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Te
hnologi
al advan
es and new ar
hite
tural te
hniques have enabled pro-
essor performan
e to double almost every two years. However, these performan
eimprovements have not resulted in 
omparable speedups for all appli
ations, be
ausethe memory system performan
e has not kept pa
e with pro
essor performan
e inmodern systems. In this dissertation, by 
on
entrating on the interfa
e between thepro
essors and memory, the memory 
ontroller, we propose novel solutions to allthree aspe
ts of the memory problem, that is bandwidth, laten
y, and power.To in
rease available bandwidth between the memory 
ontroller and DRAM,we introdu
e a new s
heduling approa
h. To hide memory laten
y, we introdu
e avii



new hardware prefet
hing te
hnique that is useful for appli
ations with regular orirregular memory a

esses. And �nally, we show how memory 
ontrollers 
an beused to improve DRAM power 
onsumption.We evaluate our te
hniques in the 
ontext of the memory 
ontroller of ahighly tuned modern pro
essor, the IBM Power5+. Our evaluation for both te
hni-
al and 
ommer
ial ben
hmarks in single-threaded and simultaneous multi-threadedenvironments show that our te
hniques for bandwidth in
rease, laten
y hiding,and power redu
tion a
hieve signi�
ant improvements. For example, for single-threaded appli
ations, when our s
heduling approa
h and prefet
hing method areimplemented together, they improve the performan
e of the SPEC2006fp, NAS, anda set of 
ommer
ial ben
hmarks by 14.3%, 13.7%, and 11.2%, respe
tively.In addition to providing substantial performan
e and power improvements,our te
hniques are superior to the previously proposed methods in terms of 
ost aswell. For example, a version of our s
heduling approa
h has been implemented inthe Power5+, and it has in
reased the transistor 
ount of the 
hip by only 0.02%.This dissertation shows that without in
reasing the 
omplexity of neither thepro
essor nor the memory organization, all three aspe
ts of memory systems 
an besigni�
antly improved with low-
ost enhan
ements to the memory 
ontroller.
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Chapter 1
Introdu
tion

In the past few de
ades, advan
es in sili
on pro
ess te
hnology have signi�
antlyredu
ed the size and swit
hing times of transistors. As a result, both the numberof transistors on a single die and 
lo
k rates of pro
essors have in
reased rapidly,enabling pro
essor performan
e to double almost every two years. However, theseperforman
e improvements have not resulted in 
omparable speedups for all appli
a-tions. For instan
e, in
reasing pro
essor performan
e by 50% of an IBM Power5+system improves the performan
e of the SPEC2006 ben
hmarks by only 13.1%.Overall performan
e does not s
ale at 
omparable rates in all appli
ations be
ausethe memory system performan
e has not kept pa
e with pro
essor performan
e inmodern systems.There are two aspe
ts of the memory system performan
e: laten
y and band-width. Today, laten
ies have already rea
hed hundreds of pro
essor 
y
les, be
ausememory a

ess delays do not de
rease as fast as pro
essor speeds in
rease. More-over, memory laten
ies are expe
ted to be
ome even longer in the foreseeable futurebe
ause memory developers are required to 
reate a balan
e between the speed and
apa
ity of memory 
hips, rather than fo
using solely on speed. In order to tol-erate growing laten
ies, modern systems in
reasingly use te
hniques, su
h as data1



prefet
hing and simultaneous multithreading, whi
h often elevate memory band-width demands. In addition to laten
y tolerating te
hniques, te
hnology trends,su
h as faster pro
essor 
lo
k rates and 
hip multi-pro
essors, in
rease bandwidthrequirements in modern systems. Hen
e, memory bandwidth, on
e a 
on
ern foronly streaming s
ienti�
 
odes, has be
ome 
ru
ial for non-streaming appli
ationsas well.While long laten
y and insuÆ
ient bandwidth limit the performan
e of mod-ern systems, another performan
e 
riteria has re
ently emerged: power. Power isnot an issue just for pro
essors, but it is a �rst order 
on
ern for DRAM as well.For example, in systems with large memory 
apa
ities, DRAM's are reported to
onsume up to 45% of a system's total power [42℄. Limited power budgets for
edesigners to trade o� performan
e for power. Therefore, power savings in DRAMwill redu
e overall power 
onsumption and may improve system performan
e andenergy usage.1.1 Our SolutionPrevious proposals for improving laten
y, bandwidth, or power aspe
ts of memorysystems have signi�
antly in
reased the 
omplexity of pro
essors and/or main mem-ory organizations. For example, prefet
hing approa
hes for hiding laten
y requirelarge 
hip area to be e�e
tive for irregular memory a

esses; bandwidth improv-ing methods, su
h as multiple banks and multiple 
hannels between pro
essors andmemory, 
reate a 
hallenge for the pro
essors to s
hedule memory 
ommands intel-ligently; and me
hanisms for redu
ing DRAM power 
onsumption require 
omplexalgorithms to redu
e performan
e degradations.Although pro
essor and memory systems have been explored extensively, theinterfa
e between them, the memory 
ontroller, had re
eived relatively less atten-tion. The memory 
ontroller, either o�-
hip or integrated with the 
hip, 
ontrols2



the 
ow of data to and from the memory, bu�ers data if ne
essary, and performsoptimizations to improve performan
e. As pro
essors and memory systems be
omein
reasingly 
omplex, it makes sense to explore ways that the memory 
ontroller 
anbe made more sophisti
ated. Therefore, we 
on
entrate on the interfa
e between thepro
essor and memory, and we propose a low 
ost memory 
ontroller design thatimproves all three aspe
ts of memory systems:� To hide laten
y, we propose a new prefet
hing approa
h that is useful forappli
ations with regular or irregular memory a

esses.� To improve bandwidth, we introdu
e a memory 
ommand reordering te
hniquethat redu
es 
ontention in the memory system.� To address DRAM power 
onsumption, we augment our 
ommand reorderingapproa
h to in
lude power optimizations, and we present a new model-basedthrottling te
hnique.� To put it all together, we present and evaluate a memory 
ontroller designthat in
ludes all of our enhan
ements for laten
y, bandwidth, and power.1.2 Thesis StatementAll three aspe
ts of memory systems, that is laten
y, bandwidth, and power 
on-sumption, 
an be signi�
antly improved with small modi�
ations to the memory
ontroller.1.3 ContributionsIn this dissertation, we make the following 
ontributions:
3



� To deal with in
reasing memory laten
ies, we introdu
e a probabilisti
 hard-ware prefet
hing te
hnique that is parti
ularly useful for appli
ations with lowspatial lo
ality. This te
hnique keeps tra
k of the frequen
y of stream sizes inan appli
ation and uses that information to make prefet
hing de
isions. Weimplement this low 
ost method as a memory-side prefet
her, and we showthat it 
omplements an existing pro
essor-side prefet
her. To better assignresour
es to prefet
h and regular 
ommands, we also introdu
e an adaptiveapproa
h that modulates the relative priority of prefet
h 
ommands and reg-ular 
ommands by monitoring the status of the memory system.� To satisfy growing memory bandwidth demands, we present a new mem-ory s
heduling approa
h. To redu
e 
ontention in the memory system, thiss
heduling te
hnique 
hooses 
ommands to issue to memory by 
onsideringphysi
al 
hara
teristi
s of main memory and the history of memory 
ommands.In addition, to redu
e bottlene
ks in the memory 
ontroller itself, this te
h-nique mat
hes the sequen
e of memory 
ommands to a predetermined 
om-mand pattern. To make this method work for more than one 
ommand pat-tern, we introdu
e an adaptive method that dynami
ally sele
ts from amongmultiple s
hedulers.� To address the power issue, we provide an algorithm to manage powerdown
apabilities of DRAM 
hips; we design a memory s
heduler that optimizesfor both performan
e and power; and we develop an approa
h to throttlememory traÆ
, with minimal performan
e degradation, so that DRAM power
onsumption will meet some spe
i�ed budget.� We evaluate our te
hniques in the 
ontext of the memory 
ontroller of a highlytuned modern pro
essor, the IBM Power5+. Our evaluation 
overs both te
h-ni
al and 
ommer
ial ben
hmarks in single-threaded and simultaneous multi-4



threaded environments. We show that our te
hniques for laten
y hiding, band-width in
rease, and power redu
tion, a
hieve substantial improvements. Forexample, our prefet
hing approa
h improves the performan
e of our te
hni
aland 
ommer
ial ben
hmarks by an average of 10.2% and 8.4%, respe
tively.Similarly, on the same ben
hmarks, our s
heduling method in
reases perfor-man
e by 9.7% and 7.5%. When we 
ombine our laten
y hiding and s
hedulingmethods, we a
hieve 14.3% and 11.2% performan
e improvement.1.4 OrganizationThis dissertation is organized as follows. The next 
hapter presents ba
kgroundand our experimental methodology. In the following three 
hapters, we present ournew solutions and their empiri
al evaluation: in Chapter 3, the Adaptive History-Based S
hedulers to improve available bandwidth; in Chapter 4, Adaptive StreamDete
tion for laten
y hiding; and in Chapter 5, DRAM Power Optimizations. InChapter 6, we pla
e our work in the 
ontext of prior work; and �nally in Chapter7, we 
on
lude and dis
uss future work.

5



Chapter 2
Ba
kground and Methodology

We evaluate our bandwidth, laten
y, and power improvement te
hniques using sim-ulation of a modern ar
hite
ture, the IBM Power5+. In this 
hapter, we �rst presentan overview of the Power5+ ar
hite
ture. We then des
ribe our simulation method-ology. Finally, we dis
uss the details of the ben
hmarks that we use to evaluate ourapproa
hes.2.1 A Modern Ar
hite
ture: The IBM Power5+The IBM Power5+ [10, 35℄ is the su

essor to the Power5 and is the latest memberof the Power4 [69℄ line of pro
essors. The Power5+ 
hip has about 300 million tran-sistors and is designed to address both s
ienti�
 and 
ommer
ial workloads. Someimprovements in the Power5 and Power5+ over the previous generation Power4 in-
lude a larger L2 
a
he, simultaneous multithreading, power-saving features, and anon-
hip memory 
ontroller.As shown in Figure 2.1, the Power5+ has two pro
essors per 
hip, whereea
h pro
essor has split �rst-level data and instru
tion 
a
hes. Ea
h 
hip has auni�ed se
ond-level 
a
he shared by the two pro
essors, and it is possible to atta
h6



an optional L3 
a
he. Four Power5+ 
hips 
an be pa
kaged together to form an8-way SMP, and up to eight su
h SMP's 
an be 
ombined to 
reate 64-way SMPs
alability.The Power5+ [35℄ has an aggressive pro
essor-side prefet
hing unit [69℄ thatprefet
hes from memory to L2 and from L2 to L1. The prefet
her implementsa sequential prefet
hing poli
y that waits to issue prefet
hes until it dete
ts two
onse
utive 
a
he misses. There are 12 entries in the stream dete
tion unit, andeight streams 
an be prefet
hed 
on
urrently. When the steady state is rea
hed,ea
h stream brings one additional line into the L1 
a
he, and one additional lineinto the L2 
a
he.

Figure 2.1: The IBM Power5+ 
hip.The Power5+'s memory 
ontroller, as shown in Figure 2.1, is shared by twopro
essors. The memory 
ontroller has two reorder queues: a Read Reorder Queueand a Write Reorder Queue. Ea
h of these queues 
an hold 8 memory referen
es,7



where ea
h memory referen
e is an entire L2 
a
he line or a portion of an L3 
a
heline. An arbiter sele
ts an appropriate 
ommand from these queues to pla
e in theCentral Arbiter Queue (CAQ), where they are sent to memory in FIFO order. Thememory 
ontroller 
an keep tra
k of the 12 previous 
ommands that were passedfrom the CAQ to the DRAM.
CAQ

Centralized
Arbiter
Queue

DRAM

Memory Controller

Queue

Queue

Read

Write

bus

Arbiter

cache

cache
L3 

L2

Figure 2.2: The Power5+ memory 
ontroller.The Power5+ does not allow dependent memory operations to enter thememory 
ontroller at the same time, so the arbiter is allowed to reorder memoryoperations arbitrarily. Furthermore, the Power5+ gives priority to demand missesover prefet
hes, so from the memory 
ontroller's point of view, all 
ommands in thereorder queues are equally important. Both of these features greatly simplify thetask of the memory s
heduler.2.1.1 DRAM Organization and Power ConsumptionThe Power5+ systems that we 
onsider use DDR2 SDRAM 
hips, whi
h are essen-tially a 5D stru
ture. Two ports 
onne
t the memory 
ontroller to the DRAM. TheDRAM is organized as 4 ranks, where ea
h rank is an organizational unit 
onsistingof 4 banks. Ea
h bank in turn is organized as a set of rows and 
olumns. Thisstru
ture imposes many performan
e 
onstraints. For example, port 
on
i
ts, rank
on
i
ts, and bank 
on
i
ts ea
h in
ur their own delay, and the 
osts of these delaysdepends on whether the operations are Reads or Writes. In this system, bank 
on-8



State Average Power (normalized)Read transfer (1 bank) 1.000Read transfer (4 banks, staggered) 1.875A
tivate-Pre
harge (1 bank) 0.594Idle (pre
harge quiet) 0.281Power-down (pre
harge) 0.038Table 2.1: Power 
onsumption for various states of the Mi
ron 512MB DDR2.
i
t delays are an order of magnitude greater than the delays introdu
ed by rank orport 
on
i
ts.With multiple ranks in a system, it is possible that at any given time someof the ranks are idle. While DRAM power 
onsumption is lower when a rank is idle,the low-power mode 
an redu
e power 
onsumption by another order of magnitude.Table 2.1 shows the relative power 
onsumption for some prominent modes for theranks of a Mi
ron 512MB DDR2-533MHz SDRAM 
hip. A rank 
an enter low-powermode, with a 
ommand from the memory 
ontroller, only if no bank of the rankis pro
essing a memory 
ommand. There is an exit laten
y, whi
h is 12 pro
essor
y
les for the memory 
hips that we simulate, for transitioning from the low-powermode to other modes. Additionally, other timing 
onstraints pla
e restri
tions onhow soon the low-power mode 
an be entered. Our simulation environment [59℄a

urately models all timing 
onstraints, modes, and a
tivities of the ranks andbanks; it uses the 
orresponding power 
onsumption information from the DRAMdatasheets [22℄ to 
orre
tly model power and performan
e of the DRAM 
hips.2.1.2 Ar
hite
tural ParametersIn Table 2.2 we present the base parameters for the IBM Power5+ systems that wesimulate in our studies. These parameters represent one of the most modern system
on�gurations with the Power5+. 9



Parameter ValueL1D, L1I 64KB, 2way, 128BL2 1.9MB, 10way, 128B, sharedL3 36MB, 16way, 128B, shared, vi
timFrequen
y 2.132 GHzMemory Address Bus 8BMemory Read Data Bus 16BMemory Write Data Bus 8BRead Reorder Queue 8Write Reorder Queue 8Centralized Arbiter Queue 3DRAM Type DDR2DRAM Speed 533 MHzNumber of Ranks 4Banks in a Rank 4A
tive Commands in DRAM 12Table 2.2: Base parameters for the IBM Power5+.2.2 Simulation MethodologyThe simulators that we use are for a
tual 
ommer
ial produ
ts, namely the IBMPower4, Power5, and Power5+ systems. They are developed by the pro
essor de-sign and modeling teams of IBM. The simulators represent the modeled systems inextensive detail. Their development, validation, and veri�
ation took many yearsof manpower. For example, one of the simulators 
onsists of about 1.5 million linesof VHDL 
ode and is 
y
le a

urate. With our set of simulators, we 
an simulatedetails of both the pro
essor and memory system. We are also able to performmultithreaded simulations as well as multiple pro
essor simulations.The simulation environment that we use 
onsists of three main parts: asimulator for the pro
essor, a simulator for the level two and level three 
a
hes, anda simulator for the main memory. The simulators for 
a
hes and main memory usethe event-driven CSIM [63℄ framework.
10



2.2.1 Pro
essor, Nest, and Main Memory SimulatorsOur pro
essor simulator, ProSim, is a tra
e driven simulator for a single pro
essorof the Power4, Power5, or Power5+ system. The pro
essor in
ludes exe
ution units,
ontrol logi
, pipeline stru
ture, and the �rst level data and instru
tion 
a
hes.ProSim reads a single re
ord from an instru
tion tra
e and pro
esses it through thepro
essor units. This simulator is designed with the purpose of evaluating variousdesign options. Therefore, we are able to 
hange many ar
hite
tural parametersbefore simulation. Ca
he size, asso
iativity, number of 
oating point units, andbran
h history table size are a few examples of these 
on�gurable paramaters.ProSim delays the pro
essing of an instru
tion if that instru
tion 
auses amiss in a �rst level 
a
he. NestSim, the se
ond part of the simulation environment,handles the pro
essing of these missed instru
tions. As soon as a load or storeinstru
tion misses in a �rst level 
a
he, a new thread is generated. This thread
ows through the se
ond and third level 
a
hes and returns the result to ProSim towake the sleeping ProSim thread. NestSim simulates the details of the se
ond andthird level 
a
hes in detail, but it stops pro
essing the level-1 
a
he miss when thereis a need for a main memory a

ess.The third simulator, MemSim, is a DRAM simulator that jointly modelspower and performan
e of the main memory subsystem. It is also a highly 
on-�gurable simulator, originally designed for modeling the main memory system ofhigh-end servers, with support for di�erent memory interleaving, page modes, andpower management poli
ies. We extend MemSim to a
t as a module in our simu-lation environment along with 
y
le-by-
y
le tra
king of a
tivities in the memorysystem. In this mode, MemSim models all the memory system a
tivity while syn-
hronizing with the NestSim simulator at every pro
essor 
y
le.We integrate NestSim with the MemSim memory simulator by repla
ingNestSim's �xed-laten
y memory model with MemSim. The integrated simulator11



generates timing information for both pro
essor and memory subsystems. In addi-tion, MemSim provides detailed power and energy information for DRAM.2.2.2 Veri�
ation of the SimulatorsWe verify our simulators against an RTL simulator (VSim). VSim 
onsists of about1.5 million lines of VHDL 
ode that has been developed by the IBM designers for thePower4, Power5, and Power5+ systems. Even though VSim represents the a
tualsystem 
orre
tly, it 
annot be used in our studies be
ause it is extremely slow anddiÆ
ult to modify. VSim has been intensively validated and veri�ed for fun
tionalityand performan
e. Veri�
ation of VSim itself is beyond the s
ope of our study.We have performed performan
e veri�
ation and simulator development 
on-
urrently. Whenever a dis
repan
y is dete
ted between VSim and our simulators,we modify our simulators and perform the 
omparisons again. The development ofVSim and our simulators is also 
on
urrent. In other words, as the designers addnew details, VSim 
hanges, whi
h further 
ompli
ates our simulator developmentpro
ess.We 
reate a veri�
ation environment where we 
an run the same test 
aseswith VSim and with our 
ombined simulators. To test various se
tions of the hard-ware, there are several hundred basi
 test 
ases with one or a few instru
tions. Wealso have longer test 
ases to test memory bandwidth.In general, the error between our simulators and the VSim is within 1%.The veri�
ation pro
ess involves not only the 
omparison of the absolute exe
utiontimes, but it also 
ompares the of timing of various events. For example, for aninstru
tion that needs main memory a

ess, it is important to mat
h memory queueentry and exit times in addition to overall memory laten
y. For most test 
ases, weperform these 
omparisons manually.
12



2.2.3 Simulation Approa
hesThere are two modes of running simulations. In the �rst mode (tra
e-based), in-stru
tions are fed to the simulator from a tra
e �le. Instru
tions are pro
essedthrough all levels of the simulaton environment, i.e. ProSim, NestSim, and Mem-Sim. In the se
ond mode (stream-based), only NestSim and MemSim are used. Weuse this mode to study test 
ases with heavy main memory a

ess requirements.A stream generator 
reates various number of data streams (Reads and/or Writes)and feeds those to NestSim. Multipro
essor simulations 
an use only this mode.For a set of mi
roben
hmarks, we 
ompared the results of tra
e-based and stream-based approa
hes, and we found that average performan
e di�eren
e between theseapproa
hes is 1.3%.Our simulation environment allows us to perform unipro
essor or multipro-
essor runs. We 
an simulate any test 
ase with unipro
essor 
on�gurations, butmultipro
essor simulations have limitations. If the 
on�guration is for a unipro
es-sor, we 
an also spe
ify the number threads to run. Ea
h thread 
an use di�erenttra
e �les.2.3 Ben
hmarks and Mi
roben
hmarksWe evaluate our bandwidth, laten
y, and power improvement te
hniques using bothte
hni
al and non-te
hni
al ben
hmarks. For te
hni
al ben
hmarks, we use theStream [48℄, NAS [3℄, and re
ently released SPEC2006fp ben
hmarks [68℄. For non-te
hni
al workloads, we use IBM internal ben
hmarks for 
ommer
ial appli
ations.We also 
reate a set of mi
roben
hmarks for detailed analysis of the memory 
on-troller.The �rst set of ben
hmarks measures streaming behavior. The Stream ben
h-marks, whi
h others have used to measure the sustainable memory bandwidth of13



