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Abstract

This paper introduces an annotation language and a
compiler that together can customize a library imple-
mentation for specific application needs. Our approach
is distinguished by its ability to exploit high level,
domain-specific information in the customization pro-
cess. In particular, the annotations provide semantic in-
formation that enables our compiler to analyze and op-
timize library operations as if they were primitives of
a domain-specific language. Thus, our approach yields
many of the performance benefits of domain-specific
languages, without the effort of developing a new com-
piler for each domain.

This paper presents the annotation language, describes
its role in optimization, and illustrates the benefits of the
overall approach. Using a partially implemented com-
piler, we show how our system can significantly improve
the performance of two applications written using the
PLAPACK parallel linear algebra library.

1 Introduction

Software libraries are a common mechanism for re-using
code. Like a domain-specific language, libraries can
provide high-level abstractions that empower the pro-
grammer and hide implementation details. Unlike a
domain-specific language, libraries do not introduce new
syntax and receive no direct support from the compiler.
These differences have two consequences:

�
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� Compilers have limited ability to improve per-
formance. Compilers cannot exploit the domain-
specific information that is only implicitly encoded
in a library’s implementation. Thus, many oppor-
tunities for optimization are lost. Since library
code is written, compiled and optimized in isola-
tion, such optimizations are important as a means
of customizing a library implementation for differ-
ent application needs.

� Performance improvements are exposed
through the interface. The only way to offer
both generality and performance is to provide wide
interfaces with specialized routines for different
contexts. Unfortunately, these specialized routines
are typically more difficult to use correctly. More-
over, the specialized routines typically improve
performance by exposing implementation deci-
sions. Thus, they intertwine the interface and the
implementation, which inhibits code reuse in the
long run.

Our approach to mitigating these problems is to give
libraries some of the compiler support enjoyed by
domain-specific languages. The key is an annotation
language that captures expert knowledge about libraries
and enables our compiler to customize library imple-
mentations for different situations. Library users can
then focus on application design, relying on our com-
piler to optimize performance.

Figure 1 shows the overall architecture of our system.
The annotations are supplied by a library expert in a
separate specification file that accompanies the usual
header files and source code. The annotations convey
two kinds of information about library routines: (1)
basic dataflow information, which is sometimes diffi-
cult to obtain through static analysis, and (2) high level
domain-specific information. Our compiler, which we
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Figure 1: Architecture of the Broadway Compiler system

have named the Broadway compiler, reads the annota-
tions and applies a series of source-to-source transfor-
mations to both the library and application source. The
result is an integrated system of library and application
code, which is ready to be compiled and linked using
conventional tools.

Our system offers many practical benefits. First, the an-
notations are specified in a separate file from the library
source, so our approach applies to existing libraries and
existing applications. Second, the annotations describe
the library, not the application, so the application pro-
grammer does nothing more than use the Broadway
Compiler in place of a standard C compiler. Finally, the
non-trivial cost of writing the library annotations can be
amortized over many applications.

When applied to a Cholesky factorization program that
uses the PLAPACK parallel linear algebra library [25],
our system improves performance by 26% for large ma-
trices and 195% for small matrices. Both the library and
application are written in ANSI C, and neither has been
modified to facilitate our results. This paper will explain
how our solution is able to obtain these results. While
these same optimizations could be performed manually
by using a wider interface and expert knowledge of the
PLAPACK implementation, our approach offers signifi-
cant advantages:

� Both approaches require semantic expertise about
the PLAPACK implementation, but manual opti-
mization embeds this knowledge implicitly in the
optimized program, while our annotations encap-
sulate such knowledge for use in optimizing other
PLAPACK applications.

� Manual optimization is feasible only for PLAPACK
experts. By contrast, once an expert has provided
annotations, even casual users can optimize their
PLAPACK applications by invoking our compiler.

� Manual optimization directly modifies the source
code, which complicates subsequent modification,

reuse and maintenance. Our annotations instead
provide a clean separation of the optimization in-
formation from the basic implementation.

� The explicit representation of semantic information
allows it to be checked for correctness. This is an
open issue which we leave as future work.

The performance improvements mentioned above can-
not be obtained with conventional compiler technology
because the optimizations require semantic information
about the PLAPACK implementation that cannot be de-
rived automatically. For example, one transformation re-
quires knowledge of a PLAPACK object’s data distribu-
tion. This information is implicitly represented in the
values of four object attributes and the value of a global
variable. To further complicate matters, PLAPACK is
written in C and is difficult to analyze because of its
pervasive use of pointers. In addition, certain def/use
information is impossible to obtain because PLAPACK
makes calls to the sequential BLAS library [11], whose
source code is unavailable.

