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C H A P T E R  3 3  

Using Mixin Technology to Improve Modularity 

by Richard Cardone and Calvin Lin 

 

In object-oriented languages, aspects can be defined by generalizing 

the idea of a class to that of a mixin.  Mixins, which can be implemented as 

generic types, become aspects when they contain code for multiple classes.  

In this chapter, we describe mixins and we explain how mixins can be used 

to define aspects.  We demonstrate the flexibility of mixin programming by 

prototyping a graphical user interface library that can be configured to run 

on dissimilar devices.  We describe additional language and compiler sup-
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port that increases the effectiveness of mixin programming.  We conclude by 

proposing some new ideas about how mixins, and generic types in general, 

can be better supported in object-oriented languages. 

33.1. INTRODUCTION 

One approach to reducing the cost of software is to make software easier to 

reuse and, in doing so, to reduce the risk and expense of developing new ap-

plications.  If existing software can be reused, then the cost of developing 

and maintaining new code can be significantly reduced.  This ability to reuse 

code depends on two properties:  modularity and easy composition.  Modu-

larity allows us to separate concerns  [26], making code easier to understand, 

maintain, and treat as a unit.  Easy composition allows us to combine the ca-

pabilities of different code modules in different applications. 

Unfortunately, today’s object-oriented languages, such as Java, are lim-

ited in their ability to modularize and compose code.  Modularity is limited 

because the basic unit of encapsulation and reuse is the class.  Once the or-

ganization of a class hierarchy is fixed, it is always possible to define new 
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features whose implementations crosscut the existing set of classes.  It is 

common for features that add global properties, such as security, thread 

safety, fault tolerance, or performance constraints, to affect code in multiple 

classes.  It is difficult to encapsulate such features in a single class.  Instead, 

object-oriented programs generally consist of sets of collaborating classes 

 [15], and changes to one class often require coordinated changes to others. 

Current object-oriented languages are also limited in their ability to 

compose features.  Java’s support for composition depends primarily on sin-

gle inheritance and subtype polymorphism.  These mechanisms do not scale 

well when there are a large number of features.  For example, there are three 

possible ways to organize two features, A and B, into classes:  (1) put them 

in the same class, (2) make A a subclass of B, or (3) make B a subclass of A. 

 

 A+B 

B

A

A 

B 

(1) (2) (3) 
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Each choice has different implications regarding the composition of A and B.  

For example, the first two choices force B to be included whenever A is in-

cluded.  Thus, by forcing the programmer to choose a single fixed class hier-

archy, Java makes it difficult to compose a collection of features in an or-

thogonal manner.  As the number of features grows, this problem becomes 

more severe, because the number of possible feature combinations grows 

rapidly, but the number of feature combinations that can be practically sup-

ported does not. 

This chapter describes how mixins  [8], a kind of generic type, can im-

prove the flexibility of Java class hierarchies, thereby improving the ability 

to modularize code and compose features.  The purpose of this chapter is 

threefold.  First, we provide an introduction to mixin programming.  We de-

scribe our mixin extension to Java and the additional language support that 

we implemented to increase the effectiveness of programming with mixins.  

Second, to give a concrete example, we summarize our previously published 

evaluation  [12] of how mixins allow us to build customizable GUI libraries.  

In particular, we explain how a nested form of mixins, called mixin layers 
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 [27] [28], can be used to implement a configurable GUI that runs on plat-

forms with widely dissimilar capabilities, such as cell phones, PDAs, and 

PCs.  We also show how mixin layers support the implementation of cross-

cutting features, so mixin layers can be thought of as aspects  [23].  Third, we 

propose a new approach of integrating mixins into object-oriented type sys-

tems and a new way of reconciling the implementation tradeoffs inherent in 

parametric polymorphism. 

33.2. MIXIN TECHNOLOGY 

Our approach to increasing reuse is to build into programming languages 

better support for modularization and composition.  To test this approach, we 

have developed the Java Layers (JL) language  [11] [20], which extends the 

compositional capability of Java.  

Java Layers extensions include support for constrained parametric 

polymorphism  [10] and mixins.  Parametric polymorphism allows types to be 

declared as parameters to code.  Parametric polymorphism enhances reuse 

by allowing the same generic algorithm to be applied to different types; the 
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collection classes in C++’s Standard Template Library  [31] are an example 

of this kind of reuse.  JL’s implementation is similar to C++’s templates, but 

in keeping with most proposals  [1] [9] [19] for adding generic types to Java, 

JL allows type parameters to be constrained. 