Kernel Des
riptiondaxpy x[i℄=x[i℄+a*y[i℄
opy x[i℄=y[i℄s
ale x[i℄=a*x[i℄vsum x[i℄=y[i℄+z[i℄triad x[i℄=y[i℄+a*z[i℄�ll x[i℄=asum sum=sum+x[i℄Table 2.3: The extended set of Stream Ben
hmarks.systems [12, 64, 8, 72℄, 
onsist of four simple ve
tor kernels: 
opy, s
ale, vsum, andtriad. The Stream2 ben
hmarks, whi
h 
onsist of �ll, 
opy, daxpy, and sum, wereintrodu
ed to measure the e�e
ts of all levels of 
a
hes and to show the perfor-man
e di�eren
es of reads and writes. In our study, we 
ombine the Stream andthe Stream2 to 
reate the extended Stream ben
hmarks that 
onsist of seven ve
torkernels. We list these kernels in Table 2.3 and, for simpli
ity, we refer to them
olle
tively as the Stream ben
hmarks in the rest of this dissertation.The se
ond set of workloads, the NAS (Numeri
al Aerodynami
 Simulation)ben
hmarks, is a group of eight programs developed by NASA (see Table 2.4).These programs are derived from 
omputational 
uid dynami
s appli
ations andare good representatives of s
ienti�
 appli
ations. The NAS ben
hmarks are fairlymemory intensive, but they are also good in measuring various other performan
e
hara
teristi
s of high performan
e 
omputing systems. There exists parallel andserial implementations of the various sizes of the NAS ben
hmarks. In our studies,we use serialized versions of 
lass B.The third set of te
hni
al workloads that we use are the SPEC2006fp ben
h-marks [68℄. As depi
ted in Table 2.5, this ben
hmark suite 
onsists of 17 s
ienti�
appli
ations. SPEC ben
hmarks are 
onsidered the industry standard in evaluat-ing performan
e of 
omputer systems. This ben
hmark suite has both integer and
oating point ben
hmark sets. We do not evaluate integer ben
hmarks be
ause with14



Program Des
riptionbt Blo
k-Tridiagonal Systems
g Conjugate Gradientep Embarrassingly Parallelft Fast Fourier Transform for Lapla
e Equationis Integer Sortlu Lower-Upper Symmetri
 Gauss-Seidelmg Multi-Grid Method for Poisson Equationsp S
alar Pentadiagonal SystemsTable 2.4: The NAS Ben
hmarks.large 
a
hes of the Power5+, memory pressure of these ben
hmarks are low.For the non-te
hni
al workloads, we use �ve 
ommer
ial server appli
ations,namely tp

, trade2, 
pw2, sap, and notesben
h. Tp

 is an online transa
tion pro-
essing workload; 
pw2 is a Commer
ial Pro
essing Workload that simulates thedatabase server of an online transa
tion pro
essing environment; trade2 is an end-to-end web appli
ation that models an online brokerage; sap is a database workload;and notesben
h is a tool that evaluates the performan
e of a set of systems whi
hare running Lotus Notes.Finally, we use a set of 14 mi
roben
hmarks, whi
h allows us to explore awider range of memory 
ontroller 
on�gurations, and whi
h allows us to explore indetail the behavior of our memory 
ontrollers. Ea
h of our mi
roben
hmarks usesa di�erent Read/Write ratio, and ea
h is named xRyW , indi
ating that it has xRead streams and y Write streams. These mi
roben
hmarks represent most of thedata streaming patterns that we expe
t to see in real appli
ations. There are twoother reasons that we use mi
roben
hmarks. First, the simulation times for theseben
hmarks are very short, e.g. in the order of minutes. We need short simulationtimes to investigate a large number of design 
on�gurations. Se
ond, our simulationenvironment has a limitation to perform multiple pro
essor simulations only withthis type of mi
roben
hmarks. 15



Program Appli
ation Areabwaves Fluid dynami
sgamess Quantum 
hemistrymil
 Physi
s/Quantum 
hromodynami
szeusmp Physi
sgroma
s Bio
hemistry/Mole
ular dynami
s
a
tusADM Physi
s/General relativityleslie3d Fluid dynami
snamd Biology/Mole
ular dynami
sdealll Finite element analysissoplex Linear programming, optimizationpovray Image ray-tra
ing
al
ulix Stru
tural me
hani
sGemsFDTD Computational ele
tromagneti
stonto Quantum 
hemistrylbm Fluid dynami
swrf Weather modelingsphinx3 Spee
h re
ognitionTable 2.5: The SPEC2006fp Ben
hmarks.2.3.1 Test Case GenerationFor the Stream, NAS, and SPEC2006fp ben
hmarks, we 
reate tra
es using aninternal IBM tool. This tool generates, from an exe
utable, as many instru
tions aswe spe
ify. The output 
an be a 
ertain 
ontiguous se
tion of the instru
tion streamor the 
on
atenation of uniformly sampled pie
es. For the Stream ben
hmarks weuse 
ontiguous tra
es. However, the NAS and SPEC ben
hmarks are prohibitivelylong for a single tra
e �le. For example, if not sampled, some SPEC programs runsfor about 3 trillion instru
tions, whi
h would require about 70 years of simulationtime in our detailed simulators. Therefore, for the NAS and SPEC2006fp workloadswe generate sampled tra
es. We �rst generate 50 uniformly distributed pie
es, ea
hhaving 2 million instru
tions, and then we 
ombine those pie
es to 
reate a singletra
e of 100 million instru
tions. To evaluate the representativeness of the sampledtra
es, we 
ompare the CPI's of the entire programs on an a
tual Power5+ to16



the simulator output of the tra
es. As we show in Figure 2.3 and Figure 2.4, oursampling approa
h 
reates a good mat
h to the original CPI of the ben
hmarks.
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Figure 2.3: Per
ent error, in CPI, introdu
ed by tra
e sampling, for the NAS ben
h-marks.
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Figure 2.4: Per
ent error, in CPI, introdu
ed by tra
e sampling, for the SPEC2006fpben
hmarks.For the 
ommer
ial workloads, we use tra
es 
olle
ted by spe
ial hardware.Finally, to generate mi
roben
hmarks, we use a stream generator. This tool runs
on
urrently with the simulator and, as input, it takes the number of Read or Writestreams, the length of ea
h stream, and the o�set among the streams. The o�setamong the streams a�e
ts the order of the 
ommands going to memory, whi
h may
hange the number of the bank or rank 
on
i
ts.17



Chapter 3
Improving Memory Bandwidthwith Smart S
heduling

Memory bandwidth is an in
reasingly important aspe
t of overall system perfor-man
e. Early work for improving available bandwidth fo
used on streaming work-loads, whi
h pla
e the most stress on the memory system. Early work also fo
usedon avoiding bank 
on
i
ts, sin
e bank 
on
i
ts typi
ally lead to long stalls in theDRAM. In parti
ular, numerous hardware and software s
hemes have been pro-posed for interleaving memory addresses [11℄, skewing array addresses [21, 13℄, andotherwise [7, 49, 50, 51, 52℄ attempting to spread a stream of regular memory a
-
esses a
ross the various banks of DRAM. Valero et al. [71, 57℄ des
ribe a methodof dynami
ally reordering memory 
ommands so that the banks are a

essed in astri
t round-robin fashion. More re
ently, Rixner et al. [61℄ evaluate a set of sim-ple heuristi
s for reordering memory 
ommands, some of whi
h 
onsider additionalDRAM stru
ture, su
h as the rows and 
olumns that make up banks. Rixner et al.do not identify a 
on
lusive winner among their various heuristi
s, but they do �ndthat simply avoiding bank 
on
i
ts performs as well as any of their other heuristi
s.Re
ently, the need for in
reased memory bandwidth has begun to extend18



beyond streaming workloads. Faster pro
essor 
lo
k rates and 
hip multi-pro
essorsin
rease the demand for memory bandwidth. Furthermore, to 
ope with relativelyslower memory laten
ies, modern systems in
reasingly use te
hniques that redu
eor hide memory laten
y at the 
ost of in
reased memory bandwidth demands. Forexample, simultaneous multi-threading hides laten
y by using multiple threads, andhardware-
ontrolled prefet
hing spe
ulatively brings in data from higher levels ofthe memory hierar
hy so that it is 
loser to the pro
essor. To a

ommodate moreparallelism, modern DRAM's are also in
reasing in 
omplexity. For example, theDDR2-533 SDRAM 
hips have a 5D stru
ture and a wide variety of 
osts asso
iatedwith a

ess to the various sub-stru
tures.In the fa
e of these te
hnologi
al trends, previous solutions are limited intwo ways. First, it is no longer suÆ
ient to fo
us ex
lusively on streams as a spe
ial
ase; we instead need to a

ommodate ri
her patterns of data a

ess. Se
ond, it isno longer suÆ
ient to fo
us ex
lusively on avoiding bank 
on
i
ts; s
heduling de
i-sions instead need to 
onsider other physi
al sub-stru
tures of in
reasingly 
omplexDRAM's.Previous work is also limited in its avoidan
e of bottlene
ks within the mem-ory 
ontroller itself. To understand this problem, 
onsider the exe
ution of thedaxpy kernel on the IBM Power5+'s memory 
ontroller. The daxpy kernel performstwo reads for every write. If the s
heduler does not s
hedule memory operationsin the ratio of two reads per write, either the Read queue or the Write queue willbe
ome saturated under heavy traÆ
, 
reating a bottlene
k. To avoid su
h bottle-ne
ks, the s
heduler should sele
t memory operations so that the ratio of reads andwrites mat
hes that of the appli
ation.In this 
hapter, we des
ribe a new approa
h|adaptive history-based (AHB)memory s
heduling|that addresses all three limitations by maintaining informationabout the state of the DRAM along with a short history of previously s
heduled19



operations. Our solution avoids bank 
on
i
ts by simply holding in the reorder queueany 
ommand that will in
ur a bank 
on
i
t; history information is then used tos
hedule any 
ommand that does not have a bank 
on
i
t. Our approa
h providesthree 
on
eptual advantages: (1) it allows the s
heduler to better reason about thedelays asso
iated with its s
heduling de
isions, (2) it is appli
able to 
omplex DRAMstru
tures, and (3) it allows the s
heduler to sele
t operations so that they mat
hthe program's mixture of Reads and Writes, thereby avoiding 
ertain bottlene
kswithin the memory 
ontroller.A version of the AHB s
heduler that uses one bit of history and that istailored for a �xed Read-Write ratio of 2:1 has been implemented in the re
entlyshipped IBM Power5+. Nevertheless, important questions about the AHB s
hed-uler still exist. Perhaps the most important question is whether our solution willbe
ome more or less important to future systems, whi
h we 
an study by alter-ing various ar
hite
tural parameters of the pro
essor, the memory system, and thememory 
ontroller. For example, is the AHB s
heduler e�e
tive for multi-threadedand multi-
ore systems? Is the AHB s
heduler needed for DRAM's that will havemany more banks and thus mu
h more parallelism? If we in
rease the size of thememory 
ontroller's internal queues, would a simpler solution suÆ
e? Finally, 
anthe solution be improved by in
orporating more sophisti
ated methods of avoidingbank 
on
i
ts? In this 
hapter, we answer these questions and others to demonstratethe 
exibility and robustness of our solution, evaluating it in a variety of situations.In parti
ular, this 
hapter makes the following 
ontributions:� We present the notion of adaptive history-based s
hedulers, and we providealgorithms for designing su
h s
hedulers.� While most previous memory s
heduling work pertains to 
a
heless streamingpro
essors, we show that the same need to s
hedule memory operations appliesto general purpose pro
essors. In parti
ular, we evaluate our solution in the20




ontext of the IBM Power5+, whi
h has a 5D stru
ture (port, rank, bank,row, 
olumn), plus 
a
hes.� We evaluate our solution using a 
y
le-a

urate simulator for the Power5+.When 
ompared with an in-order s
heduler, our solution improves IPC onthe NAS [3℄ ben
hmarks by a geometri
 mean of 16.8%, and it improves IPCon the Stream ben
hmarks [48℄ by 45.5%. When 
ompared against one ofRixner et al.'s solution, our method sees improvements of 5.8% for the NASben
hmarks and 11.3% for the Stream ben
hmarks. In addition to NAS andStream, we also evaluate our approa
h on 
ommer
ial ben
hmarks, wherewe see 32.8% and 5.6% performan
e improvements 
ompared to in-order andRixner's approa
h, respe
tively.� We show that multi-threaded workloads in
rease the performan
e bene�t ofour solution. This result may be surprising be
ause multi-threading wouldseem to defeat our te
hnique's ability to mat
h the workload's mixture ofReads and Writes. However, we �nd that the in
reased memory system pres-sure in
reases the bene�t of smart s
heduling de
isions. For example, when
ompared with the state of the art on a two pro
essor system ea
h runningtwo threads, our approa
h improves performan
e of 
ommer
ial ben
hmarks,
ompared to Rixner's approa
h, between 6% and 10%. We �nd the some-what surprising result that for previous memory s
hedulers, the use of SMTpro
essors 
an a
tually de
rease performan
e be
ause the DRAM be
omes abottlene
k.� We provide insights to explain why our solution improves the bandwidth ofthe Power5+'s memory system.� We tune our solution and evaluate its sensitivity to various internal parame-ters. For example, we �nd that the 
riterion of minimizing expe
ted laten
y21



is more important than of mat
hing the expe
ted ratio of Reads and Writes.� We show that our solution tends to be more valuable in future systems. Inaddition to the multi-threading results, we show that our solution performswell as we alter various memory 
ontroller parameters, DRAM parameters,and system parameters.� We explore the e�e
ts of varying parameters of the memory s
heduler itself.We �nd that our AHB s
heduler provides signi�
ant bene�ts in performan
eand hardware 
osts when 
ompared with other approa
hes. In many 
ases, ourte
hnique is superior to other approa
hes even when ours is given a fra
tionof the resour
es.� We show that the hardware 
ost of our approa
h is minimal.This 
hapter is organized as follows. The next se
tion presents our solu-tion, followed by experimental evaluation and sensitivity analysis, then we dis
ussimplementation 
ost of our approa
h and we provide 
on
luding remarks.3.1 Adaptive History-Based Memory S
hedulersThis se
tion des
ribes our new approa
h to memory 
ontroller design, whi
h fo
useson making the s
heduler both history-based and adaptive. A history-based s
heduleruses the history of re
ently s
heduled memory 
ommands when sele
ting the nextmemory 
ommand. In parti
ular, a �nite state ma
hine en
odes a given s
hedulinggoal, where one goal might be to minimize the laten
y of the s
heduled 
ommandand another might be to mat
h some desired balan
e of Reads and Writes. Be
auseboth goals are important, we probabilisti
ally 
ombine two FSM's to produ
e ans
heduler that en
odes both goals. The result is a history-based s
heduler thatis optimized for one parti
ular 
ommand pattern. To over
ome this limitation,22



we introdu
e adaptivity by using multiple history-based s
hedulers; our adaptives
heduler observes the re
ent 
ommand pattern and periodi
ally 
hooses the mostappropriate history-based s
heduler.3.1.1 History-Based S
hedulersIn this se
tion we des
ribe the basi
 stru
ture of history-based s
hedulers. Similarto bran
h predi
tors, whi
h use the history of the previous bran
hes to make predi
-tions [11℄, history-based s
hedulers use the history of previous memory 
ommandsto de
ide what 
ommand to send to memory next. These s
hedulers 
an be imple-mented as an FSM, where ea
h state represents a possible history string. For exam-ple, to maintain a history of length two, where the only information maintained iswhether an operation is a Read or a Write, there are four possible history strings|ReadRead, ReadWrite, WriteRead, and WriteWrite|leading to four possiblestates of the FSM. Here, a history string xy means that the last 
ommand trans-mitted to memory was y and the one before that was x.Unlike bran
h predi
tors, whi
h make de
isions based purely on bran
h his-tory, history-based s
hedulers make de
isions based on both the 
ommand historyand the set of available 
ommands from the reorder queues. The goal of the s
hed-uler is to en
ode some optimization 
riteria to 
hoose, for a given 
ommand history,the next 
ommand from the set of available 
ommands. In parti
ular, ea
h stateof the FSM en
odes the history of re
ent 
ommands, and the FSM 
he
ks for pos-sible next 
ommands in some parti
ular order, e�e
tively prioritizing the desirednext 
ommand. When the s
heduler sele
ts a new 
ommand, it 
hanges state torepresent the new history string. If the reorder queues are empty, there is no state
hange in the FSM.As an illustrative example, we present an FSM for an s
heduler whi
h usesa history length of three. Assume that ea
h 
ommand is either a Read or a Write23



operation to either port number 0 or 1. Therefore, there are four possible 
ommands,namely Read Port 0 (R0), Read Port 1 (R1), Write to Port 0 (W0), and Write toPort 1 (W1). The number of states in the FSM depends on the history length andthe type of the 
ommands. In this example, sin
e the s
heduler keeps the historyof the last three 
ommands and there are four possible 
ommand types, the totalnumber of states in the FSM is 4�4�4=64. In Figure 3.1 we show an exampleof transitions from one parti
ular state in this sample FSM. In this hypotheti
alexample, we see that the FSM will �rst see if a W1 is available, and if so, it wills
hedule that event and transition into a new state. If this type of 
ommand is notavailable, the FSM will look for an R0 
ommand as the se
ond 
hoi
e, and so on.
from reorder queues
receive available commands

R1W1R0

command to memory

First choice: W1 W1R0W1

nothing 
available

W1R0W0

W1R0R0

W1R0R1

Second choice: R0

Fourth choice: W0

Third choice: R1

next state

current state

send the most appropriateFigure 3.1: Transition diagram for the 
urrent state R1W1R0. Ea
h available
ommand type has di�erent sele
tion priority.3.1.2 Design Details of History-Based S
hedulersAs mentioned earlier, we have identi�ed two optimization 
riteria for prioritization:the amount of deviation from the 
ommand pattern and the expe
ted laten
y of24



the s
heduled 
ommand. The �rst 
riterion allows an s
heduler to s
hedule 
om-mands to mat
h some expe
ted mixture of Reads and Writes. mixture of Reads andWrites. The se
ond 
riterion represents the mandatory delay between the new mem-ory 
ommand and the 
ommands already being pro
essed in the memory. We �rstpresent algorithms for generating s
hedulers for ea
h of the two prioritization goalsin isolation. We then provide a simple algorithm for probabilisti
ally 
ombining twos
hedulers.Optimizing for the Command PatternAlgorithm 1 generates state transitions for an s
heduler that s
hedules 
ommands tomat
h a ratio of x Reads and y Writes in the steady state. The algorithm starts by
omputing, for ea
h state in the FSM, the Read/Write ratio of the state's 
ommandhistory. For ea
h state, the algorithm then 
omputes the Read/Write ratio of ea
hpossible next 
ommand. Finally, the next 
ommands are sorted a

ording to theirRead/Write ratios. For example, 
onsider an s
heduler with the desired pattern of\one Read per Write", and assume that the 
urrent state of the FSM is W1R1R0.The �rst 
hoi
e in this state should either be a W0 or W1, be
ause only those two
ommands will move the Read/Write ratio 
loser to 1.In situations where multiple available 
ommands have the same e�e
t onthe deviation from the Read/Write ratio of the s
heduler, the algorithm uses somese
ondary 
riterion, su
h as the expe
ted laten
y, to make �nal de
isions.Optimizing for the Expe
ted Laten
yTo develop a s
heduler that minimizes the expe
ted delay of its s
heduled opera-tions, we �rst need a 
ost model for the mandatory delays between various memoryoperations. Our goal is to 
ompute the delay 
aused by sending a parti
ular 
om-mand, 
new, to memory. This delay is ne
essary be
ause of the 
onstraints between25



