Copyright
by
Ibrahim Hur

2006

The Dissertation Committee for Ibrahim Hur

certifies that this is the approved version of the following dissertation:

Enhancing Memory Controllers to Improve DRAM

Power and Performance

Committee:

Calvin Lin, Supervisor

Kathryn S. McKinley

Margarida F. Jacome

Gustavo de Veciana

Dewayne E. Perry

Enhancing Memory Controllers to Improve DRAM
Power and Performance
by

Ibrahim Hur, B.S.; M.Sc.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2006

To Ece

Acknowledgments

This work would not have been possible without the relentless support and encour-
agement of my advisor Dr. Calvin Lin. I would like to thank him for his wisdom,
advice, patience, and invaluable guidance during my doctoral studies.

I would also like to thank members of my dissertation committee, Dr. Kathryn
S. McKinley, Dr. Margarida F. Jacome, Dr. Gustavo de Veciana, and Dr. Dewayne
E. Perry. I especially thank Dr. McKinley for taking time and effort to help me
improve this dissertation.

Many thanks to David W. Matula, Harvey G. Cragon, Earl Swartzlander,
and Turhan Tunali who inspired me to do research in computer architecture. Thanks
to my friends Alper Buyuktosunoglu, Daniel A. Jimenez, Men-Chow Chiang, and
Brian O’Krafka for their help in my research. Thanks to Alison N. Norman, Maria
Jump, and all members of the Speedway group for their feedback on my practice
talks. I also thank Murat M. Tanik, Mehmet M. Kayaalp, and Cengiz Erbas for
their help during my first years in the graduate school.

I would like to thank the faculty and staff of The University of Texas at
Austin. I especially thank Melanie Gulick and Gem Naivar for their help in every
administrative issue. I also thank International Business Machines Corporation for
giving me resources, financial support, and flexibility during my graduate studies.

I am very fortunate to have wonderful parents and a sister who have always

believed in me. I thank my father Hamza, my mother Mufide, and my sister Safiye

for their constant encouragement. I am grateful to Remziye Sener Deveci, Tekin
Sayilar, and Neset Sayilar for their influence on me for doing academic research.
I would also like to thank my grandparents for their belief in the importance of
education.

Finally, many thanks go to my best friend Ece. I am truly grateful to her
for her unconditional support over many years. Without her encouragement during

every day of my graduate studies, I would not be able finish this dissertation.

IBRAHIM HUR

The University of Texas at Austin
December 2006

vi

Enhancing Memory Controllers to Improve DRAM

Power and Performance

Publication No.

Ibrahim Hur, Ph.D.
The University of Texas at Austin, 2006

Supervisor: Calvin Lin

Technological advances and new architectural techniques have enabled pro-
cessor performance to double almost every two years. However, these performance
improvements have not resulted in comparable speedups for all applications, because
the memory system performance has not kept pace with processor performance in
modern systems. In this dissertation, by concentrating on the interface between the
processors and memory, the memory controller, we propose novel solutions to all
three aspects of the memory problem, that is bandwidth, latency, and power.

To increase available bandwidth between the memory controller and DRAM,

we introduce a new scheduling approach. To hide memory latency, we introduce a

vil

new hardware prefetching technique that is useful for applications with regular or
irregular memory accesses. And finally, we show how memory controllers can be
used to improve DRAM power consumption.

We evaluate our techniques in the context of the memory controller of a
highly tuned modern processor, the IBM Powerb+. Our evaluation for both techni-
cal and commercial benchmarks in single-threaded and simultaneous multi-threaded
environments show that our techniques for bandwidth increase, latency hiding,
and power reduction achieve significant improvements. For example, for single-
threaded applications, when our scheduling approach and prefetching method are
implemented together, they improve the performance of the SPEC2006fp, NAS, and
a set of commercial benchmarks by 14.3%, 13.7%, and 11.2%, respectively.

In addition to providing substantial performance and power improvements,
our techniques are superior to the previously proposed methods in terms of cost as
well. For example, a version of our scheduling approach has been implemented in
the Power5+, and it has increased the transistor count of the chip by only 0.02%.

This dissertation shows that without increasing the complexity of neither the
processor nor the memory organization, all three aspects of memory systems can be

significantly improved with low-cost enhancements to the memory controller.

viii

Contents

Acknowledgments

Abstract

List of Tables

List of Figures

Chapter 1 Introduction

1.1
1.2
1.3
14

Our Solution e
Thesis Statement e
Contributions e

Organization

Chapter 2 Background and Methodology

21

2.2

A Modern Architecture: The IBM Powerb+
2.1.1 DRAM Organization and Power Consumption
2.1.2 Architectural Parameters
Simulation Methodology
2.2.1 Processor, Nest, and Main Memory Simulators
2.2.2 Verification of the Simulators

2.2.3 Simulation Approaches.

X

vii

xiii

xiv

gl W W N -

© oo o O

2.3

Benchmarks and Microbenchmarks 13

2.3.1 Test Case Generation 16

Chapter 3 Improving Memory Bandwidth with Smart Scheduling 18

3.1

3.2

3.3

3.4
3.5

Adaptive History-Based Memory Schedulers 22
3.1.1 History-Based Schedulers 23
3.1.2 Design Details of History-Based Schedulers 24
3.1.3 Adaptive Selection of Schedulers 29
Experimental Results 30
3.2.1 Evaluating Previous Approaches 30
3.2.2 Tuning the AHB Scheduler 33
3.2.3 Benchmark Results 35
3.2.4 Understanding the Results 38
Sensitivity Analysis. 43
3.3.1 Memory Controller Parameters 44
3.3.2 DRAM Parameters 49
3.3.3 System Parameters, 51
Hardware Costs 53
SUMMATY o o e e e e 54

Chapter 4 Improving Memory Latency of Irregular Applications 56

4.1

4.2

Memory Prefetching Using Adaptive Stream Detection 59
4.1.1 Adaptive Stream Detection 60
4.1.2 Using the SLH to Detect Locality 62
4.1.3 Prefetcher Design 63
4.1.4 Implementation of Adaptive Stream Detection 65
4.1.5 Adaptive Scheduling L. 66
Experimental Results 67

4.2.1 Hardware Costs. 68

4.2.2 Benchmark Results 68
4.2.3 Detailed Results 72

4.3 SUmMmaryo e e e e e e e 80
Chapter 5 DRAM Power Optimizations 81
5.1 Power- and Performance-Aware Memory Controllers 83
5.1.1 Power-Down Unit in the Memory Controller 83
5.1.2 Power-Aware Adaptive History-Based Schedulers 85

5.2 Evaluation of the Power-Down Mechanism 87
52.1 DAXPY Results 87
5.2.2 Stream and NAS Results 90

5.3 Throttling Mechanism 91
5.3.1 Estimating the Throttling Delay 92

5.3.2 Relationship Between Power and Throttling Delay 94
5.3.3 Models for Throttling Delay 94
5.3.4 Regression Models 96
5.3.5 Statistical Analysis Lo 97
5.3.6 Comparison of the Model Results 98

5.4 Summary e 98
Chapter 6 Related Work 102
6.1 Methods to Improve Bandwidth 102
6.1.1 Static Methods oL 102
6.1.2 Dynamic Methods 103

6.2 Hardware Prefetching for Irregular Applications 104
6.3 DRAM Power Optimizations 106
6.3.1 Hardware-Based Approaches 106

x1

6.3.2 Compiler- or Operating System-Based Approaches 107

6.3.3 Hybrid Approaches 108
Chapter 7 Conclusions and Future Work 110
Bibliography 115
Vita 123

xii

21
2.2
2.3
2.4
2.5

3.1

3.2
3.3

3.4

3.5

List of Tables

Power consumption for various states of the Micron 512MB DDR2. . 9
Base parameters for the IBM Powerb+. 10
The extended set of Stream Benchmarks. 14
The NAS Benchmarks. 15
The SPEC2006fp Benchmarks. 16
Performance (in CPI) of the Previous Scheduling Approaches for the

Stream Benchmarks. o 000 33
Tuning of the AHB Scheduler.. 34
Comparison of CPI’s of the AHB scheduler to the in-order and mem-
oryless schedulers for the Stream benchmarks. 36
Comparison of CPI’s of the AHB scheduler to the in-order and mem-
oryless schedulers for the NAS benchmarks. 36
Comparison of CPI’s of the AHB scheduler to the in-order and mem-

oryless schedulers for the commercial benchmarks. 37

xiii

21
2.2
2.3

24

3.1

3.2
3.3
3.4
3.5
3.6
3.7

3.8
3.9
3.10

List of Figures

The IBM Powerb+ chip.
The Powerb+ memory controller.
Percent error, in CPI, introduced by trace sampling, for the NAS

benchmarks.

Percent error, in CPI, introduced by trace sampling, for the SPEC2006fp

benchmarks.

Transition diagram for the current state R1W1R0. Each available
command type has different selection priority.
Overview of dynamic selection of arbiters in memory controller.
Performance comparison on our microbenchmarks.
Utilization of the DRAM for the daxpy kernel.
Comparison of retry rates. oL
Comparison of the number of bank conflicts in the reorder queues.
Reduction in the occurrences of empty reorder queues, which is a
measure of the occupancy of the reorder queues.
Increases in the occurrences where the CAQ is the bottleneck.
Reduction in standard deviations for 16-different address offsets.

ST and SMT results for the memoryless and the AHB with varying
lengths of the CAQ.

Xiv

29
38
38
39
40

41
41
42

3.11

3.12

3.13

3.14

3.15

3.16

4.1

4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

ST and SMT results for memoryless and AHB with various reorder
queue lengths. o 47
ST and SMT results for the memoryless and the AHB with varying
wait times for bank conflicts. oL 49
ST and SMT results for memoryless and AHB, varying memory ad-
dress and data bus widths. o000 oL 50
ST and SMT results for memoryless and AHB, varying the maximum
number of DRAM commands. 51
ST and SMT results for the memoryless and the AHB with varying
number of banks inarank. 0L oo 52
ST and SMT results for memoryless and AHB, with 1.5x, 2x, 3x, and

4x processor frequency.o 53

Stream Length Histogram (SLH) for an arbitrary epoch of the GemsFDTD
benchmark. Lo Lo L 61
Stream Length Histograms (SLH) for the GemsFDTD benchmark
from the SPEC2006fp suite show that the SLH’s vary widely at dif-

ferent points in time. Here the epoch length is 2000 reads. 61
Overview of our prefetcher. 64
Performance improvements for the SPEC2006fp Benchmarks. . .. 68
Performance improvements for the NAS Benchmarks. 69
Performance improvements for the commercial benchmarks. 70

DRAM Power and Energy comparison for the SPEC2006fp benchmarks. 70
DRAM Power and Energy comparison for the NAS benchmarks. . . 71

DRAM Power and Energy comparison for the commercial benchmarks. 71

Impact of Adaptive Stream Detection and Adaptive Scheduling. . . 73
Stream Length Histograms of eight benchmarks. Streams of lengths
between 1 and 5 constitute 78-96% of all streams. 74

XV

4.12
4.13
4.14
4.15

4.16

5.1

5.2

5.3

5.4
9.5
5.6
5.7
5.8

5.9
5.10

Effectiveness of our prefetching approach. 75

Sensitivity of PMS to prefetch buffer size. 75
Sensitivity of PMS to stream filter size. 76
Performance effects of coverage rate. Solid line represents the per-

fect prefetcher, “+” represents our ASD prefetcher, dotted line is for
the maximum coverage that a memory-side prefetcher can achieve
without prefetching the first elements of streams, and 100% coverage
corresponds to the ideal prefetcher. 7

Accuracy of calculating Stream Length Histograms. 79

Left: Power consumption of Inorder, Memoryless, and Adaptive History-
Based schedulers (without the Power-Down mechanism). Right: Per-
formance of these three schedulers. 88
Left: Power consumption of Inorder, Memoryless, and Adaptive History-
Based schedulers with the Power-Down mechanism. Right: Perfor-
mance of these schedulers with the Power-Down mechanism. 88

Efficiency Comparison, Left: no Power-Down, Right: with Power-

Down. 89
Comparison of power consumption for the Stream Benchmarks. . . 90
Efficiency comparison for the Stream Benchmarks. 91
Comparison of power consumption for the NAS Benchmarks. 92
Efficiency comparison for the NAS Benchmarks. 93

Relationship between DRAM power consumption and the throttling

delay, for the Stream benchmarks. 95
Errors in predicting the throttling delay, T. 99
Proximity to the target DRAM power. 100

Xvi

Chapter 1

Introduction

In the past few decades, advances in silicon process technology have significantly
reduced the size and switching times of transistors. As a result, both the number
of transistors on a single die and clock rates of processors have increased rapidly,
enabling processor performance to double almost every two years. However, these
performance improvements have not resulted in comparable speedups for all applica-
tions. For instance, increasing processor performance by 50% of an IBM Power5+
system improves the performance of the SPEC2006 benchmarks by only 13.1%.
Overall performance does not scale at comparable rates in all applications because
the memory system performance has not kept pace with processor performance in
modern systems.