The primary contributions of this paper are (1) the
introduction of a new technique for optimizing soft-
ware libraries, (2) the demonstration that this tech-
nique provides performance benefits when applied to a
production-quality library, and (3) an evaluation of our
annotation language based on experiments with PLA-
PACK applications.

This paper is organized as follows. Section 2 contrasts
our work with related efforts. Section 3 describes our
annotation language and its design philosophy. Section 4
explains our compilation strategy, and Section 5 offers
an empirical evaluation of our language. Finally, we and
draw conclusions and discuss future work.



2 Related Work

Our work builds upon the tremendous amount of pre-
vious research in program analysis and program trans-
formations. In particular, we attempt to extend classi-
cal analyses and transformations to semantically higher
level operations that are encapsulated in library func-
tions. For example, one of our annotations annotation
specifies an abstract interpration [9, 17] and another
draws from the pointer analysis work of Wilson and
Lam [28].

Compilers have long used hints and pragmas to guide
optimizations such as register allocation and inlin-
ing, and to summarize procedure information such as
whether a function has side effects. More recently, an-
notations have been used to guide dynamic compila-
tion [13]. While annotations are not new, our use of
them is new. First, our annotations describe function
implementations, rather than call site-specific informa-
tion. This means that application programs do not re-
quire annotations, so our annotations are hidden from
the everyday user. Second, and more fundamentally, our
advanced annotations can convey domain-specific infor-
mation that other languages cannot. For example, an-
notators can define concepts, such as data distribution,
that extend beyond those of the base language. How-
ever, unlike most hints and pragmas, the incorrect use of
our annotations can lead to transformations that do not
preserve the library’s semantics.

Our work is closely related to partial evaluation [5, 6,
10], which improves performance by specializing rou-
tines for specific inputs. Partial evaluation combines
inlining, constant propagation and constant folding to
evaluate as much of the program as possible at compile
time. Recent work in program specialization has gener-
alized partial evaluation to the notion of staged optimiza-
tions, which can take place at compile time, link time or
runtime [13, 14], and which can be applied to class li-
braries in object oriented programs [27]. All of these
approaches specialize based on values of variables that
are constant for some duration of the program. By con-
trast, our approach can specialize based on other crite-
ria: For example, specialization can occur at a particular
program point when the program moves into a particular
program state. Our approach also can perform optimiza-
tions such as loop-invariant code motion that cannot be
expressed using partial evaluation.

Software generators [23, 24] and program transforma-
tion systems [22] are compilers for domain-specific pro-
gramming languages. While these systems provide so-

phisticated transformations of high level language con-
structs, they typically manipulate programs only at the
syntactic level. Semantic properties, such as those re-
sulting from dataflow analysis, are either awkward to ex-
press or completely unavailable. Our approach instead
focuses on the exploitation of semantic, rather than syn-
tactic, information.

There has been considerable work in formal semantics
and formal specifications. In particular, Vandevoorde
uses powerful analysis and inference capabilities to spe-
cialize procedure implementations [26]. However, com-
plete axiomatic theories are difficult to write and do not
exist for many domains. In addition, this approach de-
pends on theorem provers, which are computationally
intensive and only partially automated. Our work dif-
fers from these primarily in the scope and completeness
of our annotations, which describe only specific imple-
mentation properties instead of complete behaviors.

Open and extensible compilers give the programmer
complete access to the internal representation of the pro-
gram [16, 12]. While these systems are quite general,
they impose a considerable burden. To use them, the
programmer needs to understand (1) general compiler
implementation techniques, (2) how to configure the
specific compiler they are using, and (3) how to express
and execute their optimizations. Similarly, meta-object
protocols provide sophisticated mechanisms for modify-
ing the compilation of object oriented programs [8, 19],
but they can be difficult to use. Our compiler limits con-
figurability to a small but powerful set of capabilities,
and provides a simple way to access them.

Finally, we note that our system is an instance of aspect-
oriented programming [18]. In our case, the cross-
cutting aspect is performance improvement, and our an-
notation language and compiler are specific mechanisms
for implementing this aspect. An important feature of
aspects is that they be separated from the rest of the code,
and in our case this is achieved by placing the annota-
tions in a separate file.

3 Annotation Language

The goal of the annotation language is to convey library-
specific information to the compiler in a simple declar-
ative manner. While it’s clear that more sophisticated
specifications could support more sophisticated opti-
mizations, our goal is to show that a few simple annota-
tions can enable many useful optimizations. Simplicity



is important because we expect our language users to be
library experts who do not necessarily have expertise in
compilers or formal specifications.

