamic scope. For example, the following statement
operates only over the first row of arrays B and C.

[1,1..n] C := 2*B;

(c)

P1

P3

P2

P4
(a) (b)

Figure 2: Illustration of flood operator. (a) A column of an array,
(b) a replicated form of the column across the problem space, and
(c) the actual allocation of memory to represent the flooded data
across 4 processors.

When a new region scope is entered, it overrides the enclosing re-
gion of the same rank. If a dimension is left blank, its indices are in-
herited from the corresponding dimension of the enclosing region.
For example, region [1,] in the context of region [1..n,1..n]
has the indices of region [1,1..n].

ZPL supports a number of operations on regions and arrays.
The latter provide array-level computations and permit the indices
for a particular array reference to be adjusted with respect to the
enclosing region scope. We summarize several array operators be-
low.

Parallel Pre�x. ZPL includes the parallel prefix operations, re-
duction and scan. For example, [R] s:=+<<B is the sum reduc-
tion of the elements of array B described by the indices in region R.
There are versions of reduction and scan operators for other arith-
metic and logic operations (e.g., product, max, logical or). For
arrays of rank greater than one, it is possible to perform partial re-
ductions on subarrays. Thus, assuming B and C are 2-dimensional
arrays and R is a 2-dimensional region as defined above, the fol-
lowing statement reduces each row to its sum and stores the result
in the third column of C.

[1..n, 3] C := +<<[R] B; -- add rows

The two regions serve the following purposes: The n�n source
region, R, encoded in the reduction operator, describes which ele-
ments of the operand will participate in the reduction, while the
column result region, [1..n,3], preceding the statement indi-
cates where the result is to be stored. In ZPL, the result region's
degenerate dimensions (i.e., dimensions representing a single in-
dex) with respect to the source region indicate which dimensions
are reduced.

Replication. Flooding is the logical dual of reduction, providing
an abstraction for replication. Thus, the following expression, il-
lustrated by Figures 2(a) and (b), replicates the first column of B
across the second dimension using the flooding operator (>>).

>>[1..n,1] B

The region associated with a flood operator, in this case
[1..n,1], specifies what portion of the array operand is to be
replicated. The effect of the expression, above, is to create a logical
2-dimensional array with a conceptually infinite number of n ele-
ment columns. Floods and reductions can be combined to express
computations such as the construction of the permutation vector, P,
from the sort computation in the introduction. Assume that V and
Vt are row and column vectors, respectively, and that region R is
as defined above.
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[1,1..n] P := +<<[R](>>[,1] Vt) <= (>>[1,] V);

Recall that empty ranges in a region inherit the range of the enclos-
ing region, thus [,1] in the context of region R ([1..n,1..n])
is equivalent to [1..n,1]. The statement above assigns to P the
column-wise reduction of the n2 elements created by comparing
(using <=) the result of flooding V transpose (Vt) and V. A key
property of flooding that is exploited in this computation is that
only a single copy of a flood's defining values are stored on each
processor, as illustrated by Figure 2(c). Thus, this computation
need not create an n2 temporary array, despite the fact that it com-
putes over such a logical array. This is a key source of efficiency
for PSP computations in ZPL.

Shifting. To reference a shifted form of an array, the shift oper-
ator (@) is used with an integer vector that gives the direction and
magnitude of the translation in each dimension. Thus, the follow-
ing statement assigns the elements at indices 0 through n� 1 of
array Y to indices 1 through n of array X.

[1..n] X := Y@(-1);

Arbitrary data movement. ZPL provides a gather operator (#),
permitting arbitrary data movement. Encoded in brackets follow-
ing the gather operator is an integer array for each dimension of
the result, specifying the source of each element. The only gather
operation needed in this paper is the transpose, which uses ZPL's
constant arrays 1 and 2 to specify dimensional interchange. In
general, the value of array k at index i1; : : : ; id is ik. Thus, the fol-
lowing statement performs the transpose on V needed to compute
Vt: [1..n,1] Vt := V#[ 2, 1].