There are two aspects of the memory system performance: latency and band-
width. Today, latencies have already reached hundreds of processor cycles, because
memory access delays do not decrease as fast as processor speeds increase. More-
over, memory latencies are expected to become even longer in the foreseeable future
because memory developers are required to create a balance between the speed and
capacity of memory chips, rather than focusing solely on speed. In order to tol-

erate growing latencies, modern systems increasingly use techniques, such as data

prefetching and simultaneous multithreading, which often elevate memory band-
width demands. In addition to latency tolerating techniques, technology trends,
such as faster processor clock rates and chip multi-processors, increase bandwidth
requirements in modern systems. Hence, memory bandwidth, once a concern for
only streaming scientific codes, has become crucial for non-streaming applications
as well.

While long latency and insufficient bandwidth limit the performance of mod-
ern systems, another performance criteria has recently emerged: power. Power is
not an issue just for processors, but it is a first order concern for DRAM as well.
For example, in systems with large memory capacities, DRAM’s are reported to
consume up to 45% of a system’s total power [42]. Limited power budgets force
designers to trade off performance for power. Therefore, power savings in DRAM
will reduce overall power consumption and may improve system performance and

energy usage.

1.1 Our Solution

Previous proposals for improving latency, bandwidth, or power aspects of memory
systems have significantly increased the complexity of processors and/or main mem-
ory organizations. For example, prefetching approaches for hiding latency require
large chip area to be effective for irregular memory accesses; bandwidth improv-
ing methods, such as multiple banks and multiple channels between processors and
memory, create a challenge for the processors to schedule memory commands intel-
ligently; and mechanisms for reducing DRAM power consumption require complex
algorithms to reduce performance degradations.

Although processor and memory systems have been explored extensively, the
interface between them, the memory controller, had received relatively less atten-

tion. The memory controller, either off-chip or integrated with the chip, controls

the flow of data to and from the memory, buffers data if necessary, and performs
optimizations to improve performance. As processors and memory systems become
increasingly complex, it makes sense to explore ways that the memory controller can
be made more sophisticated. Therefore, we concentrate on the interface between the
processor and memory, and we propose a low cost memory controller design that

improves all three aspects of memory systems:

e To hide latency, we propose a new prefetching approach that is useful for

applications with regular or irregular memory accesses.

e To improve bandwidth, we introduce a memory command reordering technique

that reduces contention in the memory system.

e To address DRAM power consumption, we augment our command reordering
approach to include power optimizations, and we present a new model-based

throttling technique.

e To put it all together, we present and evaluate a memory controller design

that includes all of our enhancements for latency, bandwidth, and power.

1.2 Thesis Statement

All three aspects of memory systems, that is latency, bandwidth, and power con-
sumption, can be significantly improved with small modifications to the memory

controller.

1.3 Contributions

In this dissertation, we make the following contributions:

e To deal with increasing memory latencies, we introduce a probabilistic hard-
ware prefetching technique that is particularly useful for applications with low
spatial locality. This technique keeps track of the frequency of stream sizes in
an application and uses that information to make prefetching decisions. We
implement this low cost method as a memory-side prefetcher, and we show
that it complements an existing processor-side prefetcher. To better assign
resources to prefetch and regular commands, we also introduce an adaptive
approach that modulates the relative priority of prefetch commands and reg-

ular commands by monitoring the status of the memory system.

e To satisfy growing memory bandwidth demands, we present a new mem-
ory scheduling approach. To reduce contention in the memory system, this
scheduling technique chooses commands to issue to memory by considering
physical characteristics of main memory and the history of memory commands.
In addition, to reduce bottlenecks in the memory controller itself, this tech-
nique matches the sequence of memory commands to a predetermined com-
mand pattern. To make this method work for more than one command pat-
tern, we introduce an adaptive method that dynamically selects from among

multiple schedulers.

e To address the power issue, we provide an algorithm to manage powerdown
capabilities of DRAM chips; we design a memory scheduler that optimizes
for both performance and power; and we develop an approach to throttle
memory traffic, with minimal performance degradation, so that DRAM power

consumption will meet some specified budget.

e We evaluate our techniques in the context of the memory controller of a highly
tuned modern processor, the IBM Powerb5+. Our evaluation covers both tech-

nical and commercial benchmarks in single-threaded and simultaneous multi-

threaded environments. We show that our techniques for latency hiding, band-
width increase, and power reduction, achieve substantial improvements. For
example, our prefetching approach improves the performance of our technical
and commercial benchmarks by an average of 10.2% and 8.4%, respectively.
Similarly, on the same benchmarks, our scheduling method increases perfor-
mance by 9.7% and 7.5%. When we combine our latency hiding and scheduling

methods, we achieve 14.3% and 11.2% performance improvement.

1.4 Organization

This dissertation is organized as follows. The next chapter presents background
and our experimental methodology. In the following three chapters, we present our
new solutions and their empirical evaluation: in Chapter 3, the Adaptive History-
Based Schedulers to improve available bandwidth; in Chapter 4, Adaptive Stream
Detection for latency hiding; and in Chapter 5, DRAM Power Optimizations. In
Chapter 6, we place our work in the context of prior work; and finally in Chapter

7, we conclude and discuss future work.

Chapter 2

Background and Methodology

We evaluate our bandwidth, latency, and power improvement techniques using sim-
ulation of a modern architecture, the IBM Power5+. In this chapter, we first present
an overview of the Powerb+ architecture. We then describe our simulation method-
ology. Finally, we discuss the details of the benchmarks that we use to evaluate our

approaches.

2.1 A Modern Architecture: The IBM Power5-+

The IBM Power5+ [10, 35] is the successor to the Powerb and is the latest member
of the Power4 [69] line of processors. The Power5+ chip has about 300 million tran-
sistors and is designed to address both scientific and commercial workloads. Some
improvements in the Powerb and Powerb+ over the previous generation Power4 in-
clude a larger L2 cache, simultaneous multithreading, power-saving features, and an
on-chip memory controller.

As shown in Figure 2.1, the Power5+ has two processors per chip, where
each processor has split first-level data and instruction caches. Each chip has a

unified second-level cache shared by the two processors, and it is possible to attach

an optional L3 cache. Four Power5+ chips can be packaged together to form an
8-way SMP, and up to eight such SMP’s can be combined to create 64-way SMP
scalability.

The Power5+ [35] has an aggressive processor-side prefetching unit [69] that
prefetches from memory to L2 and from L2 to L1. The prefetcher implements
a sequential prefetching policy that waits to issue prefetches until it detects two
consecutive cache misses. There are 12 entries in the stream detection unit, and
eight streams can be prefetched concurrently. When the steady state is reached,
each stream brings one additional line into the L1 cache, and one additional line

into the L2 cache.

Figure 2.1: The IBM Power5+ chip.

The Powerb5+’s memory controller, as shown in Figure 2.1, is shared by two
processors. The memory controller has two reorder queues: a Read Reorder Queue

and a Write Reorder Queue. Each of these queues can hold 8 memory references,

where each memory reference is an entire L2 cache line or a portion of an L3 cache
line. An arbiter selects an appropriate command from these queues to place in the
Central Arbiter Queue (CAQ), where they are sent to memory in FIFO order. The
memory controller can keep track of the 12 previous commands that were passed

from the CAQ to the DRAM.

Figure 2.2: The Powerb+ memory controller.

The Power5+ does not allow dependent memory operations to enter the
memory controller at the same time, so the arbiter is allowed to reorder memory
operations arbitrarily. Furthermore, the Powerb+ gives priority to demand misses
over prefetches, so from the memory controller’s point of view, all commands in the
reorder queues are equally important. Both of these features greatly simplify the

task of the memory scheduler.

2.1.1 DRAM Organization and Power Consumption

The Power5+ systems that we consider use DDR2 SDRAM chips, which are essen-
tially a 5D structure. Two ports connect the memory controller to the DRAM. The
DRAM is organized as 4 ranks, where each rank is an organizational unit consisting
of 4 banks. Each bank in turn is organized as a set of rows and columns. This
structure imposes many performance constraints. For example, port conflicts, rank
conflicts, and bank conflicts each incur their own delay, and the costs of these delays

depends on whether the operations are Reads or Writes. In this system, bank con-

| State | Average Power (normalized) |

Read transfer (1 bank) 1.000
Read transfer (4 banks, staggered) 1.875
Activate-Precharge (1 bank) 0.594
Idle (precharge quiet) 0.281
Power-down (precharge) 0.038

Table 2.1: Power consumption for various states of the Micron 512MB DDR2.

flict delays are an order of magnitude greater than the delays introduced by rank or
port conflicts.

With multiple ranks in a system, it is possible that at any given time some
of the ranks are idle. While DRAM power consumption is lower when a rank is idle,
the low-power mode can reduce power consumption by another order of magnitude.
Table 2.1 shows the relative power consumption for some prominent modes for the
ranks of a Micron 512MB DDR2-533MHz SDRAM chip. A rank can enter low-power
mode, with a command from the memory controller, only if no bank of the rank
is processing a memory command. There is an exit latency, which is 12 processor
cycles for the memory chips that we simulate, for transitioning from the low-power
mode to other modes. Additionally, other timing constraints place restrictions on
how soon the low-power mode can be entered. Our simulation environment [59]
accurately models all timing constraints, modes, and activities of the ranks and
banks; it uses the corresponding power consumption information from the DRAM

datasheets [22] to correctly model power and performance of the DRAM chips.

2.1.2 Architectural Parameters

In Table 2.2 we present the base parameters for the IBM Powerb+ systems that we
simulate in our studies. These parameters represent one of the most modern system

configurations with the Power5+.

Parameter

Value

L1D, L1I 64KB, 2way, 128B

L2 1.9MB, 10way, 128B, shared
L3 36MB, 16way, 128B, shared, victim
Frequency 2.132 GHz
Memory Address Bus 8B

Memory Read Data Bus 16B

Memory Write Data Bus 8B

Read Reorder Queue 8

Write Reorder Queue 8

Centralized Arbiter Queue 3

DRAM Type DDR2

DRAM Speed 533 MHz

Number of Ranks 4

Banks in a Rank 4

Active Commands in DRAM 12

Table 2.2: Base parameters for the IBM Power5+-.

2.2 Simulation Methodology

The simulators that we use are for actual commercial products, namely the IBM
Power4, Power5, and Powerb+ systems. They are developed by the processor de-
sign and modeling teams of IBM. The simulators represent the modeled systems in
extensive detail. Their development, validation, and verification took many years
of manpower. For example, one of the simulators consists of about 1.5 million lines
of VHDL code and is cycle accurate. With our set of simulators, we can simulate
details of both the processor and memory system. We are also able to perform
multithreaded simulations as well as multiple processor simulations.

The simulation environment that we use consists of three main parts: a
simulator for the processor, a simulator for the level two and level three caches, and
a simulator for the main memory. The simulators for caches and main memory use

the event-driven CSIM [63] framework.

10

2.2.1 Processor, Nest, and Main Memory Simulators

Our processor simulator, ProSim, is a trace driven simulator for a single processor
of the Power4, Powerb, or Powerb+ system. The processor includes execution units,
control logic, pipeline structure, and the first level data and instruction caches.
ProSim reads a single record from an instruction trace and processes it through the
processor units. This simulator is designed with the purpose of evaluating various
design options. Therefore, we are able to change many architectural parameters
before simulation. Cache size, associativity, number of floating point units, and
branch history table size are a few examples of these configurable paramaters.

ProSim delays the processing of an instruction if that instruction causes a
miss in a first level cache. NestSim, the second part of the simulation environment,
handles the processing of these missed instructions. As soon as a load or store
instruction misses in a first level cache, a new thread is generated. This thread
flows through the second and third level caches and returns the result to ProSim to
wake the sleeping ProSim thread. NestSim simulates the details of the second and
third level caches in detail, but it stops processing the level-1 cache miss when there
is a need for a main memory access.

