A Comprehensive Approach to DRAM Power Management

Ibrahim Huf

fIBM Corporation
Systems and Technology Group
Austin, TX
ibrahur@us.ibm.com

Abstract

This paper describes a comprehensive approach for us-
ing the memory controller to improve DRAM energy effi-
ciency and manage DRAM power. We make three contribu-
tions: (1) we describe a simple power-down policy for ex-
ploiting low power modes of modern DRAMS; (2) we show
how the idea of adaptive history-based memory schedulers
can be naturally extended to manage power and energy;
and (3) for situations in which additional DRAM power re-
duction is needed, we present a throttling approach that ar-
bitrarily reduces DRAM activity by delaying the issuance

Calvin Lint

fThe University of Texas at Austin

Department of Computer Sgsenc
Austin, TX
lin@cs.utexas.edu

the power supply and the cooling system—to provision

a system for the worst case. If a system can instead
dynamically throttle its power to reduce worst case

power consumption, the system can be provisioned to
be much less expensive.

Throttling supportdPower Shifting[12], a technique
that dynamically assigns a power budget to different
system components, such as the CPU and DRAM,
to maximize performance for a given workload and a
given power budget. Power Shifting assumes that each
subsystem can throttle its power consumption to stay

of memory commands. Using detailed microarchitectural within its given budget.
simulators of the IBM Power5+ and a DDR2-533 SDRAM,
we show that our first two techniques combine to increase For DRAM, one mechanism for addressing both of these
DRAM energy efficiency by an average of 18.2%, 21.7%, power goals is to put idle memory devices into a low power
46.1%, and 37.1% for the Stream, NAS, SPEC2006fp, andmode. Although DRAMs with low power modes are com-
commercial benchmarks, respectively. We also show thatmercially available, no specific policy for their use hasrbee
our throttling approach provides performance that is withi evaluated for commercially available server-class system
4.4% of an idealized oracular approach. Because there are latencies associated with entrance into
and exit from the various low power modes, it is difficult to
know when to transition into and out of low power mode.
A policy that toggles modes too frequently can increase
the latency of memory commands, thereby reducing per-
+ formance. A policy that transitions to low power mode too
slowly will miss opportunities to save power, while a pol-

1 Introduction

Because DRAMSs can account for a significant amoun
of a system’s total power consumption [24], chip designers: > -
have begun to seek active ways to manage DRAM power. /€Y that transitions out of low power mode too slowly will
Two possible power management goals have emerged. Th&nnecesarily degrade performance. _
first goal is to improve energy efficiency, which translates LOW power mode also plays an important role in throt-
into lower energy bills. The second goal is to provide a tling. By forcing memory commands to wait in the memory
mechanism for throttling the flow of memory commands controller, DRAM structures can remain in low power mode
to ensure that power consumption falls within some power for arbitrarily long periods of time, thereby modulating

budget. Such throttling may decrease performance, but itthe DRAM's average power consumption over some small
has at least two benefits. time interval. The key difficulty is to determine the mini-

mumthrottling delay—the period of time for which mem-
e Throttling can reduce system costs. Because of theory commands will be blocked in the memory controller—
large disparity between worst case and expected casdahat is needed to stay below a given power threshold. The
power consumption, it is expensive—both in terms of determination of this delay is complicated by the complex

parallel structure of modern DRAMs and the workload- The remainder of this paper is organized as follows. The
dependent distribution of memory commands. Consider anext section places our work in the context of prior work.
particular point in the execution where a throttling deldy o Section 3 describes our solution. We then describe our ex-
t cycles is ideal for a given power threshold. If the power perimental methodology in Section 4, present our empirical
management system is only able to estimate that a delay okvaluation in Section 5, and conclude in Section 6.

t+6 cycles will suffice, then the power management system

will be forced to consgrva_tively choose a longer targetyela 2 Related Work

of t + § cycles, resulting in unnecessary performance loss.

Thus, for a given power threshold, a more accurate estimate :
Much of the early work in memory system power man-

of throttling delay translates to increased performance.
This paper addresses both of the above power manage"-"gement has focused on embedded systems and laptops,

ment goals by describing policies for putting memory de- where performance loss has been less of an issue [2].
vices into low power mode. We propose small changes D_elaluz et al. [8] contral the use .Of low power mogie by
to the memory controller that significantly improve DRAM hav_lng the memory gontroller predict the idle duration of
energy efficiency and support accurate power throttling. We various memory dewces.. They demonstrate good results
evaluate our solutions by using extremely accurate simu-for cacheless systems using Rambus DRAM. Fan et al. [11]

lators for the IBM Power5+ processor and a DDR2-533 extend this work for systems with multi-level caches, and
SDRAM. In particular, this paper makes three contribu- Irani et al. [19] give a theoretical analysis of dynamic powe
tions: ' management in memory controllers. These approaches are

difficult to tune because they use thresholds, which are sys-
1. We describe and evaluate a simple and practical pol-tem and application dependent.
icy for using the DRAM power-down mechanism. We Previous hardware-based approaches for DRAM power
show that when compared against a baseline systermsavings assume FIFO scheduling in the memory controller.
that does not use the power-down mechanism, our pol-However, it has been shown that better memory schedul-
icy increases DRAM energy efficiency by an average ing approaches can substantially improve performance [30,
of 11.6%, 18.1%, 43.4%, and 34.2% for the Stream, 6, 28, 33, 16]. Such approaches improve performance by
NAS, SPEC2006fp, and commercial benchmarks, re- reducing gaps between commands. Since threshold-based
spectively. predictive algorithms passively monitor memory traffic to
schedule power-down commands, we expect that shorter
gaps will make those algorithms less effective. By confrast
our work takes an active approach and reorders commands
to save power while preserving performance.
Compiler-directed [21, 35, 27, 7] and operating system-
based methods [26, 36, 23, 9] have also been proposed to
save DRAM power. For modern systems with multi-level
. caches, multiple threads, or shared memory controllees, th
ciency by an average of 18.2%, 21.7%, 46.1%, and role of compiler for DRAM power savings is limited. Our