Performance Model. ZPL supports a performance model that
permits programmers to reason about the parallelism and commu-
nication overhead in their codes [5]. In ZPL, all arrays are aligned.1

There are two main implications of this: (i) the data elements of two
different arrays at index (i; j) are guaranteed to reside on the same
processor, and (ii) the data elements, e.g., at indices (i; j) and (i;k)
reside in the same processor row when the arrays are distributed
across a virtual processor grid.

Given this alignment, each array operator induces a particular
form of interprocessor communication. The shift operator (@) re-
sults in simple point-to-point communication between neighboring
processors in the grid. The flood operator (>>) results in a broad-
cast often along one dimension of the grid. The gather operator
(#) potentially results in an arbitrary redistribution of data. State-
ments that contain no array operators require no communication.
Despite the high-level nature of the ZPL notation, the programmer
can reason about the implementation of their code on a parallel ma-
chine. We will exploit this fact in our discussion of problem space
promotion.

3 Algorithms Exploiting Problem Space Promotion

Below, we present PSP solutions to common computations in
preparation for analyzing them in the next section. First, we ab-
stractly describe the structure common to all PSP algorithms. Then,
we present four computations given in both a conventional and PSP
form. We use the ZPL form from the previous section to augment
the algorithm descriptions. In these codes, declarations are omit-
ted, because the type and size of the arrays is clear from context;
and by convention, array variables are capitalized, while scalars are
not.

1In fact, not all arrays need be aligned, only those that are used together, but the
simplification is sufficient for this presentation.
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Figure 3: Summary of the phases of problem space promotion. (a)
1-dimensional input, (b) orientation phase, (c) replication phase,
(d) computation phase, (e) collapse stage, and (f) permutation step
performed by PSP sorting algorithm.

3.1 The Structure of PSP Algorithms

There are four stages common to all PSP algorithms: (i) data orien-
tation, (ii) data replication, (iii) computation, and (iv) data collapse.
For this discussion we assume that the indices of the promoted d-
dimensional problem space are block distributed across a concep-
tual d-dimensional mesh of processors, and the input data initially
occupies a lower dimensional slice of the d-dimensional problem
space. The data orientation stage orients the input data with respect
to the problem space. For example, in the sorting example of the
introduction, the input vector is initially a row of the problem space
(Figure 3(a)), so it must be copied and transposed to occupy a col-
umn (Figure 3(b)). On a parallel machine, data orientation requires
a nontrivial, yet regular, amount of interprocessor communication.
In ZPL we realize orientation via the gather operator (#).

Next, the properly oriented data is replicated so that data fills
the entire problem space (Figure 3(c)). In ZPL we realize replica-
tion via the flood operator (>>). Note that on a given processor the
replication is only conceptual, for only the defining values of an
array need to be represented, as illustrated by Figure 2(c).

After replication, the computation stage begins, during which
each processor computes entirely on local data (Figure 3(d)). No
communication or synchronization is required during this stage.
Depending on how the programmer phrases the computation phase,
problem space sized arrays may be created (see the n-body code,
below). We have previously developed compiler techniques by
which this storage requirement is eliminated via statement fusion
and array contraction [16]. The compiler can consistently eliminate
the higher-dimensional storage requirement in PSP codes, because
it folds the local accumulation portion of the collapse stage (below)
into the computation stage.