The third simulator, MemSim, is a DRAM simulator that jointly models
power and performance of the main memory subsystem. It is also a highly con-
figurable simulator, originally designed for modeling the main memory system of
high-end servers, with support for different memory interleaving, page modes, and
power management policies. We extend MemSim to act as a module in our simu-
lation environment along with cycle-by-cycle tracking of activities in the memory
system. In this mode, MemSim models all the memory system activity while syn-
chronizing with the NestSim simulator at every processor cycle.

We integrate NestSim with the MemSim memory simulator by replacing

NestSim’s fixed-latency memory model with MemSim. The integrated simulator

11

generates timing information for both processor and memory subsystems. In addi-

tion, MemSim provides detailed power and energy information for DRAM.

2.2.2 Verification of the Simulators

We verify our simulators against an RTL simulator (VSim). VSim consists of about
1.5 million lines of VHDL code that has been developed by the IBM designers for the
Power4, Powerb, and Powerb+ systems. Even though VSim represents the actual
system correctly, it cannot be used in our studies because it is extremely slow and
difficult to modify. VSim has been intensively validated and verified for functionality
and performance. Verification of VSim itself is beyond the scope of our study.

We have performed performance verification and simulator development con-
currently. Whenever a discrepancy is detected between VSim and our simulators,
we modify our simulators and perform the comparisons again. The development of
VSim and our simulators is also concurrent. In other words, as the designers add
new details, VSim changes, which further complicates our simulator development
process.

We create a verification environment where we can run the same test cases
with VSim and with our combined simulators. To test various sections of the hard-
ware, there are several hundred basic test cases with one or a few instructions. We
also have longer test cases to test memory bandwidth.

In general, the error between our simulators and the VSim is within 1%.
The verification process involves not only the comparison of the absolute execution
times, but it also compares the of timing of various events. For example, for an
instruction that needs main memory access, it is important to match memory queue
entry and exit times in addition to overall memory latency. For most test cases, we

perform these comparisons manually.

12

2.2.3 Simulation Approaches

There are two modes of running simulations. In the first mode (trace-based), in-
structions are fed to the simulator from a trace file. Instructions are processed
through all levels of the simulaton environment, i.e. ProSim, NestSim, and Mem-
Sim. In the second mode (stream-based), only NestSim and MemSim are used. We
use this mode to study test cases with heavy main memory access requirements.
A stream generator creates various number of data streams (Reads and/or Writes)
and feeds those to NestSim. Multiprocessor simulations can use only this mode.
For a set of microbenchmarks, we compared the results of trace-based and stream-
based approaches, and we found that average performance difference between these
approaches is 1.3%.

Our simulation environment allows us to perform uniprocessor or multipro-
cessor runs. We can simulate any test case with uniprocessor configurations, but
multiprocessor simulations have limitations. If the configuration is for a uniproces-
sor, we can also specify the number threads to run. Each thread can use different

trace files.

2.3 Benchmarks and Microbenchmarks

We evaluate our bandwidth, latency, and power improvement techniques using both
technical and non-technical benchmarks. For technical benchmarks, we use the
Stream [48], NAS [3], and recently released SPEC2006fp benchmarks [68]. For non-
technical workloads, we use IBM internal benchmarks for commercial applications.
We also create a set of microbenchmarks for detailed analysis of the memory con-
troller.

The first set of benchmarks measures streaming behavior. The Stream bench-

marks, which others have used to measure the sustainable memory bandwidth of

13

Kernel || Description |

daxpy | x[i]=x[i]+a*yl[i]
copy x|i|=y[i

scale x[i]=a*x[i]
vsum x[i]=y[i]+z[i]
triad x[i]=y[i]+a*z[i]
fill x[i]=a

sum sum=sum-+x|i]

Table 2.3: The extended set of Stream Benchmarks.

systems [12, 64, 8, 72], consist of four simple vector kernels: copy, scale, vsum, and
triad. The Stream2 benchmarks, which consist of fill, copy, daxpy, and sum, were
introduced to measure the effects of all levels of caches and to show the perfor-
mance differences of reads and writes. In our study, we combine the Stream and
the Stream?2 to create the extended Stream benchmarks that consist of seven vector
kernels. We list these kernels in Table 2.3 and, for simplicity, we refer to them
collectively as the Stream benchmarks in the rest of this dissertation.

The second set of workloads, the NAS (Numerical Aerodynamic Simulation)
benchmarks, is a group of eight programs developed by NASA (see Table 2.4).
These programs are derived from computational fluid dynamics applications and
are good representatives of scientific applications. The NAS benchmarks are fairly
memory intensive, but they are also good in measuring various other performance
characteristics of high performance computing systems. There exists parallel and
serial implementations of the various sizes of the NAS benchmarks. In our studies,
we use serialized versions of class B.

The third set of technical workloads that we use are the SPEC2006fp bench-
marks [68]. As depicted in Table 2.5, this benchmark suite consists of 17 scientific
applications. SPEC benchmarks are considered the industry standard in evaluat-
ing performance of computer systems. This benchmark suite has both integer and

floating point benchmark sets. We do not evaluate integer benchmarks because with

14

Program || Description

bt Block-Tridiagonal Systems

cg Conjugate Gradient

ep Embarrassingly Parallel

ft Fast Fourier Transform for Laplace Equation
is Integer Sort

lu Lower-Upper Symmetric Gauss-Seidel

mg Multi-Grid Method for Poisson Equation

sp Scalar Pentadiagonal Systems

Table 2.4: The NAS Benchmarks.

large caches of the Powerb+, memory pressure of these benchmarks are low.

For the non-technical workloads, we use five commercial server applications,
namely tpce, trade2, cpw?2, sap, and notesbench. Tpcc is an online transaction pro-
cessing workload; cpw2 is a Commercial Processing Workload that simulates the
database server of an online transaction processing environment; trade2 is an end-
to-end web application that models an online brokerage; sap is a database workload;
and notesbench is a tool that evaluates the performance of a set of systems which
are running Lotus Notes.

Finally, we use a set of 14 microbenchmarks, which allows us to explore a
wider range of memory controller configurations, and which allows us to explore in
detail the behavior of our memory controllers. Each of our microbenchmarks uses
a different Read/Write ratio, and each is named xRyW, indicating that it has z
Read streams and y Write streams. These microbenchmarks represent most of the
data streaming patterns that we expect to see in real applications. There are two
other reasons that we use microbenchmarks. First, the simulation times for these
benchmarks are very short, e.g. in the order of minutes. We need short simulation
times to investigate a large number of design configurations. Second, our simulation
environment has a limitation to perform multiple processor simulations only with

this type of microbenchmarks.

15

Program || Application Area

bwaves Fluid dynamics

gamess Quantum chemistry

milc Physics/Quantum chromodynamics
zeusmp Physics

gromacs Biochemistry /Molecular dynamics
cactusADM || Physics/General relativity

leslie3d Fluid dynamics

namd Biology/Molecular dynamics
dealll Finite element analysis

soplex Linear programming, optimization
povray Image ray-tracing

calculix Structural mechanics

GemsFDTD | Computational electromagnetics
tonto Quantum chemistry

lbm Fluid dynamics

wrf Weather modeling

sphinx3 Speech recognition

Table 2.5: The SPEC2006fp Benchmarks.

2.3.1 Test Case Generation

For the Stream, NAS, and SPEC2006fp benchmarks, we create traces using an
internal IBM tool. This tool generates, from an executable, as many instructions as
we specify. The output can be a certain contiguous section of the instruction stream
or the concatenation of uniformly sampled pieces. For the Stream benchmarks we
use contiguous traces. However, the NAS and SPEC benchmarks are prohibitively
long for a single trace file. For example, if not sampled, some SPEC programs runs
for about 3 trillion instructions, which would require about 70 years of simulation
time in our detailed simulators. Therefore, for the NAS and SPEC2006fp workloads
we generate sampled traces. We first generate 50 uniformly distributed pieces, each
having 2 million instructions, and then we combine those pieces to create a single
trace of 100 million instructions. To evaluate the representativeness of the sampled

traces, we compare the CPI’s of the entire programs on an actual Power5+ to

16

the simulator output of the traces. As we show in Figure 2.3 and Figure 2.4, our

sampling approach creates a good match to the original CPI of the benchmarks.

20 4

15

B

g &

= 2 =

g &

Average

Figure 2.3: Percent error, in CPI, introduced by trace sampling, for the NAS bench-

marks.

20

15—

bwaves [
milc
zeusmp [

gamess [

namd]
dedll]
soplex]

gromacs [
cactusADM
ledie3d I
povray [
calculix
GemsFDTD [

tonto)
|lbm
wrf]
sphinx3
Average [N

Figure 2.4: Percent error, in CPI, introduced by trace sampling, for the SPEC2006{p

benchmarks.

For the commercial workloads, we use traces collected by special hardware.

Finally, to generate microbenchmarks, we use a stream generator. This tool runs

concurrently with the simulator and, as input, it takes the number of Read or Write

streams, the length of each stream, and the offset among the streams. The offset

among the streams affects the order of the commands going to memory, which may

change the number of the bank or rank conflicts.

17

Chapter 3

Improving Memory Bandwidth
with Smart Scheduling

Memory bandwidth is an increasingly important aspect of overall system perfor-
mance. Early work for improving available bandwidth focused on streaming work-
loads, which place the most stress on the memory system. Early work also focused
on avoiding bank conflicts, since bank conflicts typically lead to long stalls in the
DRAM. In particular, numerous hardware and software schemes have been pro-
posed for interleaving memory addresses [11], skewing array addresses [21, 13], and
otherwise [7, 49, 50, 51, 52] attempting to spread a stream of regular memory ac-
cesses across the various banks of DRAM. Valero et al. [71, 57] describe a method
of dynamically reordering memory commands so that the banks are accessed in a
strict round-robin fashion. More recently, Rixner et al. [61] evaluate a set of sim-
ple heuristics for reordering memory commands, some of which consider additional
DRAM structure, such as the rows and columns that make up banks. Rixner et al.
do not identify a conclusive winner among their various heuristics, but they do find
that simply avoiding bank conflicts performs as well as any of their other heuristics.

Recently, the need for increased memory bandwidth has begun to extend

18

beyond streaming workloads. Faster processor clock rates and chip multi-processors
increase the demand for memory bandwidth. Furthermore, to cope with relatively
slower memory latencies, modern systems increasingly use techniques that reduce
or hide memory latency at the cost of increased memory bandwidth demands. For
example, simultaneous multi-threading hides latency by using multiple threads, and
hardware-controlled prefetching speculatively brings in data from higher levels of
the memory hierarchy so that it is closer to the processor. To accommodate more
parallelism, modern DRAM'’s are also increasing in complexity. For example, the
DDR2-533 SDRAM chips have a 5D structure and a wide variety of costs associated
with access to the various sub-structures.

In the face of these technological trends, previous solutions are limited in
two ways. First, it is no longer sufficient to focus exclusively on streams as a special
case; we instead need to accommodate richer patterns of data access. Second, it is
no longer sufficient to focus exclusively on avoiding bank conflicts; scheduling deci-
sions instead need to consider other physical sub-structures of increasingly complex
DRAM’s.

Previous work is also limited in its avoidance of bottlenecks within the mem-
ory controller itself. To understand this problem, consider the execution of the
daxpy kernel on the IBM Powerb+’s memory controller. The daxpy kernel performs
two reads for every write. If the scheduler does not schedule memory operations
in the ratio of two reads per write, either the Read queue or the Write queue will
become saturated under heavy traffic, creating a bottleneck. To avoid such bottle-
necks, the scheduler should select memory operations so that the ratio of reads and
writes matches that of the application.

In this chapter, we describe a new approach—adaptive history-based (AHB)
memory scheduling—that addresses all three limitations by maintaining information

about the state of the DRAM along with a short history of previously scheduled

19

operations. Our solution avoids bank conflicts by simply holding in the reorder queue
any command that will incur a bank conflict; history information is then used to
schedule any command that does not have a bank conflict. Our approach provides
three conceptual advantages: (1) it allows the scheduler to better reason about the
delays associated with its scheduling decisions, (2) it is applicable to complex DRAM
structures, and (3) it allows the scheduler to select operations so that they match
the program’s mixture of Reads and Writes, thereby avoiding certain bottlenecks
within the memory controller.