In designing the language, we studied several libraries
to determine the most useful ways of optimizing them.
We noticed that library operations could easily be inte-
grated into many traditional optimizations, such as dead-
code elimination, copy propagation and loop-invariant
code motion. These optimizations are effective and well
understood, and they require only minimal information
to enable. For example, to enable loop invariant code
motion, the annotations need to indicate which library
procedures have no side-effects. We also observed that
many library-specific optimizations replace a general-
purpose library call with a more specific one that takes
advantage of information about the calling context. This
form of specialization not only improves performance,
it often creates additional opportunities for traditional
optimizations. Thus, our annotation language consists
of two classes of annotations: basic annotations for en-
abling traditional optimizations, and advanced annota-
tions for specifying library-specific specialization.

We present the annotation language by first describing
the target library: the PLAPACK parallel linear algebra
library [25]. The remainder of the section then describes
the language constructs in detail, using a fragment of the
PLAPACK annotations as a source of examples. These
annotations capture the information used to produce the
results in Section 5. A complete grammar is presented
in the appendix.

3.1 The PLAPACK library

PLAPACK is a production-quality library for coding
parallel linear algebra algorithms in C. It consists of ap-
proximately 40,000 lines of C code and provides par-
allel versions of the same kernel routines found in the
BLAS [11] and LAPACK [2]. At the highest level, it
provides an interface that hides much of the parallelism
from the programmer.

A PLAPACK application operates on linear algebra ob-
jects, such as matrices and vectors, that are partitioned
and distributed over the processors of the target com-
puter. The application manipulates these objects indi-
rectly though handles called views. A view specifies an
index range that selects some or all of a distributed ob-
ject for subsequent computations. PLAPACK contains
routines to create new views, shift views, and split views
into pieces. The following figure shows a four-way split
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Often, a view captures part of a matrix or vector that has
special properties. Understanding and exploiting these
properties can lead to significant performance improve-
ments. For example, a view can select a region that re-
sides entirely on one processor. Any computations on
the data within this local view can be performed locally,
without involving other processors. In the figure above,
the four-way split yields one local view (

� ���
), one col-

umn panel (
� ���

), which resides on a column of proces-
sors, one row panel (

� ���
), which resides on a row of

processors, and a large fully-distributed matrix (
�����

). A
view might also specify a region that is in tridiagonal
form, allowing the use of specialized compute functions.

Our goal is to identify the library-specific properties that
are relevant to optimization, and track them through the
application program. For example, if an application
splits a local view into two pieces, we can infer that the
two new views are also local. The result of this anal-
ysis describes how the application manipulates objects
with respect to library-specific properties such as distri-
bution or data content. We can use this information to
customize the library, or to select library routines that
are better suited to the application.

Figure 2 shows a fragment of the annotations for PLA-
PACK. It specifies the two properties described above
(distribution and data content) and gives the semantics
of three PLAPACK routines: PLA Matrix create,
which creates a new matrix, PLA Obj vert split 2
which splits a view into left and right pieces, and
PLA Gemm, which multiplies matrices.1

1In this figure, the PLA Gemm interface has been simplified in in-
significant ways to clarify the presentation. The actual routine accepts
seven arguments instead of three.



%{
#include "PLA.h"
%}

PLA_Matrix_create ( datatype, length, width, template,procedure

{
  align_row, align_col, new_matrix)

  on_exit { new_matrix --> view_1,
  DATA of view_1 --> data_1 }

  access
  modify { new_matrix }

{ datatype, length, width, template, align_row, align_col }

}
  analyze Distribution    view_1 = General;{   }

// --- Procedure: Create a new distributed matrix

// --- Special case properties of the data
property Contents = { Dense = none, Zero, Identity, Upper, Lower };

// --- Special case matrix distributions
property Distribution = { General = none, ColPanel, RowPanel,

Local, Empty };

  on_entry { A --> view_A, DATA    view_A --> data_A,

{ data_A, data_B }  access
{ data_C }  modify

}

{
procedure PLA_Gemm( A, B, C)

  specialize {
    ((view_A Distribution == Empty) ||
     (view_B Distribution == Empty))
    ((view_A Distribution == Local) &&
     (view_B Distribution == Local))
    (view_A Contents == Upper)
  }

=>

=>
=>

remove;

replace "PLA_Local_gemm( A, B, C)";
"PLA_Trmm( A, B, C)";replace

  analyze Contents {

    ((data_A == Zero)  || (data_B == Zero))
    ((data_A == Upper) && (data_B == Upper)) => data_C == Upper;

=> data_C == Zero;
  }

// --- Procedure: Compute C <- A * B

of
of
of  C --> view_C, DATA    view_C --> data_C }

  B --> view_B, DATA    view_B --> data_B,

(1)