Mixins are types whose supertypes are specified parametrically.  Mix-

ins further enhance reuse over non-mixin parametric polymorphism by al-

lowing the same subtype specialization to be applied to different supertypes.  

We give an example of mixin reuse in Section 33.2.1.   

Mixin layers  [27] [28] are a special form of mixins that can be used to 

coordinate changes in multiple collaborating classes.  Mixin layers are mix-

ins that contain nested types, which can themselves be mixins.  Fidget, our 

GUI framework described in Section 33.3, is built using mixin layers. 

33.2.1 Mixins 

The term mixin was first used to describe a style of LISP programming that 

combines classes using multiple inheritance  [21] [24].  Since then, the mixin 

concept has evolved to be that of a type whose supertypes are declared pa-
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rametrically  [8] [32].  We use the term in this sense and limit ourselves to 

languages such as Java that support single inheritance of classes.  JL sup-

ports mixins and other generic types by implementing parametric classes and 

interfaces. 

Mixins are useful because they allow multiple classes to be specialized 

in the same manner, with the specializing code residing in a single reusable 

class.  For example, suppose we wanted to extend three unrelated classes–

Car, Box and House–to have a “locked” state by adding two methods, lock() 

and unlock().  Without mixins, we would define subclasses of Car, Box, and 

House that each extended their respective superclasses with the lock() and 

unlock() methods.  This approach results in replicating the lock code in three 

places. 

Using mixins, however, we would instead write a single class called 

Lockable that could extend any superclass, and we would instantiate the Lock-

able class with Car, Box, and House.  This approach results in only one defini-

tion of the lock code.  In JL, the Lockable mixin would be defined as follows: 
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            class Lockable<T> extends T { 
             private boolean _locked; 
             public lock(){_locked = true;} 
             public unlock(){_locked = false;} } 

The above class is parametric because it declares type parameter T.  

JL’s parametric types are similar in syntax and semantics to C++ template 

classes.  When Lockable<T> is compiled, T is not bound.  To use Lockable<T>, 

T must be bound to a type to create an instantiation of the parametric class.  

Each distinct binding of T defines a new instantiated type, which can then be 

used like a conventional Java type.  

What makes Lockable<T> a mixin, however, is that its instantiated types 

inherit from the types bound to T.  Mixins are distinguished from other pa-

rametric types because the supertypes of mixins are specified using type pa-

rameters.  Thus, a mixin’s supertypes are not precisely known at compile-

time, but instead are specified at instantiation-time. 

Mixin instantiations generate new class hierarchies.  For example, Lock-

able<Box> generates the following hierarchy: 
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In its current form, Lockable’s capabilities are limited because nothing 

can be presumed about the type that gets bound to the type parameter T.  In 

JL, however, constraints can be specified to restrict the types used in instan-

tiations.  For example, the following redefinition of Lockable guarantees that 

T’s binding type implements the physical object interface (not shown). This 

constraint on T means members of PhysicalObject can be used within Lock-

able in a type-safe manner. 

            class Lockable<T implements PhysicalObject> 
             extends T {…} 

33.2.2 Stepwise Refinement 

The GenVoca software component model  [5] provides a conceptual frame-

work for programming with mixins.  The model supports a programming 

methodology of stepwise refinement in which types are built incrementally 

in layers.  The key to stepwise refinement is the use of components, called 

Box 

Lockable<Box> 
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layers, that encapsulate the complete implementation of individual applica-

tion features.  Application features are any characteristic or requirement im-

plemented by an application.  Stepwise refinement allows custom applica-

tions to be built by mixing and matching features. 

Mixins implement GenVoca layers.  To see how mixins can be used to 

build applications incrementally, we define the Colorable and Ownable mixins 

in the same way that we defined the Lockable mixin above.  Colorable man-

ages a physical object’s color, and Ownable manages ownership properties.  

We can now create a variety of physical objects that support various combi-

nations of features: 

            Colorable<Ownable<Car>> 
            Colorable<Lockable<Box>> 
            Lockable<Ownable<Colorable<House>>> 

We can think of each of the above instantiations as starting with the ca-

pabilities of some base class, Car, Box or House, and refining those capabilities 

with the addition of each new feature.  In the end, a customized type sup-

porting all the required features is produced.  Mixins can be used in this way 

to provide some of the flexibility of multiple inheritance while avoiding its 

pitfalls, such as having to manage name collisions and repeated inheritance 
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 [32].  The compositional power of mixins can be further increased when 

mixin layers are used, which we now discuss. 