Algorithm 1 
ommand pattern s
heduler(n)// n is the history length1: for all 
ommand sequen
es of size n do2: r old:=Read/Write ratio of the 
ommand sequen
e.3:4: for ea
h possible next 
ommand do5: r new:=Read/Write ratio.6: end for7: if r old < ratio of the s
heduler, x=y then8: Read 
ommands have higher priority.9: else10: Write 
ommands have higher priority.11: end if12: if there are 
ommands with equal r new then13: Sort them with respe
t to expe
ted laten
y.14: Pi
k the 
ommand with the minimum delay.15: end if16:17: for ea
h possible next 
ommand do18: Output the next state in the FSM.19: end for20: end for
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new and the previous n 
ommands that were sent to memory. We refer to theprevious n 
ommands as 
1, 
2,. . . , 
n, where 
1 is the most re
ent 
ommand sentand 
n is the oldest 
ommand sent.We de�ne k 
ost fun
tions, f1::k(
x; 
y), to represent the mandatory delaysbetween any two memory 
ommands, 
x and 
y, that 
ause a hardware hazard. Here,both k and the 
ost fun
tions are memory system-dependent. For our system, wehave 
ost fun
tions for \the delay between a Write to a di�erent bank after a Read",\the delay between a Read to the same port after a Write", \the delay between aRead to the same port but to a di�erent rank after a Read", et
.We assume that the s
heduler does not have the ability to tra
k the numberof 
y
les passed sin
e the previously issued 
ommands were sent. So, our algorithmassumes that those 
ommands were sent at one 
y
le intervals. In the next step,the algorithm 
al
ulates the delays imposed by ea
h 
x, x 2 [1; n℄ on 
new for ea
hfun
tion, fi::k, whi
h is appli
able to any (
x; 
new) pair. Here, the term \appli
ablefun
tion" refers to a fun
tion whose 
onditions have been satis�ed. We also de�nen �nal 
ost fun
tions, f
osti::n, su
h thatf
osti(
new) = max(fj(
i; 
new))� (i� 1)where i 2 [1; n℄, j 2 [1; k℄, and fj(
i; 
new) is appli
ableWe take the maximum of fj fun
tion values be
ause any previous 
ommand,
i, and 
new may be related by more than one fj fun
tion. In this formula, thesubtra
ted term (i� 1) represents the number of 
y
les 
i that had been sent before
new. Thus, the expe
ted laten
y that will be introdu
ed by sending 
new isTdelay(
new) = max(f
ost1::n(
new))Algorithm 2 generates a FSM for a s
heduler that uses the expe
ted laten
y,Tdelay, to prioritize the 
ommands. As with the previous algorithm, if multipleavailable 
ommands have the same expe
ted laten
y, we use a se
ondary 
riterion|27



in this 
ase the deviation from the 
ommand pattern|to break ties.Algorithm 2 expe
ted laten
y s
heduler(n)// n is the history length1: for all 
ommand sequen
es of size n do2:3: for ea
h possible next 
ommand do4: Cal
ulate the expe
ted laten
y, Tdelay.5: end for6: Sort possible 
ommands with respe
t to Tdelay.7: for 
ommands with equal expe
ted laten
y value do8: Use Read/Write ratios to make de
isions.9: end for10:11: for ea
h possible next 
ommand do12: Output the next state in the FSM.13: end for14: end forA Probabilisti
 S
heduler Design AlgorithmTo 
ombine our two optimization 
riteria, Algorithm 3 weighs ea
h 
riterion andprodu
es a probabilisti
 de
ision. At runtime, a random number is periodi
allygenerated to determine the rules for state transitions as follows:Algorithm 3 probabilisti
 s
heduler1: if random number < threshold then2: 
ommand pattern s
heduler3: else4: expe
ted laten
y s
heduler5: end ifBasi
ally, we interleave two state ma
hines into one, periodi
ally swit
hingbetween the two in a probabilisti
 manner. In this approa
h, the threshold value issystem dependent and should be determined experimentally.28



3.1.3 Adaptive Sele
tion of S
hedulersOur adaptive history-based s
heduler is s
hemati
ally shown in Figure 3.2. Thememory 
ontroller tra
ks the 
ommand pattern that it re
eives from the pro
essorsand periodi
ally swit
hes among the s
hedulers depending on this pattern.
queue

...arbiter 2 arbiter narbiter 1

memory

logic
arbiter selection

read

reordered reads/writes

select 1 select 2
select n

reads

writes

write
queue

Figure 3.2: Overview of dynami
 sele
tion of arbiters in memory 
ontroller.Dete
ting Memory Command PatternTo sele
t one of the history-based arbiters, our memory 
ontroller assumes the avail-ability of three 
ounters: R
nt and W
nt 
ount the number of reads and writesre
eived from the pro
essor, and C
nt provides the period of adaptivity. EveryC
nt 
y
les, the ratio of the values of R
nt and W
nt is used to sele
t the mostappropriate history-based s
heduler. The Read/Write ratio 
an be 
al
ulated usingleft shift and addition/subtra
tion operations; sin
e this 
omputation is performedon
e every C
nt 
y
les, its 
ost is negligible. To prevent retried 
ommands fromskewing the 
ommand pattern, we distinguish between new 
ommands and retried
ommands, and only new 
ommands a�e
t the value of R
nt andW
nt. The valuesof R
nt and W
nt are set to zero when C
nt be
omes zero.29



3.2 Experimental ResultsIn this se
tion, we evaluate the AHB s
heduler and 
ompare its performan
e to theprevious s
heduling approa
hes. First, we identify a baseline by 
omparing previouss
heduling methods. Then, using the Stream, NAS, and 
ommer
ial ben
hmarks, we
ompare performan
e of our approa
h to the baseline. Finally, we use mi
roben
h-marks to investigate performan
e bottlene
ks in the memory subsystem. Our resultsshow that the AHB s
heduler is always superior to the previously proposed methods.We also see that the s
heduler plays a 
riti
al role in balan
ing various bottlene
ksin the system.3.2.1 Evaluating Previous Approa
hesWe 
ompare our AHB s
heduler against a set of s
hedulers that use previouslyproposed ideas. To 
over the full design spa
e, we identify three main features ofmemory 
ontrollers: the approa
h to handle bank 
on
i
ts, the bank s
hedulingmethod, and the priorities for reads and writes.The �rst feature spe
i�es the s
heduler's behavior when sele
ted 
ommandhas a bank 
on
i
t, of whi
h two 
hoi
es have been proposed: 1) the s
heduler
an hold the 
on
i
ting 
ommand in the reorder queues until the bank 
on
i
t isresolved, or 2) the s
heduler 
an transmit the 
ommand to the CAQ.The se
ond feature, the bank s
heduling method, provides a method ofs
heduling 
ommands to banks. We 
onsider three approa
hes: in-order, LRU,and round-robin. The �rst, in-order, implements the simple FIFO poli
y used bymost general purpose memory 
ontrollers today. If implemented in a Power5+ sys-tem, this s
heduler would transmit memory 
ommands from the reorder queues tothe CAQ in the order in whi
h they were re
eived from the pro
essors. In termsof implementation 
ost, in-order s
heduling is the simplest method among all threes
heduling approa
hes. The se
ond s
heduling approa
h, LRU, gives priority to30




ommands with bank numbers that were least re
ently s
heduled. If there is morethan one su
h 
ommands, the s
heduler will swit
h to the in-order approa
h andpi
k the oldest 
ommand. To obtain maximum advantage from the LRU method,we assume true-LRU, whi
h may be unreasonably 
ostly to implement. Finally, theround-robin s
heduling te
hnique tries to utilize banks equally by imposing a stri
tround-robin a

ess to the banks. To guarantee forward progress, we implement amodi�ed version of round-robin. In our implementation, if the reorder queues haveno 
ommand to satisfy the bank sequen
e but they do have other 
ommands, theround-robin s
heduler pi
ks a 
ommand that is 
losest to the optimal sequen
e. Aswith the LRU approa
h, if there are multiple 
ommands to the bank, the s
heduleruses an in-order poli
y and sele
ts the oldest su
h 
ommand.The third design feature des
ribes how 
ommands are sele
ted from Readand Write reorder queues. We evaluate two approa
hes: 1) every read or write
ommand has equal priority, and 2) reads have higher priority over writes. Webelieve, in general, that giving higher priority to reads will improve performan
e.To prevent starvation of writes, we evaluate Rixner et al.'s te
hniques in whi
hwrites are given higher priority if either of the following 
onditions exists: i) thereis a write 
ommand that waited too long, or ii) the write reorder queue is aboutto be
ome full. For both of these 
onditions the memory 
ontroller needs thresholdvalues. Determining these thresholds is not straightforward and may be appli
ationdependent.For our studies, we emphasize these three features as follows. Sin
e bank
on
i
t 
osts are high, our implementations use the �rst design feature to redu
ethe number of 
andidate 
ommands in the reorder queues. Then, from ea
h of thereorder queues, the s
heduler identi�es one 
ommand that satis�es the bank s
hedul-ing approa
h. Finally, the read/write priorities are used to sele
t the 
ommand.Sin
e we identify three bank s
heduling methods, two priority approa
hes,31



and two 
hoi
es bank 
on
i
ts, we evaluate a total of twelve points in the designspa
e. In the next subse
tion, we 
ompare the performan
e of these twelve pointsin the design spa
e and sele
t the baseline to 
ompare with our AHB s
heduler.We 
an now des
ribe our AHB s
heduler in relation to these three designfeatures. The AHB s
heduler holds the 
ommands in the reorder queues if thereis a bank 
on
i
t. Our s
heduler then uses the adaptive history-based te
hniquedes
ribed in Se
tion 3.1 to sele
t the most appropriate 
ommand from among theremaining 
ommands in the reorder queues. In other words, our adaptive history-based approa
h is used to handle rank and port 
on
i
ts, but not bank 
on
i
ts.Our method also 
ombines the s
heduling with and read/write priorities, so thatit eliminates the need to determine thresholds for priority sele
tion. In short, theAHB s
heduler uses a single new me
hanism to implement the �rst and the thirddesign features and it uses a simple me
hanism for de
iding how to deal with bank
on
i
ts.In our implementation of the s
hedulers, we augment the previous propos-als to make them suitable for the Power5+ memory 
ontroller. To determine therepresentative s
hedulers, we 
ondu
t experiments on one SMT pro
essor using theStream ben
hmarks.Table 3.1 illustrates that out of the three 
riteria, bank hold poli
y has thegreatest, up to 46%, e�e
t on performan
e. We observe that any method that holds
ommands with bank 
on
i
ts is better than its 
ounterpart that doesn't hold the
ommands. Among the six approa
hes that holds for bank 
on
i
ts, rd/wr priorityseems more important than the bank s
heduling method. A
tually, e�e
t of banks
heduling poli
y is as high as 45% among the methods, LRU being the best, thatdon't hold banks. However, performan
e gains from holding banks obviate the needfor a 
ompli
ated bank s
heduling method. In terms of implementation 
omplexity,�fo bank s
heduling is the simplest approa
h. Therefore, we determine \hold, �fo,32



bank hold, s
heduler, rd/wr prio. daxpy 
opy s
ale vsum triad �ll sum geom.meandon't hold, �fo, equal prio. 1.987 3.142 2.131 2.001 2.005 2.265 0.851 1.938(in-order)don't hold, �fo, read prio. 1.260 2.164 1.474 1.542 1.561 2.121 0.650 1.448don't hold, lru, equal prio. 0.895 1.557 1.072 1.060 1.061 1.783 0.527 1.067don't hold, lru, read prio. 0.856 1.467 1.006 1.003 1.004 1.825 0.864 1.105don't hold, round-robin,eq. prio. 1.118 1.812 1.242 1.244 1.246 2.007 0.555 1.233don't hold, round-robin,read prio. 1.119 1.776 1.211 1.213 1.219 2.018 0.555 1.219hold, �fo, equal prio. 0.866 1.475 1.014 1.028 1.032 1.798 0.515 1.035hold, �fo, read prio. 0.825 1.487 1.020 0.978 0.977 1.775 0.517 1.014(memoryless)hold, lru, equal prio. 0.855 1.507 1.038 1.017 1.017 1.782 0.560 1.047hold, lru, read prio. 0.846 1.463 0.999 0.982 0.980 1.800 0.515 1.014hold, round-robin, equal prio. 0.808 1.463 1.001 0.956 0.957 1.786 0.569 1.014hold, round-robin, read prio. 0.824 1.478 1.013 0.973 0.969 1.783 0.521 1.011(best)Table 3.1: Performan
e (in CPI) of the Previous S
heduling Approa
hes for theStream Ben
hmarks.read priority" approa
h, whi
h we 
allmemoryless, as the �rst baseline for our study.Note that in our previous work [28, 29℄, we used the term memoryless for \hold,�fo, equal priority" method, whi
h is a slightly inferior method.In addition to the memoryless method, we also sele
t \don't hold, �fo, equalpriority" approa
h, i.e. in-order, as the se
ond approa
h to 
ompare with our AHBs
heduler. We 
hoose in-order s
heduler as the se
ond baseline, be
ause most 
urrentpro
essors implement this approa
h due to its simple implementation 
ost.3.2.2 Tuning the AHB S
hedulerThe AHB s
heduler has three parameters, namely history length, epo
h length, andthe weighting of the two optimization 
riteria. In this subse
tion we tune theseparameters using daxpy ben
hmark and assuming there are two a
tive threads onone pro
essor.History Length. We 
ompare four AHB s
hedulers whose history lengths rangebetween 1 and 4. Table 3.2(a) shows that a history length of 2 is superior to history33



(a) E�e
ts of History LengthHistory Length CPI1 0.7432 0.6963 0.6844 0.684(b) E�e
ts of Epo
h LengthEpo
h Length CPI100 0.712500 0.7031000 0.6945000 0.69610000 0.696(
) E�e
ts of Ratio for Optimization CriteriaWeight of Expe
ted Laten
y (%) CPI0 0.71310 0.70820 0.71130 0.71240 0.70050 0.70460 0.69770 0.69680 0.69990 0.703100 0.709Table 3.2: Tuning of the AHB S
heduler.length of 1 by 6.4%. However, using longer history lengths longer than 2 improvesperforman
e by only 1.8%. Therefore, 
onsidering the implementation 
ost, allexperiments in this study use an AHB s
heduler with a history length of 2.Epo
h Length. We vary epo
h length from 100 to 10,000 pro
essor 
y
les. Ta-ble 3.2(b) illustrates that any length over 1,000 
y
les gives essentially the sameperforman
e. We 
hoose 10,000 pro
essor 
y
les as the epo
h length in our study.Ratio for Optimization Criteria. The AHB s
heduler optimizes for two 
ri-teria, namely the expe
ted laten
y and the 
ommand pattern. As we des
ribe inSe
tion 3.1, our approa
h 
ombines two 
riteria probabilisti
ally by giving weights34



to ea
h 
riterion. Table 3.2(
) shows that we obtain the best performan
e when weassign the expe
ted laten
y a weight of 70% and the 
ommand pattern a weight of30%.3.2.3 Ben
hmark ResultsWe now present simulation results for the AHB, in-order, and memoryless s
hedulersusing the Stream, NAS, and 
ommer
ial ben
hmarks. For the Stream and NASben
hmarks, we simulate one or two threads on one pro
essor. For the 
ommer
ialben
hmarks, we simulate one or two threads on single or dual 
ore systems.We �rst 
ompare the single thread performan
e of the three s
hedulers forthe Stream ben
hmarks (see Table 3.3). The geometri
 means of the performan
ebene�t of the AHB s
heduler over the in-order and the memoryless s
hedulers are45.5% and 11.3% respe
tively. For two threads on a pro
essor, adaptive history-based s
heduling improves exe
ution time by an average of 55.6% over the in-orders
heduler and 16.0% over the memoryless s
heduler.Our se
ond set of results are for the NAS ben
hmarks, whi
h provide amore 
omprehensive evaluation of overall performan
e. Table 3.4 shows that for thesingle thread experiments, the average improvement of our approa
h over the in-order method is 16.8%, and the average improvement over the memoryless methodis 5.8%. In the SMT experiments, we use two threads of the same appli
ation, andthe AHB s
heduler improves performan
e by 25.6% and 9.7% over the in-order andmemoryless s
hedulers, respe
tively.Finally, in Table 3.5, we present the results for the 
ommer
ial ben
hmarksuite running on single and dual 
ore systems, with one or two threads a
tive on ea
hpro
essor, resulting in four di�erent 
on�gurations. For the single threaded 
ase ona single pro
essor, the AHB s
heduler has, on the average, a 12.6% performan
eadvantage over the in-order s
heduler and a 2.9% advantage over the memoryless35



gain over gain overBen
hmark in-order memoryless AHB in-order memoryless(%) (%)One Thread on One Pro
essordaxpy 1.933 0.785 0.712 63.2 9.3
opy 3.576 1.578 1.312 63.3 16.9s
ale 2.467 1.082 0.932 62.2 13.9vsum 2.083 1.008 0.877 57.9 13.0triad 2.088 1.007 0.884 57.7 12.2�ll 2.321 1.696 1.547 33.3 8.8sum 0.854 0.793 0.730 14.5 7.9Two Threads on One Pro
essordaxpy 1.987 0.825 0.696 68.2 16.4
opy 3.142 1.487 1.212 64.5 19.4s
ale 2.131 1.020 0.833 64.0 19.3vsum 2.001 0.978 0.837 61.1 15.1triad 2.005 0.977 0.838 61.1 14.9�ll 2.265 1.775 1.518 33.0 14.5sum 0.851 0.517 0.447 47.5 13.6Table 3.3: Comparison of CPI's of the AHB s
heduler to the in-order and memory-less s
hedulers for the Stream ben
hmarks. gain over gain overBen
hmark in-order memoryless AHB in-order memoryless(%) (%)One Thread on One Pro
essorbt 0.960 0.883 0.838 12.7 5.1
g 1.841 1.712 1.582 14.1 7.6ep 2.465 2.219 2.118 14.0 4.6ft 2.743 2.277 2.074 24.4 8.9is 2.370 1.990 1.861 21.5 6.5lu 2.455 2.013 1.872 23.7 7.0mg 1.327 1.155 1.088 18.0 5.8sp 1.502 1.380 1.335 11.1 3.3Two Threads on One Pro
essorbt 1.005 0.781 0.721 28.3 7.7
g 1.806 1.532 1.365 24.4 10.9ep 2.151 1.971 1.798 16.4 8.8ft 2.655 2.027 1.780 33.0 12.2is 2.145 1.616 1.440 32.9 10.9lu 2.012 1.732 1.561 22.4 9.9mg 1.108 0.930 0.819 26.1 11.9sp 1.365 1.086 1.012 25.9 6.8Table 3.4: Comparison of CPI's of the AHB s
heduler to the in-order and memory-less s
hedulers for the NAS ben
hmarks.36



gain over gain overBen
hmark in-order memoryless AHB in-order memoryless(%) (%)One Thread on One Pro
essortp

 15.458 14.222 13.798 10.7 3.0
pw2 15.366 14.092 13.738 10.6 2.5trade2 15.728 14.326 14.052 10.7 1.9sap 10.268 8.542 8.112 21.0 2.9Two Threads on One Pro
essortp

 11.572 9.304 8.890 23.2 4.4
pw2 11.274 8.746 8.396 25.5 4.0trade2 11.152 8.726 8.380 24.9 4.0sap 8.406 5.506 5.206 38.1 5.4One Thread on Ea
h of the Two Pro
essorstp

 10.576 7.913 7.518 28.9 5.0
pw2 10.611 7.760 7.335 30.9 5.5trade2 10.431 7.749 7.291 30.1 5.9sap 7.896 4.780 4.494 43.1 6.0Two Threads on Ea
h of the Two Pro
essorstp

 9.733 5.401 5.037 48.2 6.7
pw2 9.744 5.153 4.773 51.0 7.4trade2 9.593 5.100 4.766 50.3 6.5sap 7.367 3.483 3.151 57.2 9.5Table 3.5: Comparison of CPI's of the AHB s
heduler to the in-order and memory-less s
hedulers for the 
ommer
ial ben
hmarks.s
heduler. As the total number of threads in
reases to two, we observe that the AHBs
heduler's advantage in
reases to 27.4% and 4.4% on a single 
ore system, and to32.8% and 5.6% on a dual 
ore system. For two threads running on ea
h of twopro
essors, the gain from the AHB s
heduler is 51.6% over the in-order s
hedulerand 7.5% over the memoryless s
heduler.In summary, our experiments with the Stream, NAS, and 
ommer
ial ben
h-marks indi
ate that the AHB s
heduler is superior to the in-order and memorylesss
hedulers. We also see that the bene�t of our approa
h in
reases as the total num-ber of threads in the system in
reases, be
ause additional threads in
rease pressureon the single memory 
ontroller. 37