37.1% for the Stream, NAS, SPEC2006fp, and com- :
: . . scheduling methods appear to be complementary to OS-
mercial benchmarks, respectively, and it decreases per;

formance by 2.7%, 1.2%, 0.8%, and 0.6%, respec- bas_ed approaches, which operate at a much coarser gran-
tively. ularity. For example, a recent OS-based method by Huang

et al. [13] is similar to our command reordering approach,

3. We present a throttling approach that uses an accuratdut it reshapes memory traffic at the page granularity.
delay estimation model. This delay model is the main ~ Various throttling approaches have been proposed, in-
conceptual contribution of this paper, and the key idea cluding dynamic voltage scaling, dynamic frequency scal-
is to build an offline regression model that uses only a ing, and decode throttling. Brooks and Martonosi [5] dis-
small number of input parameters, which allows the cuss these throttling methods in the context of CPU power
dynamic overhead of the estimator to be low. Our management. Our throttling approach is similar to decode
delay estimation model provides performance that is throttling in the sense that it reduces the flow of commands,
within 4.4%, 0.9%, 1.3%, and 2.7% of a perfect oracu- but unlike the previous studies, we focus on DRAM power
lar model, for the Stream, NAS, SPEC2006fp, com- management.
mercial benchmarks, respectively. By contrast, our Felter et al. [12] were the first to present a throttling ap-
baseline model, which was proposed by others [12], proach for DRAM power management (and the first to pro-
degrades performance by 29.6%, 20.7%, 18.9%, andpose the idea of Power Shifting), and we take their solution
16.4% for these same benchmark suites. as the baseline for comparison. Our study differs from their

2. We present a small change to the Adaptive History-
Based Scheduler (AHB) [16] that adds power con-
sumption as a scheduling criterion. This modified
AHB scheduler increases the average idle duration of
each rank, thereby increasing the utility of the power-
down unit. When combined with our power-down
policy, our scheduler increases DRAM energy effi-

work in two ways: (1) we develop a much more accurate Reads/Writes

from processors

method of estimating DRAM power, significantly reducing |

performance degradation; and (2) we describe how to im- Memory
plement our method in the memory controller, whereas they ————
leave implementation details as future work. ——
More recently, Diniz et al. [10] present a set of throttling Quisues
techniques that provide extremely low performance degra- f
dation. Their key is to compute, for each memory command
that is issued, a complete, fine-grained power estimate for po——
every DRAM structure. Our work shows that a simpler, Arbiter
lower-cost solution can also be quite effective. e
Recent work by Li et al. [25] present a power-down |
mechanism that solves the dual of our problem, guarantee- ‘ DRAM
ing that performance degradation falls within some speci-
fied limit.

Figure 1. The IBM Power5+ Memory System.
Recent studies have shown the importance of addressing g y=y

DRAM power consumption in large server systems [24, 3].

In contrast to most prior work, we introduce techniques for \yhen idle, the low power modes reduce power consump-
server-class memory controllers with mechanisms suitabletjon by another order of magnitude [31]. To effectively

for server-class memory topologies. use low power modes without adversely affecting perfor-
mance, we present two additions to current memory con-
3 Our Solution trollers: a power-down strategy for generating rank power-

down/up commands and an augmented form of adaptive
This section describes our approach to memory con-history-based schedulers that includes a power reduction

troller design, which makes the memory controller both criterion.
power-aware and performance-aware. To provide context, The non-optimal use of power-down/up commands can
we first briefly describe the Power5+'s memory controller. limit performance in three ways. First, power-down/up
We then present our additions to current memory con- commands consume command bus bandwidth between the
trollers in two subsections. First, we describe a power- memory controller and DRAM. Second, there may be un-
down mechanism to schedule power-down/up signals; andnecessary switches between low and high power modes,
we present an augmented form of adaptive history-basedwhich waste two DRAM cycles for each switch. Third, in
schedulers [16, 17, 14, 18, 15] that includes power crite- most modern DRAM chips, when a rank enters a low power
ria. Second, we introduce an adaptive throttling mechanismmode, it has to remain in that mode for a certain number of
that can arbitrarily reduce DRAM power consumption. cycles. Thus, powering down a rank prematurely can in-

crease the latency for memory commands that are waiting

The Power5+ Memory Controller. As shown in Fig- for the powered-down rank.
ure 1, the Power5+ memory controller sits between the

L2/L3 caches and DRAM. As memory commands enter the 3.1.1 Queue-Aware Power-
memory controller, they are placed in the reorder queues.

On each cycle, the scheduler selects from the reorder queueg/e now describe a new technique for powering down/up

a command, which is then sent to the CAQ, which in ranks of DRAM:; the basic idea is to be aware of the com-
turn transmits commands to DRAM in FIFO order. The mands that are resident in the memory controller. Our
Power5+ memory controller uses a command bus to trans-queue-aware power-down mechanism generates commands
mit memory commands to DRAM. Every command on this to put idle DRAM ranks into low power mode. We intro-
bus has a command type and an address. The DRAM isduce a new type of memory command, in which the ranks
organized as 4anks where each rank is an organizational to be powered down/up are encoded in the address bits of