Finally, the collapse stage performs a reduction along one or
more dimensions of the problem space in order to gather the re-
sult of the computation stage into a lower dimensional structure
(Figure 3(e)). In ZPL we use the reduction operators (e.g., +<<
or max<<) to collapse. Some algorithms may perform additional
operations at this point to compute the final result. For example,
the sorting code permutes the input array according to the result
of the collapse stage (Figure 3(f)). A closer inspection of Figure 3
reveals how the input sequence (A, C, B, D) is sorted according to
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[1..n] begin -- odd stage
-- swap if I@right value greater
if (_1 % 2) then -- odd indices
if (I > I@right) then
I := I@right;

end;
else -- even indices

if (I < I@left) then
I := I@left;

end;
end;

end;

(a)

[1,1..n] begin -- assume R = [1..n,1..n]
-- assume row 1 of V contains input
-- orient data (transpose row into col)

[1..n,1] Vt := V#[_2,_1];
-- replicate, compute and collapse
P := +<<[R] (>>[1,]V <= >>[,1]Vt);
-- permute V data according to array P
V := V#[_1,P];

end;

(b)

Figure 4: Sorting. (a) Conventional (odd stage from odd-even
transposition sort) and (b) PSP implementations.

the algorithm from the introduction.
In the following sections, we examine conventional and PSP so-

lutions to various computations. We restrict our analysis to giving
work complexity, the time complexity of the computation executing
on a single processor. The bulk of the discussion of communication
complexity is left for Section 4.

3.2 Sorting

We begin by considering sorting. Given a sequence of n numbers,
A = ha1;a2; : : : ;ani, the permuted sequence ha0

1;a
0

2; : : : ;a
0

ni of A is
a sorted form of A when a0

1 � a0

2 � : : :� a0

n.
Odd-Even Transposition Sort is a parallel sorting algorithm due

to Demuth [11]. It iterates for dn=2e steps, each of which is com-
prised of two stages. The first stage, which appears in Figure 4(a),
compares in parallel each odd element to its right neighbor. If the
former is greater than the latter, the two values are exchanged. This
code exploits shattered control flow, i.e., array-based control flow,
in order to selectively compute on elements of array I. The sec-
ond stage performs the same comparison/exchange for the even
elements. Each of the n=2 iterations performs Θ(n) comparisons
resulting in Θ(n2) work complexity.

A PSP sorting algorithm appears appears in Figure 4(b).2 After
a transpose of the input data from a row to a column, the algorithm
uses the flood operator to broadcast the n input elements across the
rows and columns of the 2-dimensional problem space. Index (i; j)
of the problem space contains the ith and jth elements of the input.
As a result, all n2 comparisons for the sort my be performed com-
pletely in parallel. The results of each comparison (a 1 or a 0) are
collapsed by summing along each column, producing a single row,
P. The array P is then used to permute the input array resulting in
a sorted form of array V. Because the algorithm computes over a 2-
dimensional problem space, it has Θ(n2) work complexity. Similar
algorithms have been described as constant time sorting algorithms
for unrealizable CRCW machines [3, 22].

2For simplicity we assume that the input sequence contains no duplicates. The
structure of the algorithm is unchanged when extended to handle duplicates.

[1..n] begin
S := 0;
for i := 1 to n do

[i..n] S += ((>>[i] V) = V);
end;
-- frequency of mode
count := max<< S;
-- get actual mode value
mode := max<< ((count = S) * V);

end;

(a)

[1,1..n] begin -- assume R = [1..n,1..n]
-- assume row 1 of V contains input
-- orient data (transpose row into col)

[1..n,1] Vt := V#[_2,_1];
-- replicate, compute and collapse
S := +<<[R] (>>[1,]V = >>[,1]Vt);
-- frequency of mode
count := max<< S;
-- get actual mode value
mode := max<< ((count = S) * V);

end;

(b)

Figure 5: Mode calculation. (a) Conventional and (b) PSP imple-
mentations.

3.3 Mode Calculation

Next, we consider the mode computation. Given a set of n samples,
A = fa1;a2; : : : ;ang, the mode, m, is the element of A that occurs
most frequently.

The algorithm in Figure 5(a) extends the obvious serial solu-
tion to the parallel domain. The algorithm broadcasts the elements
of the input array, one at a time, to all the other processors. Each
processor compares the broadcast value with its local values. If
they are the same, a counter associated with the local value is in-
cremented. After iterating over all n elements, a maximum reduc-
tion is performed to find out how many times the most frequently
occurring element occurs. Finally a maximum reduction is used
to find the value that actually occurs most frequently. There are n
iterations, each containing array operations of cost Θ(n), resulting
in Θ(n2) work complexity.