3.2.4 Understanding the ResultsWe now look inside the memory system to gain a better understanding of our results.To study a broader set of hardware 
on�gurations, we use a set of 14 mi
roben
h-marks, ranging from 4 Read streams and 0 Write streams, to 0 Read streams and4 Write streams. Figure 3.3 shows that for these mi
roben
hmarks, the adaptivehistory-based method improves performan
e by 20-70% 
ompared to in-order s
hed-uler and by 17-20% 
ompared to memoryless s
heduler.
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Figure 3.4: Utilization of the DRAM for the daxpy kernel.The most dire
t measure of the quality of a memory 
ontroller is its impa
ton memory system utilization. Figure 3.4 shows a histogram of the number of38



operations that are a
tive in the memory system on ea
h 
y
le. We see that when
ompared against the memoryless s
heduler, our s
heduler in
reases the averageutilization from 8 to 9 operations per 
y
le. The x-axis goes to 12 be
ause thePower5+'s DRAM allows 12 memory 
ommands to be a
tive at on
e.
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MicrobenchmarksFigure 3.5: Comparison of retry rates.Memory system utilization is also important when evaluating our results,be
ause it is easier for a s
heduler to improve the performan
e of a saturated system.We measure the utilization of the 
ommand bus that 
onne
ts the memory 
ontrollerto the DRAM, and we �nd that the utilization was about 65% for the Streamben
hmarks and about 13%, on average, for the NAS ben
hmarks. We 
on
ludethat the memory system was not saturated for our workloads.Bottlene
ks in the System. To better understand why our solution improvesDRAM utilization, we now examine various potential bottlene
ks within the memory
ontroller.The �rst potential bottlene
k o

urs when the reorder queues are full. In this
ase, the memory 
ontroller must reje
t memory operations, and the CPU must retrythe memory operations at a later time. The retry rate does not 
orrelate exa
tlyto performan
e, be
ause a retry may o

ur when the pro
essor is idle waiting fora memory request. Nevertheless, a large number of retries hints that the memory39



system is unable to keep up with the pro
essor's memory demands. Figure 3.5shows that the adaptive history-based method always redu
es the retry rate when
ompared to the in-order method, but it sometimes in
reases the retry rate 
omparedto the memoryless method.
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MicrobenchmarksFigure 3.6: Comparison of the number of bank 
on
i
ts in the reorder queues.A se
ond bottlene
k o

urs when no operation in the reorder queues 
anbe issued be
ause of DRAM 
on
i
ts with previously s
heduled 
ommands. Thisbottlene
k is a good indi
ator of s
heduler performan
e, be
ause a large number ofsu
h 
ases suggests that the s
heduler has done a poor job of s
heduling memoryoperations. Figure 3.6 
ompares the total number of su
h blo
ked 
ommands forour method and for the memoryless method. This graph only 
onsiders 
ases wherethe reorder queues are the bottlene
k, i.e., all operations in the reorder queuesare blo
ked even though the CAQ has empty slots. We see that ex
ept for fourmi
roben
hmarks, our method substantially redu
es the number of su
h blo
kedoperations.A third bottlene
k o

urs when the reorder queues are empty, starving thes
heduler of work. Even when the reorder queues are not empty, low o

upan
yin the reorder queues is bad be
ause it redu
es the s
heduler's ability to makegood s
heduling de
isions. In the extreme 
ase, where the reorder queues hold40
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Figure 3.7: Redu
tion in the o

urren
es of empty reorder queues, whi
h is a measureof the o

upan
y of the reorder queues.no more than a single operation, the s
heduler has no ability to reorder memoryoperations and instead simply forwards the single available operation to the CAQ.Figure 3.7 shows that our method signi�
antly redu
es the o

urren
es of emptyreorder queues, indi
ating higher o

upan
y of these queues.The �nal bottlene
k o

urs when the CAQ is full, for
ing the s
heduler toremain idle. Figure 3.8 shows that the adaptive history-based s
heduler tremen-dously in
reases this bottlene
k. The ba
kpressure 
reated by this bottlene
k leadsto higher o

upan
y in the reorder queues, whi
h is advantageous be
ause it givesthe s
heduler a larger s
heduling window.
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To test this theory, we 
ondu
t an experiment in whi
h we in
rease the size ofthe CAQ. We �nd that as the CAQ length in
reases, the CAQ bottlene
k de
reases,the reorder queue o

upan
y falls, and the overall performan
e de
reases.In summary, our solution improves bandwidth by moving bottlene
ks fromoutside the memory 
ontroller, where the s
heduler 
annot help, to inside the mem-ory 
ontroller. More spe
i�
ally, the bottlene
ks tend to appear at the end of thepipeline|at the CAQ|where there is no more ability to reorder memory 
om-mands. By shifting the bottlene
k, our solution tends to in
rease the o

upan
y ofthe reorder queues, whi
h gives the s
heduler a larger number of memory operationsto 
hoose from. The result is a smaller number of DRAM 
on
i
ts and in
reasedbandwidth.
4r

0w

2r
0w

1r
0w

8r
1w

4r
1w

3r
1w

2r
1w

3r
2w

1r
1w

1r
2w

1r
4w

0r
1w

0r
2w

0r
4w

Microbenchmarks

0

10

20

30

40

50

60

70

80

90

100

R
ed

uc
tio

n 
in

 S
ta

nd
ar

d 
D

ev
ia

tio
ns

 (
%

)

Figure 3.9: Redu
tion in standard deviations for 16-di�erent address o�sets.E�e
ts of Data Alignment. Another bene�t of improved memory s
hedulingis a redu
ed sensitivity to data alignment. With a poor s
heduler, data alignment
an 
ause signi�
ant performan
e di�eren
es. The largest e�e
t is seen where adata stru
ture �ts on one 
a
he line when aligned fortuitously but straddles two
a
he lines when aligned di�erently. In su
h 
ases, the bad alignment results intwi
e the number of memory 
ommands. If a s
heduler 
an improve bandwidth by42



reordering 
ommands, it 
an mitigate the di�eren
e between the well-aligned andpoorly-aligned 
ases. Figure 3.9 
ompares the standard deviations of the adaptivehistory-based and memoryless s
hedulers when data are aligned on 16 di�erent ad-dress o�sets. We see that the adaptive history-based solution redu
es the sensitivityto alignment.3.3 Sensitivity AnalysisThe previous se
tion analyzed the performan
e of the AHB s
heduler in the 
ontextof the IBM Power5+. This se
tion explores the broader utility of our s
heduler byanalyzing its performan
e in the 
ontext of various derivatives of the Power5+.There are three goals of this se
tion. First, we would like to analyze thesensitivity and robustness of the AHB s
heduler to various mi
ro-ar
hite
tural fea-tures. We will show that the AHB s
heduler yields performan
e that is robust a
rossa variety of mi
ro-ar
hite
tural parameters. We will also see that the other s
hed-ulers 
annot a
hieve the performan
e of the AHB approa
h even if given additionalhardware resour
es. Se
ond, we identify optimal values for parameters related tothe memory s
heduler. We show that 
arefully determining memory system param-eters has signi�
ant performan
e impli
ations. And �nally, we want to evaluate ourapproa
h for possible future ar
hite
tural trends.In the following subse
tions, we �rst investigate the performan
e e�e
ts ofvarying the parameters of the memory 
ontroller. Then, we analyze the e�e
ts ofvarious DRAM parameters. And lastly, to explore the appli
ability of our approa
hin possible future systems, we 
ompare the s
hedulers for systems with di�erentpro
essor frequen
ies and di�erent data prefet
hing options.We evaluate our s
heduler with single and multiple-threads, and we make
omparisons to the memoryless s
heduler. We use daxpy ben
hmark in our exper-iments, be
ause daxpy o

urs very frequently in s
ienti�
 workloads, and ar
hite
-43



tural parameters are 
onsidered diÆ
ult to tune for this ben
hmark.3.3.1 Memory Controller ParametersThere are numerous memory 
ontroller design features that a�e
t performan
e. Inthis subse
tion, we 
ompare the AHB and the memoryless s
heduling methods byvarying memory 
ontroller features. Sin
e the design spa
e is large, we identify threeimportant parameters to vary: the CAQ length, the reorder queue lengths, and theduration to blo
k a 
ommand in the reorder queues when there is a bank 
on
i
t.We believe that these features are the most important parameters with respe
t toperforman
e.CAQ Length. The Central Arbiter Queue resides between the memory s
hedulerand DRAM. At ea
h 
y
le, the s
heduler sele
ts an appropriate 
ommand from thereorder queues and feeds it to the CAQ. Sin
e the CAQ a
ts as a bu�er between thes
heduler and DRAM, the length of this queue is 
riti
al to performan
e. Here, weexamine the performan
e e�e
ts of the CAQ length. For various 
on�gurations ands
hedulers, we �rst determine the optimal length for the queue. We then analyzethe sensitivity of the s
heduling approa
hes to the 
hanges in this length. Ourexperiments show that the AHB s
heduler is superior to the memoryless s
hedulerfor all CAQ lengths that we study.The CAQ length may degrade performan
e if it is either too short or toolong. If the queue is too short, it will tend to over
ow frequently and lead to fullreorder queues, whi
h will 
ause the memory 
ontroller to reje
t memory 
ommandsfrom the pro
essor and degrade overall performan
e. We 
an redu
e the o

urren
eof CAQ over
ows by in
reasing the CAQ length, but a long CAQ has its owndisadvantages. First, it 
onsumes more hardware resour
es, as the Power5+ memory
ontroller's hardware budget is dominated by the reorder queues and CAQ. Se
ond,as explained in Se
tion 3.2.4, a long CAQ 
an redu
e ba
kpressure on the reorder44



queues, giving the s
heduler a smaller e�e
tive s
heduling window, whi
h leads tosuboptimal s
heduling de
isions. Therefore, the CAQ a
ts as a regulator for therate of 
ommands to be sele
ted from the reorder queues, and there is a deli
atebalan
e between the CAQ length and performan
e.We 
ondu
t experiments in whi
h we vary the CAQ length from 2 to 16.In Figure 3.10, we show the e�e
t of the CAQ length for both Single-Threaded(ST) and SMT environments. For the ST daxpy, the AHB s
heduler gets the bestperforman
e for a queue length of 4. As the queue length in
reases beyond 4, thereis a slight performan
e degradation. For the SMT 
ase, a queue length of 3 givesthe best performan
e for the AHB method. Similar to the ST 
ase, as the CAQlength in
reases beyond the optimal value, we observe performan
e degradation.But unlike the ST 
ase, the performan
e degradation is not small. For example,performan
e is 1.7% lower for the queue length of 4 
ompared to the length of 3.This performan
e di�eren
e goes up to 4.4% when the queue has 16 slots.
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Figure 3.10: ST and SMT results for the memoryless and the AHB with varyinglengths of the CAQ.Figure 3.10 also shows that for the memoryless s
heduler, longer CAQs al-ways yield better performan
e, most likely be
ause the memoryless s
heduler has no45



way to exploit larger s
heduling windows. For example in the ST 
ase, the perfor-man
e of the memoryless s
heduler improves by 7.1% as the CAQ length in
reasesfrom 3 to 16. However, even with this queue length, our approa
h is still supe-rior over the memoryless s
heduler. In the SMT experiments with the memorylesss
heduler, we �nd that the performan
e gain from in
reasing the queue size to 16 ismu
h smaller 
ompared to the ST 
ase.In summary, the memoryless method improves as the CAQ gets longer, butit 
annot a
hieve the performan
e of the AHB s
heduler even if given a mu
h longerCAQ. We also 
on
lude that sele
ting the optimal queue length has signi�
ant per-forman
e e�e
ts.Reorder Queue Lengths. As we show in Figure 2.1, the Power5+ has two re-order queues inside the memory 
ontroller: one for reads and one for writes. In the
urrent design of the Power5+, ea
h of these queues have equal length of 8. Here,we analyze the e�e
t of the reorder queue lengths on the s
heduling approa
hes.The length of the reorder queus a�e
ts performan
e in two ways. First,retries o

ur when the reorder queues are full, so shorter reorder queues in
reasethe number of retries and potentially de
rease overall performan
e. Se
ond, if thereorder queues are short, the s
heduler will have limited optimization 
apability.In the extreme 
ase, 
onsider a reorder queue with just one slot. The s
hedulerwill have no 
hoi
e but sele
t the 
ommand from that slot. We, therefore, expe
tthat in
reasing the size of the reorder queues will improve the performan
e of anys
heduling approa
h.We perform simulations that vary the reorder queue lengths from 4 to 16. Forsimpli
ity, we always keep the lengths of the two queues the same. In Figure 3.11,we present the e�e
ts of the reorder queue lengths on performan
e for both the AHBand the memoryless s
hedulers. For the single threaded experiments, as we shortenthe queue sizes from the Power5+'s 
urrent value of 8 to 4, the AHB s
heduler loses46



28.8% of its performan
e and memoryless s
heduler loses 25.3%. The same redu
tionin the reorder queue lengths for the SMT experiments degrades performan
e 27.3%and 19.9% for the AHB and memoryless s
hedulers, respe
tively. On the other hand,for both of the s
heduling approa
hes, when we in
rease the reorder queue lengthsbeyond the 
urrent value of 8, we obtain only very small performan
e improvements.
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Figure 3.11: ST and SMT results for memoryless and AHB with various reorderqueue lengths.We 
on
lude that for all the reorder queue sizes, the performan
e of the AHBapproa
h is better than the memoryless method. As we expe
t, the advantage of theAHB method over the memoryless method in
reases as the queues be
ome longer.We also observe that the 
urrent queue lengths are optimal for the Power5+. We
annot obtain any signi�
ant performan
e gains with longer queues regardless of thes
heduling approa
h or the number of threads.Wait Times for Commands with Bank Con
i
ts. In this se
tion, we analyzethe intera
tion between the s
heduler and the blo
king duration for 
ommands withbank 
on
i
ts. We �nd that the AHB is less sensitive to this parameter and isalways better than the memoryless s
heduler regardless of the wait time.Bank 
on
i
ts prohibit the entran
e of new 
ommands to DRAM. Sin
e the47



CAQ is a FIFO queue, if the 
ommand in front of the CAQ 
on
i
ts with a 
ommandin DRAM, all the 
ommands in the CAQ are blo
ked until the 
on
i
t is 
leared.To prevent this, the Power5+ holds 
ommands in the reorder queues when theyhave bank 
on
i
ts. Even with an empty CAQ, a 
ommand in the reorder queueshas to travel some distan
e before it is issued to DRAM. This distan
e is about 32pro
essor 
y
les in the 
urrent implementation. To avoid this 32 
y
le delay, thePower5+ transmits 
ommands to the CAQ some number of 
y
les before the bank
on
i
t is expe
ted to be resolved.This wait time in the reorder queues is important to performan
e. If the waittime is too short, 
ommands with bank 
on
i
ts will be s
heduled early, yielding twopossible e�e
ts: First, the CAQ may 
ontain multiple 
ommands to the same bank,and when one of these 
ommands goes to DRAM, the others will be blo
ked formany 
y
les. Se
ond, if the 
ommand is s
heduled too early, the s
hedule may missthe opportunity to make a better s
heduling de
ision when additional 
ommandsmight be
ome available in the reorder queues.To investigate the e�e
ts of various wait times, we 
ondu
t experiments forthe AHB and the memoryless s
hedulers with ST and SMT. As we see in Figure 3.12,the AHB s
heduler is mu
h less sensitive to the wait time. For the AHB s
heduler,95 pro
essor 
y
les is the optimal wait time for both ST and SMT experiments. If a
ommand waits until the bank 
on
i
t is 
leared, this will degrade performan
e by1.8% for ST and 3.5% for SMT. For the memoryless approa
h, 125 and 110 
y
lesare the optimal wait times for ST and SMT, respe
tively. The memoryless methodwith SMT has a 1.2% performan
e advantage when it uses 110 
y
le wait time ratherthan 125 
y
les.In summary, we observe that the s
heduler should be able to sele
t a 
om-mand from the reorder queues earlier than the bank 
on
i
t is 
leared. We also �ndthat for the ST 
ase, the AHB approa
h is less sensitive to this parameter. For the48
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Figure 3.12: ST and SMT results for the memoryless and the AHB with varyingwait times for bank 
on
i
ts.SMT, both s
heduling approa
hes show similar sensitivity. For all the wait timesthat we study, the AHB s
heduler has better performan
e than the memorylesss
heduler.3.3.2 DRAM ParametersIn this se
tion we vary DRAM system parameters. In parti
ular, we evaluate theperforman
e of the AHB and the memoryless methods by varying the memory ad-dress and data bus widths, the maximum number of 
ommands that 
an be a
tivein DRAM, and the number of banks available in a rank. We �nd that ea
h of thesethree parameters signi�
antly a�e
ts performan
e.Address and Data Bus Widths. Memory bus width signi�
antly a�e
ts a mem-ory system's bandwidth, so we explore the e�e
t of using both narrower and widermemory buses for the Power5+. The Power5+ memory 
ontroller is 
onne
ted tomemory 
hips via an address bus and a data bus. In the 
urrent implementation,the address bus is 32 bits wide. The data bus has 24 bits: 16 bits for Reads and 8bits for Writes. 49



In Figure 3.13 the x-axis represents the relative ratio of the bus widths tothe 
urrent values of the Power5+. For example, 0.5 represents a system with buseshalf the width of the 
urrent system. We �nd that redu
ing bus widths by 50%signi�
antly degrades performan
e (20.9-26.6%) for both the AHB and memorylesss
hedulers. We also observe that in
reasing bus widths beyond the 
urrent valuesof the Power5+ has little e�e
t on performan
e. For all the bus widths we study,the AHB's performan
e is higher than the memoryless.
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Figure 3.13: ST and SMT results for memoryless and AHB, varying memory addressand data bus widths.Maximum Number of Commands in DRAM. In the systems we examine,the DRAM is organized into 16 banks, so there 
an be a maximum of 16 
on
urrent
ommands in DRAM. However, the Power5+ designers 
hoose to tra
k at most 12
ommands at any time. To explore the bene�t of tra
king more than 12 
ommands,we vary the number of 
ommands tra
ked. In Figure 3.14, we show results forboth ST and SMT workloads. We �nd that in
reasing beyond 12 the number of
ommands to tra
k in DRAM does not in
rease performan
e. However, redu
ing itsvalue by 4 redu
es daxpy performan
e up to 7.9%.50
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Figure 3.14: ST and SMT results for memoryless and AHB, varying the maximumnumber of DRAM 
ommands.Number of Banks in a Rank. Future memory systems are likely to providein
reased parallelism in the form of a larger number of banks per rank. Figure 3.15shows how performan
e is a�e
ted by 
hanging the number of banks. In
reasing thebanks per rank from two to four improves performan
e in both the single threadedand the SMT experiments. The performan
e gain is 20.8%-21.7% and 18.1%-26.6%for the AHB and memoryless s
hedulers, respe
tively. On the other hand, furtherin
reasing the number of banks to eight does not improve the performan
e of thememoryless s
heduler, and the performan
e gain for the AHB s
heduler is between1.9% and 4.6% for the single threaded and SMT experiments. In summary, ourexperiments indi
ate that the advantage of the AHB s
heduler over the memorylessapproa
h in
reases as the number of banks in a rank in
reases, i.e., as the memorysystem admits more parallelism.3.3.3 System ParametersPro
essor Frequen
y. In addition to memory 
ontroller and DRAM parameters,we also explore the impa
t of higher 
lo
k rates for the pro
essor. While in
reases in51
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Figure 3.15: ST and SMT results for the memoryless and the AHB with varyingnumber of banks in a rank.
lo
k rate have slowed, pro
essor frequen
y 
ontinues to in
rease. In Figure 3.16, wepresent the di�eren
es between the AHB and the memoryless s
hedulers for systemswith 1.5, 2, 3, and 4 times the pro
essor frequen
y of the 
urrent Power5+ systems.As the ratio of the pro
essor frequen
y to the DRAM frequen
y grows, we �nd thatadvantage of the AHB s
heduler over the memoryless method also in
reases. Forexample, for the ST 
ase, with the 
urrent pro
essor frequen
y, the AHB s
heduleris superior to the memoryless s
heduler by 9.5%, but the advantage grows to 15.6%when the pro
essor frequen
y doubles. Similarly, for the SMT 
ase, AHB method'sadvantage in
reases from 15.5% to 22.0% with 2x pro
essor frequen
y. We 
on
ludethat as the ratio of the pro
essor/memory speeds in
reases, the signi�
an
e of ourapproa
h will also in
rease be
ause the importan
e of memory bandwidth grows.Data Prefet
hing. We also investigate the e�e
ts of data prefet
hing on thes
heduling approa
hes. We see that if we turn o� the prefet
h unit, the adap-tive history-based method's bene�t over the other two approa
hes is signi�
antlydiminished be
ause the lower memory traÆ
 redu
es pressure on the memory 
on-troller. For example, for daxpy in the SMT 
ase, the performan
e bene�t of the52
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Figure 3.16: ST and SMT results for memoryless and AHB, with 1.5x, 2x, 3x, and4x pro
essor frequen
y.AHB s
heduler over the memoryless s
heduler is redu
ed from 16.4% to 7.3% whenthe hardware prefet
hing unit is turned o�.3.4 Hardware CostsTo evaluate the 
ost of our solution, we need to 
onsider the 
ost in terms of tran-sistors and power. The hardware 
ost of the memory 
ontroller is dominated bythe reorder queues, whi
h dwarf the amount of 
ombinational logi
 required to im-plement our adaptive history-based arbiter. To quantify these 
osts, we use theimplementation of the Power5+ to provide detailed estimates of transistor 
ounts.We �nd that the memory 
ontroller 
onsumes 1.58% of the Power5+'s total transis-tors. The size of one memoryless arbiter is in turn 1.19% of the memory 
ontroller.Our adaptive history-based arbiter in
reases the size of the memory 
ontroller by2.38%, whi
h in
reases the overall 
hip's transistor 
ount by 0.038%. Given the tiny
ost in terms of transistors, we are 
on�dent that our solution has only negligiblee�e
ts on power. 53