(3)

(5)

(4)

(2)

procedure PLA_Obj_vert_split_2( obj, length, left, right)
{
  on_entry

{ left  --> view_L, DATA    view_L --> data_1,  on_exit
  right --> view_R, DATA    view_R --> data_1 }

of
of

  access { view_1, length }

  analyze Distribution {
    (view_1 == General) => view_L = ColPanel, view_R = General;
    (view_1 == ColPanel) view_L = ColPanel, view_R = Empty;
    (view_1 == RowPanel) view_L = Local,    view_R = RowPanel;

=>
=>

of{ obj   --> view_1, DATA    view_1 --> data_1 }

  specialize {
    (view_1 Distribution == ColPanel)

  }

}
}

// --- Procedure: Split a matrix logically into two pieces

=> replace "PLA_Copy_view(obj, view_L)";

Figure 2: Part of the annotations for the PLAPACK parallel linear algebra library. (1) The header provides access to
definitions in the library header files. (2) The property annotations define abstract object states which are used
for analysis and specialization. (3) Each library procedure has its own set of annotations. (4) The basic annotations
summarize the dataflow and pointer behavior of the procedure. (5) The advanced annotations specify analysis rules
for abstract interpretation and specialization rules that use the resulting information.



3.2 Basic annotations

Each library procedure can have a set of basic annota-
tions that provides the information needed to support the
Broadway compiler’s dataflow analysis framework. This
information allows the compiler to properly interpret li-
brary calls, and to integrate them into traditional opti-
mization passes such as code motion, copy propagation
and redundancy elimination.

A library procedure has access to many different data
objects in the application program, including the argu-
ments passed into it, and possibly global objects as well.
In addition, many libraries create and manage complex
pointer-based data-structures that are built up from many
objects. We have found that in order to correctly an-
alyze library calls, it is essential to accurately model
these data-structures. Thus, the basic annotations pro-
vide two kinds of information: (1) a list of the objects
that are accessible to the procedure and describe their
structure, and (2) a list of those objects whose contents
are accessed or modified by the procedure (the “uses”
and “defs”).

The information is specified using a technique similar to
interval analysis [20]. Interval analysis concisely sum-
marizes the effects of a procedure, so that the compiler
can analyze any code that calls the procedure without re-
analyzing the procedure itself. Our language allows the
library annotator to explicitly summarize the dataflow
and pointer effects for each library procedure [28]. In
some cases, a modern compiler could derive this infor-
mation automatically from the library source. However,
there are conditions under which this is infeasible or im-
possible. Many libraries encapsulate functionality for
which no source code is available, such as low-level I/O
or communication routines. Even if source is available,
it may be simpler to provide the information declara-
tively, especially if it is well known.

3.2.1 on entry and on exit

The on entry and on exit annotations specify the
effects of a library procedure on objects that are orga-
nized into data structures. We model data structures
by adding edges between the objects. The edges are
directed and can be roughly interpreted as “points to”.
Each identifier in these annotations is either an input to
the procedure (a formal parameter), or gives a name to
an object that is reachable by following edges from an
input. Like the formal parameters, each name is arbi-

trary and is bound to actual objects at each procedure
call site. The behavior of the procedure is summarized
by showing the configuration before and after execution.

The --> operator indicates that the operand on the left
points to the operand on the right. For example, in PLA-
PACK, each matrix parameter is passed as a pointer to
a view structure, which in turn points to the underlying
data. We can label an edge by providing an additional
identifier followed by theof keyword. In the example,
we label each edge from a view to its data with the label
DATA. This distinguishes it from any other things that a
view might point to. Figure 3 depicts the pointer struc-
ture given by the annotations labeled (4) in Figure 2.

view_1

data_1

obj

on_entry on_exit

view_1

data_1

obj

view_L view_R

left right

Figure 3: The effect of split on PLAPACK data struc-
tures.

We can use the keyword null on the right side to indi-
cate the removal of an edge.

The data structures described in these annotations need
not correspond exactly to the underlying implementa-
tion. In fact, it is often useful to make explicit some
of the relationships that are only represented implicitly
in the implementation. Many libraries contain objects
that behave logically like pointers, such as handles, ref-
erences and descriptors. We can use on entry and
on exit to model all of these structures.

In addition to establishing new data structures, the
on exit annotation can declare that an object is a copy
of another object, using the copyof keyword. We can
exploit this information to perform high-level copy prop-
agation on library objects.

3.2.2 access and modify

The access and modify annotations list the objects
that are accessed or modified by the library procedure.
The lists may contain formal parameters from the pro-
cedure input list, or object names introduced by the
on entry and on exit annotations.