Down Mechanism

unit consisting of banks the command. In the power-down mechanism, we main-
tain two hardware components for each rank: a status bit
3.1 Effective Use of Low-Power Modes and a counter. The status bit is set to 1 when the rank is

in the low power mode. The counter maintains the number

With multiple ranks in current DRAMS, it is possible of cycles remaining until the rank becomes idle. Each time
that at any given instant, some fraction of devices is idle. a Read or a Write is sent to any bank of a rank, the rank’s
While DRAM power consumption is significantly lower counter is initialized to the maximum of the current value

and the latency of the new command; otherwise the countemew state machine, we define the priorities for each pos-
is decremented by one on every cycle. sible command in the reorder queues as follows: The set
We now present a protocol to decide when to send of commands destined for the same rank as the last com-
a power-down command to DRAM. On every cycle, the mand sent to the memory queue has the highest priority, the
power-down mechanism checks the rank counters, rank staset of commands to the same rank as the second from the
tus bits, and commands waiting in the CAQ. A power-down last command has second priority, and so on. Since there
command is generated for the ranks that meet all of the fol-may be more than one command in each of these sets, our
lowing conditions. (1) The rank counter is zero, which in- approach breaks ties using performance as the second crite-
dicates that the rank is idle. (2) The rank status bit is zero, rion.
because otherwise the rank is already in low power mode. Because both performance and power goals are impor-
(3) The command at the front of the CAQ cannot be issuedtant, we probabilistically combine the new FSM with the
in this cycle, which implies that regular commands have finite state machines of the original AHB, giving each of
priority over power-down commands. (4) There is no com- the three FSM’s equal weighting. (We find that the behav-
mand in the CAQ with the same rank number; this condition ior of our solution is not very sensitive to these weightifigs
avoids powering down a rank if a Read or Write to that rank The result is a history-based scheduler that is optimized fo
is imminent. The fourth condition can be extended to in- both performance and power, but for one particular mix of
clude the reorder queues as well, but we don't evaluate thatRead/Writes. To accommodate a wide range of Read/Write
option in this paper. mixes, we use adaptivity in the same sense as the original
To generate power-up commands, the mechanism keep&HB scheduler, namely, our adaptive scheduler observes
track of the commands entering the CAQ. Whenever a newthe recent command pattern and periodically chooses the
Read or a Write command enters the CAQ from the reordermost appropriate of the multiple history-based schedulers
gueues, a power-up command is generated for the appro-
priate rank, the rank status bit is set to zero, and the rank3.2 Adaptive Memory Throttling
counter is initialized.

Our throttling approach blocks commands inside the
3.1.2 Power-Aware Memory Scheduler memory controller for all DRAM ranks for some fixed pe-
riod of processor cycles, which we refer as the throttling
In this section, we describe how to modify an Adaptive delay. Commands that are blocked cannot proceed to the
History-Based (AHB) scheduler [16] to make it power- CAQ, so they accumulate in the reorder queues, reducing
aware (PA-AHB). bandwidth between the memory controller and DRAM, and
An intelligent memory scheduler would seem to be a allowing ranks to remain in low power mode for longer pe-
natural partner with the low power modes, but the schedul-riods of time.
ing goals of low power and good performance are at odds. To reduce DRAM power consumption to a target level,
For good performance, the scheduler typically selects com-accurate estimation of the throttling delay is crucial, so
mands that avoid hardware conflicts, essentially spreadingwve augment the memory controller witrdalay estimatar
the commands across many physical memory devices. Orwhich takes as input a power threshold and some informa-
the ohter hand, to reduce power consumption, the scheduletion about the state of the DRAM, and produces as output
attempts to cluster commands to a subset of the physicaln estimated throttling delay. The next section provides de
devices, allowing one or more of them to be put into low tails about this delay estimator and its input parameteis, b
power mode. at a high level, the estimator uses a linear model of delay
An adaptive history-based scheduler uses the history ofthat is embedded in the memory controller. To calculate
recently scheduled memory commands when selecting thethe throttling delay for a given power threshold, the esti-
next memory command. In particular, scheduling goals aremator multiplies the relevant input parameters with corre-
encoded in finite state machines (FSM). Previously, two sponding model coefficients and sums the results. Because
scheduling goals were used to improve performance: (1)both the model parameters and the target power level can
minimize the latency of the scheduled commands, and (2)change over time, the estimator periodically calculates a
match some desired balance of Reads and Writes. We augrew throttling delay; we refer to this period as epoch
ment the AHB scheduler by adding power savings as a thirdOur approach thus makes two assumptions: (1) the mea-
goal. sured command flow in the current epoch is similar that of
To satisfy the power savings goal of the scheduler, we the next epoch; and (2) the epoch length is sufficiently long
create a new FSM that groups same-rank commands, infwe use one million processor cycles) that the overhead of
the memory queue as close as possible, so that the totaflelay calculation is negligible.
number of rank power-down operations is reduced. In the The coefficients of the model are computed by a software

tool, themodel buildey which performs measurements on a benchmarks, and each point in a graph represents the delay
set of workloads by applying linear regression on the mea-for such an experiment and the resulting power consump-
sured data. Unlike the estimator, the model builder is activ tion. The lower right graph summarizes the results over the

only at system installation or configuration time. entire benchmark suite, and we see that the power varies
widely with the relative alignment of data; in particulawy f
80 cory 80 scale a target power consumption of 40 Watts, the corresponding
ped T, e delay varies between about 500 and 5,000 cycles, depend-
.0 g, 0 T, ing on the specific benchmark and the relative alignment of
N 20 data. From Figure 2 we infer that the number of bank con-
B . . flicts is an important input parameter to our model, because
veum viad as the relative alignment of data changes, so does the num-
80 8 ber of bank conflicts. Because the number of bank conflicts
£eo & is expensive to compute, our model instead uses a simpler,
a 40 P, related value, namely, the number of cycles for which no
20 20 command could be moved from the reorder queues to the
o 0 CAQ due to a bank conflict.
fill o sum From our experiments, we identify four important pa-
e o rameters:P, the power thresholdk, the number of Reads
gm" e b in the epoch}V, the number of Writes in the epoch, aBd
g I e the number of times in an epoch that bank conflicts prevent
20 . 20 R the movement of a command from the reorder queues.
° ° The next subsection explains how we compute coeffi-
8 ey a0, cients for these parameters, i.e., we explain the role of the
BoO, 60 model builder.
%40 S 40/
£ 20 T 29 3.2.2 Determining Model Coefficients
0 0
® *hrotiing Delay (cycles) . “Throting Delay (eycies) The model builder determines the coefficients of the regres-
sion model for the estimator in two steps. First, for various
Figure 2. Relation between DRAM power con- values of throttling delay, it performs experiments for & se
sumption and the throttling delay for the of workloads and collects data. We believe that the Stream
Stream benchmarks (interval length is 10,000 benchmarks with multiple array offsets are good candidates
cycles). for this purpose. Second, the model builder sets up a sys-
tem of equations, where the known values are the measure-
ment data and the unknowns are the model coefficients. We
solve this system to determine the values of the model co-
3.2.1 The Delay Estimator Model efficients.
. . . N . Linear regression models for throttling delay can be de-
This section explains our model for estimating the thnogli fined as:

delay. Our goal is to produce an accurate closed form equa-

tion that has a minimal number of input parameters. Aside

from P the target power threshold, the inputs to the model yi = Bo + Br®i1 + BoDia + ... + B, B4y, i=1,2,...n.
describe the state of the memory system, because the delay (1)
for agiven command is affected by the states of t_he variousy herey, is the number of measurementss one less than
physical substructures of the DRAM. Many possible input o humber of coefficients in the model, and this are the

parameters could be considered, including the number Ofy,4jing delays in the experiments. The same equation can
Reads issued in an epoch, the number of Writes issued iny ¢, pe stated in matrix form as:

an epoch, the number of bank conflicts in an epoch, and

many other measurements of the state of DRAM. Y)
We conducted a number of experiments to determine the

importance of various parameters. We cannot show all of The elements of thé& matrix are known, and each col-

our experiments here, but we show one example in Figure 2.umn of the matrix represents one feature of the model. A

Each graphin this figure is obtained by generating a randomsample matrix might be: the first column represents the

sampling of data alignments for the inputs to the Stream measured DRAM power, the second column the number of

Model T1: uses Power Model T2: uses Power, Reads, and Writes Model T3: uses Power, Reads, Writes, and Bank Conflicts
15

=
o

copy scale vsum triad fill sum daxpy

copy scale vsum triad fill copy scale vsum triad fill sum daxpy

1 A S SR N e

Estimated Power / Actual Power
[

o
wn

0.5

0.5

Test Data Set Test Data Set Test Data Set

Figure 3. Estimated power vs. actual power for the three regr ession models. A y-axis value of 1
represents the ideal estimator. Each dot represents an elem ent of the test data set.

Reads, the third column the number Writes, and the fourth Figure 3 shows how the estimated power produced by
column the number of processor cycles when no commandeach of the three models compares with actual power. In
could be moved from the reorder queues to the CAQ duethese graphs, a perfect model would produce a horizontal

to a bank conflict. To find the value of the vector, i.e. line at 1. From the rightmost graph, we see that Tt
the coefficients of the model, the model builder uses a leastmodel comes close to this perfect model. By contrast, the
squares method, which is defined as: graphs for the other two models show great variation from
the actual power.
f=o&"y 3) The models we have discussed are called first-order re-

. : gression models, because the exponent of dacls one.
+ -
where®™ is the pseudo-inverse & [4]. Alternatively, we can define higher order models. Although

To calculate the unknOV_/n coefﬂu_ents of the regression higher order models may sometimes provide better fit for
models, we perform experiments using the Stream bench-

marks. For each benchmark, we collect 200 data points byhm;a:g;?fc%it;ag:ﬁ ﬁrr:g_h(;[rggtr f]n%r:jeergll|ze well. Thus, we
blocking commands in the memory controller with differ-

ent throttling delays. Each data point represents one of 16

different offsets between data arrays and includes the num4 Methodology

ber of Reads, number of Writes, DRAM power consump-

tion, and the number of cycles for which no command could |, his section, we describe our simulation methodology,

be sent to the CAQ from the reorder queues due to a bank, ;- gimylated system, and the benchmarks that we use in
conflict. We designate half of the measurements from eaChevaIuating our techniques.

benchmark as the training data set and the other half as the

test data set. . .
4.1 Simulation Methodology

3.2.3 Evaluating Model Accurac)
g y To evaluate performance, we use a cycle-accurate sim-

Using the model builder, we created three models, which weulator for the IBM Power5+, which has been verified to
now evaluate. Model'l = f(P) is the simplest possible within 1% of the performance of the actual hardware. This
model, which does not consider any information about the simulator, one of several used by the Power5+ design team,
state of the DRAM; model’2 = f(P, R, W) considersthe is on the order of 1 million lines of high-level language
number of Reads and Writes and is similar to the model pro-code, and it uses execution traces to simulate both the pro-
posed by Felter et al. [12]; and modEb = f(P, R, W, B) cessor and the memory system. To simulate our bench-
is our proposed model. marks, which have billions of dynamic instructions, we use

To fit the regression models to our measured data, weuniform sampling, taking 50 uniformly chosen samples that
apply linear regression to the training data set, and we cal-each consist of 2 million instructions. This Power5+ sim-
culate theR? statistic [22] using the test data set. For the ulator is integrated with Memsim [32], a DRAM simula-
entire test data set of the Stream benchmarks, we oBfain tor that jointly models power and performance of the main
values of 0.1911, 0.1218, and 0.0032 for modgls 7'2, memory subsystem. In this simulation environment, Mem-
andT'3, respectively. As indicated by its low? value, the sim models all the memory system activity, including re-
T3 model achieves the best accuracy, and it is also the onlyfreshes, while synchronizing with the Power5+ simulator
model that satisfies the0.01 criterion for theR? statistic. on every processor cycle.