33.2.3 Mixin Layers 

Mixin layers are mixins that contain nested types.  A single mixin layer can 

implement a feature that crosscuts multiple classes.  To see how this works, 

consider an example from our evaluation of customizable GUI libraries, 

which we call Fidget (Flexible widgets).  Here are simplified versions of the 

basic Fidget class and the mixin layer that adds color support: 

            class BaseFidget<> { 
             public class Button {…} 
             public class CheckBox {…} …} 

 
            class ColorFidget<T> extends T { 
             public class Button extends T.Button {…} 
             public class CheckBox  
              extends T.CheckBox {…} …} 

Figure 33-1 BaseFidget 

BaseFidget takes no explicit type parameters and we show two of its 

nested widget classes.  In Section  33.3.4, we explain why some parameter-

ized classes don’t have explicit type parameters.  The main point here, how-



12 Chapter 33 Using Mixin Technology to Improve Modularity 

 

 

ever, is that upon instantiation, the behavior of each of the nested classes in 

BaseFidget is extended by its corresponding class in ColorFidget.  In this 

way, feature code scattered across multiple classes is encapsulated in a sin-

gle mixin layer. 

This concludes our introduction to mixin programming; we are now 

ready to delve more deeply into Fidget’s implementation. 

33.3. FIDGET DESIGN 

For many years, software portability meant running software on different 

general-purpose computers, each with its own operating system and architec-

ture.  Software developers minimized the cost of supporting multiple plat-

forms by reusing the same code, design, and programming tools wherever 

possible.  Today, miniaturization has led to a wide diversity of computing 

devices, including embedded systems, cell phones, PDAs, set-top boxes, 

consumer appliances, and PCs.  Though these devices are dissimilar in 

hardware configuration, purpose and capability, the same economic forces 
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that drove software reuse among general-purpose computers now encourage 

reuse across different device classes. 

To make it easier to reuse code across devices, several standardization 

efforts are defining new Java runtime environments  [18].  These environ-

ments are customized for various classes of devices while still remaining as 

compatible as possible with the Java language, JVM, and existing libraries.  

For example, Sun’s KVM  [29] virtual machine, which is designed to run on 

devices with as little as 128K of memory, has removed a number of Java 

language features, such as floating point numbers and class finalization, and 

a number of JVM features, such as native methods and reflection.  In addi-

tion, the capabilities of runtime libraries have also been reduced to accom-

modate limited memory devices.  This redesign of the Java libraries leads to 

two questions that directly concern code reuse and the ability to support 

crosscutting concerns: 

� How does one scale an API to accommodate different devices ca-
pabilities? 

� How does one reuse the same library code across different de-
vices? 
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Fidget explores the above issues by implementing a prototype GUI that 

works on cell phones, Palm OS™ devices  [25], and PCs.  The challenge is to 

provide a single GUI code-base that runs on all these devices yet accommo-

dates the input, output, and processing capabilities of each device.  For ex-

ample, a device may or may not support a color display, so in building our 

libraries we would like to be able to easily include or exclude color support.  

Thus, we need a way to encapsulate features that crosscut multiple classes, 

such as support for color, to a degree that is not possible with standard pro-

gramming technologies.  The goal of Fidget is to test the hypothesis that 

mixins and mixin layers provide a convenient mechanism for encapsulating 

crosscutting concerns. 

33.3.1 Architecture 

Fidget is structured as a stack of the three architectural layers highlighted in 

Figure 33-2:  the Hardware Abstraction layer (HAL), the Kernel layer, and 

the User layer.  On the bottom, the HAL interacts with the underlying de-

vice’s graphics system and is the only Fidget code that is device dependent.  
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On top, the User layer is a thin veneer that provides a familiar, non-nested, 

class interface to application programmers.  Our discussion focuses on the 

Kernel layer in the middle. 

 

Figure 33-2 Fidget’s Architecture 

The Kernel layer defines all widgets and all optional widget features.  

The kernel sits on top of the HAL and uses the HAL’s drawing and event 

handling capabilities to create displayable widgets.  Fidget widgets are mod-

eled after those of Java’s AWT  [16] [30], so widget classes such as Window, 

Button and TextField serve the same purpose in Fidget as their analogs do in 

AWT.  The kernel implements nine such widgets, which is sufficient for our 

prototyping purposes.  Even though some optional features cannot be used 

with all devices, there is only one kernel code-base for all devices.  