3.2.3 global

The global annotation declares global variables that
can be analyzed along with the procedure parameters.
These annotations simply provide a list of names that
can be used to track global state information, and are
not associated with a specific procedure. Like the
on entry and on exit annotations, they need not
correspond to actual global variables in the implemen-
tation. It is often useful to define global variables that
model system states not explicitly represented by vari-
ables in the program. As examples, a global variable an-
notation can be used to track whether a library is prop-
erly initialized, or to maintain a record of outstanding
asynchronous operations.

3.3 Advanced annotations

The advanced annotations define library-specific anal-
yses and optimizations. The annotations are used to
define a dataflow analysis problem consisting of a set
of abstract object states and the effects of each library
procedure on those states. The abstract states form a
dataflow lattice and the library procedure effects serve
as dataflow transfer functions. The analyzer propagates
this information through the program to derive the ab-
stract states of the actual program variables. A separate
set of annotations uses this information to trigger library
procedure specializations. Each specialization tests the
abstract states of its input parameters to determine if the
library call can be replaced by code that takes advantage
of the context.

3.3.1 property

Each property annotation defines an abstract inter-
pretation over objects in the program. The set of ab-
stract values given in the curly braces form a two-level
dataflow lattice. Figure 4 shows the lattice specified by
the Distribution property given in Figure 2.

Because the lattices are only two levels high, whenever
two program paths disagree on the state of an object the
resulting meet results in lattice value � . We are con-
sidering ways to allow more complex lattices, such as
multiple level lattices or infinite lattices, while still en-
suring convergence. The keyword none allows a sym-
bolic name to be assigned to the value � .

ColPanel RowPanel Local Empty

General = none

Figure 4: Latticed defined by the Distribution
property.

3.3.2 analyze

Each library procedure can have a set of analyze an-
notations that describe how that procedure affects the
properties of the objects it manipulates. Collectively,
these annotations compose the dataflow transfer func-
tion for each abstract interpretation. Each statement in
this annotation behaves as a logical implication: if the
conditions on the left of the => operator are true, then we
conclude that the facts on the right are true. Each term
in the condition is limited to testing the current property
value of an object, or comparing to a constant. Each
condition is a logic expression made up of these terms.
In the absence of the => operator, the facts are assumed
without condition.

The PLAPACK annotations in Figure 2 show several ex-
amples of the analyze annotation. The part labeled (5)
describes the effect of a vertical split on the distribution
of various input view types. The matrix multiply proce-
dure, PLA Gemm, analyzes the contents of the matrices
involved. For example, it expresses the fact that mul-
tiplying two upper-triangular matrices yields an upper-
triangular matrix as a result.

When more than one analysis statement applies, the
most specific one is chosen: the statement with the great-
est number of conditions that are true, minus any that are
false. For example, given an analyze annotation of the
follow form:

analyze Foo {
(A) => C1;
(A && B) => C2;
(A || B) => C3;

}

If only A is true, then we would conclude C1. If both A
and B are true, then we choose either C2 or C3. Ties are



broken by preferring the statement that occurs earlier in
the annotation.

3.3.3 specialize

Each procedure can specify a set of specializations that
is triggered by the properties assigned to the input ob-
jects. The specializations modify the call site in the ap-
plication code. Like the analyze annotations, each
specialization is guarded by a condition, but these con-
ditions are evaluated after abstract interpretation is com-
plete. Unlike the analyze annotations, these condi-
tions can refer to any combination of properties, and thus
must provide the specific property name. The right side
of the => specifies either a literal code replacement, indi-
cated by the replace keyword, or that the library call
should simply be removed as indicated by the remove
keyword.

The PLAPACK annotations in Figure 2 show three spe-
cializations for the matrix multiply procedure. The first
causes the call to be removed whenever either of the in-
puts A or B refers to empty views. The second replaces
the parallel matrix multiply routine with a local version
if both A and B refer to local views. Finally, if the data
indexed by A is upper-triangular, we can replace the gen-
eral matrix multiply call with a call to a special triangu-
lar form that requires half the number of floating point
operations.

4 The Broadway Compiler

This section describes the compiler’s overall optimiza-
tion strategy. The compiler consists mostly of traditional
analysis and optimization algorithms, extended to use
information from our annotation language. The individ-
ual transformations are straightforward and are not dis-
cussed. During a particular pass, the compiler refers to
the annotations to find the information needed. Figure 5
shows the internal structure of the compiler and how the
annotations are incorporated. We use a particular order-
ing of the passes that provides the most information for
specialization, and then cleans up the customized code
using traditional optimizations.