[Parameter [Value][Parameter [Value]
Number of ports 2 tRRD: Row active to row active delay 7.5ns
SMils per port 4 tWTR: Write to Read command delay 10ns
DIMMs per SMI 4 tRFC: Auto-refresh command period 105 ns
DIMM width 64 tREFI: Average periodic refresh interval 7.8us
Devices per DIMM 16 tXP: Exit precharge power-down to any non-Read command7.5 ns
Device width 8 tCKE: Minimum high/low time 11.25ns
DRAM burst length 4 IDDO: One bank active-precharge current 80 mA
Number of ranks 4 IDD2P: Precharge power-down current 7 mA
Number of banks 4 IDD2N: Precharge standby current 45 mA
Rows per bank 128 IDD3P: Active power-down current 30 mA
Columns per bank 1024 IDD3N: Active standby current 55 mA
tRP: Row precharge time| 15ns || IDD4R: Burst Read current 145 mA
tRCD: RASto CAS delay| 15ns || IDD4W: Burst Write current 140 mA
tRAS: Row active time 45ns || IDD5: Burst refresh current 170 mA
CL: CAS latency 15ns IDDG6: Self refresh current 7 mA
tRC: Row cycle time 60 ns I0OL: Output minimum sink DC current 13.4mA
tWR: Write recovery time| 15 ns maxVdd: Maximum supply voltage 19V
AL: CAS additive latency 0 nomVdd: Nominal supply voltage 1.8V

Table 1. Memory system details.

4.2 Simulated System The commercial benchmarks consist of four server appli-
cations, nhamelytpcg cpw?2 trade2 andsap Tpcc is an
We evaluate our techniques in the context of the IBM ©nline transaction processing workload; cpw2 simulates th
Power5+ [20]. The Power5+ has one memory controller— database server of an online transaction processing @aviro
with an AHB memory scheduler—and two processors per Ment; trade2 is an end-to-end web application that models
chip, where each processor supports two SMT threads. Then online brokerage; and sap is a database workload. We
Power5+ has also a hardware data prefetching unit. exclude SPEC2006int, because they have low memory pres-
We simulate a Power5+ running at 2.132GHz. Our sim- SUre, so evena trivial power-down approach will suffice for
ulator models all three levels of the cache. The L1D cache th0se benchmarks.
is 32KB with 4-way set associativity, and the L1l cache
is 64KB with 2-way set associativity. The L2 cache is a
3x640KB shared cache, with 10-way set associativity and
a line size of 128B. The off-chip L3 cache is 36 MB.

The Power5+ memory controller has two ports to mem- | this section, we empirically evaluate our three tech-
ory. Each port is connected to memory via Synchronous piques. Our baseline for evaluation is a Power5+ system
Memory Interface (SMI) chips [34]. We evaluate our tech- that uses an AHB memory scheduler. We evaluate our tech-
niques on a configuration with 4 SMIs and DDR2 SDRAM piques in terms of performance, power, and energy effi-
running at 533MHz, a common configuration for high-end cjency.

Power5+ systems. In Table 1 we present some of the signif-

icant memory system parameters that we use in our study.

We use the precharge power-down mode, which has theb.1 Effects of Queue-Aware Power-Down Mecha-
lowest possible power consumption for the DRAM type that nism

we evaluate. More details about the DRAM chips that we
model can be found in the datasheet from Micron [31].

5 Evaluation

We first evaluate the queue-aware power-down mecha-
nism by comparing it against a simpler power-down pol-
4.3 Benchmarks icy, greedy power-dowrwhich is similar to queue-aware

power-down except it omits the fourth condition given in

Our evaluation uses the Stream [29], NAS [1], and Section 3.1.1, so it greedily powers down a rank as soon as
SPEC2006fp benchmarks suites, along with a set of inter-it can. We find that greedy power-down improves energy
nal IBM commercial benchmarks. We combine the origi- efficiency, on average, by 4.3%, 12.6%, 41.2%, and 32.7%
nal Stream and Stream?2 benchmarks to create an extendeir the Stream, NAS, SPEC2006fp, and commercial bench-
set of the Stream benchmarks that consists of seven vectomarks, respectively. The queue-aware power-down pol-
kernels. The NAS benchmarks are a group of eight pro- icy improves energy efficiency over the baseline by 11.6%,
grams derived from computational fluid dynamics applica- 18.1%, 43.4%, and 34.2% for the four benchmark sets, re-
tions; we use serialized versions of the class B benchmarksspectively.

100 -
90 - 0 Baseline

80 Stream 8 Our Method
70 —
60 —
50 —
40 —
30
20 —
10

0 — U

NAS SPEC2006fp Commercial

Average Power (Watts)

—
=]
=
—

SUM ——
ft e ——
IS ——

tpcC —

triad
bt
cg
ep
sp

daxpy e —

fill
sap

milc

zeusmp —
gromacs (——

cactusADM

VSUM ——

gamess —
namd EF——

copy
scale
dealll
soplex
povray
cpw2
trade2

bwaves (I —
sphinx3 E—

leslie3d
calculix
GemsFDTD

Figure 4. Power effects of the Queue-Aware Power-Down mecha nism and the Power-Aware AHB
scheduler over the baseline system.

Power Power
Consumption | Consumption Power Performance| Energy Efficiency

Benchmark (baseline) (our method) | Reduction | Degradation Improvement

(Watts) (Watts) (%) (%) (%)
Stream 65.2 53.0 18.7 2.7 18.2
NAS 44.1 34.5 21.9 1.2 21.7
SPEC2006fp 35.6 19.1 46.4 0.8 46.1
Commercial 36.9 23.1 37.3 0.6 37.1

Table 2. Power, performance, and energy efficiency comparis on of our approach to the baseline
system.

5.2 Effects of Power-Aware Scheduling Basically, the memoryless scheduler avoids long bank con-
flict delays by selecting commands from the reorder queues
Figure 4 shows that there is a benefit to combining the that do not conflict with commands in DRAM.
gueue-aware power-down mechanism and the power-aware To eXplore the effects of the memory SChedUlerS, we first
AHB scheduler. Both techniques attempt to reduce the fre-Present detailed results for tidaxpykernel; we then pro-
guency of transitions into and out of low power mode’ so vide results for the entire Stream benchmark set. Through-
we conclude that neither approach subsumes the other. ~ out Section 5.3 the power-down policy is the queue-aware
Table 2 summarizes the results, and also shows the perPower-down policy.
formance and energy efficiency effects of our techniques.
Not shown in this table is the benefit of the Power-Aware
scheduler with the greedy power-down mechanism, which
yields energy efficiency improvements over the baseline of
13.7%, 18.6%, 43.1%, and 33.8% for the Stream, NAS,
SPEC2006fp, and commercial benchmarks, respectively.