     Applications

          User

         Kernel

          HAL

  Graphics System

Fidget 
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The Fidget kernel uses a lightweight implementation  [16] to accommo-

date devices with constrained memory resources.  Lightweight widgets do 

not have associated peer widgets in the underlying graphics system, which 

for Fidget is a small subset of either the Java SDK  [30] or the J2ME  [18] 

graphic subsystems.1  Thus, a Fidget window that displays two buttons and a 

text field creates only one widget, a window, in the underlying Java system.  

Fidget then draws its own buttons and text field on this underlying window. 

33.3.2 Components 

The design of the Fidget kernel classes is based on the BaseFidget class in-

troduced in Figure 33-1 in Section 33. 2.3.  BaseFidget provides the minimal 

implementation for each widget in a nested class.  We implemented nine 

widgets in our prototype; Figure 33-1 shows two of these.  These nested 

widget classes are Button, CheckBox, CheckBoxGroup, Label, Panel, TextArea, 

TextComponent, TextField, and Window. 

                                                 

1 For experimental ease, we scaffold Fidget on top of Java instead of writing low-level graphics code for each de-

vice. 
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Optional features are implemented in mixin layers that extend Base-

Fidget.  These mixin layers can contain code for one widget class, or they 

can implement crosscutting features and contain code for more than one 

widget class.  For example, the TextFieldSetLabel layer affects only one 

class by adding the setLabel() method to TextField.  Conversely, the Light-

WeightFidget layer implements lightweight widget support and contains code 

for most widgets.  Fidget’s features are listed below. 

Table 33-1 Fidget Kernel Mixins 

Kernel Mixin Multi-

Class? 

Description 

ButtonSetLabel No Re-settable Button label 

BorderFidget No Draws Container borders 

CheckBoxSetLabel No Re-settable Checkbox label 

TextComponentSetFont No Changeable fonts 

TextFieldSetLabel No Re-settable TextField label 

AltLook Yes Alternative look and feel 

ColorFidget Yes Color display support 
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Kernel Mixin Multi-

Class? 

Description 

EventBase Yes Basic event listeners/handlers 

EventFidget Yes All event listeners/handlers 

EventFocus Yes Focus event handling 

EventKey Yes Keyboard event handling 

EventMouse Yes Mouse event handling 

LightWeightFidget Yes Lightweight support 

 

BaseFidget also contains two nested classes that serve as superclasses 

for the nested widget classes.  Component implements common widget func-

tion and is a superclass of all widgets.  Container, a subclass of Component, 

allows widgets to contain other widgets.  Window is an example of a container 

widget.  In the next section, we explore the design consequences of defining 

these superclasses in BaseFidget. 
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33.3.3 The Sibling Pattern 

The Sibling design pattern uses inheritance relationships between classes 

that are nested in the same class to enhance code modularity.  The pattern 

itself can be implemented in Java, but mixin layers make it more practical to 

use.  We begin our discussion of this pattern by looking at a problem that 

occurs when certain crosscutting features are implemented with mixin lay-

ers.  We then show how the Sibling pattern solves this problem and how ad-

ditional JL language support simplifies the solution. 

            class BaseFidget<> { 
             public abstract class Component {…} 
             public class Button extends Component {…} …} 

 
            class ColorFidget<T> extends T { 
             public class Component 
              extends T.Component {…} 
             public class Button 
              extends T.Button {…} …} 

 
            ColorFidget<LightWeightFidget<BaseFidget>> 

Figure 33-3 Incorrect BaseFidget 

The advantage of nesting Component, Container and all widget classes in-

side of BaseFidget is that a single mixin layer can affect all these classes.  We 

re-introduce BaseFidget in Figure 33-3, this time showing the widget Button 
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and its superclass Component (type parameter constraints and most nested 

classes are not shown).  In Fidget, features like color support modify the be-

havior of Component as well as its widget subclasses, as Figure 33-3 shows. 

There is, however, a potential pitfall when parent and child classes are 

nested in the same class.  To see the problem, Figure 33-3 also specifies an 

instantiation of a Fidget GUI with color support.  The instantiation includes 

the LightWeightFidget mixin (code not shown), which is structured like Col-

orFidget. 