Pointer analysis. The first phase of the compiler per-
forms pointer analysis. It not only tracks pointers in
the application code, but also uses the on_entry
and on_exit annotations to determine the data

structures manipulated by the library calls. Our
pointer analysis algorithm builds a flow-sensitive
“points-to” graph using the strategy described by
Chase, et al [7].

Abstract interpretation. The second phase solves the
analysis problems specified by the property an-
notations. The analysis framework assigns an ab-
stract state to each object in the program and uses
the analyze annotations to propagate this infor-
mation through the program.

Enabling transformations. Dataflow analysis often
loses interesting information because it acts conser-
vatively with respect to control flow. For example,
if a library procedure is used in two different ways,
the analyzer will attempt to unify the information
from both contexts. Thus, in the third phase the
compiler uses any loss of information as a heuris-
tic to drive enabling transformations, such as pro-
cedure integration, procedure cloning, loop peeling
and node splitting. Since the properties are used to
trigger specializations, using them to trigger these
transformations is likely to enable many more spe-
cializations.

Specialization. In the fourth phase, the compiler uses
the results of analysis along with specialize
annotations to perform code customization. At
each call site, the compiler looks for a specializa-
tion that matches the state of the variables. If a
match is found, the call site is replaced. We have
found that after specialization, it is often beneficial
to repeat the abstract interpretation phase because
the program modifications reveal new opportunities
for optimization.

Traditional optimizations. Specialization often
enables many opportunities for traditional opti-
mizations. When a general library call is replaced
by a special-case call, any arguments that are no
longer used become candidates for dead-code
elimination. Similarly, inlining a library proce-
dure often reveals redundant computations and
unnecessary copies of objects. Thus, in the final
phase, we iterate over a small group of traditional
optimization passes until no more improvements
can be made.

The traditional optimization passes are extended to
include library procedures. The basic annotations
make this possible by providing the necessary in-
formation. During copy propagation, the copyof
terms tell the compiler when copies of objects are
created, and the modify annotation tells the com-
piler when those copies become invalid. Similarly,
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Figure 5: Annotations are incorporated into each phase of the compilation process.

the basic annotations indicate the lifetimes of the
objects, allowing the dead-code elimination pass to
properly identify dead library calls.

5 Results with PLAPACK

This section describes our experiences in applying our
system to portions of two PLAPACK applications, a
Cholesky factorization program and a code for solving
Lyapunov equations [4].

For these experiments, our compiler performs all anal-
ysis automatically. Except for inlining, we perform the
transformations manually according to the strategy de-
scribed in Section 4. While our compiler is not yet
complete, the individual transformations are all well-
understood. Since the analysis and the overall compila-
tion strategy are the enabling technologies behind these
results, our manual transformations should not affect the
results. The PLAPACK annotations were written by a
person who is not a member of the PLAPACK imple-
mentation team. For purposes of comparison, the base-
line programs were supplied by the PLAPACK group
and written using the cleanest PLAPACK interface. The
hand-optimized programs were written by PLAPACK
experts. All results were obtained on a 40 node Cray
T3E.

To gather these results we annotated 29 of PLAPACK’s
113 externally visible routines, yielding an annotation
file that was 323 lines. Our Broadway-optimized re-
sults focused on customizing one PLAPACK routine,
the PLA Trsm() routine, which is common to both
the Cholesky and Lyapunov applications. The hand-
optimized Lyapunov program did not limit itself to this
same scope. Details concerning the hand-optimized ver-
sion of the Cholesky program can be found in the litera-

ture [3].

Our annotations mimicked the hand optimizations by
defining an abstract interpretation for describing the dis-
tribution of PLAPACK objects, leading to optimizations
like those described in Section 3.1. (Unlike the example
in Figure 2, we did not define the Contents property.)
The basic idea is that while most PLAPACK procedures
are designed to accept any type of view, the actual pa-
rameters often have special distributions. When this
information is propagated into the procedure, it yields
a variety of specialization opportunities. Uncovering
these opportunities requires the compiler to analyze mul-
tiple layers of nested procedure calls. It is the encapsula-
tion of these layered routines that makes the unoptimized
routines both general and inefficient.

5.1 Performance Evaluation
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Figure 8: Scalability of the Cholesky programs as the
number of processors grows.