Daxpy Results. Figure 5 shows how the three previously
studied memory schedulers compare in terms of power (left
graph) and performance (right graph). We find that the more
sophisticated schedulers provide better performanceeat th
expense of higher average power consumption.

Figure 6 compares the power and performance of the
three schedulers when combined with the queue-aware
power-down policy. These results are all normalized with

Our baseline system uses the AHB scheduler, but manyrespect to the in-order scheduler with no power-down pol-
other systems use simpler schedulers. In this section wdcy. We find that queue-aware power-down policy lowers
investigate the interaction of the power-down mechanismthe power consumption of the in-order, memoryless, and
with other type of schedulers [16, 17], namely the in-order, AHB schedulers by 19.7%, 7.3%, and 10.2%, respectively.
memoryless, and AHB scheduler. Threorder scheduler = Comparing the right graphs of Figures 5 and 6, we see that
implements the simple FIFO policy used by most general the power-down policy degrades performance by a small
purpose memory controllers today. Timemorylessched- amount. Execution time increases by 1.2% for the in-order
uler implements the ideas proposed by Rixner et al. [33]. scheduler, by 1.4% for the memoryless scheduler, and by

5.3 Effects of the Memory Scheduler

80 150
=1 in-order
=3 memoryless
@ AHB

w

) = in-order + no power-down
=3 in-order == memoryless + no power-down
=1 memoryless == AHB + no power-down
== AHB @ in-order + power-down
@ memoryless + power-down
mmm AHB + power-down
mmm Power-Aware AHB + power-down

60—
100

N

40+

50
20

Average Power (Watts)
Execution Time (ms)

=
1

Normalized Energy Efficiency

Figure 5. Left: Power consumption of In-
order, Memoryless, and Adaptive History-
Based schedulers (without the power-down
mechanism). Right: Performance of the three
schedulers.

Figure 7. Energy efficiency comparison of the
schedulers for the daxpy benchmark.

systems with the in-order, the memoryless, and the AHB

1.9% for the AHB scheduler. Figure 6 also shows the .
scheduler, respectively.

results for the Power-Aware AHB scheduler, which when
compared with the AHB scheduler that uses queue-awar . . .
power-down, reduces power by 9.3% and degrades perfoiS'4 Evaluation of Adaptive Memory Throttling

mance by 0.8%. . . .
In this section, we evaluate the adaptive memory throt-

80T = 150 T ———0o tling approach presented in Section 3.2. We compare the
= Ao = Ao baseline model and our proposed model described in Sec-
e PowerAware AE tion 3.2.3 against a perfect estimator that can calculate th
exact throttling delay for any target power level.

Table 3 summarizes our experimental results for our four
benchmark suites. For the Stream results, we use the test
data described in Section 3.2. For the NAS, SPEC2006fp,
0! 0- and commercial benchmarks, we perform experiments for
three different power target levels: 75%, 50%, and 25% of
the original. As expected, the more accufBgamodel leads

60 mmm Power-Aware AHB
100+

40|

50
20

Average Power (Watts)
Execution Time (ms)

Figure 6. Left: Power consumption of the to significantly better energy efficiency.

In-order, Memoryless, and Adaptive History- Figure 9 illustrates the performance effects of the two
Based schedulers with the power-down regression models on the Stream benchmarks. We see that
mechanism. Right: Performance of the due to inaccuracies in estimating the throttling delay, etiod
schedulers with the power-down mechanism. T2 degrades performance by up to 115.9% beyond the ideal

throttling, while modell’3 degrades performance by up to

5.8% beyond the ideal.
Finally, Figure 7 shows that our two techniques—the PA-

AHB scheduler and the queue-aware power-down policy— 5.5 Multithreading Results

combine to provide the best energy efficiency. In partigular

we find that such a system is 8.6% more energy efficient e have repeated the above experiments on a system that

th_an a system that uses the AHB scheduler in combination;ges two SMT threads on the same processor, but for space

with queue-aware power-down. reasons we omit the graphs. For these experiments, we use
the same trace file for both threads, but we start the second

Stream Results. Figure 8 compares the four schedulers thread 1 million instructions after the first thread.

with and without queue-aware power-down for the Stream We find that the queue-aware power-down and power-

benchmarks. We find that the Power-Aware AHB scheduler aware AHB techniques improve energy efficiency of the

provides the best energy efficiency for all benchmarks. In SMT runs, on average, by 17.4%, 19.6%, 34.7%, and 28.1%

particular, when the memory controller uses queue-awarefor the Stream, NAS, SPEC2006fp, and commercial bench-

power-down, a system with the PA-AHB scheduler is, on marks, respectively. For the benchmarks that already have

average, 14.7%, 19.1%, and 11.6% more efficient than thehigh utilization of memory bandwidth, e.g., the Stream, the

2.0
| O in-order + no power-down

O memoryless + no power-down

4 @ AHB + no power-down

| @ in-order + power-down

@ memoryless + power-down

1 B AHB + power-down

1 5 | B Power-Aware AHB + power-down

1.0 1 1

Normalized Energy Efficiency

0.5

0.0 L L L L L L L

copy
scale
vsum
triad
daxpy
fill
sum

Average

Figure 8. Energy efficiency comparison of the schedulers for the Stream benchmarks.