A PSP mode calculation algorithm appears in Figure 5(b). This
algorithm is similar to the sort code, except that equality is used
for comparison. A sum reduction in the column i thus indicates
the number of occurrences of the value in input position i. The
computation over the 2-dimensional problem space results in Θ(n2)
work complexity.

3.4 Matrix Product

Matrix product is a fundamental operation from linear algebra. The
product of an m�s matrix A and an s�n matrix B is an m�n matrix
C whose elements are

ci j =
s

∑
k=1

aik�bk j; 1� i�m, 1� j � n. (1)

For simplicity, we assume that n = m = s. The SUMMA1 algo-
rithm, in Figure 6(a), and its variants have been been shown to give
excellent parallel performance [21]. The algorithm contains n iter-
ations. In iteration i, column i of array A and row i of array B are
replicated across the rows and columns, respectively, of the prob-
lem space. The resulting array, C, is incremented by the element-
wise product of the two replicated arrays. After n iterations, array
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[R begin -- assume R = [1..n,1..n]
C := 0.0;
-- for each column in A and row in B
for i := 1 to n do

C += ((>>[,i] A) * (>>[i,] B));
end;

end;

(a)

-- assume IK = [1..n,1 ,1..n]
-- KJ = [1 ,1..n,1..n]
-- IJ = [1..n,1..n,1 ]
-- IJK = [1..n,1..n,1..n]

-- orient the A and B matrices
[IK] At := A#[_1,_3,_2];
[KJ] Bt := B#[_3,_2,_1];

-- replicate, compute and collapse
[IJ] C := +<<[IJK] ((>>[IK] At) * (>>[KJ] Bt));

(b)

Figure 6: Matrix product. (a) Conventional (SUMMA1) and (b)
PSP implementations.

C contains the matrix product of A and B. The work complexity of
this algorithm is Θ(n3).

The PSP solution to matrix product appears in Figure 6(b).
It adds another dimension to the problem space so that all n3

products are implicitly represented in the 3-dimensional problem
space. Assume that the input matrices, A and B, initially occupy
a 2-dimensional slice across the first two dimensions of the prob-
lem space. First, they must be oriented so that A occupies a 2-
dimensional slice across the first and third dimensions and B occu-
pies a slice across the second and third dimensions. The oriented
copies of the data are stored in arrays At and Bt. Next, arrays At
and Bt are replicated across the second and first dimensions, re-
spectively. An element-wise product is taken in the 3-dimensional
space, and a sum reduction along the third dimension is assigned to
array C, resulting in the matrix product of A and B. The PSP algo-
rithm in ZPL has the additional benefit that the code very closely
resembles the textbook definition of matrix product, equation (1).
The work complexity of this code is Θ(n3) due to the scalar product
performed in the 3-dimensional problem space.

3.5 N-Body Simulation

An n-body computation simulates the motion of masses—such as
astronomical bodies—over time given an initial configuration de-
scribing the position, velocity and mass of each body. At each
time step, the gravitational attraction of each body on every other
body is calculated to determine the subsequent configuration of the
system. Though algorithms exist that ignore interactions between
distant bodies, certain contexts requires that all n2 interactions be
considered.

Figure 7(a) contains the core of a conventional n-body code that
simulates the motion of bodies in a 3-dimensional space. It calcu-
lates the acceleration (Acc) in each dimension imparted on each
body by all the other bodies. The body positions and masses are
copied into temporary arrays (RollPos and RollMass) which
are cyclically shifted n�1 times. After each shift, the acceleration
imparted by the bodies in the Roll arrays are calculated on the
bodies in the input array, and the result is accumulated into Acc.
Each array operation computes over n elements, and there are n�1
iterations, resulting in Θ(n2) work complexity.