Figure 6 shows the performance improvement of the
Cholesky and Lyapunov programs. For fairly large ma-
trices ( �������������	�
� ), the Broadway-optimized Cholesky
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Figure 6: Performance comparison of hand-optimized and Broadway-optimized PLAPACK applications.
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Figure 7: Performance comparison of hand-customized and Broadway-customized PLA Trsm() function for the
Cholesky program. For the Lyapunov program, the hand-customized PLA Trsm() function matched the performance
of the Broadway-customized version.

program is 26% faster than the baseline and the hand-
optimized program is 22% faster than the baseline. For
the Lyapunov program, the Broadway system does not
perform as well as the manual approach, improving per-
formance by 9.5% compared to the hand-optimized im-
provement of 21.5% for ����� ������� matrices, and im-
proving performance by 5.8% compared to 6.1% for
������� ��������� matrices. The two approaches obtain iden-
tical performance on the PLA Trsm() kernel, but the
hand-optimized program performs a few additional op-
timizations to other parts of the code.

Note that there is considerable room for further improv-
ing the Lyapunov program, since PLA Trsm() only ac-
counts for 11.6% of the execution time for 250 � 250 ma-
trices, and only 5.8% of the time for ������� ��������� ma-
trices. When our compiler is complete, we will apply
our optimizations to all parts of the PLAPACK library,
including the PLA Gemm() routine, where Lyapunov
spends a majority of its time.

Since our experiment focuses on the benefits of special-
izing the PLA Trsm() routine, Figure 7 shows the perfor-
mance difference between the generic PLA Trsm() rou-
tine and the version that was customized for Cholesky
by our compiler. Notice that we observe similar results
for different numbers of processors. Figure 8 shows how
the performance of the various Cholesky programs scale
with the number of processors.

The results reveal several interesting points.

� A small effort yields a large benefit because the
annotations only contain library knowledge, while
all compilation expertise resides in the Broadway
Compiler. The library annotator supplies the small
but critical bits of information—such as specify-
ing the conditions required to substitute a specific
PLAPACK routine in place of a more general one—
while the compiler analyzes the program, identifies
opportunities for transformations, and manages a



number of optimization passes. This separation of
concerns is beneficial because the performance im-
provements shown in Figure 7 come from the re-
peated application of a small number of transfor-
mations.

� Automation is desirable. Both the Cholesky and
Lyapunov programs specialize the same PLAPACK
routine, but they do so in slightly different ways
because they invoke it in different contexts.

� An automated approach can apply all optimizations
uniformly. There is no fundamental reason why the
hand-optimized Cholesky factorization is not as ef-
ficient as ours, but the manual approach, which is
quite invasive, did not employ one transformation
that it could have.

� The effect of customization is more important for
small matrices. For example, for a � � � � � � ��� � ma-
trix, the Broadway-optimized Cholesky factoriza-
tion is 2.95 times faster than the base, and the hand-
optimized is 2.47 times faster than the base. When
matrices are small the improvements are larger be-
cause there is more overhead relative to matrix op-
erations. Because dense linear algebra problems do
not typically involve huge matrices, the small ma-
trix cases is important for scaling to larger numbers
of processors, and for supporting sparse matrix op-
erations.

Closer examination of the Cholesky results reveal that
specialization and dead code elimination account for al-
most all of the performance benefits, while high level
copy propagation (where the copy operations are library
routines) contributes insignificantly.

5.2 Language Evaluation

Simplicity. Our annotation language is small and sim-
ple. There are 15 keywords and a small number of sim-
ple concepts. The basic annotations require a knowl-
edge of C and the library’s data structures. The advanced
annotations require a deeper knowledge of the library’s
implementation. Anecdotal evidence suggests that the
language is intuitive. When shown the advanced annota-
tions for PLAPACK, the head of the PLAPACK project
claimed that they seemed “very natural.”

While our language is quite simple, we believe that we
can simplify the use of the language. Eventually, we
imagine that basic annotations will only be specified

where static analysis fails. For example, a static analysis
tool could guide the annotation by identifying routines
that must be manually annotated.

Separation of Concerns. Our annotation language
clearly separates the optimization information from the
basic algorithm. By contrast manual optimization di-
rectly modifies the application source code, which com-
plicates subsequent modification, reuse and mainte-
nance. Moreover, we attempt to separate domain-
specific information, which we place in the annotations,
from compilation-specific information, which is embed-
ded in the compiler. This separation of concerns simpli-
fies both the library implementation and the specification
of the annotations.

Generality. Our experiments show that our annota-
tion language is effective when applied to PLAPACK.
We believe that the language will also be effective for
other libraries because the information conveyed by
the basic annotations is fundamental to the analysis of
any software, and the advanced annotations support ab-
stract interpretation [9, 17], which is useful for modeling
domain-specific information. In particular, such analy-
sis is useful to any library that provides specialized rou-
tines that are tailored for specific contexts. For example,
the Open GL graphics standard [21] can customize var-
ious matrix transformations to exploit particular prop-
erties of matrices and matrix operations. In operating
systems, specialized file system I/O routines can be pro-
duced that are optimized for specific system states [10]:
a specialized read routine can be created for the com-
mon situation in which the file is known to be open and
the file position is correctly positioned to the next un-
read byte. As a final example, most layered systems can
benefit from passing state information across layers [1],
providing contextual information that can trigger the use
of specialized routines.