The class hierarchies generated by the instantiation are shown in Figure 

33-4.  The enclosing classes form a class hierarchy, as do like-named nested 

classes.  In addition, Button inherits from Component in BaseFidget.  Notice 

that ColorFidget.Button does not inherit from ColorFidget.Component, which 

means that the color support in the latter class is never used.  As a matter of 

fact, it would be useless for any mixin layer to extend Component because no 

widget will ever inherit from it. 
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Figure 33-4 Incorrect Hierarchy 

 

Figure 33-5 Sibling Pattern Hierarchy 
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Button Component

Button Component
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The inheritance relationship we really want is shown in Figure 33-5, 

where ColorFidget.Button inherits from all the Button classes and from all 

the Component classes in the mixin-generated hierarchy.  We call this the Sib-

ling pattern, which we define as the inheritance pattern in which a nested 

class inherits from the most specialized subclass of one of its siblings.  In 

Figure 33-5, BaseFidget.Button inherits from the most specialized subclass 

(ColorFidget.Component) of its sibling (BaseFidget.Component). 

The Sibling pattern can be implemented in Java by using a distin-

guished name for the leaf class of all mixin-generated hierarchies.  Once this 

well-known, predetermined name is established by programming conven-

tion, it can be used in any class or mixin in the application.  This solution, 

however, limits flexibility and can lead to name conflicts when different in-

stantiations are specified in the same package.  By contrast, JL provides a 

more flexible naming solution that avoids the need for ad-hoc naming con-

ventions; we describe that solution now. 
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33.3.4 JL’s Implicit This Type Parameter 

JL provides a better way to express the Sibling pattern using its implicit This 

type parameter  [11].  Parameterized types in JL have one implicit type pa-

rameter and zero or more explicitly declared type parameters.  This is auto-

matically bound to the leaf class type in a mixin-generated hierarchy, which 

provides JL with a limited, static, virtual typing  [34] capability. 

Figure 33-6 shows how BaseFidget, which declares no type parameters 

explicitly, uses its implicit This parameter to implement the Sibling pattern.  

JL binds This to the leaf class in the generated hierarchy, which is Color-

Fidget in our example from Figure 33-3.  The redefined Button class in Fig-

ure 33-6 now inherits from ColorFidget.Component. 

             class BaseFidget<> { 
              public abstract class Component {…} 
              public class Button 
               extends This.Component {…} …} 

Figure 33-6 Correct BaseFidget 

The Sibling pattern allows a Fidget layer to extend individual widget 

classes and their common superclass simultaneously.  In this way, estab-
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lished object-oriented methods of class decomposition, in which common 

function is placed in superclasses, are extended to work with mixins layers.   

In Fidget’s mixin layers, refinements to Component are inherited by all widget 

classes in all layers. 

33.4. USING FIDGET 

To build a Fidget library, we first select the SDK or J2ME Hardware Ab-

straction layer (HAL) based on the target device’s underlying Java support.  

PC’s use the SDK; Palm devices and cell phones use J2ME. As described in 

Section  33.3.1, the HAL provides a small set of line and curve drawing 

primitives that is consistent across all platforms. 

Next, we specify and compile the features we need in our library.  The 

code implementing the different features resides in mixin layers in the kernel 

package, which corresponds to the Kernel layer in Figure 33-2.  The actual 

Fidget libraries are assembled in the User layer, which we implement in the 

in the widget package.  The code below shows the feature selection for two 

different libraries. 
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            package widget; 
 

            class Fidget extends AltLook<EventFidget< 
               LightWeightFidget<BaseFidget<>>>> {} 

 
            class Fidget extends ColorFidget< 
               ButtonSetLabel<EventKey<EventMouse< 
               EventBase<LightWeightFidget< 
               BaseFidget<>>>>>>> {} 

  Both of the above libraries are lightweight implementations, the only 

kind currently available in Fidget.  The first library supports all events and, 

by overriding the drawing methods in LightWeightFidget, provides an alter-

native look and feel.  The second library supports color displays, re-settable 

labels, and key and mouse event handling.  If a library feature is not sup-

ported by the device on which it runs, then executing the feature code either 

has no effect or throws an exception. 

In addition to the Fidget class, the User layer contains wrapper classes 

for each widget.  These classes allow Fidget widgets to replace AWT wid-

gets in application code.  For example, the definitions for the Button and Win-

dow wrapper classes are: 

public class Button extends Fidget.Button{} 
public class Window extends Fidget.Window{} 
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To use a Fidget library, application code simply imports widget.* and 

uses the Fidget widgets in the same way that AWT widgets are used.  The 

following sample code functions in a similar way using either Fidget or 

AWT.  The code creates a window with a single button.  The button’s label 

is set to “ButtonLabel” and then the window is displayed on the screen. 