3.5 SummaryIn this 
hapter, we have shown that memory a

ess s
heduling, whi
h has tradi-tionally been important primarily for stream-oriented pro
essors, is be
oming in-
reasingly important for general-purpose pro
essors, as many fa
tors 
ontribute toin
reased memory bandwidth demands. To address this problem, we have intro-du
ed a new s
heduler that in
orporates several te
hniques. We use the 
ommandhistory|in 
onjun
tion with a 
ost model|to sele
t 
ommands that will have lowlaten
y. We also use the 
ommand history to s
hedule 
ommands that mat
h someexpe
ted 
ommand pattern, as this tends to avoid bottlene
ks within the reorderqueues. Both of these te
hniques 
an be implemented using FSM's, but be
ause thegoals of the two te
hniques may 
on
i
t, we probabilisti
ally 
ombine these FSM'sto produ
e a single history-based s
heduler that partially satis�es both goals. Fi-nally, be
ause we 
annot know the a
tual 
ommand-pattern a priori, we implementthree history-based s
hedulers|ea
h tailored to a di�erent 
ommand pattern|andwe dynami
ally sele
t from among these three s
hedulers based on the observedratio of Reads and Writes.To pla
e our work in histori
al 
ontext, we have identi�ed three dimensionsthat des
ribe previous work in avoiding bank 
on
i
ts, and we have explored thisspa
e to produ
e a single state-of-the-art solution that we refer to as the memorylesss
heduler. We use this memoryless s
heduler as a baseline to 
ompare against.In the 
ontext of the IBM Power5+, we have found that a history length oftwo is surprisingly e�e
tive. Thus, while our solution might appear to be 
omplex,it is a
tually quite inexpensive, in
reasing the Power5+'s transistor 
ount by only0.038%. We evaluate the performan
e advantage of our te
hnique using three ben
h-mark suites. For SMT workloads 
onsisting of the Stream ben
hmarks, our s
hedulerimproves IPC by 55.6% over in-order s
heduling and 16.0% over memoryless s
hedul-ing. For the NAS ben
hmarks, again with SMT workloads, the improvements are54



25.6% over in-order s
heduling and 9.7% over memoryless s
heduling. For a set of
ommer
ial SMT workloads, the improvements are 51.6% over in-order s
hedulingand 7.5% over memoryless s
heduling.To explain our results, we have looked inside the memory system to pro-vide insights about how our solution 
hanges the various bottlene
ks within thesystem. We �nd that an internal bottlene
k at the CAQ is useful be
ause it givesthe s
heduler more operations to 
hoose from when s
heduling operations. We havealso explored the e�e
ts of varying parameters of the pro
essor, the DRAM and thememory 
ontroller itself. We �nd that as memory traÆ
 in
reases, the bene�ts ofthe AHB s
heduler in
rease, even for multi-threaded workloads. We �nd that oursolution is more robust than memoryless s
heduling in the sense that our solutionis less sensitive to 
hanges in design parameters. We also �nd that the AHB s
hed-uler is typi
ally superior to the memoryless s
heduler even when the latter is givenadditional hardware resour
es.
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Chapter 4
Improving Memory Laten
y ofIrregular Appli
ations

Numerous hardware solutions have been proposed to hide long memory laten
ies.Early prefet
hing te
hniques [34, 65, 55, 2, 19℄ fo
used on exploiting streaming work-loads. While regular forms of spatial lo
ality are easy to predi
t, it has traditionallybeen diÆ
ult to exploit irregular patterns of spatial lo
ality and even more diÆ
ultto exploit low amounts of spatial lo
ality.Re
ently, a 
lass of aggressive prefet
hing te
hniques has arisen from thenotion of a Spatial Lo
ality Dete
tion Table [32℄. These te
hniques tra
k a

esses toregions of memory so that spatially 
orrelated data 
an be prefet
hed together [32,39, 9, 44, 67℄. The 
hief advantage of these te
hniques is their ability to exploitirregular forms of spatial lo
ality. Their 
hief disadvantage is their relian
e on largetables that o

upy 
hip area and 
onsume power.We propose a new solution, whi
h uses a simple te
hnique to augment thee�e
tiveness of stream prefet
hers. Our te
hnique is based on two observations.First, memory intensive workloads with low amounts of spatial lo
ality are likely tostill 
ontain many very short \streams," if \stream" 
an be de�ned to be as short56



as two 
onse
utive 
a
he lines. Se
ond, stream prefet
hers 
ould e�e
tively prefet
hthese short streams if they only knew when to be aggressive.To understand this se
ond point, re
all that stream prefet
hers look for a
-
esses to k 
onse
utive 
a
he lines, at whi
h point the k+1st 
a
he line is prefet
hed;prefet
hing 
ontinues until a useless prefet
h is dete
ted. Thus, the value of k de-termines the prefet
her's aggressiveness, and this value is typi
ally �xed at designtime. Even with a small value of k, stream-based prefet
hers do not fare well onshort streams be
ause they stop after a useless prefet
h. For example, on a workloadin whi
h every stream is of length 2, a k = 1 poli
y would su

essfully prefet
h these
ond 
a
he line of ea
h stream, but ea
h su

essful prefet
h would be followed bya useless prefet
h, so 50% of its prefet
hes would be useless.Our solution, Adaptive Stream Dete
tion, guides the aggressiveness of theprefet
h poli
y based on the workload's observed amount of spatial lo
ality, as mea-sured by a Stream Length Histogram (SLH). An SLH is a dynami
ally 
omputedhistogram that attributes ea
h memory a

ess to a parti
ular stream length. For ex-ample, if the SLH indi
ates that 70% of the memory requests were parts of streamsof length 2 and that 30% of the memory requests were parts of streams of length 1,then an e�e
tive strategy would always prefet
h the se
ond 
a
he line of a streambut never the third line. Thus, Adaptive Stream Dete
tion 
an predi
t when tostop prefet
hing without in
urring a useless prefet
h. To adapt to 
hanges in phasebehavior, new Stream Length Histograms are 
omputed periodi
ally.Adaptive Stream Dete
tion provides two bene�ts. (1) It extends the notion ofa stream to in
lude streams as short as two 
a
he lines. Thus, while it is inherentlya stream-based approa
h, it provides bene�ts for workloads, su
h as 
ommer
ialappli
ations, that are not traditionally viewed as stream-based. (2) Be
ause it isstream-based, it has low hardware 
osts, using small tables that have low stati
power leakage. 57



This 
hapter des
ribes how Adaptive Stream Dete
tion 
an be implementedin the memory 
ontroller. In this 
ontext, we introdu
e a se
ond idea, AdaptiveS
heduling, that adjusts the priority of prefet
hed 
ommands based on the measuredfrequen
y of 
on
i
ts that prefet
hed 
ommands have 
aused. This adaptivity isuseful be
ause any �xed priority may be ex
essively 
onservative for some workloads.In this 
hapter we make the following 
ontributions:� We introdu
e Adaptive Stream Dete
tion, a probabilisti
 prefet
hing te
hniquethat adjusts the aggressiveness of stream prefet
hing based on Stream LengthHistograms, whi
h are inexpensive to gather. This te
hnique addresses thequestion of what to prefet
h.� We use the idea of Adaptive Stream Dete
tion to design a prefet
her thatresides in the memory 
ontroller and prefet
hes from DRAM into a smallPrefet
h Bu�er. This prefet
her uses Adaptive S
heduling to modulate therelative priority of prefet
h 
ommands to regular 
ommands. We show thata prefet
h bu�er that holds 16 
a
he lines is e�e
tive. We also see thatthis memory-side prefet
her (MS) 
omplements the IBM Power5+'s existingstream prefet
her (PS), whi
h performs pro
essor-side prefet
hing.� We evaluate Adaptive Stream Dete
tion using the SPEC2006 
oating pointsuite, the NAS ben
hmarks, and a set of �ve 
ommer
ial ben
hmarks. Forsingle threaded workloads, when we 
ompare our te
hnique to a strippeddown Power5+ with no prefet
hing (NP), we improve the performan
e of theSPEC2006fp, NAS, and 
ommer
ial ben
hmarks by 14.6%, 11.7%, and 9.3%,respe
tively. When MS is 
ombined with PS, forming PMS, its improvementsover NP are 32.7%, 24.2%, and 15.1%, respe
tively. The performan
e improve-ments for the 
ommer
ial ben
hmarks are noteworthy be
ause these ben
h-marks exhibit low amounts of spatial lo
ality. We get similar results for SMT58



workloads.� We evaluate the energy and power impa
t of our approa
h. For our threeben
hmark suites, we �nd that DRAM power 
onsumption in
reases by 2.7%,1.6%, and 2.8%, respe
tively, while DRAM energy 
onsumption de
reases by9.8%, 7.9%, and 8.2%, respe
tively. For the four SPEC2006fp ben
hmarksthat have low memory bandwidth requirements, the DRAM power impa
tis negligible: DRAM power in
reases by an average of 0.12%, while energy
onsumption de
reases by 0.47%.� We evaluate Adaptive S
heduling and show that it improves upon a set of
onservative �xed-priority poli
ies by about 2.9%.In the next se
tions we des
ribe our solution; we present empiri
al evaluationof our approa
h; and �nally we summarize and provide 
on
luding remarks.4.1 Memory Prefet
hing Using Adaptive Stream De-te
tionThis se
tion des
ribes our new prefet
her [30℄, whi
h resides in the memory 
on-troller. This prefet
her addresses two major questions: (1) How 
an we redu
e thenumber of unne
essary prefet
h requests? (2) How 
an we redu
e the opportu-nity 
ost of prefet
hes? Adaptive Stream Dete
tion addresses the �rst issue, andAdaptive S
heduling addresses the se
ond. To provide 
ontext, we �rst explain thebasi
 idea behind Adaptive Stream Dete
tion. After des
ribing the mathemati
aldetails of how SLH's are used, we dis
uss implementation issues, and present theorganization of our prefet
her. Finally, we present details of Adaptive S
heduling.
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4.1.1 Adaptive Stream Dete
tionAdaptive Stream Dete
tion uses Stream Length Histograms, SLH, to 
apture spa-tial lo
ality and guide prefet
h de
isions. For example, Figure 4.1 shows an SLHfor one epo
h of the GemsFDTD ben
hmark from the SPEC2006 suite. In an SLH,the height of the bar at lo
ation m represents the per
entage of streams that havelength m. Depending on the dete
ted stream length of the 
urrent Read request,the prefet
her 
he
ks the SLH and determines how many, if any, sequential 
a
helines to prefet
h.In the example SLH of Figure 4.1, we see that 21.8% of all streams are oflength 1, 43.7% of all stream are of length 2, et
. The rightmost bar indi
ates that1.2% of all streams are length 16 or more. Given this information, when a Readrequest, Rn, arrives and is the �rst element of a new stream, a prefet
h requestshould be issued be
ause Rn is more likely to be the �rst element of a stream oflength 2 or longer (78.2% probability) than to be part of a stream of length 1(21.8%). On the other hand, if a Read request, Rn, is the se
ond element of astream, a prefet
h should not be issued be
ause there is a 43.7% probability thatRn is the se
ond element of a stream of length 2, whi
h is greater than the 34.5%likelihood that it is the se
ond element of a longer stream. With similar reasoning,prefet
hes should be issued for any Read request whose 
urrent stream length is 3 orgreater than 6. This example shows that the use of the SLH allows a prefet
her tomake rather sophisti
ated prefet
hing de
isions based on the length of an individualstream.The prefet
her 
an also use the SLH to de
ide whether to generate multipleprefet
hes|although we do not evaluate this idea. For example, when Rn is partof a stream of length 1, the prefet
her de
ides whether to generate two 
onse
utiveprefet
hes by adding the probabilities of the �rst two bars and 
omparing the sumwith the rest of the histogram. If the sum of the �rst two bars is less than the sum60
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Figure 4.1: Stream Length Histogram (SLH) for an arbitrary epo
h of theGemsFDTD ben
hmark.of the other bars, and if the prefet
her has already de
ided to prefet
h one line, itgenerates a prefet
h for the se
ond line as well.Be
ause memory a

ess behavior typi
ally varies over time, our solution peri-odi
ally 
reates an SLH after every e Read requests, where e is known as an epo
h.Thus, in every epo
h, our method 
onstru
ts a new SLH for use in the next epo
h.Figure 4.2 shows how epo
hs 
an vary widely over time. To keep tra
k of in
reasingor de
reasing streams, we need one SLH for ea
h dire
tion.
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Figure 4.2: Stream Length Histograms (SLH) for the GemsFDTD ben
hmark fromthe SPEC2006fp suite show that the SLH's vary widely at di�erent points in time.Here the epo
h length is 2000 reads.
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4.1.2 Using the SLH to Dete
t Lo
alityOur probabilisti
 approa
h to prefet
hing makes de
isions by 
omparing the likeli-hood that a Read request will be the last element of a stream against the likelihoodthat it will be part of a longer stream. In this subse
tion, we derive inequalities thatguide these prefet
h de
isions. Our dis
ussion also establishes the transition fromthe SLH 
on
ept to its implementation that we present later in Se
tion 4.1.4.De�nitions. To des
ribe our method, we de�ne two fun
tions, lht() and P (),whi
h 
an be used to 
ompute an SLH, as follows:lht(i): the number of streams of length i or longer, where 1 � i � fs and fs is themaximum stream length that our method uses. For any i > fs, lht(i) = 0.P (i; j): the sum of probabilities that a Read is part of any stream of length k, wherei � k � j and 1 � i; j � fs. We 
an de�ne P (i; j) in terms of lht() as follows:P (i; j) = (lht(i)� lht(j + 1))=lht(1) (4.1)The value of the ith bar of an SLH equals P (i; i).Prefet
h De
ision. To determine whether to issue a prefet
h, we 
he
k whetherthe following 
ondition is satis�ed for a Read request, Rn, that is the ith element ofa stream: P (i; i) < P (i+ 1; fs) (4.2)This inequality states that the probability that the most re
ent Read request, Rn,is the last element of a stream of length i is smaller than it being the ith element ofa stream of length longer than i. We 
an simplify the inequality (4.2) as follows:62



P (i; i) < P (i+ 1; fs) (4.3)� lht(i) � lht(i+ 1)lht(1) < lht(i+ 1)� lht(fs+ 1)lht(1) (4.4)� lht(i) < 2� lht(i+ 1) (4.5)Our te
hnique uses the inequality (4.5) to make next line prefet
h de
isions. Weprovide, without proof, a generalized version of (4.5) to prefet
h k 
onse
utive linesafter Rn: lht(i) < 2� lht(i+ k) (4.6)4.1.3 Prefet
her DesignThe organization of our prefet
her is shown in Figure 4.3, where the gray boxesrepresent our additions to the memory 
ontroller. Read 
ommands enter the memory
ontroller and are sent to both the original memory 
ontroller and to the StreamFilter. The Stream Filter keeps tra
k of Read streams and generates the SLH.This information from the Stream Filter is then fed to the Prefet
h Generator,whi
h de
ides whether a prefet
h 
ommand should be issued, and if so, pla
es theprefet
h 
ommand in the Low Priority Queue (LPQ), where the Final S
heduler
an 
onsider it, along with other 
ommands in the LPQ and CAQ, when sele
ting
ommands to issue to DRAM. Any prefet
hed data are then stored in the Prefet
hBu�er.The Prefet
h Bu�er is 
he
ked twi
e. It is �rst 
he
ked before Read 
om-mands are pla
ed in the CAQ, so that Read 
ommands 
an be satis�ed by thePrefet
h Bu�er, in whi
h 
ase the laten
y of going to DRAM is saved and the Read
ommand is squashed. The Prefet
h Bu�er is 
he
ked again when the Final S
hed-63



uler sele
ts a Read 
ommand from the CAQ to send to memory; this 
he
k is usefulbe
ause the desired data may have arrived in the Prefet
h Bu�er while the Read
ommand was resident in the CAQ.
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Figure 4.3: Overview of our prefet
her.Stream Filter. To maintain information about Read streams, the Stream Filteruses one slot to tra
k ea
h Read stream. Ea
h slot maintains (1) the last addressa

essed for this stream, (2) the length of the stream, (3) the stream's dire
tion,and (4) the stream's lifetime, whi
h indi
ates when the stream should be evi
ted.These slots are used as follows:� If the Read, Rn, is not part of a stream and if there is a va
ant slot in thePrefet
h Filter, the last a

ess �eld is set to the address of the Read request,the length �eld is initialized to 1, the lifetime is initialized to a predeterminedvalue, and the dire
tion is set to Positive.� If Rn is not part of a stream and there is no available slot, no prefet
h will begenerated after Rn, but the SLH stru
ture is updated as if a stream of length64



1 had been dete
ted.� If Rn is the most re
ent element of a previously dete
ted stream, the streamlength is in
remented by 1, the last a

ess is set to the address of Rn, and thelifetime of the stream is in
remented by a predetermined value.� The dire
tion of the stream is set to Negative if the length of the previousstream is 1 and the address of Rn is smaller than the last address of thestream.� At every pro
essor 
y
le, the lifetime �elds are de
remented by one. A streamis evi
ted from a slot when its lifetime expires. At this point, the SLH stru
-ture is updated using the length value in the Stream Filter.� At the end of ea
h epo
h, all streams are evi
ted from the Stream Filter.Prefet
h Bu�er. The Prefet
h Bu�er holds data that are fet
hed from memoryby the memory-side prefet
her. We assume that this bu�er is a set asso
iative 
a
hewith an LRU repla
ement poli
y. When there is a write request to an address in thePrefet
h Bu�er, we invalidate the entry in the bu�er. We also invalidate the entryif a regular Read request mat
hes the address, be
ause in su
h 
ases the data willlikely be moved to the L1 or L2 
a
he, so it is unlikely to be useful in the Prefet
hBu�er again.4.1.4 Implementation of Adaptive Stream Dete
tionWe now present details for implementing Adaptive Stream Dete
tion. For simpli
-ity, we restri
t our explanation to streams with in
reasing addresses only, and weonly dis
uss prefet
hing for one 
a
he line. It is straightforward to generalize thisapproa
h to streams with de
reasing addresses and multiple line prefet
hing.65



Rather than implement the SLH expli
itly, we 
onstru
t the informationin the SLH using two tables of length fs. These Likelihood Tables, LHT
urr andLHTnext, 
orrespond to the lht() fun
tion dis
ussed previously. A given epo
h usesand updates information from LHT
urr and gathers information for the start of thenext epo
h in LHTnext. LHTnext is updated using the information from the StreamFilter. When an entry of length k in the Stream Filter is invalidated, LHTnext[i℄is in
remented by 1, for all i, where 1 � i � k. At the end of an epo
h, LHTnextis modi�ed using the remaining valid entries in the Stream Filter; the 
ontents ofLHTnext are moved to LHT
urr; and LHTnext is re-initialized. Ea
h entry of thetables is a log2(m) bit 
ounter, where m is the maximum epo
h length.LHT
urr is used to make prefet
h de
isions for the 
urrent epo
h. Thistable has one 
omparator for ea
h pair of 
onse
utive table entries, i.e., LHT
urr[i℄and LHT
urr[i+1℄, for 1 � i < fs. At the beginning of an epo
h, the 
ontents ofLHT
urr are used to 
onstru
t the SLH. As the epo
h progresses, this informationis modi�ed using the observed stream lengths of the 
urrent epo
h. When an entryof length k in the Stream Filter is invalidated, the value of LHT
urr[i℄ is de
rementedby 1, for all i, where 1 � i � k.When the Stream Filter observes that a Read request is part of a streamof length k, prefet
h requests are generated using the output of the 
omparisonof LHT
urr[k℄ and LHT
urr[k+1℄, as in inequality (4.5). Instead of multiplyingLHT
urr[k+1℄ by 2, for any k, the 
omparator for the (LHT
urr[k℄, LHT
urr[k+1℄)pair takes the left shifted value of LHT
urr[k+1℄ as input.4.1.5 Adaptive S
hedulingClearly, spe
ulative prefet
h 
ommands should be given lower priority than regular
ommands. But be
ause memory systems are be
oming in
reasingly 
omplex, andbe
ause the Final S
heduler must make de
isions whose e�e
ts may not be seen66



until the future, it is not obvious what poli
y provides the best performan
e. Forexample, a 
onservative poli
y that always gives prefet
h 
ommands lower prioritythan regular 
ommands may unne
essarily blo
k prefet
h 
ommands behind regular
ommands that 
annot issue due to 
on
i
ts in the memory system. Thus, ratherthan di
tate a parti
ular poli
y at design time, Adaptive S
heduling uses feedba
k todynami
ally sele
t from one of �ve poli
ies in order of de
reasing 
onservativeness:Only issue a 
ommand from the LPQ (1) if the CAQ is empty and the ReorderQueues are empty, (2) if the CAQ is empty and the Reorder queues have no issuable
ommands, (3) if the CAQ is empty, (4) if the CAQ has at most 1 entry and theLPQ is full, (5) if the �rst LPQ entry has an earlier timestamp than the �rst CAQentry. To 
hoose from among these poli
ies, the memory 
ontroller tra
ks the num-ber of times that a regular 
ommand in the Reorder Queues 
annot pro
eed to theCAQ be
ause it 
on
i
ts in the memory system with a previously issued prefet
h
ommand. As the o

urren
es of these 
on
i
ts grows (or shrinks), the poli
y be-
omes more (or less) 
onservative. The poli
y is adjusted using the same epo
hsize that is used to 
ompute Stream Length Histograms. Thus, this approa
h de-termines the priority of prefet
h 
ommands based on a measure of memory systemperforman
e, rather than on some instantaneous property su
h as o

upan
y of aqueue.4.2 Experimental ResultsWe evaluate Adaptive Stream Dete
tion along several dimensions. We present over-all performan
e and power results for all three ben
hmark suites. We then use asubset of the ben
hmarks to illustrate additional points, 
hoosing the two best-
aseand the two worst-
ase ben
hmarks|in terms of PMS performan
e improvement|from the SPEC and 
ommer
ial ben
hmarks.67