Figure 7(b) contains a PSP equivalent of the code in Figure 7(a).

[R] begin -- assume R = [1..n]
Acc[] := 0.;

RollPos[] := Pos[];
RollMass := Mass;
for iter := 1 to (n-1) do

[next of R] wrap RollPos[], RollMass;

RollPos[] := RollPos@next[];
RollMass := RollMass@next;
Delta[] := Pos[] - RollPos[];
DistSqr := sqr(Delta[X])+sqr(Delta[Y])+

sqr(Delta[Z]);
Dist := sqrt(DistSqr);
DistInv := 1.0/(DistSqr*Dist);
Acc[] -= RollMass*Delta[]*DistInv;

end;
end;

(a)

[R] begin -- assume R = [1..n,1..n]
[1..n,*] begin -- orient and replicate

AccCol[] := AccRow[]#[_2,_1];
VelCol[] := VelRow[]#[_2,_1];
PosCol[] := PosRow[]#[_2,_1];

end;

-- compute
Delta[] := PosCol[] - PosRow[];
DistSqr := sqr(Delta[X])+sqr(Delta[Y])+

sqr(Delta[Z]);
-- special case the diagonal
if (_1 = _2) then
DistInv := 0.0;

else
Dist := sqrt(DistSqr);
DistInv := 1.0 / (DistSqr * Dist);

end;

-- collapse
[*,1..n] AccRow[] := +<<[R] (MassCol * Delta[] *

DistInv);
end;

(b)

Figure 7: N-body simulation. (a) Conventional and (b) PSP imple-
mentations.

Arrays PosRow, VelRow, and AccRow contain the initial config-
uration. Column oriented copies of these arrays are created. This
code exploits a feature of ZPL where arrays can be defined in such
a way that assignments to them are implicitly replicated across a
dimension, thus achieving the replication stage. The distance be-
tween all pairs of bodies is found and used to calculate the accel-
erations due to each pair of bodies, which are then reduced into
AccRow. This algorithm performs a constant number of opera-
tions over a 2-dimensional problem space, thus it has Θ(n2) work
complexity. Note that a number of arrays in this code, such as
Delta, DistSqr, Dist and DistInv, are full 2-dimensional
arrays. The ZPL compiler generates a single loop nest to imple-
ment all the statements that contain these references and contracts
each of these arrays to a scalar value [16]. As a result, this code
only requires memory linear in the number of bodies.

4 Analysis

We begin this section with a discussion of the performance im-
plications of problem space promotion. Next, we experimentally
evaluate its performance impact on the computations described in
the previous section.
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4.1 Discussion

The previous section presented two algorithms to solve each prob-
lem, one conventional—which we call the base solution—and one
PSP. Below, we discuss the expected performance of the two codes
by considering the issues of communication complexity, the nature
of the communication, and early termination.

Communication complexity. Because each pair of algorithms
from the previous section has equivalent work complexity, the base
and PSP solutions are distinguished by their communication com-
plexity. All the base algorithms contain Θ(n) communication oper-
ations. Specifically, sort and n-body use Θ(n) point-to-point near-
est neighbor communication operations (@s), and mode and ma-
trix multiplication, use Θ(n) broadcast operations (>>). The al-
gorithms that exploit PSP, on the other hand, require a constant
number of communication operations. The orientation phase trans-
poses a row or a plane in the higher dimensional problem space via
the gather operator (#). The replication phase broadcasts the data
across the higher dimensional problem space via the flood operator
(>>). The collapse phase performs reduction(s) across a dimen-
sion of the problem. Some of the algorithms, such as sort, also re-
quire an additional constant number of miscellaneous communica-
tion operations. In all four cases, PSP potentially improves parallel
performance by decreasing the communication complexity without
adversely affecting work complexity. Furthermore, because com-
munication synchronizes the processors, PSP reduces the number
of times that the processors must synchronize, permitting the entire
computation phase to proceed in parallel.