A version of the AHB scheduler that uses one bit of history and that is
tailored for a fixed Read-Write ratio of 2:1 has been implemented in the recently
shipped IBM Power5+. Nevertheless, important questions about the AHB sched-
uler still exist. Perhaps the most important question is whether our solution will
become more or less important to future systems, which we can study by alter-
ing various architectural parameters of the processor, the memory system, and the
memory controller. For example, is the AHB scheduler effective for multi-threaded
and multi-core systems? Is the AHB scheduler needed for DRAM’s that will have
many more banks and thus much more parallelism? If we increase the size of the
memory controller’s internal queues, would a simpler solution suffice? Finally, can
the solution be improved by incorporating more sophisticated methods of avoiding
bank conflicts? In this chapter, we answer these questions and others to demonstrate
the flexibility and robustness of our solution, evaluating it in a variety of situations.

In particular, this chapter makes the following contributions:

e We present the notion of adaptive history-based schedulers, and we provide

algorithms for designing such schedulers.

e While most previous memory scheduling work pertains to cacheless streaming
processors, we show that the same need to schedule memory operations applies

to general purpose processors. In particular, we evaluate our solution in the

20

context of the IBM Power5+, which has a 5D structure (port, rank, bank,

row, column), plus caches.

We evaluate our solution using a cycle-accurate simulator for the Power54-.
When compared with an in-order scheduler, our solution improves IPC on
the NAS [3] benchmarks by a geometric mean of 16.8%, and it improves IPC
on the Stream benchmarks [48] by 45.5%. When compared against one of
Rixner et al.’s solution, our method sees improvements of 5.8% for the NAS
benchmarks and 11.3% for the Stream benchmarks. In addition to NAS and
Stream, we also evaluate our approach on commercial benchmarks, where
we see 32.8% and 5.6% performance improvements compared to in-order and

Rixner’s approach, respectively.

We show that multi-threaded workloads increase the performance benefit of
our solution. This result may be surprising because multi-threading would
seem to defeat our technique’s ability to match the workload’s mixture of
Reads and Writes. However, we find that the increased memory system pres-
sure increases the benefit of smart scheduling decisions. For example, when
compared with the state of the art on a two processor system each running
two threads, our approach improves performance of commercial benchmarks,
compared to Rixner’s approach, between 6% and 10%. We find the some-
what surprising result that for previous memory schedulers, the use of SMT
processors can actually decrease performance because the DRAM becomes a

bottleneck.

We provide insights to explain why our solution improves the bandwidth of

the Power5+’s memory system.

We tune our solution and evaluate its sensitivity to various internal parame-

ters. For example, we find that the criterion of minimizing expected latency

21

is more important than of matching the expected ratio of Reads and Writes.

e We show that our solution tends to be more valuable in future systems. In
addition to the multi-threading results, we show that our solution performs
well as we alter various memory controller parameters, DRAM parameters,

and system parameters.

e We explore the effects of varying parameters of the memory scheduler itself.
We find that our AHB scheduler provides significant benefits in performance
and hardware costs when compared with other approaches. In many cases, our
technique is superior to other approaches even when ours is given a fraction

of the resources.

e We show that the hardware cost of our approach is minimal.

This chapter is organized as follows. The next section presents our solu-
tion, followed by experimental evaluation and sensitivity analysis, then we discuss

implementation cost of our approach and we provide concluding remarks.

3.1 Adaptive History-Based Memory Schedulers

This section describes our new approach to memory controller design, which focuses
on making the scheduler both history-based and adaptive. A history-based scheduler
uses the history of recently scheduled memory commands when selecting the next
memory command. In particular, a finite state machine encodes a given scheduling
goal, where one goal might be to minimize the latency of the scheduled command
and another might be to match some desired balance of Reads and Writes. Because
both goals are important, we probabilistically combine two FSM’s to produce an
scheduler that encodes both goals. The result is a history-based scheduler that

is optimized for one particular command pattern. To overcome this limitation,

22

we introduce adaptivity by using multiple history-based schedulers; our adaptive
scheduler observes the recent command pattern and periodically chooses the most

appropriate history-based scheduler.

3.1.1 History-Based Schedulers

In this section we describe the basic structure of history-based schedulers. Similar
to branch predictors, which use the history of the previous branches to make predic-
tions [11], history-based schedulers use the history of previous memory commands
to decide what command to send to memory next. These schedulers can be imple-
mented as an FSM, where each state represents a possible history string. For exam-
ple, to maintain a history of length two, where the only information maintained is
whether an operation is a Read or a Write, there are four possible history strings—
ReadRead, ReadWrite, WriteRead, and WriteWrite—leading to four possible
states of the FSM. Here, a history string zy means that the last command trans-
mitted to memory was y and the one before that was x.

Unlike branch predictors, which make decisions based purely on branch his-
tory, history-based schedulers make decisions based on both the command history
and the set of available commands from the reorder queues. The goal of the sched-
uler is to encode some optimization criteria to choose, for a given command history,
the next command from the set of available commands. In particular, each state
of the FSM encodes the history of recent commands, and the FSM checks for pos-
sible next commands in some particular order, effectively prioritizing the desired
next command. When the scheduler selects a new command, it changes state to
represent the new history string. If the reorder queues are empty, there is no state
change in the FSM.

As an illustrative example, we present an FSM for an scheduler which uses

a history length of three. Assume that each command is either a Read or a Write

23

operation to either port number 0 or 1. Therefore, there are four possible commands,
namely Read Port 0 (R0), Read Port 1 (R1), Write to Port 0 (WO0), and Write to
Port 1 (W1). The number of states in the FSM depends on the history length and
the type of the commands. In this example, since the scheduler keeps the history
of the last three commands and there are four possible command types, the total
number of states in the FSM is 4x4x4=64. In Figure 3.1 we show an example
of transitions from one particular state in this sample FSM. In this hypothetical
example, we see that the FSM will first see if a W1 is available, and if so, it will
schedule that event and transition into a new state. If this type of command is not

available, the FSM will look for an RO command as the second choice, and so on.

receive available commands
from reorder queues

J next state

First choice: W1 W1ROW1

current state

R1W1R0 Second choice: RO

WI1RO0RO

Third choice: R1
WI1R0R1

nothing
available

Fourth choice: WO

|

send the most appropriate
command to memory

HIHIULY

Figure 3.1: Transition diagram for the current state R1IW1R0. Each available
command type has different selection priority.

3.1.2 Design Details of History-Based Schedulers

As mentioned earlier, we have identified two optimization criteria for prioritization:

the amount of deviation from the command pattern and the expected latency of

24

the scheduled command. The first criterion allows an scheduler to schedule com-
mands to match some expected mixture of Reads and Writes. mixture of Reads and
Writes. The second criterion represents the mandatory delay between the new mem-
ory command and the commands already being processed in the memory. We first
present algorithms for generating schedulers for each of the two prioritization goals
in isolation. We then provide a simple algorithm for probabilistically combining two

schedulers.

Optimizing for the Command Pattern

Algorithm 1 generates state transitions for an scheduler that schedules commands to
match a ratio of x Reads and y Writes in the steady state. The algorithm starts by
computing, for each state in the FSM, the Read/Write ratio of the state’s command
history. For each state, the algorithm then computes the Read/Write ratio of each
possible next command. Finally, the next commands are sorted according to their
Read/Write ratios. For example, consider an scheduler with the desired pattern of
“one Read per Write”, and assume that the current state of the FSM is W1R1R0.
The first choice in this state should either be a W0 or W1, because only those two
commands will move the Read/Write ratio closer to 1.

In situations where multiple available commands have the same effect on
the deviation from the Read/Write ratio of the scheduler, the algorithm uses some

secondary criterion, such as the expected latency, to make final decisions.

Optimizing for the Expected Latency

To develop a scheduler that minimizes the expected delay of its scheduled opera-
tions, we first need a cost model for the mandatory delays between various memory
operations. Our goal is to compute the delay caused by sending a particular com-

mand, Cpey, to memory. This delay is necessary because of the constraints between

25

Algorithm 1 command_pattern_scheduler(n)

// n is the history length

1: for all command sequences of size n do
2. r_old:=Read/Write ratio of the command sequence.

3:

4. for each possible next command do

5: r_new:=Read/Write ratio.

6: end for

7. if r_old < ratio of the scheduler, /y then

8: Read commands have higher priority.

9: else

10: Write commands have higher priority.

11: end if

12: if there are commands with equal r_new then
13: Sort them with respect to expected latency.
14: Pick the command with the minimum delay.
15: end if

16:

17: for each possible next command do

18: Output the next state in the FSM.

19: end for

20: end for

26

Cnew and the previous n commands that were sent to memory. We refer to the
previous n commands as ci, ¢3,..., C,, where ¢; is the most recent command sent
and ¢, is the oldest command sent.

We define k cost functions, fi i(csz,cy), to represent the mandatory delays
between any two memory commands, ¢, and ¢, that cause a hardware hazard. Here,
both k and the cost functions are memory system-dependent. For our system, we
have cost functions for “the delay between a Write to a different bank after a Read”,
“the delay between a Read to the same port after a Write”, “the delay between a
Read to the same port but to a different rank after a Read”, etc.

We assume that the scheduler does not have the ability to track the number
of cycles passed since the previously issued commands were sent. So, our algorithm
assumes that those commands were sent at one cycle intervals. In the next step,
the algorithm calculates the delays imposed by each ¢, € [1,n] on cpey for each
function, f; x, which is applicable to any (cz, cpew) pair. Here, the term “applicable
function” refers to a function whose conditions have been satisfied. We also define

n final cost functions, fcost; ,, such that
feosti(cnew) = max(fj(ciacnew)) —(i—1)
where ¢ € [1,n], j € [1,k], and f;(c;, cnew) is applicable

We take the maximum of f; function values because any previous command,
¢i, and cpey may be related by more than one f; function. In this formula, the
subtracted term (i — 1) represents the number of cycles ¢; that had been sent before

cnew- Thus, the expected latency that will be introduced by sending ceq iS

Tdelay(cnew) = mam(fCOStl..n(cnew))

Algorithm 2 generates a FSM for a scheduler that uses the expected latency,
Telay, to prioritize the commands. As with the previous algorithm, if multiple

available commands have the same expected latency, we use a secondary criterion—

27

in this case the deviation from the command pattern—to break ties.

Algorithm 2 expected_latency_scheduler(n)
// n is the history length

1: for all command sequences of size n do

2:

3: for each possible next command do

4 Calculate the expected latency, Tgeiqy.

5: end for

6: Sort possible commands with respect to Tiyeiqy-
7. for commands with equal expected latency value do
8: Use Read/Write ratios to make decisions.

9: end for

10:

11: for each possible next command do

12: Output the next state in the FSM.

13: end for

14: end for

A Probabilistic Scheduler Design Algorithm

To combine our two optimization criteria, Algorithm 3 weighs each criterion and
produces a probabilistic decision. At runtime, a random number is periodically

generated to determine the rules for state transitions as follows:

Algorithm 3 probabilistic_scheduler
1: if random_number < threshold then
2 command_pattern_scheduler

3: else
4
5

expected_latency_scheduler
: end if

Basically, we interleave two state machines into one, periodically switching
between the two in a probabilistic manner. In this approach, the threshold value is

system dependent and should be determined experimentally.

28

3.1.3 Adaptive Selection of Schedulers

Our adaptive history-based scheduler is schematically shown in Figure 3.2. The
memory controller tracks the command pattern that it receives from the processors

and periodically switches among the schedulers depending on this pattern.

read write
queue queue

writes

arbiter n

arbiter selection

reordered reads/writes

memory

Figure 3.2: Overview of dynamic selection of arbiters in memory controller.

Detecting Memory Command Pattern

To select one of the history-based arbiters, our memory controller assumes the avail-
ability of three counters: Recnt and Went count the number of reads and writes
received from the processor, and Cecnt provides the period of adaptivity. Every
Cent cycles, the ratio of the values of Rent and Went is used to select the most
appropriate history-based scheduler. The Read/Write ratio can be calculated using
left shift and addition/subtraction operations; since this computation is performed
once every Cent cycles, its cost is negligible. To prevent retried commands from
skewing the command pattern, we distinguish between new commands and retried
commands, and only new commands affect the value of Rent and Went. The values

of Rent and Went are set to zero when Cent becomes zero.