4.2.1 Hardware CostsWe evaluate a prefet
her that is 
on�gured as follows: Ea
h thread has a StreamFilter with 8 slots and LHTnext and LHT
urr tables that ea
h hold 16 entries.Be
ause streams are tra
ked in both the positive and negative dire
tions, LHTnextand LHT
urr ea
h require 32 
ounters per thread. In addition to these per-threadresour
es, the prefet
her has one 16 entry Prefet
h Bu�er (2KB) and an LPQ withthe same number of entries|3|as the CAQ. The 
urrent Power5+ memory 
on-troller o

upies about 1.61% of the entire 
hip area, with the dominant portion ofthe memory 
ontroller being 
ontrol logi
. Our extensions to the memory 
ontrollerin
rease the area of the memory 
ontroller by about 6.08%, resulting in a 0.098%in
rease in the total 
hip area.4.2.2 Ben
hmark ResultsWe now 
ompare simulation results for four 
on�gurations: no-prefet
hing (NP),pro
essor-side prefet
hing only (PS), memory-side prefet
hing only (MS), and pro
essor-and memory-side prefet
hing together (PMS). In PMS, only the memory-side prefet
heruses Adaptive Stream Dete
tion. In the following graphs, we present three di�erent
omparisons: (1) PMS vs. NP (2) MS vs. NP, and (3) PMS vs. PS.
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Figure 4.4: Performan
e improvements for the SPEC2006fp Ben
hmarks.68
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Figure 4.5: Performan
e improvements for the NAS Ben
hmarks.We see that the PMS 
on�guration performs best, and the bene�ts frommemory-side and pro
essor-side prefet
hing are largely 
omplementary but not 
om-pletely orthogonal.For the SPEC2006fp ben
hmarks (Figure 4.4), we �nd that the performan
ebene�t of PMS over NP is between 0-68.6%, with an average of 32.7%. MS improvesperforman
e over NP by an average of 14.6%, and PMS improves over PS by anaverage of 10.2%. For the NAS ben
hmarks (Figure 4.5), the PMS approa
h seesan average improvement of 24.2% over NP and 8.1% over PS. For the 
ommer
ialben
hmarks (Figure 4.6), the PMS approa
h sees an average improvement of 15.1%over NP and 8.4% over PS.SMT Results. We have repeated the above experiments on a system that uses twoSMT threads on the same pro
essor. For these experiments, we leave the Prefet
hBu�er size (16 
a
he lines) un
hanged, but we double the size of the Stream Filterand the number of LHT tables, so that ea
h thread 
an tra
k its own set of streams.We �nd that SMT performan
e improvements are about the same as the single-threaded results. For example, PMS improves performan
e over PS by 10.7%, 9.2%,and 7.5%, respe
tively, for the SPEC2006fp, NAS, and 
ommer
ial ben
hmarks. Theimprovements for PMS over NP are 28.5%, 20.4%, and 11.1%, respe
tively.69
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Figure 4.6: Performan
e improvements for the 
ommer
ial ben
hmarks.We �nd it 
riti
al to repli
ate the lo
ality identi�
ation hardware|in our
ase the Stream Filter|for ea
h thread. For our solution, this hardware is small,as opposed to many other solutions [44, 9, 67℄ for whi
h large tables would have tobe repli
ated.
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Figure 4.7: DRAM Power and Energy 
omparison for the SPEC2006fp ben
hmarks.Power and Energy E�e
ts. In Figures 4.7, 4.8, and 4.9, we 
ompare PMSto PS in terms of DRAM power usage and energy 
onsumption. We �nd thatPMS in
reases power 
onsumption, on the average, by 2.7%, 1.6%, and 2.8% forSPEC2006fp, NAS, and 
ommer
ial ben
hmarks, respe
tively. For the same ben
h-70
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71



marks, PMS redu
es energy 
onsumption by 9.8%, 7.9%, and 8.2%. For the fourben
hmarks that are not memory intensive|gamess, namd, povray, and 
al
ulix|the power in
rease is negligible. Again, for SMT workloads, the DRAM power andenergy results are similar to the single threaded 
ase.Other Power Costs. Of 
ourse, the implementation of the prefet
her itself also
onsumes power. We do not have ben
hmark-spe
i�
 analyses of this power us-age, but an analysis of the Power5+ 
hip and an area-based estimation of the MSprefet
her provides the following �gures. The memory 
ontroller on the Power5+
onsumes about 1% of the 
hip's power. The MS prefet
her in
reases the powerof the memory 
ontroller by approximately 6%, whi
h is 0.06% of the 
hip's totalpower. As a referen
e, the Power5+ 
hip typi
ally 
onsumes roughly four times thepower as the DRAM 
hips for our workloads.By 
ontrast, if we were to add a 64KB table for dete
ting spatial lo
ality,as suggested by other approa
hes, we would add four su
h tables|one for ea
hthread|for the Power5+. We believe that ea
h 64KB table would 
onsume upto 25% of the power of a 64KB L1 I-
a
he (Loads 
onstitute roughly 25% of allinstru
tions), whi
h for the Power5+ is about 0.6% of the 
hip's power. To supportfour su
h tables would in
rease the 
hip's a
tive power by about 2.4%. Moreover,as leakage power be
omes more important to future systems, the power e�e
ts oflarge tables will be
ome more signi�
ant.4.2.3 Detailed ResultsImportan
e of Adaptive Stream Dete
tion and Adaptive S
heduling.Figure 4.10 shows that both Adaptive Stream Dete
tion (ASD) and Adaptive S
hedul-ing 
ontribute to performan
e gain. In this �gure, the �rst bars in ea
h 
luster repre-sent normalized exe
ution times for our PMS approa
h. The next �ve bars 
omparethe PMS against the �ve s
heduling poli
ies that we dis
ussed in Se
tion 4.1.5. We72



see that the Adaptive S
heduling improves performan
e upon these �xed poli
iesbetween 2.3% and 3.6%. We 
on
lude that the impa
t of Adaptive Stream Dete
tionis mu
h more signi�
ant than that of Adaptive S
heduling.
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Figure 4.10: Impa
t of Adaptive Stream Dete
tion and Adaptive S
heduling.Figure 4.10 also provides a head-to-head 
omparison of Adaptive StreamDete
tion against both next-line prefet
hing (se
ond bar from the right) and thePower5+'s pro
essor-side prefet
her (rightmost bar) when all are implemented in thememory 
ontroller. We see that Adaptive Stream Dete
tion provides performan
ethat is 8.4% better than the next-line prefet
her. Somewhat surprisingly, in this
ontext the Power5-style prefet
her yields worse performan
e than the next-lineprefet
her.Figure 4.11 shows that a signi�
ant portion of streams are of length �veor shorter. These short streams are where Adaptive Stream Dete
tion sees themost bene�t. A next-line prefet
her generates useless prefet
hes for all streams oflength one, and we see that the per
entage of su
h streams is quite high for theseben
hmarks. There is also a signi�
ant number of streams of length 2-5, whi
his where a Power5-style stream-based prefet
her sees the worst performan
e: For73



these streams the useless prefet
h that it issues before dete
ting the end of a streamrepresents a non-trivial fra
tion of the total prefet
hes. Finally, observe that eventhe four 
ommer
ial ben
hmarks, whi
h have poor spatial lo
ality, have a signi�
antper
entage of streams of length 2-5: roughly 37% for tp
-
, 49% for trade2, 40% forsap, and 62% for notesben
h. These per
entages help explain why Adaptive StreamDete
tion is bene�
ial even for workloads with low spatial lo
ality.
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Figure 4.11: Stream Length Histograms of eight ben
hmarks. Streams of lengthsbetween 1 and 5 
onstitute 78{96% of all streams.Prefet
h EÆ
ien
y. Figure 4.12 presents three measures of the e�e
tiveness ofAdaptive Stream Dete
tion: (1) the per
ent of useful prefet
hes, (2) the prefet
h 
ov-erage, that is, the per
ent of Read 
ommands (in
luding pro
essor-side prefet
hes)that get its data from the Prefet
h Bu�er, and (3) the per
entage of the regular mem-ory 
ommands|both Reads and Writes|that are delayed be
ause of memory-sideprefet
hes. These values pertain only to prefet
hes generated by the memory-sideprefet
her, not the pro
essor-side prefet
her. We see that the per
entage of usefulprefet
hes is between 82% and 91%. The 
overage is between 19% and 34%, andonly 1-3% of regular 
ommands are delayed by the memory-side prefet
h 
ommands.
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Figure 4.12: E�e
tiveness of our prefet
hing approa
h.Sensitivity to Prefet
h Bu�er and Stream Filter Size. Figures 4.13 and4.14 show, for our PMS approa
h, the performan
e e�e
t of the size of the Prefet
hBu�er and Stream Filter. In our simulations, we use a 
on�guration with a 16-blo
kprefet
h bu�er and an 8-entry stream �lter. We �nd that in
reasing the size of thePrefet
h Bu�er or Stream Filter beyond this 
on�guration improves performan
ebut with diminishing returns.
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Figure 4.13: Sensitivity of PMS to prefet
h bu�er size.
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Figure 4.14: Sensitivity of PMS to stream �lter size.Further Improvement Opportunities for Laten
y Hiding. Figure 4.15 
om-pares our prefet
hing approa
h to a perfe
t memory-side prefet
her. We assume thatthe perfe
t prefet
her 
an predi
t what to prefet
h and when to issue prefet
h re-quests su
h that x% of all Read requests �nd their data in the prefet
h bu�er, andno memory 
ommands are delayed be
ause of the prefet
h requests. We analyze therelationship between our ASD prefet
her and the perfe
t prefet
her by varying xbetween 0% and 100%, where x=100% represents the ideal memory-side prefet
her.In Figure 4.15, we see that for all ben
hmarks, the performan
e improve-ment of the ASD prefet
her is below the perfe
t prefet
her 
urve and it is far fromthe ideal prefet
her. In other words, although our prefet
hing approa
h improvesperforman
e signi�
antly, it does not eliminate the memory laten
y problem 
om-pletely. For example, for the GemsFDTD ben
hmark, the ASD prefet
her has a
overage of 32.4% and improves performan
e by 10.2%. However, for the sameben
hmark, the ideal memory-side prefet
her improves performan
e by 38.9%. TheASD prefet
her a
hieves, on average, 21.3%, 24.6%, and 18.7% of the 
overage, and17.4%, 20.9%, and 14.1% of the performan
e improvement of the ideal prefet
herfor the SPEC2006fp, NAS, and 
ommer
ial ben
hmarks, respe
tively.There are three possible ways to make the performan
e of our prefet
hing76
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tprefet
her, \+" represents our ASD prefet
her, dotted line is for the maximum
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her 
an a
hieve without prefet
hing the �rstelements of streams, and 100% 
overage 
orresponds to the ideal prefet
her.77



method 
loser to the ideal prefet
her. First, we 
an try to in
rease available memorybandwidth and/or to improve the Adaptive S
heduling te
hnique further, so thatside e�e
ts of prefet
h requests over regular memory 
ommands are diminished. Re-du
ing side e�e
ts moves the performan
e point (\+" sign) of our prefet
her, inFigure 4.15, upwards. Se
ond, to move the performan
e point to the right, that isto in
rease 
overage, we 
an attempt to improve (in
luding 
apa
ity in
reases forthe stream �lter and prefet
h bu�er) the Adaptive Stream Dete
tion method. The
urrent ASD approa
h does not prefet
h �rst elements of streams. Therefore, forthe ben
hmarks in Figure 4.15, the maximum 
overage we 
an get (dotted verti
alline) is the per
entage of the non-�rst elements of streams, whi
h is between 25.7%and 49.4% of whi
h we a
hieve 18.9-34.5%. Note that to obtain the maximum pos-sible performan
e (top point of the dotted line), a prefet
hing me
hanism needs tobe supported by in
reased memory bandwidth. Otherwise, 
overage may in
reaseat the expense of in
reased bandwidth requirements, whi
h may or may not resultimproved performan
e. Finally, the third option to improve performan
e is to de-velop hardware and/or software te
hniques to prefet
h the �rst elements of streams.Be
ause, any 
overage rate to the right of the dotted line in Figure 4.15 requiresprefet
hing of the �rst elements of streams, whi
h 
onstitute a signi�
ant portion(50.6-74.5%) of all Read requests.Our fo
us in this dissertation has been to hide the laten
y between the mem-ory 
ontroller and DRAM. Redu
ing laten
y inside the pro
essor is beyond the s
opeof this study, and we leave it as a future work.A

urately Constru
ting Frequen
y Histograms. The su

ess of AdaptiveStream Dete
tion depends on the a

ura
y of the 
omputed Stream Length His-tograms, whi
h are 
omputed using the Stream Filter. Be
ause the Stream Filtershave �nite size, the 
omputed SLH is a
tually an approximation of a 
ompleteSLH. We have found that this approximation of the SLH 
losely mat
hes the78



a
tual SLH, as shown in Figure 4.16, whi
h is a sample epo
h in the GemsFDTDben
hmark.
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Figure 4.16: A

ura
y of 
al
ulating Stream Length Histograms.Intera
tion with the Memory S
heduler. The impa
t of a prefet
her 
an besensitive to the 
hoi
e of memory s
heduler that is used. For the results presentedin this 
hapter, we use the Adaptive History-Based memory s
heduler (AHB), butto investigate the intera
tion between memory s
heduling algorithms and our newprefet
hing te
hnique, we also study two less sophisti
ated memory s
hedulers, in-order and memoryless, whi
h provide redu
ed DRAM bandwidth 
ompared to theAHB s
heduler. When a simple in-order s
heduler is used, the performan
e gain ofour prefet
her is redu
ed by about 5%. For the better memoryless s
heduler, theperforman
e gain of our prefet
her is redu
ed by about 1%. These results indi
atethat the bene�t of our prefet
hing approa
h in
reases as other bottlene
ks in thememory subsystem are redu
ed.We also �nd that our adaptive history-based memory s
heduling approa
hand the new prefet
hing method that we have introdu
ed 
omplements ea
h other.When 
ompared with a system where neither of these two improvements exist, i.e.with memoryless s
heduling and without any memory-side prefet
hing, 
ombinedimplementation of our two te
hniques improves performan
e of the SPEC2006fp,79



NAS, and the 
ommer
ial ben
hmarks by 14.3%, 13.7%, and 11.2%, respe
tively.4.3 SummaryWe have introdu
ed a new stream-based prefet
hing te
hnique that is e�e
tive forstreams of any length, in
luding extremely short streams. The key idea is to moni-tor the amount of spatial lo
ality in a program's exe
ution to adjust the aggressive-ness of a basi
 stream prefet
her. By 
apturing su
h spatial lo
ality in a StreamLength Histogram, our prefet
her 
an probabilisti
ally de
ide when to start and stopprefet
hing based on the re
ently observed behavior. A se
ondary 
ontribution isthe notion of Adaptive S
heduling, whi
h adapts the aggressiveness of the prefet
herbased on the observed number of 
on
i
ts between prefet
h 
ommands and regular
ommands. Previous te
hniques [43℄ have monitored spe
i�
 aspe
ts of the memorysystem, but we show that su
h �xed poli
ies 
an be overly 
onservative.Using extremely a

urate simulators for a modern mi
ropro
essor and itsmemory system, we have shown that Adaptive Stream Dete
tion and AdaptiveS
heduling provide signi�
ant performan
e improvements, even for 
ommer
ial work-loads that have low spatial lo
ality. This solution also has low DRAM power
osts and modestly improves DRAM energy 
onsumption. If implemented in thePower5+, our solution in
reases the area of the 
hip by less than 0.1%. Comparedto other prefet
hing strategies, the hardware 
ost of our approa
h is minimal. More-over, be
ause its spatial lo
ality dete
tion 
omponent is small, the 
ost advantageof Adaptive Stream Dete
tion improves|relative to other approa
hes that requirelarge tables|as the number of hardware threads in
reases.
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Chapter 5
DRAM Power Optimizations

In the previous two 
hapters we developed te
hniques with small modi�
ations tothe memory 
ontroller to improve memory bandwidth and memory laten
y. Be
ausepower is now a �rst order 
on
ern, and be
ause DRAM 
an 
onsume up to 45% ofa system's power [42℄, it's natural to ask whether memory 
ontrollers 
an improvepower utilization, as well. In parti
ular, there are two possible goals with respe
tto power: (1) maximize performan
e for a given power threshold; (2) a
hieve goodenergy eÆ
ien
y. This se
ond goal is important for large servers where energyeÆ
ien
y translates into lower energy bills. This se
ond goal is diÆ
ult be
auseit requires us to 
onsider the tradeo�s between power redu
tion and performan
eredu
tion. In this 
hapter, we present and evaluate new te
hniques for managingboth aspe
ts of DRAM power. We assume that the DRAM supports a power-down
ommand, whi
h puts a portion of the DRAM into a low-power mode, whi
h 
anbe found on today's DRAM's.A basi
 me
hanism for redu
ing power is to put memory devi
es into a low-power mode when they are idle. Unfortunately, the overuse of this me
hanism
an limit performan
e, as there are asso
iated entran
e and exit laten
ies for aparti
ular low power mode. An intelligent memory s
heduler would seem to be a81



natural partner with these low power modes, but the s
heduling goal of low powerand good performan
e are at odds. For good performan
e, the s
heduler typi
allysele
ts 
ommands that avoid hardware 
on
i
ts, essentially spreading the 
ommandsa
ross many physi
al memory devi
es. However, to redu
e power 
onsumption, thes
heduler would like to 
luster 
ommands to a subset of the physi
al devi
es, allowingone or more of them to be put into low-power mode.In this 
hapter we study three aspe
ts of the solution spa
e. First, we studythe bene�t of powering-down portions of the DRAM when they be
ome idle andpowering them ba
k up on demand. Se
ond, we study the impa
t of modifyingthe memory s
heduler so that it issues 
ommands in response to the state of theDRAM, that is, with 
ognizan
e of the powered-down ranks. This modi�ed memorys
heduler is a natural extension of our previously studied adaptive history-based(AHB) memory s
heduler. Finally, given a power budget, we develop a throttlingmethod to a

urately estimate the length of time during whi
h 
ommands shouldbe blo
ked in the reorder queues, allowing DRAM ranks to be powered-down.This 
hapter makes the following 
ontributions:1. We present a power-down me
hanism for the memory 
ontroller in the 
ontextof server-
lass memory systems.2. We present simple modi�
ations to the previously des
ribed adaptive history-based s
hedulers. These modi�
ations optimize for power by 
lustering 
om-mands to the same rank to 
reate rank lo
ality, thereby in
reasing the periodsduring whi
h other ranks 
an be powered down.3. We evaluate our new Power-Aware AHB s
heduler, along with three previ-ously proposed memory s
hedulers. Our detailed simulators provide resultsfor performan
e and energy eÆ
ien
y, as well as for power 
onsumption. Wesee that for the daxpy kernel, our new Power-Aware AHB s
heduler redu
es82