            // import widget.* or java.awt.* 
            public class Sample { 
              public static void main(String[] args) {  
                Window win = new Window(…); 
                Button b = new Button(“ButtonLabel”); 
                win.add(b); 
                win.setVisible(true) 
              } }   

33.5. MIXIN PROGRAMMING SUPPORT 

In addition to the implicit This type parameter described in Section  33.3.4, 

JL introduces three other language features and one compiler feature that 

make mixin programming more effective  [11].  In this section, we briefly 

motivate and characterize each feature. 
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33.5.1 Constructor Propagation 

Superclass initialization is not straightforward in mixin classes because the 

superclass of a mixin is not known when the mixin is defined  [36].  To make 

constructors convenient to use with mixins, JL introduces the propagate 

modifier for constructors.  Constructors are propagated from parent to child 

class, with constructors marked propagate in the parent only able to affect 

constructors marked propagate in the child.  (The default constructor in a 

child class is also considered propagatable.)  Constructor propagation is 

more than the simple inheritance of constructors because constructor signa-

tures and bodies can change when constructors are propagated to child 

classes. 

In Fidget, one measure of the effectiveness of automatic constructor 

propagation is that many constructors do not need to be hand-coded.  In 

BaseFidget, twenty constructors are declared with propagate.  On average, 

the thirteen kernel layers that extend BaseFidget declare just over one con-

structor each, which indicates that automatic constructor generation is suffi-

cient in most cases. 
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33.5.2 Deep Conformance 

Mixins provide a powerful way to compose software, but to avoid compos-

ing incompatible features, mechanisms are needed to restrict how mixins are 

used.  Type parameter constraints are one mechanism for restricting the use 

of mixins to avoid incompatibilities.  In addition, JL extends the semantics 

of constrained type parameters to work with the nested structure of mixin 

layers. 

JL’s notion of deep interface conformance  [27] extends Java’s idea of 

interface constraints to include nested interfaces.  Normally, a Java class that 

implements an interface is not required to implement the interface’s nested 

interfaces.  JL introduces the deeply modifier on implements clauses to re-

quire classes to implement the nested interfaces of the classes’ super-

interfaces.  In addition, by using the deeply modifier on extends clauses, JL 

also defines deep subtyping  [27].  Deep subtyping requires that a subtype 

have the same nested structure as the supertype it extends.   

In JL, mixin layers that deeply conform to the same interface, or mixin 

layers that deeply subtype the same supertype, can be composed with each 
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other because they are compatible at all nesting levels.  This compatibility is 

guaranteed by the compiler. 

33.5.3 Semantic Checking  

Even with deep conformance, however, undesirable mixin compositions can 

still be easily created.  The ability to restrict how mixins are ordered, or how 

many times a mixin can appear in an instantiation, requires a higher level of 

checking than is convenient using OO type systems.  We call this extended 

capability semantic checking because mixin compositions should be not only 

type-safe, but also meaningful. 

JL’s semantic checking uses semantic attributes, which are identifiers 

or tags chosen by programmers to represent meaningful characteristics in an 

application.  At compile-time, an ordered attribute list is associated with 

each class hierarchy.  Attributes are added to lists using provides clauses in 

class definitions.  Attribute lists are tested using requires clauses in class 

definitions.  These tests use regular expression pattern matching and a count 

operator to validate the presence, absence, cardinality, and ordering of mix-
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ins in a composition.  Semantic checking occurs only at compile-time; there 

is no runtime overhead.  JL’s semantic checking facility has been specified 

but has not been implemented. 

33.5.4 Class Hierarchy Optimization 

JL’s programming methodology of stepwise refinement can create deep hi-

erarchies of small classes.  The use of many small classes can increase load 

time and the memory footprint of an application.  In addition, stepwise re-

finement can also increase method call overhead because multiple mixin 

methods are often called to perform the work of a single method in a conven-

tionally-written application. 

At design time, we want the modularity of stepwise refinement; at run-

time, we want fast code unimpeded by multiple layers of indirection.  By 

extending existing technology  [35] that compresses class hierarchies, we be-

lieve the runtime effects of design time layering can be largely eliminated.  

Our class hierarchy optimization has been specified but has not been imple-

mented. 
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33.6. FUTURE WORK 

In this section, we propose two topics for future research.  The first topic 

brings together two prominent and, until now, largely distinct lines of mixin 

research.  The second topic reconciles two approaches to implementing pa-

rametric polymorphism in object-oriented languages. 