29

3.2 Experimental Results

In this section, we evaluate the AHB scheduler and compare its performance to the
previous scheduling approaches. First, we identify a baseline by comparing previous
scheduling methods. Then, using the Stream, NAS, and commercial benchmarks, we
compare performance of our approach to the baseline. Finally, we use microbench-
marks to investigate performance bottlenecks in the memory subsystem. Our results
show that the AHB scheduler is always superior to the previously proposed methods.
We also see that the scheduler plays a critical role in balancing various bottlenecks

in the system.

3.2.1 Evaluating Previous Approaches

We compare our AHB scheduler against a set of schedulers that use previously
proposed ideas. To cover the full design space, we identify three main features of
memory controllers: the approach to handle bank conflicts, the bank scheduling
method, and the priorities for reads and writes.

The first feature specifies the scheduler’s behavior when selected command
has a bank conflict, of which two choices have been proposed: 1) the scheduler
can hold the conflicting command in the reorder queues until the bank conflict is
resolved, or 2) the scheduler can transmit the command to the CAQ.

The second feature, the bank scheduling method, provides a method of
scheduling commands to banks. We consider three approaches: in-order, LRU,
and round-robin. The first, in-order, implements the simple FIFO policy used by
most general purpose memory controllers today. If implemented in a Power5+ sys-
tem, this scheduler would transmit memory commands from the reorder queues to
the CAQ in the order in which they were received from the processors. In terms
of implementation cost, in-order scheduling is the simplest method among all three

scheduling approaches. The second scheduling approach, LRU, gives priority to

30

commands with bank numbers that were least recently scheduled. If there is more
than one such commands, the scheduler will switch to the in-order approach and
pick the oldest command. To obtain maximum advantage from the LRU method,
we assume true-LRU, which may be unreasonably costly to implement. Finally, the
round-robin scheduling technique tries to utilize banks equally by imposing a strict
round-robin access to the banks. To guarantee forward progress, we implement a
modified version of round-robin. In our implementation, if the reorder queues have
no command to satisfy the bank sequence but they do have other commands, the
round-robin scheduler picks a command that is closest to the optimal sequence. As
with the LRU approach, if there are multiple commands to the bank, the scheduler
uses an in-order policy and selects the oldest such command.

The third design feature describes how commands are selected from Read
and Write reorder queues. We evaluate two approaches: 1) every read or write
command has equal priority, and 2) reads have higher priority over writes. We
believe, in general, that giving higher priority to reads will improve performance.
To prevent starvation of writes, we evaluate Rixner et al.’s techniques in which
writes are given higher priority if either of the following conditions exists: i) there
is a write command that waited too long, or ii) the write reorder queue is about
to become full. For both of these conditions the memory controller needs threshold
values. Determining these thresholds is not straightforward and may be application
dependent.

For our studies, we emphasize these three features as follows. Since bank
conflict costs are high, our implementations use the first design feature to reduce
the number of candidate commands in the reorder queues. Then, from each of the
reorder queues, the scheduler identifies one command that satisfies the bank schedul-
ing approach. Finally, the read/write priorities are used to select the command.

Since we identify three bank scheduling methods, two priority approaches,

31

and two choices bank conflicts, we evaluate a total of twelve points in the design
space. In the next subsection, we compare the performance of these twelve points
in the design space and select the baseline to compare with our AHB scheduler.

We can now describe our AHB scheduler in relation to these three design
features. The AHB scheduler holds the commands in the reorder queues if there
is a bank conflict. Our scheduler then uses the adaptive history-based technique
described in Section 3.1 to select the most appropriate command from among the
remaining commands in the reorder queues. In other words, our adaptive history-
based approach is used to handle rank and port conflicts, but not bank conflicts.
Our method also combines the scheduling with and read/write priorities, so that
it eliminates the need to determine thresholds for priority selection. In short, the
AHB scheduler uses a single new mechanism to implement the first and the third
design features and it uses a simple mechanism for deciding how to deal with bank
conflicts.

In our implementation of the schedulers, we augment the previous propos-
als to make them suitable for the Power5+ memory controller. To determine the
representative schedulers, we conduct experiments on one SMT processor using the
Stream benchmarks.

Table 3.1 illustrates that out of the three criteria, bank hold policy has the
greatest, up to 46%, effect on performance. We observe that any method that holds
commands with bank conflicts is better than its counterpart that doesn’t hold the
commands. Among the six approaches that holds for bank conflicts, rd/wr priority
seems more important than the bank scheduling method. Actually, effect of bank
scheduling policy is as high as 45% among the methods, LRU being the best, that
don’t hold banks. However, performance gains from holding banks obviate the need
for a complicated bank scheduling method. In terms of implementation complexity,

fifo bank scheduling is the simplest approach. Therefore, we determine “hold, fifo,

32

bank hold, scheduler, rd/wr prio. daxpy | copy scale | vsum | triad fill sum geom.
mean
don’t hold, fifo, equal prio. 1.987 3.142 | 2.131 | 2.001 | 2.005 | 2.265 | 0.851 1.938
(in-order)
don’t hold, fifo, read prio. 1.260 2.164 | 1.474 | 1.542 | 1.561 | 2.121 | 0.650 1.448
don’t hold, Iru, equal prio. 0.895 1.557 | 1.072 | 1.060 | 1.061 1.783 | 0.527 1.067
don’t hold, Iru, read prio. 0.856 1.467 | 1.006 | 1.003 | 1.004 | 1.825 | 0.864 1.105
don’t hold, round-robin,eq. prio. 1.118 1.812 | 1.242 | 1.244 | 1.246 | 2.007 | 0.555 1.233
don’t hold, round-robin,read prio. 1.119 1.776 | 1.211 1.213 | 1.219 | 2.018 | 0.555 1.219
hold, fifo, equal prio. 0.866 | 1.475 | 1.014 | 1.028 | 1.032 | 1.798 | 0.515 1.035
hold, fifo, read prio. 0.825 | 1.487 | 1.020 | 0.978 | 0.977 | 1.775 | 0.517 1.014
(memoryless)
hold, Iru, equal prio. 0.855 1.507 | 1.038 | 1.017 | 1.017 | 1.782 | 0.560 1.047
hold, Iru, read prio. 0.846 1.463 | 0.999 | 0.982 | 0.980 | 1.800 | 0.515 1.014
hold, round-robin, equal prio. 0.808 1.463 | 1.001 | 0.956 | 0.957 | 1.786 | 0.569 1.014
hold, round-robin, read prio. 0.824 | 1.478 | 1.013 | 0.973 | 0.969 | 1.783 | 0.521 1.011
(best)

Table 3.1: Performance (in CPI) of the Previous Scheduling Approaches for the
Stream Benchmarks.

read priority” approach, which we call memoryless, as the first baseline for our study.
Note that in our previous work [28, 29], we used the term memoryless for “hold,
fifo, equal priority” method, which is a slightly inferior method.

In addition to the memoryless method, we also select “don’t hold, fifo, equal
priority” approach, i.e. in-order, as the second approach to compare with our AHB
scheduler. We choose in-order scheduler as the second baseline, because most current

processors implement this approach due to its simple implementation cost.

3.2.2 Tuning the AHB Scheduler

The AHB scheduler has three parameters, namely history length, epoch length, and
the weighting of the two optimization criteria. In this subsection we tune these
parameters using daxpy benchmark and assuming there are two active threads on

one processor.

History Length. We compare four AHB schedulers whose history lengths range
between 1 and 4. Table 3.2(a) shows that a history length of 2 is superior to history

33

(a) Effects of History Length

History Length CPI
1 0.743
2 0.696
3 0.684
4 0.684

(b) Effects of Epoch Length

Epoch Length CPI
100 0.712

500 0.703

1000 0.694
5000 0.696
10000 0.696

(c) Effects of Ratio for Optimization Criteria

Weight of Expected Latency (%) CPI
0 0.713
10 0.708
20 0.711
30 0.712
40 0.700
50 0.704
60 0.697
70 0.696
80 0.699
90 0.703
100 0.709

Table 3.2: Tuning of the AHB Scheduler.

length of 1 by 6.4%. However, using longer history lengths longer than 2 improves
performance by only 1.8%. Therefore, considering the implementation cost, all

experiments in this study use an AHB scheduler with a history length of 2.

Epoch Length. We vary epoch length from 100 to 10,000 processor cycles. Ta-
ble 3.2(b) illustrates that any length over 1,000 cycles gives essentially the same

performance. We choose 10,000 processor cycles as the epoch length in our study.

Ratio for Optimization Criteria. The AHB scheduler optimizes for two cri-
teria, namely the expected latency and the command pattern. As we describe in

Section 3.1, our approach combines two criteria probabilistically by giving weights

34

to each criterion. Table 3.2(c) shows that we obtain the best performance when we
assign the expected latency a weight of 70% and the command pattern a weight of

30%.

3.2.3 Benchmark Results

We now present simulation results for the AHB, in-order, and memoryless schedulers
using the Stream, NAS, and commercial benchmarks. For the Stream and NAS
benchmarks, we simulate one or two threads on one processor. For the commercial
benchmarks, we simulate one or two threads on single or dual core systems.

We first compare the single thread performance of the three schedulers for
the Stream benchmarks (see Table 3.3). The geometric means of the performance
benefit of the AHB scheduler over the in-order and the memoryless schedulers are
45.5% and 11.3% respectively. For two threads on a processor, adaptive history-
based scheduling improves execution time by an average of 55.6% over the in-order
scheduler and 16.0% over the memoryless scheduler.

Our second set of results are for the NAS benchmarks, which provide a
more comprehensive evaluation of overall performance. Table 3.4 shows that for the
single thread experiments, the average improvement of our approach over the in-
order method is 16.8%, and the average improvement over the memoryless method
is 5.8%. In the SMT experiments, we use two threads of the same application, and
the AHB scheduler improves performance by 25.6% and 9.7% over the in-order and
memoryless schedulers, respectively.

Finally, in Table 3.5, we present the results for the commercial benchmark
suite running on single and dual core systems, with one or two threads active on each
processor, resulting in four different configurations. For the single threaded case on
a single processor, the AHB scheduler has, on the average, a 12.6% performance

advantage over the in-order scheduler and a 2.9% advantage over the memoryless

35

gain over gain over

Benchmark in-order | memoryless | AHB in-order memoryless

(%) (%)
One Thread on One Processor

daxpy 1.933 0.785 0.712 63.2 9.3

copy 3.576 1.578 1.312 63.3 16.9

scale 2.467 1.082 0.932 62.2 13.9

vsum 2.083 1.008 0.877 57.9 13.0

triad 2.088 1.007 0.884 57.7 12.2

fill 2.321 1.696 1.547 33.3 8.8

sum 0.854 0.793 0.730 14.5 7.9

Two Threads on One Processor

daxpy 1.987 0.825 0.696 68.2 16.4
copy 3.142 1.487 1.212 64.5 19.4
scale 2.131 1.020 0.833 64.0 19.3
vsum 2.001 0.978 0.837 61.1 15.1
triad 2.005 0.977 0.838 61.1 14.9
fill 2.265 1.775 1.518 33.0 14.5
sum 0.851 0.517 0.447 47.5 13.6

Table 3.3: Comparison of CPI’s of the AHB scheduler to the in-order and memory-
less schedulers for the Stream benchmarks.

gain over gain over
Benchmark in-order | memoryless | AHB in-order memoryless
(%) (%)
One Thread on One Processor
bt 0.960 0.883 0.838 12.7 5.1
cg 1.841 1.712 1.582 14.1 7.6
ep 2.465 2.219 2.118 14.0 4.6
ft 2.743 2.277 2.074 24.4 8.9
is 2.370 1.990 1.861 21.5 6.5
lu 2.455 2.013 1.872 23.7 7.0
mg 1.327 1.155 1.088 18.0 5.8
sp 1.502 1.380 1.335 11.1 3.3

Two Threads on One Processor

bt 1.005 0.781 0.721 28.3 7.7
cg 1.806 1.532 1.365 24.4 10.9
ep 2.151 1.971 1.798 16.4 8.8
ft 2.655 2.027 1.780 33.0 12.2
is 2.145 1.616 1.440 32.9 10.9
lu 2.012 1.732 1.561 22.4 9.9
mg 1.108 0.930 0.819 26.1 11.9
sp 1.365 1.086 1.012 25.9 6.8

Table 3.4: Comparison of CPI’s of the AHB scheduler to the in-order and memory-
less schedulers for the NAS benchmarks.