Nature of the Communication. In addition to the number of
communication operations, the type of communication operation
must also be considered. Specifically, nearest neighbor shifts are
Θ(1) operations, while for p processors, broadcasts and reductions
are generally regarded as Θ(log p) operations, though specialized
hardware and p small relative to n render them nearly constant as
well. Despite the fact that PSP algorithms use more expensive com-
munication operations (e.g., gathers, broadcasts and reductions), it
is unlikely on any modern parallel architecture that Θ(n) nearest
neighbor operations will be less costly than Θ(1) broadcast or re-
duction operations.

Furthermore, PSP often increases the volume of communicated
data. For example, the base mode computation only broadcasts n
words. The PSP mode computation, on the other hand, transposes
n words, broadcasts 2n words, and performs a reduction of n words.
Despite this increased volume, we do not expect this to limit PSP
performance, because PSP algorithms require fewer communica-
tion operations, and we expect the synchronization and startup cost
of initiating the communication to be the dominant costs.

Early Termination. There are certainly circumstances where
problem space promotion may be inappropriate. Problem space
promotion transforms an iteration space into a dimension of the
problem space. As a result, we must know a priori how many iter-
ations the loop contains. Moreover, some base algorithms may be
able to terminate the loop early, which cannot be trivially accom-
plished in PSP since the loop has been transformed into part of the
problem space. For example, the odd-even transposition sorting al-
gorithm can be modified to terminate early if it finds that the data
is already sorted. Similarly, the base mode algorithm can terminate
early if there are j values left to be tested and a mode of at least j
occurrences has already been found. For both examples, there is a
tradeoff to be considered: Will the expected input allow the algo-
rithm to terminate suitably early to compensate for the algorithm's
inferior communication complexity?

Problem space promotion can be extended to allow early termi-
nation in certain cases by repeatedly going through all four phases,
wherein the added dimension to the problem space contains only a
portion of the problem. For example, in the mode calculation, the
orientation phase could place only half the values across the extra
dimension, thus finding the mode of half the data. If there are more
occurrences of the mode than unconsidered remaining data, the al-
gorithm terminates. Otherwise, it considers half of the remaining
data, accumulating the results with the previous iteration. The pro-
cess continues for at most logn steps. Naturally, the communica-
tion complexity is worse than a pure PSP approach, but it allows for
early drop-out. Computations such as n-body simulation or matrix
product cannot exploit this technique, but the base solutions cannot
benefit from early termination, either.

4.2 Experimentation

In order to verify the analysis of the previous section, we mea-
sure the performance of the codes from Section 3 on the Cray T3E.
All codes are written in ZPL and compiled with the ZPL com-
piler [23]. Prior work has demonstrated that this is a high qual-
ity compiler. The code it produces has performance comparable
to C with MPI [18, 6] and generally outperforms HPF [19, 17].
The ZPL compiler aggressively optimizes communication for over-
lap with computation [9]. Figure 8 contains two speedup curves
for each problem introduced in Section 3. The two curves give
speedup for the base and PSP solutions. Both speedup curves are
calculated with respect to the same sequential execution time. As
a result, greater speedup implies faster performance, allowing the
two curves to be compared directly.

The PSP versions of the codes all have significantly better scal-
ing behavior than the base solutions. This confirms our prediction
that the improved communication complexity due to PSP improves
overall performance. The mode and sort codes are dominated by
communication (i.e., they contain relatively few floating point oper-
ations). As a result, the speedup of the base solutions suffer greatly
from the many communication operations they contain. PSP sig-
nificantly improves these codes. The n-body code spends a rela-
tively larger portion of the total execution time executing floating
point code, so both the base and PSP solutions scale better than
mode and sort. We discuss the matrix product codes below. Also
note that as the number of processors increases, the relative cost
of communication versus computation increases, and the benefit of
PSP increases.