33.6.1 Mixins as Types 

Most mixin research falls into one of two categories.  The first uses paramet-

ric polymorphism to implement mixins by generalizing the idea of a param-

eterized type.  The second defines mixins as types and generalizes the idea of 

a class.  In this section, we propose a way to bring these two approaches to-

gether.  

Using parametric polymorphism, mixins and other parameterized types 

are typically treated as type functions or type schemas, which generate types 

but are not themselves types.  In languages that already support parametric 

types, adding mixins can be an almost trivial extension.  Mixin research in 
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this category often uses C++ template classes, which already support mixins.  

Such research  [13] [27] [36] emphasizes software engineering concerns and 

often includes experiments that test the effectiveness of different mixin pro-

gramming techniques.  Java Layers builds directly on this line of research.    

On the other hand, mixins can be defined as types that extend their su-

pertypes without relying on parametric polymorphism.  The research 

 [3] [7] [14] in this area focuses on the formal semantics of mixins and on the 

integration of mixins into existing type systems.  This integration typically 

uses the keyword mixin to declare new types, which either replace or work in 

conjunction with existing types (e.g., classes).   

JAM  [2] is a recently implemented language that treats mixins as types.  

JAM integrates mixin types into Java by adding two new keywords and by 

extending Java’s type system.  The JAM code below illustrates how mixin 

type M is declared and how it is used to define two subclasses (Child1 and 

Child2) of two parent classes (Parent1 and Parent2). 

            mixin M { … } 
            class Child1 = M extends Parent1; 
            class Child2 = M extends Parent2; 
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Since mixins are types in JAM, Child1 is a subtype of both M and Par-

ent1 in the above code.  Child2 is also a subtype of M, which allows objects of 

types Child1 and Child2 to be treated as type M objects.     

To avoid some of the restrictions of JAM, such as the inability to com-

pose mixins with other mixins, and to support parametric polymorphism, we 

propose an implementation of parametric types that supports full and partial 

instantiation.  A parametric type is fully instantiated when all type parame-

ters are bound; a parametric type is partially instantiated when at least one 

type parameter is unbound.  The asterisk (*) is used to indicate unbound type 

parameters in instantiations.   

A key component of this proposal is that all instantiations are types, but 

only full instantiations can be constructed.  The code below depicts mixin M 

and two lines of code that appear outside of M.  The variable partial has type 

M<*>, which is a partial instantiation of mixin M.  Any full instantiation of M 

can be constructed and assigned to partial, as objects of types M<Parent1> 

and M<Parent2> below have been. 
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            class M<T> extends T { … } 
            M<*> partial = new M<Parent1>(); 
            partial = new M<Parent2>(); 

In this proposal, parametric polymorphism (with mixin support) is fun-

damentally integrated into the type system.  In addition, partial instantiation 

implies partial evaluation:  In partial instantiations, members of parametric 

types that are not dependent on unbound type parameters are accessible. 

33.6.2 Implementing Parametric Polymorphism 

There are two basic ways to implement parametric polymorphism in object-

oriented languages.  Homogeneous implementations execute the same com-

piled code for all instantiations of a parametric type.  Heterogeneous imple-

mentations, on the other hand, generate a specialized version of compiled 

code for each distinct instantiation of a parametric type.  In this section, we 

propose a way to realize the benefits of both approaches in the same imple-

mentation. 

The homogeneous approach is implemented by Generic Java (GJ)  [9] 

and will be used in future versions of Java  [19].  These implementations 
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work by erasing type parameters at compile time and replacing them with 

general types that are appropriate for all instantiations.   

Figure 33-7 shows parametric class C and its erasure, which gets com-

piled.  In GJ, no type parameter information is available at runtime.  Instead, 

the GJ compiler inserts dynamic type casts into code to guarantee type 

safety; it also inserts bridge methods to guarantee that method overriding 

works properly. 

 

Figure 33-7 Homogeneous Type Parameter Erasure 

In general, homogeneous implementations are memory efficient be-

cause a single class implements all instantiations of a parametric type.  Ho-

mogeneous implementations, however, also have a number of disadvantages.  