36

gain over gain over

Benchmark in-order | memoryless AHB in-order memoryless

(%) (%)

One Thread on One Processor
tpcc 15.458 14.222 13.798 10.7 3.0
cpw2 15.366 14.092 13.738 10.6 2.5
trade2 15.728 14.326 14.052 10.7 1.9
sap 10.268 8.542 8.112 21.0 2.9
Two Threads on One Processor
tpcc 11.572 9.304 8.890 23.2 4.4
cpw2 11.274 8.746 8.396 25.5 4.0
trade2 11.152 8.726 8.380 24.9 4.0
sap 8.406 5.506 5.206 38.1 5.4
One Thread on Each of the Two Processors
tpcc 10.576 7.913 7.518 28.9 5.0
cpw2 10.611 7.760 7.335 30.9 5.5
trade2 10.431 7.749 7.291 30.1 5.9
sap 7.896 4.780 4.494 43.1 6.0
Two Threads on Each of the Two Processors

tpcc 9.733 5.401 5.037 48.2 6.7
cpw2 9.744 5.153 4.773 51.0 7.4
trade2 9.593 5.100 4.766 50.3 6.5
sap 7.367 3.483 3.151 57.2 9.5

Table 3.5: Comparison of CPI’s of the AHB scheduler to the in-order and memory-
less schedulers for the commercial benchmarks.

scheduler. As the total number of threads increases to two, we observe that the AHB
scheduler’s advantage increases to 27.4% and 4.4% on a single core system, and to
32.8% and 5.6% on a dual core system. For two threads running on each of two
processors, the gain from the AHB scheduler is 51.6% over the in-order scheduler
and 7.5% over the memoryless scheduler.

In summary, our experiments with the Stream, NAS, and commercial bench-
marks indicate that the AHB scheduler is superior to the in-order and memoryless
schedulers. We also see that the benefit of our approach increases as the total num-
ber of threads in the system increases, because additional threads increase pressure

on the single memory controller.

37

3.2.4 Understanding the Results

We now look inside the memory system to gain a better understanding of our results.
To study a broader set of hardware configurations, we use a set of 14 microbench-
marks, ranging from 4 Read streams and 0 Write streams, to 0 Read streams and
4 Write streams. Figure 3.3 shows that for these microbenchmarks, the adaptive
history-based method improves performance by 20-70% compared to in-order sched-

uler and by 17-20% compared to memoryless scheduler.

90 — B compared to in-order
80 — O compared to memoryless

Performance Benefit (%)
g
1

40
30 -]
20 -]
10—:
0_§§§§§§§§§§§§§§

Microbenchmarks

Figure 3.3: Performance comparison on our microbenchmarks.

5000 —
4500 —
g 4000 — W memoryless scheduler
& 3500 — O AHB scheduler
§ 3000 —
O 2500
o
5 2000 —
o)
£ 1500 —
>
Z 1000
0 == B B l:l J]
1 2 3 4 5 6 7 8 9 10 1 12

Number of Active Memory Commands

Figure 3.4: Utilization of the DRAM for the daxpy kernel.

The most direct measure of the quality of a memory controller is its impact

on memory system utilization. Figure 3.4 shows a histogram of the number of

38

operations that are active in the memory system on each cycle. We see that when
compared against the memoryless scheduler, our scheduler increases the average
utilization from 8 to 9 operations per cycle. The x-axis goes to 12 because the

Powerb5+’s DRAM allows 12 memory commands to be active at once.

50 —
20 -
30 —
20 —H

5 allinll
o—l = =
BT
s 1L

-30 -
40 -
.50 -

Differencein Retry Rates (%)

4r0w
2row
1rOw
8riw

&

R
¥ & &

2rlw
Iriw
1r2w
1rdw
Orlw
Or2w
Ordw

Microbenchmarks

Figure 3.5: Comparison of retry rates.

Memory system utilization is also important when evaluating our results,
because it is easier for a scheduler to improve the performance of a saturated system.
We measure the utilization of the command bus that connects the memory controller
to the DRAM, and we find that the utilization was about 65% for the Stream
benchmarks and about 13%, on average, for the NAS benchmarks. We conclude

that the memory system was not saturated for our workloads.

Bottlenecks in the System. To better understand why our solution improves
DRAM utilization, we now examine various potential bottlenecks within the memory
controller.

The first potential bottleneck occurs when the reorder queues are full. In this
case, the memory controller must reject memory operations, and the CPU must retry
the memory operations at a later time. The retry rate does not correlate exactly
to performance, because a retry may occur when the processor is idle waiting for

a memory request. Nevertheless, a large number of retries hints that the memory

39

system is unable to keep up with the processor’s memory demands. Figure 3.5
shows that the adaptive history-based method always reduces the retry rate when
compared to the in-order method, but it sometimes increases the retry rate compared
to the memoryless method.

50_
40 —
30_

20 —
o [] II I
0) - .l

-10 -
-20 -
-30 -
40 -
50 -

Difference in Bank Conflicts (%)

4row
2row
1row
8riw
4riw

25838 3F 3¢
N - =< =< O O

& &

Microbenchmarks

Ordw

Figure 3.6: Comparison of the number of bank conflicts in the reorder queues.

A second bottleneck occurs when no operation in the reorder queues can
be issued because of DRAM conflicts with previously scheduled commands. This
bottleneck is a good indicator of scheduler performance, because a large number of
such cases suggests that the scheduler has done a poor job of scheduling memory
operations. Figure 3.6 compares the total number of such blocked commands for
our method and for the memoryless method. This graph only considers cases where
the reorder queues are the bottleneck, i.e., all operations in the reorder queues
are blocked even though the CAQ has empty slots. We see that except for four
microbenchmarks, our method substantially reduces the number of such blocked
operations.

A third bottleneck occurs when the reorder queues are empty, starving the
scheduler of work. Even when the reorder queues are not empty, low occupancy
in the reorder queues is bad because it reduces the scheduler’s ability to make

good scheduling decisions. In the extreme case, where the reorder queues hold

40

Difference in Empty Reorder Queues (%)

]
&

o

70 -]
60 -
5()_
40
30 -]
20 -]
10 -
< N —

8riw
4rlw
1rdw
Orlw
Ordw

Microbenchmarks

Figure 3.7: Reduction in the occurrences of empty reorder queues, which is a measure
of the occupancy of the reorder queues.

no more than a single operation, the scheduler has no ability to reorder memory
operations and instead simply forwards the single available operation to the CAQ.
Figure 3.7 shows that our method significantly reduces the occurrences of empty
reorder queues, indicating higher occupancy of these queues.

The final bottleneck occurs when the CAQ is full, forcing the scheduler to
remain idle. Figure 3.8 shows that the adaptive history-based scheduler tremen-
dously increases this bottleneck. The backpressure created by this bottleneck leads
to higher occupancy in the reorder queues, which is advantageous because it gives

the scheduler a larger scheduling window.

300 —

250 —

200 —
150 —
100 —
50 —
0 —

7 I

-100 -
§ 88335338 :¢¢%
N & o I ™ - =

Difference in Full CAQ Rate (%)

Orlw -
oo [

=
g ™

Microbenchmarks

Figure 3.8: Increases in the occurrences where the CAQ is the bottleneck.

41

To test this theory, we conduct an experiment in which we increase the size of
the CAQ. We find that as the CAQ length increases, the CAQ bottleneck decreases,
the reorder queue occupancy falls, and the overall performance decreases.

In summary, our solution improves bandwidth by moving bottlenecks from
outside the memory controller, where the scheduler cannot help, to inside the mem-
ory controller. More specifically, the bottlenecks tend to appear at the end of the
pipeline—at the CAQ—where there is no more ability to reorder memory com-
mands. By shifting the bottleneck, our solution tends to increase the occupancy of
the reorder queues, which gives the scheduler a larger number of memory operations
to choose from. The result is a smaller number of DRAM conflicts and increased

bandwidth.

100 —
90_
80_
70 -]
60_
50_

40 -

30_

- II II II

10
g & & 2 & & 3
< N — [s<] - o o

Microbenchmarks

Reduction in Standard Deviations (%)

Figure 3.9: Reduction in standard deviations for 16-different address offsets.

Effects of Data Alignment. Another benefit of improved memory scheduling
is a reduced sensitivity to data alignment. With a poor scheduler, data alignment
can cause significant performance differences. The largest effect is seen where a
data structure fits on one cache line when aligned fortuitously but straddles two
cache lines when aligned differently. In such cases, the bad alignment results in

twice the number of memory commands. If a scheduler can improve bandwidth by

42

reordering commands, it can mitigate the difference between the well-aligned and
poorly-aligned cases. Figure 3.9 compares the standard deviations of the adaptive
history-based and memoryless schedulers when data are aligned on 16 different ad-
dress offsets. We see that the adaptive history-based solution reduces the sensitivity

to alignment.

3.3 Sensitivity Analysis

The previous section analyzed the performance of the AHB scheduler in the context
of the IBM Power5+. This section explores the broader utility of our scheduler by
analyzing its performance in the context of various derivatives of the Power5+-.

There are three goals of this section. First, we would like to analyze the
sensitivity and robustness of the AHB scheduler to various micro-architectural fea-
tures. We will show that the AHB scheduler yields performance that is robust across
a variety of micro-architectural parameters. We will also see that the other sched-
ulers cannot achieve the performance of the AHB approach even if given additional
hardware resources. Second, we identify optimal values for parameters related to
the memory scheduler. We show that carefully determining memory system param-
eters has significant performance implications. And finally, we want to evaluate our
approach for possible future architectural trends.

In the following subsections, we first investigate the performance effects of
varying the parameters of the memory controller. Then, we analyze the effects of
various DRAM parameters. And lastly, to explore the applicability of our approach
in possible future systems, we compare the schedulers for systems with different
processor frequencies and different data prefetching options.

We evaluate our scheduler with single and multiple-threads, and we make
comparisons to the memoryless scheduler. We use daxpy benchmark in our exper-

iments, because daxpy occurs very frequently in scientific workloads, and architec-

43

tural parameters are considered difficult to tune for this benchmark.

3.3.1 Memory Controller Parameters

There are numerous memory controller design features that affect performance. In
this subsection, we compare the AHB and the memoryless scheduling methods by
varying memory controller features. Since the design space is large, we identify three
important parameters to vary: the CAQ length, the reorder queue lengths, and the
duration to block a command in the reorder queues when there is a bank conflict.
We believe that these features are the most important parameters with respect to

performance.

CAQ Length. The Central Arbiter Queue resides between the memory scheduler
and DRAM. At each cycle, the scheduler selects an appropriate command from the
reorder queues and feeds it to the CAQ. Since the CAQ acts as a buffer between the
scheduler and DRAM, the length of this queue is critical to performance. Here, we
examine the performance effects of the CAQ length. For various configurations and
schedulers, we first determine the optimal length for the queue. We then analyze
the sensitivity of the scheduling approaches to the changes in this length. Our
experiments show that the AHB scheduler is superior to the memoryless scheduler
for all CAQ lengths that we study.

The CAQ length may degrade performance if it is either too short or too
long. If the queue is too short, it will tend to overflow frequently and lead to full
reorder queues, which will cause the memory controller to reject memory commands
from the processor and degrade overall performance. We can reduce the occurrence
of CAQ overflows by increasing the CAQ length, but a long CAQ has its own
disadvantages. First, it consumes more hardware resources, as the Power5+ memory
controller’s hardware budget is dominated by the reorder queues and CAQ. Second,

as explained in Section 3.2.4, a long CAQ can reduce backpressure on the reorder

44

queues, giving the scheduler a smaller effective scheduling window, which leads to
suboptimal scheduling decisions. Therefore, the CAQ acts as a regulator for the
rate of commands to be selected from the reorder queues, and there is a delicate
balance between the CAQ length and performance.

We conduct experiments in which we vary the CAQ length from 2 to 16.
In Figure 3.10, we show the effect of the CAQ length for both Single-Threaded
(ST) and SMT environments. For the ST daxpy, the AHB scheduler gets the best
performance for a queue length of 4. As the queue length increases beyond 4, there
is a slight performance degradation. For the SMT case, a queue length of 3 gives
the best performance for the AHB method. Similar to the ST case, as the CAQ
length increases beyond the optimal value, we observe performance degradation.
But unlike the ST case, the performance degradation is not small. For example,
performance is 1.7% lower for the queue length of 4 compared to the length of 3.