Expressiveness. Because we have traded off general-
ity for simplicity, our language is limited in the types
of abstract interpretation that are supported. For exam-
ple, our property annotations only allow enumerated
lists of values, which correspond to finite lattices. In
addition, our lattices have a fixed height of two. These
restrictions ensure that our dataflow framework will con-
verge, at the same time hiding the lattice-theoretic foun-
dation of dataflow analysis from the annotator. We an-
ticipate supporting more complex lattices, including in-
teger ranges and restricted classes of infinite lattices. We



will enforce termination by putting bounds on the num-
ber of iterations of our dataflow analysis.

Our language is also restricted in the sense that there is
no way to create dependences between different abstract
interpretations.

6 Conclusions and Future Work

We have introduced a system that allows libraries to
be both general and efficient. Applications can use a
library’s most general interface, and our compiler can
customize the library implementation for different ap-
plication needs. The key to our solution is an annota-
tion language that conveys domain-specific information
to the Broadway Compiler. The cost is that of annotat-
ing libraries, but the benefits are many: (1) Our com-
piler can perform domain-specific optimizations that are
not possible without annotations; (2) our approach sup-
ports the use of cleaner, simpler interfaces, which leads
to application code that is easier to maintain; (3) our ap-
proach provides a clear separation of concerns, as opti-
mization information is encapsulated in the annotations
rather than embedded in the application source code. In
effect, the annotation language allows our compiler to
treat libraries as semantically-rich but syntactically poor
languages.

We have tested our technique by applying it to two pro-
grams written using the PLAPACK library. Our expe-
rience shows that (1) pointer-based C code can be an-
alyzed with the help of our annotations, (2) our tech-
nique can produce significant performance improve-
ments, even for a library that has already been carefully
designed to achieve good performance, (3) a small num-
ber of simple annotations can be effective, and (4) the
same set of annotations can be used to optimize multiple
applications.

This work can be extended in many directions. When
our compiler implementation is complete we will apply
our transformations uniformly to a wider body of PLA-
PACK routines and a larger number of PLAPACK appli-
cations. We also plan to annotate other libraries, such as
the standard math library, the MPICH [15] implementa-
tion of the Message Passing Interface, and perhaps Open
GL [21]. More fundamentally, we are developing com-
pilation strategies that allow us to optimize across mul-
tiple layers of libraries, and we are also exploring ways
to extend our annotation language to support machine-
specific customization.
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A Annotation language grammar

This appendix presents the complete grammar for the
annotation language. We use the following type
face conventions: Italic font for non-terminals, bold
typewriter font for literal terminals including
keywords, and SMALL CAPS for the lexicographic ter-
minals such as identifiers and C code fragments. In
addition, we use the square brackets to represent op-
tional components, and the star to represent repetition
of a component.

A.1 Overall format

Annotations � Header
Annotation �

Header � %
�

C-CODE

% �

Annotation � Property ann�
Global ann�
Procedure

A.2 Globals and properties

Global ann �
global

�
Identifiers �

Property ann � property
�

Properties �

Properties � Property [ , Properties ]

Property �
IDENTIFIER [ = none ]

A.3 Procedures

Procedure �
procedure IDENTIFIER ( identifiers )�

Proc ann ���

Proc ann � Structure ann�
Def use ann�
Analyze ann�
Specialize ann

A.4 Object structure

Structure ann � on entry
�

Structures ��
on exit

�
Structures �

Structures � Structure [ , Structures ]

Structure � Source --> Target�
IDENTIFIER copyof IDENTIFIER

Source � [ IDENTIFIER of ] IDENTIFIER

Target �
IDENTIFIER�
null

A.5 Definitions and uses

Def use ann �
access

�
Identifiers ��

modify
�

Identifiers �

Identifiers �
IDENTIFIER [ , Identifiers ]

A.6 Analyze

Analyze ann � analyze IDENTIFIER
�

Rule ���

Rule � [ Condition => ] Consequence ;

Condition �
IDENTIFIER [ IDENTIFIER ] == IDENTIFIER�
IDENTIFIER [ IDENTIFIER ] == CONSTANT�
( Condition )�
Condition && Condition�
Condition || Condition

Results � Result [ , Results ]

Result �
IDENTIFIER = IDENTIFIER

A.7 Specialize

Specialize � specialize
�

Spec ���

Spec � Condition => Replacement ;

Replacement � remove�
replace C-CODE