DRAM power by 42.6% and improves performan
e by 53.5% when 
omparedwith a standard FIFO s
heduler with no power-down me
hanism. We �ndthat our Power-Aware AHB improves the energy eÆ
ien
y of the Stream andNAS ben
hmarks by a fa
tor of 5. The simpli
ity and su

ess of our modi-�
ations argue that the adaptive history-based s
heduler provides a powerfulframework for all aspe
ts of memory s
heduling.4. We present a throttling approa
h that a
tively redu
es DRAM power by blo
k-ing memory 
ommands. The goal of this method is to estimate the throttlingdelay su
h that DRAM power 
onsumption falls below a predetermined powerbudget and show that performan
e degradation is as small as possible.In the next se
tions we des
ribe our new solutions regarding DRAM power
onsumption, we present experimental results, and �nally we 
on
lude and summa-rize our work.5.1 Power- and Performan
e-Aware Memory ControllersThis se
tion des
ribes our new approa
h to memory 
ontroller design, whi
h makesthe memory 
ontroller both power-aware and performan
e-aware. We present threeadditions to 
urrent memory 
ontrollers: a power-down unit to s
hedule rank power-down signals, an augmented form of adaptive history-based s
hedulers that in
ludespower 
riteria, and a throttling me
hanism to manage power requirements.5.1.1 Power-Down Unit in the Memory ControllerThe IBM Power5+ memory 
ontroller uses a 
ommand bus to transmit memory
ommands to DRAM. Every 
ommand on this bus has a 
ommand type and anaddress. We propose a new type of power-down 
ommand, in whi
h the rank to bepowered down is en
oded in the address bits.83



In the power-down unit of the memory 
ontroller, we maintain two extra
omponents for ea
h rank: a rank-lowpower bit and a 
ounter. The rank-lowpowerbit is set when the rank is in low power mode. The 
ounter maintains the numberof 
y
les remaining until the rank be
omes idle. Ea
h time a regular 
ommand (aRead or a Write) is sent to any bank of a powered-down rank, the rank's 
ounter isinitialized to the maximum of the 
urrent value and the laten
y of the new 
ommand.The overuse of power-down 
ommands 
an degrade performan
e in two ways.First, power-down 
ommands 
onsume 
ommand bus bandwidth. Se
ond, there willbe unne
essary swit
hes between low and high power modes in DRAM, whi
h willwaste two DRAM 
y
les. Finally, in most modern DRAM 
hips, when a rank enterslow power mode, it has to stay in that mode for a 
ertain number of 
y
les. Thus,powering down a rank prematurely 
an in
rease the laten
y for memory 
ommandswaiting for the powered-down rank.We now present a proto
ol to de
ide when to send a power-down 
ommand toDRAM. At every 
y
le, the power-down unit 
he
ks rank 
ounters, rank-lowpowerbits, and the 
ommands waiting in the CAQ. A power-down 
ommand is sent toa rank that meets the following 
onditions: (1) The rank 
ounter is zero, whi
hindi
ates that the rank is idle. (2) The rank-lowpower bit is zero, be
ause otherwisea new power-down 
ommand for the rank will be redundant and will unne
essarilyo

upy the 
ommand bus. (3) There is no 
ommand for the rank waiting in theCAQ; this 
ondition avoids powering down a rank if a Read or Write to that rankis imminent. (4) The 
ommand at the front of the CAQ 
annot be issued in this
y
le. To redu
e performan
e degradation, we give priority to regular 
ommandsover power-down 
ommands.The memory 
ontroller 
an send only one power-down 
ommand at any 
y
le,so at ea
h 
y
le, the power-down unit 
he
ks for the above 
onditions starting at arandom rank number. Randomization eliminates any bias in 
ases where more than84



one rank satis�es the power-down 
onditions.5.1.2 Power-Aware Adaptive History-Based S
hedulersWe now des
ribe how the adaptive history-based memory s
hedulers 
an be adaptedto in
lude power information. As we des
ribed in Chapter 3, a history-based s
hed-uler uses the history of re
ently s
heduled memory 
ommands when sele
ting thenext memory 
ommand. In parti
ular, s
heduling goals are en
oded in �nite statema
hines. Previously, two s
heduling goals were 
onsidered to improve performan
e:(1) minimize the laten
y of the s
heduled 
ommand, and (2) mat
h some desiredbalan
e of Reads and Writes. By s
heduling 
ommands to mat
h an expe
ted ratioof Reads and Writes, the s
heduler avoids bottlene
ks that arise from uneven Readand Write reorder queues.We modify these AHB s
hedulers by adding power savings as a new goal. Wedo this by 
reating a state ma
hine where power usage is the �rst optimization goal,whi
h we des
ribe below. Be
ause both performan
e and power goals are important,we probabilisti
ally 
ombine the three FSM's to produ
e a s
heduler that en
odes allgoals. The result is a history-based s
heduler that is optimized for both performan
eand power, but for one parti
ular mix of Read/Writes. To a

ommodate a widevariety of Read/Write mixes, we use adaptivity in the same sense as the originaladaptive history-based s
heduler, namely, our adaptive s
heduler observes the re
ent
ommand pattern and periodi
ally 
hooses the most appropriate of three history-based s
hedulers.Optimizing for PowerOur Power-Aware History-Based s
heduler uses power as the �rst optimization 
ri-terion. The basi
 idea is to group 
ommands for the same rank as 
losely as possiblein the CAQ. This will redu
e the number of power-down operations while providing85



the same amount of power savings. In the state ma
hine for the s
heduler, we de�nethe priorities for ea
h possible 
ommand in the reorder queues as follows: The setof 
ommands to the same rank with the last 
ommand sent to the CAQ has thehighest priority, the set of 
ommands to the same rank with the se
ond from thelast 
ommand has the se
ond priority, and so on. Sin
e there may be more than one
ommand in ea
h of these sets, our approa
h breaks ties using performan
e as these
ond 
riterion. Algorithm 4 depi
ts this pro
ess.Algorithm 4 power s
heduler(n)// n is the history string size1: for all 
ommand sequen
es of size n do2:3: for ea
h possible next 
ommand do4: Cal
ulate priority with respe
t to power.5: end for6: Sort possible 
ommands with respe
t to priorities.7: for 
ommands with equal priority in terms of power do8: Use expe
ted laten
y to make de
isions.9: end for10: Sort possible 
ommands with respe
t to expe
ted laten
y.11: for 
ommands with equal power priority and expe
ted laten
y do12: Use Read/Write ratios to make de
isions.13: end for14:15: for ea
h possible next 
ommand do16: Output the next state in the FSM.17: end for18: end forCombining State Ma
hines Probabilisti
allyAs with the original AHB s
heduler, we probabilisti
ally 
ombine our multiple op-timization goals to form a single history-base s
heduler. Algorithm 5 weights ea
h
riterion and produ
es a probabilisti
 de
ision. At runtime, a random number isperiodi
ally generated to determine the rules for state transitions as follows:86



Algorithm 5 probabilisti
 s
heduler1: if random number < threshold1 then2: 
ommand pattern s
heduler3: else4: if random number < threshold2 then5: expe
ted laten
y s
heduler6: else7: power s
heduler8: end if9: end ifThe algorithm basi
ally interleaves three state ma
hines into one, periodi
allyswit
hing among the three in a probabilisti
 manner, where the threshold values aresystem-dependent and are determined experimentally.5.2 Evaluation of the Power-Down Me
hanismTo evaluate the e�e
ts of the power-down me
hanism that we have introdu
ed, we�rst present detailed results for the daxpy kernel. Then, for the Stream and NASBen
hmarks, we 
ompare our Power-Aware AHB approa
h to the in-order, memo-ryless, and AHB s
hedulers. To measure performan
e, we use simulated exe
utiontime as our metri
. To measure power, we use Watts as our metri
. Finally, tomeasure eÆ
ien
y, we use 1/Joules.5.2.1 DAXPY ResultsFigure 5.1 shows how three previously studied memory s
hedulers|in-order, mem-oryless, and adaptive history-based|
ompare in terms of power (left graph) andperforman
e (right graph). We see that the more sophisti
ated s
hedulers providebetter performan
e but at the expense of higher average power 
onsumption.Figure 5.2 
ompares the power and performan
e of these three s
hedulerswhen 
ombined with our Power-Down me
hanism. These results are all normalized87
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Figure 5.1: Left: Power 
onsumption of Inorder, Memoryless, and Adaptive History-Based s
hedulers (without the Power-Down me
hanism). Right: Performan
e ofthese three s
hedulers.

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 A
ve

ra
ge

 P
ow

er
 

in-order
memoryless
AHB
Power-Aware AHB

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

in-order
memoryless
AHB
Power-Aware AHB

Figure 5.2: Left: Power 
onsumption of Inorder, Memoryless, and Adaptive History-Based s
hedulers with the Power-Down me
hanism. Right: Performan
e of theses
hedulers with the Power-Down me
hanism.
88



0

1

2

3

4

5

6

N
or

m
al

iz
ed

 E
ff

ic
ie

nc
y

in-order
memoryless
AHB

0

1

2

3

4

5

6

N
or

m
al

iz
ed

 E
ff

ic
ie

nc
y

in-order
memoryless
AHB
Power-Aware AHB

Figure 5.3: EÆ
ien
y Comparison, Left: no Power-Down, Right: with Power-Down.with respe
t to the in-order s
heduler without the Power-Down me
hanism, so we
an see that the Power-Down me
hanism redu
es power 
onsumption by 40-60%.Comparing the right graphs of Figures 5.1 and 5.2, we see that the Power-Downme
hanism has a small e�e
t on performan
e. Exe
ution time in
reases by 2.5%for the in-order s
heduler, by 2.1% for the memoryless s
heduler, and 3.7% for theAHB s
heduler.Figure 5.2 also shows results for our new Power-Aware AHB s
heduler, whi
hwhen 
ompared with the AHB s
heduler (with the Power-Down me
hanism) de-grades performan
e by 1.6% and redu
es power by 10.8%.From these �gures, it is diÆ
ult to understand how the s
hedulers 
ompare interms of energy eÆ
ien
y. Figure 5.3 shows these same results using energy eÆ
ien
yas a metri
. We see that the AHB s
heduler with the Power-Down me
hanism is4.9 times more eÆ
ient than the baseline in-order s
heduler that does not use thePower-Down me
hanism, and the Power-Aware AHB s
heduler is an additional 9.4%more eÆ
ient than the AHB s
heduler.We 
on
lude that, for daxpy, our power-aware adaptive history-based s
hed-uler redu
es power usage 
onsiderably and gives the best results in terms of eÆ
ien
y.89
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Figure 5.4: Comparison of power 
onsumption for the Stream Ben
hmarks.5.2.2 Stream and NAS ResultsFigure 5.4 
ompares the four s
hedulers with and without the Power-Down me
ha-nism. We see that the Power-Aware AHB gives the best power 
onsumption resultsin ea
h ben
hmark. On average the PA-AHB s
heduler's power 
onsumption is 5%better than the baseline in-order s
heduler, and it is 5% better 
ompared to theAHB s
heduler. We 
ompare the eÆ
ien
y of the s
hedulers in Figure 5.5.The NAS ben
hmarks are not as memory intensive as the Stream ben
h-marks, so the original AHB s
heduler does not provide as mu
h performan
e im-provement (5-16%). On the other hand, be
ause the memory system is less heavilyutilized, when the Power-Down me
hanism is added to the AHB, we see substantialpower savings (Figure 5.6). As a result, our Power-Aware AHB s
heduler signi�-
antly improves eÆ
ien
y, as well (Figure 5.7).90
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Figure 5.5: EÆ
ien
y 
omparison for the Stream Ben
hmarks.5.3 Throttling Me
hanismThe power-down me
hanism that we presented 
an redu
e power 
onsumption to
ertain degree, but for additional power savings, we now des
ribe a throttling me
h-anism that blo
ks 
ommands to the DRAM.Our throttling approa
h blo
ks 
ommands for all ranks for some �xed periodof T 
y
les. Other implementations 
ould power-down single ranks at a time, but wedo not explore this option here. Commands that are blo
ked 
annot pro
eed to theCAQ, so they a

umulate in the reorder queues, redu
ing bandwidth between thememory 
ontroller and the DRAM. When 
ombined with our power-down me
ha-nism, this throttling allows a rank to be powered-down for almost T 
y
les. If T issuÆ
iently long, the reorder queues be
ome �lled with 
ommands for the blo
kedrank, and the system stalls. Thus, by 
hanging the value of T, we 
an arbitrarily91
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Figure 5.6: Comparison of power 
onsumption for the NAS Ben
hmarks.lower our system's average power 
onsumption.5.3.1 Estimating the Throttling DelayTo redu
e DRAM power 
onsumption to a target level, a

urate estimation of thethrottling delay, T, is 
ru
ial. An ina

urate model for T 
an 
ause two problems:(1) if T is overestimated, power 
onsumption will be lower than the target, butat the same time performan
e will degrade more than it is ne
essary, (2) if T isunderestimated, power 
onsumption will be higher than the target. This se
ondproblem 
an be solved by 
hoosing a lower target for power when estimating T.However, this 
onservative approa
h also will degrade performan
e unne
essarily.In this se
tion, we explain how we 
an a

urately estimate the throttlingdelay that will redu
e DRAM power 
onsumption to a predetermined level, thereby
ausing as small a performan
e degradation as possible. Our method develops a92
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Figure 5.7: EÆ
ien
y 
omparison for the NAS Ben
hmarks.regression model for estimating T and re
ords the model 
oeÆ
ients in �rmware.The memory 
ontroller, depending on the memory 
ommand pattern and a powerbudget, uses the model 
oeÆ
ients to 
al
ulate the throttling delay. We assume thatthe time period is suÆ
iently long for whi
h a 
al
ulated T be valid that the overheadof the 
al
ulation is negligible. Note that the model 
oeÆ
ients vary dependingon the pro
essor frequen
y and DRAM properties. Thus, if system 
on�guration
hanges, these 
oeÆ
ients should be regenerated.To des
ribe and evaluate our model generation method, we �rst investigatethe relationship between power 
onsumption and throttling delay for various ben
h-marks. We then explain how to develop various models for throttling delay; wedis
uss the metri
s used to statisti
ally evaluate our models; and �nally, we presentthe 
omparison of the model results. 93



5.3.2 Relationship Between Power and Throttling DelayTo determine the intera
tion between DRAM power 
onsumption and the throttlingdelay, we 
ondu
t experiments on the Stream ben
hmarks, whi
h represent a widevariety of memory a

ess patterns. For ea
h ben
hmark, we perform simulations byvarying T between 100 and 9,000 pro
essor 
y
les for every 10,000 
y
le interval. Wealso investigate the e�e
t of data alignment by varying o�sets between data ve
torsto generate 16 di�erent versions of ea
h ben
hmark. Figure 5.8 depi
ts the results forthe ben
hmarks individually and also for all seven of them 
ombined. In this �gure,we observe that the relationship between power and T varies depending on both theben
hmark and the o�set between ve
tors in the same ben
hmark. For example, inthe �gure for all the ben
hmarks, we see that if the target power 
onsumption is 40Watts, depending on the ben
hmark and the o�set value, the appropriate value of Tvaries between about 500 and 5,000 
y
les. Thus, our experiments indi
ate that therelationship between power 
onsumption and T is non-linear and that using onlytarget power level to predi
t T will 
ause unne
essary performan
e degradation.5.3.3 Models for Throttling DelaySin
e the relationship between power and T is not linear, instead of trying to �nd adire
t relationship between these two variables, we determine other features that 
anbe used to relate them, and we use those features together with power to generatemodels for T. In Figure 5.8 we observe that the relationship between DRAM power
onsumption and T depends on the number of Reads, the number of Writes, andthe o�set between data streams.To predi
t T for a given power target P, our baseline model is T1=f1(P,a),where a is a 
onstant. This model la
ks information about the number of Reads,Writes, and the o�set between data streams. To examine a more detailed model, we
reate T2=f2(P,R,W,a) whi
h in
ludes the number of Reads and Writes in addition94
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to power information. And �nally, we 
reate T3=f3(P,R,W,B,a), whi
h adds thenumber of bank 
on
i
ts, B, to the model T2. Our 
onje
ture is that the numberof bank 
on
i
ts, together with the number of Reads and Writes, will be a goodrepresentation for the power e�e
ts of the o�set between data streams.To determine 
oeÆ
ients for these models, we use our measurements for theStream ben
hmarks, and we perform linear regression.5.3.4 Regression ModelsWe now explain how linear regression 
an be used to develop models for throttlingdelay. We set up a system of equations where the known values are measured DRAMpower, throttling delay, number of Reads, Writes, and bank 
on
i
ts. The unknownsin the system are the model 
oeÆ
ients. Solving this system gives us the values ofthe model 
oeÆ
ients that we are looking for.The data used to determine unknown 
oeÆ
ients in regression analysis willbe referred to as the training set, and the data used for testing the performan
e ofmodels is known as the test set. The best way to evaluate the performan
e of amodel is to use test sets that are independent from the training set.Linear regression models for the throttling delay 
an be de�ned asyi = �0 + �1�i1 + �2�i2 + :::+ �p�ip; i = 1; 2; :::; n: (5.1)where n is the number of elements in the training set, p is the number of 
oeÆ-
ients less one (the degrees of freedom) in the model, and the yi's are the measuredthrottling delays. This equation 
an also be stated in matrix form as:y = �� (5.2)The elements of the � matrix are known. Ea
h 
olumn of this matrix (some-96



times 
alled basis fun
tions) represents one feature of the model. For example, forthe model we propose in (5.1) the �rst 
olumn represents the measured DRAMpower, the se
ond 
olumn the number of Reads, the third 
olumn the numberWrites,and the fourth 
olumn the number of bank 
on
i
ts. The values of y are the mea-sured throttling delays from our training set. To �nd the value of the � ve
tor, the
oeÆ
ients of our model, we use a least squares method, whi
h is de�ned as� = �+y (5.3)where �+ is the pseudo-inverse of � [6℄.The models we have dis
ussed thus far are 
alled �rst-order regression mod-els, be
ause the exponent of ea
h �j is one. Alternatively we 
an de�ne se
ond-ordermodels whi
h in
lude quadrati
, �2j , and 
ross-produ
t, �j�k, terms. These modelsare 
alled 
omplete se
ond-order models. Higher order models may sometimes pro-vide better �t, but these might not generalize well. Thus, in our study we do notevaluate se
ond-order models.5.3.5 Statisti
al AnalysisTo assess the adequa
y of the models for T, we use 
oeÆ
ient of determination,R2, whi
h is probably the most extensively used measure of goodness for regressionmodels. There are various de�nitions of R2, ea
h with its potential pitfalls [40℄. Weuse the following de�nition, as suggested by Mason et al. [47℄:R2 = nXi=1(yi � ŷi)2nXi=1(yi � �yi)2 (5.4)In assessing the model a

ura
y R2 is equal to unity when the model is asgood a predi
tor of the target data as the simple model ŷ = �y, and it equals to zero97



if the model predi
ts the data values exa
tly [6℄. For 
lassi�
ation problems an R2value of 0.01 is generally a

eptable, while for regression problems we need smallervalues.5.3.6 Comparison of the Model ResultsThe R2 values for the test data set are 0.1659, 0.1344, and 0.0026 for the modelsT1, T2, and T3, respe
tively. Clearly, model T3 a
hieves the best a

ura
y, andit is also the the only model that satis�es the <0.01 requirement for the R2. InFigure 5.9, we present the errors for predi
ting T for ea
h of the three models. Asthe R2 results suggest, we see that the model T3 predi
ts T mu
h more a

uratelythan the other two models.More a

urate estimation of the throttling delay results in more a

urateestimation for DRAM power 
onsumption as well. In Figure 5.10, we show thepower e�e
ts of the three throttling delay models. This �gure suggests that whenwe use T3, power 
onsumption will in the range of +/- 3% of the target. However,for the other two models, the error range is about +/- 20%. The experimentsand regression results 
on�rm our 
onje
ture that the number of bank 
on
i
ts,together with the number of Reads and Writes, 
reate a good representation forDRAM power.5.4 SummaryIn this 
hapter we have shown how memory 
ontrollers 
an be used to improve power
onsumption as well as performan
e. We have evaluated three te
hniques. First,we show that a passive power-down me
hanism that does not reorder memory 
om-mands 
an signi�
antly redu
e power 
onsumption at the expense of a degradationof performan
e of less than 2.5%. This me
hanism works well for all of the mem-ory s
hedulers that we studied. Se
ond, we introdu
e the Power-Aware Adaptive98
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History-Based s
heduler, a small modi�
ation of the previously studied AdaptiveHistory-Based s
heduler. This Power-Aware AHB s
heduler improves the energyeÆ
ien
y of the Stream and NAS ben
hmarks by an average of 400% 
omparedto the in-order s
heduler. The simple and e�e
tive 
hanges to the original AHBs
heduler support the 
laim that the AHB s
heduler is a powerful framework for avariety of s
heduling 
on
erns. Finally, we present a throttling me
hanism, whi
ha
tively blo
ks 
ommands in the reorder queues and 
an further de
rease power
onsumption. This throttling me
hanism might prove useful when memory systemsmust stay beneath some peak power threshold.
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Chapter 6
Related Work