Type erasure loses information because actual type parameter bindings 

known at compile time are not available at runtime.  This means, for exam-

ple, that a type parameter cannot specify the (non-array) type in a new ex-

class C<T> { 

 T f; 

 T m(T t){…} } 

class C { 

 Object f; 

 Object m(Object t) {…} } 
Erasure
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pression since the actual type is not known at runtime and cannot be allo-

cated.  For the same reason, type parameters cannot be used as the types in 

cast, catch or instanceof expressions.  Most significant, however, is that 

homogeneous implementations in Java cannot support mixins because dif-

ferent mixin instantiations require different supertypes. 

Alternatively, the heterogeneous approach is implemented by C++ and 

Java Layers.  JL uses a heterogeneous implementation because mixins can be 

supported and because of its increased expressiveness, i.e., the ability to use 

type parameters wherever a type is legal.  

Figure 33-8 shows parametric class C and the instantiation of C<String>, 

which gets compiled.  Since each instantiation generates specialized code, 

heterogeneous implementations like JL and C++ can experience code bloat if 

a large number of instantiations are used.  In addition, the substitution of ac-

tual type parameters in instantiated types can lead to access control restric-

tions when the actual type and the parametric type are in different packages 

 [9]. 
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Figure 33-8 Heterogeneous Instantiation 

Unfortunately, the choice between homogeneous and heterogeneous 

implementation affects the programming language and its usage.  Homoge-

neous implementations place numerous restrictions on the use of type pa-

rameters; heterogeneous implementations require programmers to consider 

code size and package placement issues.  Rather than lock a language into 

one approach or the other, we propose to combine the two approaches and to 

give the programmer control over their use. 

Specifically, we propose that parametric types declared with the new 

specialize modifier be instantiated using the heterogeneous approach; oth-

erwise, the homogenous approach is used.2   Heterogeneously instantiated 

                                                 

2 Alternately, a generalize modifier could be defined, but specialize fits in better with the current plan for Java 

generics. 

class C<T> { 

 T f; 

 T m(T t){…} } 

class C_String { 

 String f; 

 String m(String t) {…} } 
C<String>
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parametric types can support mixins and the less restrictive use of type pa-

rameters.  Thus, specialize determines how type parameters are used in pa-

rametric types.  Our proposal gives programmers explicit control over in-

stantiation, whereas programmers currently are implicitly controlled by the 

implementation choice made by the language. 

33.7. RELATED WORK 

AspectJ  [22] [23] is an extension to the Java programming language in which 

concerns are encapsulated in a new construct called an aspect.  Aspects im-

plement features that crosscut class boundaries, just as mixin layers do in JL.  

Both aspects and mixin layers can add new methods to existing classes.  As-

pects can weave code before or after the execution of a method, an effect JL 

achieves using method overriding and explicit calls to super.  Aspects can 

refine the behavior of any group of existing classes, while mixin layers can 

only refine the classes nested in their superclasses.  Thus, aspects are more 

expressive and can address more kinds of concerns than JL mixins.  On the 

other hand, aspects must express explicit ordering constraints, while the or-
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der of mixin application is implicit in their instantiations.  Also, as generic 

classes, mixins are probably easier to integrate into existing type systems 

than aspects. 

Hyper/J  [17] provides Java support for multi-dimensional separation of 

concerns  [33].  This approach to software development is more general than 

that of JL because it addresses the evolution of all software artifacts, includ-

ing documentation, test cases, and design, as well as code.  Hyper/J focuses 

on the adaptation, integration and on-demand remodularization of Java code.  

Like JL, encapsulated feature implementations, called hyperslices in Hy-

per/J, can be mixed and matched to create customized applications.  Unlike 

JL, Hyper/J can extract and, possibly, reuse feature code not originally sepa-

rated into hyperslices.  That is, Hyper/J supports the unplanned re-

factorization of code to untangle feature implementations.  While JL general-

izes current OO technology, Hyper/J represents a more radical shift in think-

ing that also requires the development of new composition techniques. 
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33.8. CONCLUSION 

In this chapter, we discussed mixins and mixin layers, and we described how 

mixin layers implement reusable software components.  We summarized an 

evaluation in which custom GUI libraries are generated using mixin layers.  

We also described supplemental language support that makes mixin pro-

gramming easier and more effective.   

Additionally, we made two proposals concerning parametric types and 

mixins.  Our first proposal brings together two lines of mixin research by 

defining partially instantiated parametric types as types.  Our second pro-

posal bridges the gap between homogeneous and heterogeneous implementa-

tions of parametric polymorphism by giving programmers the choice of im-

plementation when they define parametric types. 
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