Target Estimated Power Energy
Power Power Estimation | Performance| Efficiency
Benchmark | Model {75%, 50%, 25% | {75%, 50%, 25% Error Degradation | Degradation
(Watts) (Watts) (%) (%) (%)
Stream T2 (baseline) {39.8,26.5,13.3 {29.3,21.7, 9.¥ 23.7 29.6 46.3
T3 (our model) [{39.8,26.5, 13. {39.3,26.1,13.}1 1.2 4.4 5.6
NAS T2 (baseline) {25.9,17.3, 8. {20.6,12.8, 7.} 21.4 20.7 37.7
T3 (our model) 25.9,17.3, 8. 25.0,16.2, 8% 4.2 0.9 5.1
SPEC2006fp| T2 (baseline) 14.3, 9.6, 4. 11.4, 7.7, 4.] 17.8 18.9 33.4
T3 (our model) 14.3, 9.6, 4.8 13.9, 9.1, 4. 3.1 1.3 4.3
Commercial | T2 (baseline) 17.3,11.6, 5. 13.7, 9.6, 4. 19.3 16.4 32.5
T3 (ourmodel) | {17.3,11.6, 5.3 {171,113, 5. 1.9 2.7 4.5

Table 3. Comparison of the throttling delay estimators (ave
more accurate results than the baseline.

Figure 9. Performance effects of the regression models. A Y-

rages): Our model achieves significantly

Baseline Model (T2): uses Power, Reads, and Writes Our Model (T3): uses Power, Reads, Writes, and Bank Conflicts
3 T T T T T T 3 T T T T T T
g copy scale vsum triad fill sum daxpy copy scale vsum triad fill sum daxpy
—25F 1 2.5¢ 8
©
=2
Q -
< 3 2t i
5
-1 1.5F b
(9]
o
E 1 RSN ” o 3 gy 2 e
k7
w
0.5 L L 0.5 L L

Test Data Set

estimator, so model T3 is much more accruate than T2.

Test Data Set

axis value of 1 represents the

ideal

improvements from our techniques are about the same as Our main conceptual contribution lies in our method of
the single-threaded results. As the memory bandwidth uti- estimating throttling delay. Previous work has shown that
lization of the single thread decreases, the power saving op good throttling decisions can be made by maintaining de-
portunities for the SMT runs decrease as well. However, astailed information about the state of all of DRAM'’s physical
previous studies [18] confirm, in modern memory systems, sub-structures [10]. We instead show how to produce good
constraints in the memory controller make it almost impos- estimates at much lower cost. The key is to do as much
sible to keep all the ranks busy all the time. Thus, we expectof the work statically as possible. Thus, we first conducted
our techniques to be effective even beyond two threads. experiments to identify three key parameters for desagibin
The improvements relative to the baseline from our adap- the state of DRAM. We then used an offline model builder
tive throttling technique are about the same as for thesingl to determine specific coefficients for each of these param-
threaded results. We find that our approach provides perfor-eters. This model builder is trained once at system con-
mance that is within 4.9%, 1.4%, 1.9%, and 3.8% of a per- figuration time. The resulting hardware estimator mairgain
fect oracular model, for our four benchmark suites, respec-only a small amount of dynamic state and a small amount of
tively. By contrast, the baseline model loses 32.7%, 23.1%,logic to compute the throttling delay. We believe that sim-
19.2%, and 18.3% of performance for the same benchmarkilar models can be used by other microarchitectural struc-
suites. tures that need to estimate the effects of complex behavior,
including instruction throttling for the CPU.
5.6 Hardware and Power Costs

Acknowledgments. We thank Alper Buyuktosunoglu for
The current Power5+ memory controller occupies about pjg helpful expertise on power consumption. We thank
1.6% of the entire chip area. The power-down mecha- the entire IBM Power5 team, in particular, Cheryl Chunco,
nism that we propose requires an 8-bit counter and a sta-Steve Dodson, Gary Morrison, Stephen J. Powell, and
tus bit per rank. We conservatively assume that the Power-Karthick Rajamani. This work was supported by NSF grant

Aware AHB scheduler will double the size of the already ACI-0313263 and by an IBM Faculty Partnership Award.
existing AHB scheduler of the Power5+. For the throttling

scheme, the circuitry to detect bank conflicts and to count
Reads/Writes in an epoch already exists, but we need arBEferenceS

additional 16-bit counter to keep track of the bank conflict

information, and we need space to store four 64-bit model [l D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
coefficients. Using an implementation of the Power5+ to L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson,
provide detailed estimates of transistor counts, we estima T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan,

that t extensi . th f and S. Weeratunga. The NAS parallel benchmarks (94).
at our power management extensions increase the area o Technical Report RNR-94-007, NASA Ames Research Cen-

the memory controller by about 2.5%, which increases the ter March 1994.
overall chip’s tran_5|5t0r count _by about 0.04%. [2] L. Benini, A. Macii, and M. Poncino. Energy-aware design
Of course, the implementation of the power management of embedded memories: A survey of technologies, architec-

mechanisms itself also consumes power. We do not have tures, and optimization techniqueA\CM Transactions on
benchmark-specific analyses of this power usage, but we Embedded Computing Systerdél):5-32, 2003.

know that the current memory controller on the Power5+ [3] R. Bianchini and R. Rajamony. Power and energy manage-
consumes about 1% of the chip’s power. With an area-based =~ ment for server systems. Technical Report DCS-TR-528,
estimation, we find that our power management mecha- _ Rutgers University, June 2003. 3
nisms increase the chip’s total power by about 0.025%. Asa 4] C- M. Bishop. Neural Networks for Pattern Recognition
reference, the Power5+ chip typically consumes roughly 2- Oxford University Press, 1995.