6.1 Methods to Improve BandwidthTo in
rease sustained memory bandwidth, memory systems are organized as multiplebanks that 
an be a

essed simultaneously. In banked memory systems, simultane-ous a

ess is a
hieved by implementing some sort of interleaving [11℄. Interleavedmemory systems 
onsiderably improve bandwidth, but restri
tions on a

esses tobanks, i.e. bank 
on
i
ts, prevent the system from attaining the maximum avail-able bandwidth. Elimination of bank 
on
i
ts has been extensively studied forseveral de
ades. There are basi
ally two broad 
lasses of te
hniques to avoid bank
on
i
ts: stati
 approa
hes and dynami
 methods.6.1.1 Stati
 MethodsStati
 bank 
on
i
t avoiding te
hniques, su
h as skewing [21, 13℄ or prime memorysystems [60, 58℄, attempt to arrange the order of memory 
ommands to minimizebank 
on
i
ts. Unfortunately, these stati
 methods are e�e
tive for redu
ing onlyintra-stream bank 
on
i
ts, i.e. 
on
i
ts 
aused by one stream. There are also
ompiler-based methods su
h as data padding and loop transformations. For ex-102



ample, Moyer [53℄ presents a 
ompiler-based approa
h, in whi
h loops are unrolledand instru
tions are reordered to improve memory lo
ality. But Moyer's te
hniqueapplies spe
i�
ally to stream-oriented workloads in 
a
heless systems.6.1.2 Dynami
 MethodsDynami
 
on
i
t avoiding te
hniques have been proposed by various resear
h groups[7, 71, 57, 52, 51, 50, 49, 61℄ to alleviate both intra- and inter-stream bank 
on
i
ts.As an example, the Impulse memory system by Carter et al. [7℄ improves memoryperforman
e by dynami
ally remapping physi
al addresses, but it requires modi�-
ations to the appli
ations and the operating system.There are also various heuristi
s that have been proposed to reorder memory
ommands. Valero et al. [71, 57℄ des
ribe a memory reordering te
hnique thatdynami
ally eliminates bank 
on
i
ts by enfor
ing a stri
t round robin orderingof bank a

esses. This ordering maximizes the average distan
e between any two
onse
utive a

esses to the same bank and thus redu
es the stalls due to bank
on
i
ts. However, this te
hnique 
onsiders only bank 
on
i
ts, and it 
an onlyeliminate bank 
on
i
ts if the requests are fairly uniformly distributed among banks.M
Kee et al. [52, 51, 50, 49℄ propose a memory subsystem, Stream MemoryController (SMC), to maximize bandwidth for streaming appli
ations. Their designin
ludes three main 
omponents: stream bu�ers, 
a
hes and a memory 
ommands
heduler. The 
ompiler dete
ts streams in the 
ode and generates non-
a
heablememory requests that bypass 
a
hes at run time and go dire
tly to the streambu�ers, whi
h are essentially FIFO queues. The memory s
heduler dynami
allysele
ts 
ommands from either the stream bu�ers or from the 
a
hes. M
Kee et al.observe two issues in reordering 
ommands in SMC: sele
ting the memory bankto whi
h the next a

ess to s
hedule, and sele
ting the FIFO queue whi
h has a
ommand for that parti
ular bank. They examine and evaluate various dynami
103



ordering heuristi
s, but they don't propose an algorithm. The bank sele
tion andFIFO sele
tion poli
ies that they evaluate are versions of a round robin s
heduler.The memory 
ontroller 
onsiders ea
h stream bu�er in sequential fashion, streamingas mu
h data as possible to the 
urrent bu�er before going to the next bu�er. Thisapproa
h may redu
e 
on
i
ts among streams, but it does not reorder referen
eswithin a single stream.Similar to stati
 approa
hes, the pre
eding dynami
 reordering studies arealso restri
ted to bank 
on
i
ts. Valero et al.'s and M
Kee et al.'s approa
hes
an be 
omplementary to our approa
h in the sense that an AHB s
heduler 
anuse these methods as another optimization 
riteria. For example, when there aremultiple 
ommands in the reorder queues to 
hoose from and when all the otheroptimization 
riteria are equal, an AHB s
heduler 
an sele
t the 
ommand thatmat
hes a predetermined sequen
e rather than 
hoosing the oldest 
ommand.Rixner et al. [61℄ explore several heuristi
s for reordering a

esses on theImagine stream pro
essor [38℄. Ea
h of these heuristi
s reorder memory operationsby 
onsidering the 
hara
teristi
s of modern DRAM systems and modern memory
ontrollers. For example, one poli
y gives row a

esses priorities over 
olumn a
-
esses, and another gives 
olumn a

esses priorities over row a

esses. None of thesesimple poli
ies is shown to be best in all situations, and none of them uses the
ommand history when making de
isions. Furthermore, these poli
ies are not easilyextended to more 
omplex memory systems with a large number of di�erent typesof hardware 
onstraints.6.2 Hardware Prefet
hing for Irregular Appli
ationsOne line of hardware prefet
hing resear
h has extended next-line prefet
hing [65, 34℄by adding non-unit strides [55℄, by predi
ting strides [2, 19℄, and by supportingirregular strides using Markov predi
tors [33, 62℄. Nesbit and Smith [54℄ introdu
e104



the Global History Bu�er to improve prefet
h e�e
tiveness and redu
e table sizes.None of these prefet
hers has su

essfully exploited low amounts of spatial lo
ality.Another line of resear
h fo
uses on dete
ting and exploiting spatial lo
alitywithout tra
king individual streams [32, 39, 44, 9℄. Instead, variations of the SpatialLo
ality Dete
tion Table, introdu
ed by Johnson et al., tra
k a

esses to individualregions of memory so that spatially 
orrelated data 
an be prefet
hed together. Aproblem with these approa
hes is the need for large tables to dete
t lo
ality. Somogyiet al. [67℄ show how mu
h smaller tables 
an be used by 
orrelating spatial lo
alitywith the program 
ounter in addition to parts of the data address. As a result,Spatial Memory Streaming 
an use tables as small as 64KB. Moreover, Somogyiet al. show performan
e improvements for 
ommer
ial workloads, indi
ating thattheir te
hnique 
an handle lo
ality patterns that span large regions of memory.By 
ontrast, our approa
h 
annot prefet
h as aggressively a
ross irregular lo
alitypatterns but instead attempts to use a mu
h smaller amount of hardware to prefet
hthe very small streams that likely make up these larger patterns.S
heduled Region Prefet
hing (SRP) [43℄ prefet
hes large regions of memory,su
h as 4KB at a time, and introdu
es me
hanisms for redu
ing the opportunity
ost of prefet
hes. Prefet
hes to open banks are given priority, prefet
hed data arebrought into the LRU position of the L2 sets, and prefet
h 
ommands are given lowpriority in the memory 
ontroller. In parti
ular, the SRP prioritizer re
eives feed-ba
k from the memory system and issues prefet
h 
ommands only if the 
hannelsare idle and there is no pending request from the L2 
a
he. By 
ontrast, our methoduses feedba
k from the memory system to sele
t from among �ve di�erent prioriti-zation poli
ies, where its most 
onservative poli
y is roughly equivalent to the SRPprioritization poli
y. Our s
heduling te
hnique 
an improve performan
e be
ausefor some workloads the most 
onservative poli
y unne
essarily inhibits prefet
hes.For example, there may be pending demand requests that will not 
on
i
t with a105



prefet
h 
ommand be
ause they target di�erent memory banks.One issue with SRP is the high memory bandwidth pressure that it in
ursbe
ause of its large regions. Wang et al. [73℄ solve this problem by using the 
ompilerto trigger the prefet
hes sele
tively. Our solution instead uses a modest amount ofhardware to prefet
h at a mu
h �ner granularity.Others have studied memory-side prefet
hing [1, 7, 75, 76, 66℄ and have shownthat memory-side prefet
hing is largely orthogonal to pro
essor-side prefet
hing [7,26℄. Unlike our approa
h, previous methods do not monitor the status of the memorysystem, so they 
an in
rease laten
ies for regular memory a

esses.6.3 DRAM Power OptimizationsPower 
onsumption of the memory subsystem has re
ently re
eived 
onsiderableattention. Power optimization te
hniques in DRAM 
an be 
lassi�ed in three 
ate-gories [4℄: hardware-based methods inside memory 
ontroller, 
ompiler or operatingsystem-dire
ted te
hniques, and hybrid approa
hes.6.3.1 Hardware-Based Approa
hesDelaluz et al. [16℄ show, in the 
ontext of 
a
heless systems with Rambus DRAM,that the power-down idea o�ers good power savings for in-order s
heduling. Theirgoal is to try to mat
h predi
ted idle time with a low-power mode that has theappropriate laten
y to resume a
tivity, however they do not evaluate this methodin systems with 
a
hes. Fan et al. [18℄ extend this work to systems with 2-level
a
hes. Irani et al. [31℄ give a theoreti
al analysis of dynami
 power managementin memory 
ontrollers. All of these methods basi
ally monitor usage of memoryse
tions and move to a di�erent power level if the usage ex
eeds a threshold level.Sin
e threshold values are system and appli
ation dependent, these algorithms arediÆ
ult to tune. 106



Previous hardware-based approa
hes for power savings assume in-order s
hedul-ing of the memory 
ommands. We show that performan
e of memory system 
anbe improved dramati
ally if 
ommands are reordered [28, 29, 27℄. As reorderingimproves performan
e, it naturally redu
es the length of the gaps between memory
ommands. Sin
e threshold-based predi
tive algorithms passively monitor memorytraÆ
 to de
ide when to power-down a memory se
tion, we expe
t that shorter gapswill make those algorithms less e�e
tive. In 
ontrast, our work takes an a
tive ap-proa
h and tries to reorder 
ommands to save power while preserving performan
e.6.3.2 Compiler- or Operating System-Based Approa
hesCompiler-dire
ted approa
hes aim to group memory a

esses to the same memoryse
tions to in
rease the size of idle periods. This goal is a
hieved by loop trans-formations [37℄, data layout optimizations [36℄, instru
tion s
heduling [74, 46, 56℄,or with 
ombinations of these methods [15℄. In 
a
heless single pro
essor systems,
ompile-time te
hniques 
an help the memory 
ontroller make better predi
tions foridle periods of memory se
tions. However, in systems with multi-level 
a
hes orwith shared memory 
ontrollers [69, 35℄, the role of the 
ompiler for power savingsis limited.Various studies have explored operating system support for power savings.Vahdat et al. [70℄ suggest in
orporating energy eÆ
ien
y as a �rst order design
riteria for operating systems. Lu et al. [45℄ propose shutting down unused system
omponents to save energy. By 
ontrolling the set of physi
al devi
es that arein a
tive use, the a
tual power 
onsumption for their a

ess 
an be 
ontrolled byputting ina
tive devi
es into low-power mode. Zhou et al. [77℄ use this approa
hand 
hange the size of allo
ated memory for pro
esses by tra
king page miss ratevs. memory size 
urve.Other OS-based approa
hes rely on improving the pla
ement of data in phys-107



i
al memory. Better page allo
ation poli
ies 
an also save energy. By allo
ating newpages to memory that is already in use, the number of a
tive memory devi
es 
an bekept to a minimum [41, 17℄. One performan
e optimization is to have the operatingsystem a
tivate memory used by a newly s
heduled pro
ess during a 
ontext swit
h,thus largely hiding the laten
y of exiting low-power mode [17, 23℄. Intelligent pagemigration [14, 24℄, where data is moved from one memory devi
e to another to re-du
e the number of a
tive memory devi
es, has also been proposed. Re
ent workby Huang et al. [24℄ proposes an OS-based approa
h whi
h reshapes memory traÆ
at the page granularity. This property of their method is similar to our approa
h ofreordering memory 
ommands.Our s
heduling methods and OS-based approa
hes may be 
omplementaryto ea
h other, be
ause our approa
h operates at a mu
h �ner granularity 
omparedto OS-based te
hniques. However, with the use of large page sizes [35℄, OS-basedte
hniques whi
h require data migration may degrade performan
e 
onsiderably.Of 
ourse, any approa
h that minimizes the number of a
tive memory devi
esalso redu
es the available memory bandwidth. A

esses previously performed inparallel to di�erent memory devi
es may need to be performed serially to the samememory devi
e. Most previous work does not a

urately model the performan
eloss that stems from su
h serialization. By 
ontrast, our detailed simulators allowus to model su
h e�e
ts a

urately.6.3.3 Hybrid Approa
hesRe
ent studies have shown the importan
e of addressing DRAM power 
onsumptionin large server systems [42, 5℄. Huang et al. propose a 
ooperative software-hardwareapproa
h that tra
ks pro
ess-spe
i�
 idle periods to exploit DDR's low-power modesfor ranks of DRAM devi
es [25℄. Felter et al. [20℄ jointly manage pro
essor andDRAM power by attempting to maximize system performan
e for a given total108



power budget, whi
h is parti
ularly useful when either the CPU or DRAM is signif-i
antly less utilized than the other. Our approa
h is transparent to software, whi
hwe believe is 
riti
al for su

essful adoption.
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Chapter 7
Con
lusions and Future Work

In the last few de
ades, be
ause of in
reasing memory laten
ies and in
reasing band-width demands, memory systems have be
ome a major performan
e bottlene
k for
omputer systems. More re
ently, power 
onsumption of DRAM 
hips has also be-
ome a �rst order 
on
ern. Previous proposals for improving laten
y, bandwidth,or power aspe
ts of memory systems have signi�
antly in
reased the 
omplexity ofpro
essors and/or memory organizations. Although pro
essor and memory systemshave been explored extensively, the interfa
e between them, the memory 
ontroller,had re
eived relatively less attention. As pro
essors and memory systems be
omein
reasingly 
omplex, it is natural to explore ways that the memory 
ontroller 
anbe made more sophisti
ated. Therefore, in this dissertation, we have 
on
entratedon the memory 
ontroller, and we have proposed novel solutions to all three aspe
tsof memory systems. We have evaluated our te
hniques in the 
ontext of the memory
ontroller of a highly tuned modern pro
essor, the IBM Power5+. Our evaluationfor both te
hni
al and 
ommer
ial ben
hmarks in single-threaded and simultane-ous multi-threaded environments has shown that our te
hniques for laten
y hiding,bandwidth in
rease, and power redu
tion a
hieve signi�
ant improvements.This dissertation makes the following 
ontributions:110



� To in
rease available bandwidth between the memory 
ontroller and DRAM,we have introdu
ed a s
heduling approa
h that in
orporates several novel te
h-niques. In this approa
h, we use the 
ommand history to sele
t 
ommands thatredu
e delays due to resour
e 
on
i
ts. We use the 
ommand history also tos
hedule 
ommands that mat
h some expe
ted 
ommand pattern. Be
ausethe goals of these two te
hniques may 
on
i
t, we probabilisti
ally 
ombinethem in a single history-based s
heduler that partially satis�es both goals.Finally, we implement three history-based s
hedulers|ea
h tailored to a dif-ferent 
ommand pattern|and we dynami
ally sele
t from among those basedon the observed ratio of Reads and Writes.Our new s
heduling approa
h improves the performan
e of the Stream,NAS, and a set of 
ommer
ial ben
hmarks over a s
heduler that does not
hange the order of 
ommands by 55.6%, 25.6%, and 51.6%, respe
tively.When 
ompared to the best approa
h proposed so far, for the same ben
h-marks, our s
heduler is better by 16.0%, 9.7%, and 7.5%, respe
tively.To explain our results, we have looked inside the memory system toprovide insights about how our solution 
hanges the various bottlene
ks withinthe system. We have found that our solution is more robust than previouss
heduling approa
hes in the sense that our solution is less sensitive to 
hangesin design parameters. We have also found that the AHB s
heduler is superiorto the previous s
hedulers even when the other s
hedulers are given additionalhardware resour
es.� To hide memory laten
y, we have introdu
ed a new stream-based prefet
hingte
hnique, Adaptive Stream Dete
tion, whi
h is e�e
tive for streams of anylength, in
luding very short streams. By monitoring the amount of spatial lo-
ality in a program's exe
ution in a Stream Length Histogram, our prefet
her
an probabilisti
ally de
ide when to start and stop prefet
hing based on the111



re
ently observed behavior. A se
ondary 
ontribution of our prefet
hing ap-proa
h is the notion of Adaptive S
heduling, whi
h adapts the aggressivenessof the prefet
her based on the observed number of 
on
i
ts between prefet
h
ommands and regular 
ommands.We have shown that when implemented as a memory-side prefet
her,our prefet
hing approa
h provides signi�
ant performan
e improvements, evenfor 
ommer
ial workloads that have low spatial lo
ality. When we 
ombineour s
heduling and prefet
hing methods, we obtain 14.3%, 13.7%, and 11.2%performan
e improvements for the SPEC2006fp, NAS, and the 
ommer
ialben
hmarks, respe
tively.� We have shown how memory 
ontrollers 
an be used to improve power 
on-sumption as well as performan
e. We have made three 
ontributions. First,we have presented details of how to implement a DRAM power-down me
h-anism with as small a performan
e degradation as possible. Se
ond, we havemodi�ed our s
heduling method to in
lude power 
onsumption as a new 
rite-rion during s
heduling. Finally, we have introdu
ed a throttling me
hanism,whi
h a
tively blo
ks 
ommands in the reorder queues. To a

urately 
al
u-late the duration of throttling for a given power budget, we have developed amethodology whi
h uses regression models based on the measurement data.In addition to providing substantial performan
e and power improvements, our te
h-niques are superior to the previously proposed methods in terms of 
ost as well.For example, a version of our s
heduling approa
h has been implemented in thePower5+, and it has in
reased the transistor 
ount of the 
hip by only 0.02%. Simi-larly, we estimate that our prefet
hing approa
h will in
rease the transistor 
ount ofthe 
hip by approximately 0.12%, whi
h is mu
h less than the 
ost of the previouslyproposed methods. 112



This dissertation has shown that without in
reasing the 
omplexity of neitherthe pro
essor nor the memory organization, all three aspe
ts of memory systems 
anbe signi�
antly improved with low-
ost enhan
ements to the memory 
ontroller.Although we have evaluated our solutions in the 
ontext of the IBM Power5+,our solutions should apply to other modern general purpose pro
essors too. Be
ause,most modern systems use a 
ommon DRAM te
hnology, therefore, the assumptionsthat our solutions make about DRAMs are true for other systems as well. In parti
-ular, our solutions rely on the following assumptions: (1) 
omplex DRAM stru
turewith multiple units of sub-organization, and (2) existen
e of a power-down me
ha-nism in DRAM. Be
ause of in
reasing bandwidth demands, we should expe
t moreparallelism in future DRAM organizations. And be
ause of in
reasing importan
e ofpower 
onsumption, we should also expe
t DRAMs to 
ontinue having power-downme
hanisms. Therefore, our solutions are likely to apply to future systems as well.The 
urrent trend in 
omputer ar
hite
ture is to use simultaneous multi-threading and to design multi-pro
essor 
hips. This trend in
reases the pressureon the memory system. Thus, memory 
ontrollers, and therefore our solutions, arelikely to be
ome more important in the future.There are two possible ways to extend this resear
h: (1) we 
an try to furtherimprove the te
hniques that we have presented, and (2) we 
an implement ourte
hniques in pla
es other than the memory 
ontroller.Although our te
hniques provide signi�
ant improvements, they are far fromobtaining the performan
e of the ideal memory system, whi
h has zero laten
yand in�nite bandwidth. Indeed, the ideal memory system will further improvethe performan
e of the SPEC2006fp, NAS, and 
ommer
ial ben
hmarks by 44.2%,37.6%, and 52.9%, respe
tively, over the 
ombined use of our laten
y and bandwidthimprovement te
hniques.We have shown that our memory s
heduling approa
h a
hieves more than113



95% of the bandwidth of a perfe
t s
heduler. Therefore, there is not mu
h headroomto improve this method on the Power5+. However, for other systems, in
orporatingbank 
on
i
ts into the s
heduler 
an be 
onsidered at the expense of 
ostlier design.Despite our s
heduling approa
h, the prefet
hing method that we have introdu
edhas headroom for further improvements. A major improvement to our method mayo

ur if the 
ompiler generates prefet
h instru
tions for streams of length one andour prefet
hing te
hnique gives spe
ial attention to those prefet
hes. Modifying
a
he repla
ement poli
ies may also a�e
t the o

urren
e of single element streams.Another improvement opportunity is to extend our prefet
hing method by designingmultiple prefet
hers and sele
ting one by using 
ertain bits of the memory addressand/or program 
ounter. Also, in this dissertation, we have evaluated the implemen-tation of only single line prefet
hing. As another improvement to our prefet
hingte
hnique, implementation of multiple line prefet
hing 
an be 
onsidered.Finally, in this dissertation, we have fo
used to improve the bandwidth andlaten
y between the memory 
ontroller and DRAM. However, similar 
on
erns existin other parts of systems as well. A natural extension of our work is the appli
ationof our te
hniques into the L2 
a
he 
ontroller to improve bandwidth and laten
yinside the 
hip.
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