This performance difference goes up to 4.4% when the queue has 16 slots.

1.05+ B memoryless ST
B AHB ST
O memoryless SMT
0.95 — 0 AHB SMT
5
0.85 —
0.75 —
0.65 -‘
2 3 4 5 6 8 16
CAQ Length

Figure 3.10: ST and SMT results for the memoryless and the AHB with varying
lengths of the CAQ.

Figure 3.10 also shows that for the memoryless scheduler, longer CAQs al-

ways yield better performance, most likely because the memoryless scheduler has no

45

way to exploit larger scheduling windows. For example in the ST case, the perfor-
mance of the memoryless scheduler improves by 7.1% as the CAQ length increases
from 3 to 16. However, even with this queue length, our approach is still supe-
rior over the memoryless scheduler. In the SMT experiments with the memoryless
scheduler, we find that the performance gain from increasing the queue size to 16 is
much smaller compared to the ST case.

In summary, the memoryless method improves as the CAQ gets longer, but
it cannot achieve the performance of the AHB scheduler even if given a much longer
CAQ. We also conclude that selecting the optimal queue length has significant per-

formance effects.

Reorder Queue Lengths. As we show in Figure 2.1, the Power5+ has two re-
order queues inside the memory controller: one for reads and one for writes. In the
current design of the Powerb+-, each of these queues have equal length of 8. Here,
we analyze the effect of the reorder queue lengths on the scheduling approaches.

The length of the reorder queus affects performance in two ways. First,
retries occur when the reorder queues are full, so shorter reorder queues increase
the number of retries and potentially decrease overall performance. Second, if the
reorder queues are short, the scheduler will have limited optimization capability.
In the extreme case, consider a reorder queue with just one slot. The scheduler
will have no choice but select the command from that slot. We, therefore, expect
that increasing the size of the reorder queues will improve the performance of any
scheduling approach.

We perform simulations that vary the reorder queue lengths from 4 to 16. For
simplicity, we always keep the lengths of the two queues the same. In Figure 3.11,
we present the effects of the reorder queue lengths on performance for both the AHB
and the memoryless schedulers. For the single threaded experiments, as we shorten

the queue sizes from the Powerb5+’s current value of 8 to 4, the AHB scheduler loses

46

28.8% of its performance and memoryless scheduler loses 25.3%. The same reduction
in the reorder queue lengths for the SMT experiments degrades performance 27.3%
and 19.9% for the AHB and memoryless schedulers, respectively. On the other hand,
for both of the scheduling approaches, when we increase the reorder queue lengths

beyond the current value of 8, we obtain only very small performance improvements.

1.05+ B memoryless ST
L B AHB ST
O memoryless SMT
0.95 O AHB SMT
5
0.85 —
0.75 — | | |
0.65
4 6 8 12 16

Reorder Queue Lengths

Figure 3.11: ST and SMT results for memoryless and AHB with various reorder
queue lengths.

We conclude that for all the reorder queue sizes, the performance of the AHB
approach is better than the memoryless method. As we expect, the advantage of the
AHB method over the memoryless method increases as the queues become longer.
We also observe that the current queue lengths are optimal for the Power5+. We
cannot obtain any significant performance gains with longer queues regardless of the

scheduling approach or the number of threads.

Wait Times for Commands with Bank Conflicts. In this section, we analyze
the interaction between the scheduler and the blocking duration for commands with
bank conflicts. We find that the AHB is less sensitive to this parameter and is
always better than the memoryless scheduler regardless of the wait time.

Bank conflicts prohibit the entrance of new commands to DRAM. Since the

47

CAQ is a FIFO queue, if the command in front of the CAQ conflicts with a command
in DRAM, all the commands in the CAQ are blocked until the conflict is cleared.
To prevent this, the Powerb5+ holds commands in the reorder queues when they
have bank conflicts. Even with an empty CAQ, a command in the reorder queues
has to travel some distance before it is issued to DRAM. This distance is about 32
processor cycles in the current implementation. To avoid this 32 cycle delay, the
Power5+ transmits commands to the CAQ some number of cycles before the bank
conflict is expected to be resolved.

This wait time in the reorder queues is important to performance. If the wait
time is too short, commands with bank conflicts will be scheduled early, yielding two
possible effects: First, the CAQ may contain multiple commands to the same bank,
and when one of these commands goes to DRAM, the others will be blocked for
many cycles. Second, if the command is scheduled too early, the schedule may miss
the opportunity to make a better scheduling decision when additional commands
might become available in the reorder queues.

To investigate the effects of various wait times, we conduct experiments for
the AHB and the memoryless schedulers with ST and SMT. As we see in Figure 3.12,
the AHB scheduler is much less sensitive to the wait time. For the AHB scheduler,
95 processor cycles is the optimal wait time for both ST and SMT experiments. If a
command waits until the bank conflict is cleared, this will degrade performance by
1.8% for ST and 3.5% for SMT. For the memoryless approach, 125 and 110 cycles
are the optimal wait times for ST and SMT, respectively. The memoryless method
with SMT has a 1.2% performance advantage when it uses 110 cycle wait time rather
than 125 cycles.

In summary, we observe that the scheduler should be able to select a com-
mand from the reorder queues earlier than the bank conflict is cleared. We also find

that for the ST case, the AHB approach is less sensitive to this parameter. For the

48

1.05 R
---@-- AHBST
---0-- memorylessSMT
0.95 ---0-- AHB SMT
5 -
0854 T-.g.
e R AEEE R ERN . SR R
Tom-.
S
0.75 ..__'___.____:
8:::O::::8--:g:::s;_-:_.g:_.:&...8____0.._
0.65

75 80 85 90 95 100 105 110 115 120 125
Hold Time for Bank Conflicts

Figure 3.12: ST and SMT results for the memoryless and the AHB with varying
wait times for bank conflicts.

SMT, both scheduling approaches show similar sensitivity. For all the wait times
that we study, the AHB scheduler has better performance than the memoryless

scheduler.

3.3.2 DRAM Parameters

In this section we vary DRAM system parameters. In particular, we evaluate the
performance of the AHB and the memoryless methods by varying the memory ad-
dress and data bus widths, the maximum number of commands that can be active
in DRAM, and the number of banks available in a rank. We find that each of these

three parameters significantly affects performance.

Address and Data Bus Widths. Memory bus width significantly affects a mem-
ory system’s bandwidth, so we explore the effect of using both narrower and wider
memory buses for the Powerb+. The Power5+ memory controller is connected to
memory chips via an address bus and a data bus. In the current implementation,
the address bus is 32 bits wide. The data bus has 24 bits: 16 bits for Reads and 8
bits for Writes.

49

In Figure 3.13 the x-axis represents the relative ratio of the bus widths to
the current values of the Powerb+. For example, 0.5 represents a system with buses
half the width of the current system. We find that reducing bus widths by 50%
significantly degrades performance (20.9-26.6%) for both the AHB and memoryless
schedulers. We also observe that increasing bus widths beyond the current values
of the Powerb5+ has little effect on performance. For all the bus widths we study,

the AHB’s performance is higher than the memoryless.

105+ M memoryless ST
B AHB ST
@ memoryless SMT

0.95 - | 3 AHB SMT

5

0.85 —

0.75 —

0.65

0.5x Ix 2x
Address and Data Bus Widths

Figure 3.13: ST and SMT results for memoryless and AHB, varying memory address
and data bus widths.

Maximum Number of Commands in DRAM. In the systems we examine,
the DRAM is organized into 16 banks, so there can be a maximum of 16 concurrent
commands in DRAM. However, the Powerb+ designers choose to track at most 12
commands at any time. To explore the benefit of tracking more than 12 commands,
we vary the number of commands tracked. In Figure 3.14, we show results for
both ST and SMT workloads. We find that increasing beyond 12 the number of
commands to track in DRAM does not increase performance. However, reducing its

value by 4 reduces daxpy performance up to 7.9%.

50

105+ W memoryless ST
B AHB ST
= memoryless SMT

0.95 4 O AHB SMT

5

0.85

0.75

0.65 :

8 12 16

Maximum Number of Commandsin DRAM

Figure 3.14: ST and SMT results for memoryless and AHB, varying the maximum
number of DRAM commands.

Number of Banks in a Rank. Future memory systems are likely to provide
increased parallelism in the form of a larger number of banks per rank. Figure 3.15
shows how performance is affected by changing the number of banks. Increasing the
banks per rank from two to four improves performance in both the single threaded
and the SMT experiments. The performance gain is 20.8%-21.7% and 18.1%-26.6%
for the AHB and memoryless schedulers, respectively. On the other hand, further
increasing the number of banks to eight does not improve the performance of the
memoryless scheduler, and the performance gain for the AHB scheduler is between
1.9% and 4.6% for the single threaded and SMT experiments. In summary, our
experiments indicate that the advantage of the AHB scheduler over the memoryless
approach increases as the number of banks in a rank increases, i.e., as the memory

system admits more parallelism.

3.3.3 System Parameters

Processor Frequency. In addition to memory controller and DRAM parameters,

we also explore the impact of higher clock rates for the processor. While increases in

51

105+ W memoryless ST
B AHB ST
= memoryless SMT

0.95 4 O AHB SMT

g -

0.85

0.75

0.65

2 4 8

Number of Banksin a Rank

Figure 3.15: ST and SMT results for the memoryless and the AHB with varying
number of banks in a rank.

clock rate have slowed, processor frequency continues to increase. In Figure 3.16, we
present the differences between the AHB and the memoryless schedulers for systems
with 1.5, 2, 3, and 4 times the processor frequency of the current Power5+ systems.
As the ratio of the processor frequency to the DRAM frequency grows, we find that
advantage of the AHB scheduler over the memoryless method also increases. For
example, for the ST case, with the current processor frequency, the AHB scheduler
is superior to the memoryless scheduler by 9.5%, but the advantage grows to 15.6%
when the processor frequency doubles. Similarly, for the SMT case, AHB method’s
advantage increases from 15.5% to 22.0% with 2x processor frequency. We conclude
that as the ratio of the processor/memory speeds increases, the significance of our

approach will also increase because the importance of memory bandwidth grows.

Data Prefetching. We also investigate the effects of data prefetching on the
scheduling approaches. We see that if we turn off the prefetch unit, the adap-
tive history-based method’s benefit over the other two approaches is significantly
diminished because the lower memory traffic reduces pressure on the memory con-

troller. For example, for daxpy in the SMT case, the performance benefit of the

52

| ST
O SMT

0.95

0.85 —

0.7 1x 1.5x 2X 3x 4x

Processor Frequency

(AHB CPl) / (memoryless CPl)

Figure 3.16: ST and SMT results for memoryless and AHB, with 1.5x, 2x, 3x, and
4x processor frequency.

AHB scheduler over the memoryless scheduler is reduced from 16.4% to 7.3% when

the hardware prefetching unit is turned off.

3.4 Hardware Costs

To evaluate the cost of our solution, we need to consider the cost in terms of tran-
sistors and power. The hardware cost of the memory controller is dominated by
the reorder queues, which dwarf the amount of combinational logic required to im-
plement our adaptive history-based arbiter. To quantify these costs, we use the
implementation of the Power5+ to provide detailed estimates of transistor counts.
We find that the memory controller consumes 1.58% of the Power5+’s total transis-
tors. The size of one memoryless arbiter is in turn 1.19% of the memory controller.
Our adaptive history-based arbiter increases the size of the memory controller by
2.38%, which increases the overall chip’s transistor count by 0.038%. Given the tiny
cost in terms of transistors, we are confident that our solution has only negligible

effects on power.

53

3.5 Summary

In this chapter, we have shown that memory access scheduling, which has tradi-
tionally been important primarily for stream-oriented processors, is becoming in-
creasingly important for general-purpose processors, as many factors contribute to
increased memory bandwidth demands. To address this problem, we have intro-
duced a new scheduler that incorporates several techniques. We use the command
history—in conjunction with a cost model—to select commands that will have low
latency. We also use the command history to schedule commands that match some
expected command pattern, as this tends to avoid bottlenecks within the reorder
queues. Both of these techniques can be implemented using FSM’s, but because the
goals of the two techniques may conflict, we probabilistically combine these FSM’s
to produce a single history-based scheduler that partially satisfies both goals. Fi-
nally, because we cannot know the actual command-pattern a priori, we implement
three history-based schedulers—each tailored to a different command pattern—and
we dynamically select from among these three schedulers based on the observed
ratio of Reads and Writes.