. . [5] D. Brooks and M. Martonosi. Dynamic thermal man-
4 times the power as the DRAM chips for our workloads. agement for high-performance microprocessors. Pto-

ceedings of the Seventh International Symposium on High-
6 Conclusions Performance Computer Architectyrgages 171-184, 2001.
[6] J.Corbal, R. Espasa, and M. Valero. Command vector mem-

)) ory systems: High performance at low cost.Froceedings
We have presented a three-pronged approach to manag of the 1998 International Conference on Parallel Architec-

ing DRAM power and energy. Our first two prongs a_lre con- tures and Compilation Techniqugzages 68-79, 1998.
ceptually simple but combine to reduce power with only [7] V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Ir-

minimal reduction in performance. Our third prong sup- win. Energy-oriented compiler optimizations for partitem
ports the notion of throttling, where the key problem is to memory architectures. IRroceedings of the 2000 Interna-
accurately estimate the necessary throttling delay tostay tional Conference on Compilers, Architecture, and Syrishes

low a given power threshold. for Embedded Systemsages 138—147, 2000.

[8] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubra

maniam, and M. Irwin. DRAM energy management using
software and hardware directed power mode contrdPrin
ceedings of the Seventh International Symposium on High-
Performance Computer Architectyggages 159-170, 2001.

[9] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykr

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

ishnan, and M. Irwin. Scheduler-based DRAM energy man-
agement. IrProceedings of the 39th Conference on Design
Automation pages 697-702, 2002.

B. Diniz, D. Guedes, J. Wagner Meira, and R. Bianchini.
Limiting the power consumption of main memory. Rmo-
ceedings of the 34th Annual International Symposium on
Computer Architecturgpages 290-301, 2007.

X. Fan, C. Ellis, and A. Lebeck. Memory controller poli-
cies for DRAM power management. Rroceedings of the
2001 International Symposium on Low-Power Electronics
and Designpages 129-134, 2001.

W. Felter, K. Rajamani, T. Keller, and C. Rusu. A
performance-conserving approach for reducing peak power
consumption in server systems. Pmoceedings of the 19th
Annual International Conference on Supercomputipages
293-302, 2005.

H. Huang, K. G. Shin, C. Lefurgy, and T. Keller. Improv-
ing energy efficiency by making DRAM less randomly ac-
cessed. IrProceedings of the 2005 International Sympo-
sium on Low-Power Electronics and Desjgages 393398,
2005.

I. Hur. Enhancing Memory Controllers to Improve DRAM
Power and Performance PhD thesis, The University of
Texas at Austin, 2006.

I. Hur. Method and system for creating and dynamicadly s
lecting an arbiter design in a data processing systehs.
Patent 7,287,111, assigned to International Business Ma-

chines Corporation2007.

I. Hur and C. Lin. Adaptive history-based memory sched-
ulers. InProceedings of the 37th Annual ACM/IEEE Inter-
national Symposium on Microarchitectungages 343-354,
2004.

I. Hur and C. Lin. Adaptive history-based memory sched-
ulers for modern processorslEEE Micro, 26(1):22—-29,
2006.

I. Hur and C. Lin. Memory scheduling for modern micro-
processorsACM Transactions on Computer Syste2(4),
December 2007.

S. Irani, S. Shukla, and R. Gupta. Online strategiesdjor
namic power management in systems with multiple power-
saving statesACM Transactions on Embedded Computing
Systems2(3):325-346, 2003.

R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5 chip: A
dual-core multithreaded processdEEE Micro, 24(2):40—
47, 2004.

M. Kandemir. Impact of data transformations on memory
bank locality. InProceedings of the Conference on Design,

Automation and Test in Europpages 506-511, 2004.

T. O. Kvalseth. Cautionary note about RZhe American
Statistician 39(4):279-285, November 1985.

A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware
page allocation. IfProceedings of the Ninth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systemages 105-116, 2000.

[24]

[25]

[26]

[27]

(28]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

C. Lefurgy, K. Rajamani, F. L. Rawson Ill, W. Felter,
M. Kistler, and T. W. Keller. Energy management for com-
mercial serverslEEE Computer36(12):39-48, 2003.

X. Li, Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and S. Ku-
mar. Performance directed energy management for main
memory and disks. IfProceedings of the Eleventh Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systermpages 271-283,
2004.

Y.-H. Lu, L. Benini, and G. D. Micheli. Operating-syste
directed power reduction. IRroceedings of the 2000 Inter-
national Symposium on Low-Power Electronics and Design
pages 37-42, 2000.

C.-G. Lyuh and T. Kim. Memory access scheduling
and binding considering energy minimization in multi-bank
memory systems. IRroceedings of the 41st Annual Con-
ference on Design Automatippages 81-86, 2004.

B. Mathew, S. McKee, J. Carter, and A. Davis. Design of
a parallel vector access unit for sdram memory systems. In
Proceedings of the Sixth International Symposium on High-
Performance Computer Architecturgages 39-48, 2000.

J. D. McCalpin. Memory bandwidth and machine balance in
current high performance computetEEE Computer Soci-
ety Technical Committee on Computer Architecture (TCCA)
Newsletter December 1995.

S. A. McKee. Hardware support for dynamic access order-
ing: Performance of some design options. Technical Report
CS-93-08, University of Virginia, 1993.

Micron. http://download.micron.com/pdf/datastedtam/
ddr2/512MbDDR2.pdf, 2004.

K. Rajamani. Memsim user’s guide, IBM research report
RC23431. 2004.

S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory access scheduling. Aroceedings of the
27th Annual International Symposium on Computer Archi-
tecture pages 128-138, 2000.

J. M. Tendler, J. S. Dodson, J. S. Fields Jr., H. Lee, and
B. Sinharoy. Power4 system microarchitectuBM Journal

of Research and DevelopmeA6(1):5-26, 2002.

Z. Wang and X. S. Hu. Power aware variable partitioning
and instruction scheduling for multiple memory banks. In
Proceedings of the Conference on Design, Automation and
Test in Europepages 312—-317, 2004.

P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y1,Zho
and S. Kumar. Dynamic tracking of page miss ratio curve
for memory management. IRroceedings of the Eleventh
International Conference on Architectural Support for Pro
gramming Languages and Operating Systepeges 177—
188, 2004.