We cannot conclude from the graphs in Figure 8 that the PSP
mode calculation and sorting algorithms are optimal for parallel
machines. Instead, we conclude that by applying problem space
promotion to an existing solution we can significantly improve par-
allel performance by increasing the degree of parallelism. The ma-
trix product codes are particularly noteworthy, because the PSP so-
lution outperforms the SUMMA1 algorithm [21], which is regarded
as a very high quality parallel algorithm. The relatively poor scal-
ing behavior of SUMMA1 led to variations on this algorithm that
broadcast several rows and columns at a time, achieving some of
the benefits of PSP.

These graphs do not highlight the fact PSP algorithms have dif-
ferent cache behavior because of how they traverse the input arrays.
It would appear that this is a second order effect, so we leave it for
future work. We expect to find that PSP algorithms have inferior
cache behavior but that they will benefit from blocking techniques.

5 Related Work

The problem space promotion technique can be exploited in pro-
gramming languages and systems other than ZPL, for example, C
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Figure 8: Speedup of base and PSP codes on the Cray T3E.

with MPI (message passing interface). In this sense, PSP is a lan-
guage neutral parallel solution technique. On the other hand. not all
languages permit programmers to reason about the communication
costs of their applications. Presumably, a compiler for HPF [14] or
a parallel implementation of APL [4, 13, 8] could exploit the ben-
efits of PSP, but they do not offer a performance model. Ngo has
evaluated the role of performance models in ZPL and HPF [19].
He found that a performance model is essential in producing con-
sistently high quality programs across different machines and com-
pilers. ZPL provides an explicit performance model, facilitating
the analysis in this paper. Previously, we have described how the
ZPL performance model is used to evaluate implementation alter-
natives [5].

Problem space promotion is related to a standard technique
used by APL programmers to write “one-liners” that perform com-
putation without control flow [15]. In APL, outer product is used to
convert the logical iteration space to an array. Thus, for example,
the sorting operation given in the introduction is expressed as

V[+/[1]V�.�V]

where the outer product (V�.�V) creates a square array of 0s and
1s that is then sum reduced (+/[1]) in one dimension to produce
the permutation vector to index the array. Historically, approaches
similar to PSP have been used to avoid expensive-to-interpret iter-
ative solutions, and we are not aware that any APL interpreter or
compiler takes advantage of the special structure of this computa-
tion.

PSP-like solutions to specific problems have appeared in the
literature. For example, Aggarwal et al. analyze the communica-
tion complexity of a 3-dimensional matrix multiple algorithm in
the context of the LPRAM (local-memory parallel random access
machine) model [2], and Agarwal et al. evaluate a 3-dimensional

matrix multiple algorithm on the IBM SP2 [1]. They do not ex-
plore the work as a general solution technique.

Researchers have proposed parallel machine models in an effort
to understand and predict performance. The LogP machine model
is a well studied model intended to accurately represent real paral-
lel computers and serve as a basis for algorithm design [10]. It has
been applied, for example, to sorting algorithms on the
CM-5 [12], but the model's highly parameterized nature casts doubt
on its portability. For example, in a LogP analysis of a PSP code,
the underlying implementation of the collapse stage (a reduction)
on a particular machine would need to be modeled. A ZPL analysis
(and implementation) abstracts these machine specific details.

6 Conclusion

Careful consideration of the costs of computation and communi-
cation on real parallel computers facilitates the development of
unique and beneficial algorithmic solution techniques. In this vein,
we have developed a technique for increasing parallelism, called
problem space promotion (PSP). We have described the technique
abstractly and in terms of four specific computations with the ZPL
parallel programming language, and we have analyzed these pro-
grams' expected performance on a real parallel machine using ZPL.
Experiments on the Cray T3E have confirmed the analysis, demon-
strating that PSP is a promising technique for increasing paral-
lelism. Though we have represented and implemented the sample
applications in ZPL, PSP is a general solution technique that may
be applied in other parallel programming contexts. In the future, we
will formalize our ZPL evaluation and analysis techniques, taking
steps toward the goal of developing a practical and useful theory
for parallel complexity analysis.
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