To place our work in historical context, we have identified three dimensions
that describe previous work in avoiding bank conflicts, and we have explored this
space to produce a single state-of-the-art solution that we refer to as the memoryless
scheduler. We use this memoryless scheduler as a baseline to compare against.

In the context of the IBM Power5+, we have found that a history length of
two is surprisingly effective. Thus, while our solution might appear to be complex,
it is actually quite inexpensive, increasing the Powerb+’s transistor count by only
0.038%. We evaluate the performance advantage of our technique using three bench-
mark suites. For SMT workloads consisting of the Stream benchmarks, our scheduler
improves IPC by 55.6% over in-order scheduling and 16.0% over memoryless schedul-

ing. For the NAS benchmarks, again with SMT workloads, the improvements are

54

25.6% over in-order scheduling and 9.7% over memoryless scheduling. For a set of
commercial SMT workloads, the improvements are 51.6% over in-order scheduling
and 7.5% over memoryless scheduling.

To explain our results, we have looked inside the memory system to pro-
vide insights about how our solution changes the various bottlenecks within the
system. We find that an internal bottleneck at the CAQ is useful because it gives
the scheduler more operations to choose from when scheduling operations. We have
also explored the effects of varying parameters of the processor, the DRAM and the
memory controller itself. We find that as memory traffic increases, the benefits of
the AHB scheduler increase, even for multi-threaded workloads. We find that our
solution is more robust than memoryless scheduling in the sense that our solution
is less sensitive to changes in design parameters. We also find that the AHB sched-
uler is typically superior to the memoryless scheduler even when the latter is given

additional hardware resources.

55

Chapter 4

Improving Memory Latency of

Irregular Applications

Numerous hardware solutions have been proposed to hide long memory latencies.
Early prefetching techniques [34, 65, 55, 2, 19] focused on exploiting streaming work-
loads. While regular forms of spatial locality are easy to predict, it has traditionally
been difficult to exploit irregular patterns of spatial locality and even more difficult
to exploit low amounts of spatial locality.

Recently, a class of aggressive prefetching techniques has arisen from the
notion of a Spatial Locality Detection Table [32]. These techniques track accesses to
regions of memory so that spatially correlated data can be prefetched together [32,
39, 9, 44, 67]. The chief advantage of these techniques is their ability to exploit
irregular forms of spatial locality. Their chief disadvantage is their reliance on large
tables that occupy chip area and consume power.

We propose a new solution, which uses a simple technique to augment the
effectiveness of stream prefetchers. Our technique is based on two observations.
First, memory intensive workloads with low amounts of spatial locality are likely to

still contain many very short “streams,” if “stream” can be defined to be as short

56

as two consecutive cache lines. Second, stream prefetchers could effectively prefetch
these short streams if they only knew when to be aggressive.

To understand this second point, recall that stream prefetchers look for ac-
cesses to k consecutive cache lines, at which point the k+ 1%¢ cache line is prefetched;
prefetching continues until a useless prefetch is detected. Thus, the value of k de-
termines the prefetcher’s aggressiveness, and this value is typically fixed at design
time. Even with a small value of k, stream-based prefetchers do not fare well on
short streams because they stop after a useless prefetch. For example, on a workload
in which every stream is of length 2, a k = 1 policy would successfully prefetch the
second cache line of each stream, but each successful prefetch would be followed by
a useless prefetch, so 50% of its prefetches would be useless.

Our solution, Adaptive Stream Detection, guides the aggressiveness of the
prefetch policy based on the workload’s observed amount of spatial locality, as mea-
sured by a Stream Length Histogram (SLH). An SLH is a dynamically computed
histogram that attributes each memory access to a particular stream length. For ex-
ample, if the SLH indicates that 70% of the memory requests were parts of streams
of length 2 and that 30% of the memory requests were parts of streams of length 1,
then an effective strategy would always prefetch the second cache line of a stream
but never the third line. Thus, Adaptive Stream Detection can predict when to
stop prefetching without incurring a useless prefetch. To adapt to changes in phase
behavior, new Stream Length Histograms are computed periodically.

Adaptive Stream Detection provides two benefits. (1) It extends the notion of
a stream to include streams as short as two cache lines. Thus, while it is inherently
a stream-based approach, it provides benefits for workloads, such as commercial
applications, that are not traditionally viewed as stream-based. (2) Because it is
stream-based, it has low hardware costs, using small tables that have low static

power leakage.

57

This chapter describes how Adaptive Stream Detection can be implemented
in the memory controller. In this context, we introduce a second idea, Adaptive
Scheduling, that adjusts the priority of prefetched commands based on the measured
frequency of conflicts that prefetched commands have caused. This adaptivity is
useful because any fixed priority may be excessively conservative for some workloads.

In this chapter we make the following contributions:

e We introduce Adaptive Stream Detection, a probabilistic prefetching technique
that adjusts the aggressiveness of stream prefetching based on Stream Length
Histograms, which are inexpensive to gather. This technique addresses the

question of what to prefetch.

e We use the idea of Adaptive Stream Detection to design a prefetcher that
resides in the memory controller and prefetches from DRAM into a small
Prefetch Buffer. This prefetcher uses Adaptive Scheduling to modulate the
relative priority of prefetch commands to regular commands. We show that
a prefetch buffer that holds 16 cache lines is effective. We also see that
this memory-side prefetcher (MS) complements the IBM Power5+’s existing

stream prefetcher (PS), which performs processor-side prefetching.

e We evaluate Adaptive Stream Detection using the SPEC2006 floating point
suite, the NAS benchmarks, and a set of five commercial benchmarks. For
single threaded workloads, when we compare our technique to a stripped
down Power5+ with no prefetching (NP), we improve the performance of the
SPEC2006fp, NAS, and commercial benchmarks by 14.6%, 11.7%, and 9.3%,
respectively. When MS is combined with PS, forming PMS, its improvements
over NP are 32.7%, 24.2%, and 15.1%, respectively. The performance improve-
ments for the commercial benchmarks are noteworthy because these bench-

marks exhibit low amounts of spatial locality. We get similar results for SMT

58

workloads.

e We evaluate the energy and power impact of our approach. For our three
benchmark suites, we find that DRAM power consumption increases by 2.7%,
1.6%, and 2.8%, respectively, while DRAM energy consumption decreases by
9.8%, 7.9%, and 8.2%, respectively. For the four SPEC2006fp benchmarks
that have low memory bandwidth requirements, the DRAM power impact
is negligible: DRAM power increases by an average of 0.12%, while energy

consumption decreases by 0.47%.

e We evaluate Adaptive Scheduling and show that it improves upon a set of

conservative fixed-priority policies by about 2.9%.

In the next sections we describe our solution; we present empirical evaluation

of our approach; and finally we summarize and provide concluding remarks.

4.1 Memory Prefetching Using Adaptive Stream De-

tection

This section describes our new prefetcher [30], which resides in the memory con-
troller. This prefetcher addresses two major questions: (1) How can we reduce the
number of unnecessary prefetch requests? (2) How can we reduce the opportu-
nity cost of prefetches? Adaptive Stream Detection addresses the first issue, and
Adaptive Scheduling addresses the second. To provide context, we first explain the
basic idea behind Adaptive Stream Detection. After describing the mathematical
details of how SLH’s are used, we discuss implementation issues, and present the

organization of our prefetcher. Finally, we present details of Adaptive Scheduling.

59

4.1.1 Adaptive Stream Detection

Adaptive Stream Detection uses Stream Length Histograms, SLH, to capture spa-
tial locality and guide prefetch decisions. For example, Figure 4.1 shows an SLH
for one epoch of the GemsFDTD benchmark from the SPEC2006 suite. In an SLH,
the height of the bar at location m represents the percentage of streams that have
length m. Depending on the detected stream length of the current Read request,
the prefetcher checks the SLH and determines how many, if any, sequential cache
lines to prefetch.

In the example SLH of Figure 4.1, we see that 21.8% of all streams are of
length 1, 43.7% of all stream are of length 2, etc. The rightmost bar indicates that
1.2% of all streams are length 16 or more. Given this information, when a Read
request, R,, arrives and is the first element of a new stream, a prefetch request
should be issued because R, is more likely to be the first element of a stream of
length 2 or longer (78.2% probability) than to be part of a stream of length 1
(21.8%). On the other hand, if a Read request, R,, is the second element of a
stream, a prefetch should not be issued because there is a 43.7% probability that
R, is the second element of a stream of length 2, which is greater than the 34.5%
likelihood that it is the second element of a longer stream. With similar reasoning,
prefetches should be issued for any Read request whose current stream length is 3 or
greater than 6. This example shows that the use of the SLH allows a prefetcher to
make rather sophisticated prefetching decisions based on the length of an individual
stream.

The prefetcher can also use the SLH to decide whether to generate multiple
prefetches—although we do not evaluate this idea. For example, when R, is part
of a stream of length 1, the prefetcher decides whether to generate two consecutive
prefetches by adding the probabilities of the first two bars and comparing the sum

with the rest of the histogram. If the sum of the first two bars is less than the sum

60

50 —
40 -

30 —

20 —

10—I I

] | Om_________ -
0

1 2 3 45 6 7 8 9 101112 13 14 15 16
Stream Length

Frequency (%)

Figure 4.1: Stream Length Histogram (SLH) for an arbitrary epoch of the
GemsFDTD benchmark.

of the other bars, and if the prefetcher has already decided to prefetch one line, it
generates a prefetch for the second line as well.

Because memory access behavior typically varies over time, our solution peri-
odically creates an SLH after every e Read requests, where e is known as an epoch.
Thus, in every epoch, our method constructs a new SLH for use in the next epoch.
Figure 4.2 shows how epochs can vary widely over time. To keep track of increasing

or decreasing streams, we need one SLH for each direction.

100 For all epochs For an arbitrary epoch For another arbitrary epoch
90 — —
80 — — —
=
s 0+ —]
60 — — —
o)
& 50— — —
=} 40 — — —
8]] |
[V
20 - I I -
10 —| — I —
0 IIII.II-- ______ _I Bleaao______ P - R
12345678 910111213141516 12345678 910111213141516 12345678 910111213141516
Stream Length Stream Length Stream Length

Figure 4.2: Stream Length Histograms (SLH) for the GemsFDTD benchmark from
the SPEC2006fp suite show that the SLH’s vary widely at different points in time.
Here the epoch length is 2000 reads.

61

4.1.2 Using the SLH to Detect Locality

Our probabilistic approach to prefetching makes decisions by comparing the likeli-
hood that a Read request will be the last element of a stream against the likelihood
that it will be part of a longer stream. In this subsection, we derive inequalities that
guide these prefetch decisions. Our discussion also establishes the transition from

the SLH concept to its implementation that we present later in Section 4.1.4.

Definitions. To describe our method, we define two functions, [ht() and P(),

which can be used to compute an SLH, as follows:

[ht(i): the number of streams of length ¢ or longer, where 1 < i < fs and fs is the

maximum stream length that our method uses. For any ¢ > fs, [ht(i) = 0.

P(i,7): the sum of probabilities that a Read is part of any stream of length k, where

i<k<jand1<i,j < fs. We can define P(i,7) in terms of [ht() as follows:

P(i,7) = (Iht(i) — lht(j + 1)) /lht(1) (4.1)
The value of the i'® bar of an SLH equals P(i,).

Prefetch Decision. To determine whether to issue a prefetch, we check whether
the following condition is satisfied for a Read request, R, that is the i" element of

a stream:
P(i,i) < P(i+ 1, fs) (4.2)

This inequality states that the probability that the most recent Read request, R,,
is the last element of a stream of length i is smaller than it being the i** element of

a stream of length longer than i. We can simplify the inequality (4.2) as follows:

62

P(i,i) < P(i + 1, fs) (4.3)

_ Uht(i) —Iht(i +1) _ Iht(i +1) — Iht(fs +1)
Tht(1) Iht(1)

= Iht(i) < 2 x Iht(i + 1) (4.5)

Our technique uses the inequality (4.5) to make next line prefetch decisions. We
provide, without proof, a generalized version of (4.5) to prefetch k consecutive lines

after R,:

Iht(i) < 2 x Iht(i + k) (4.6)

4.1.3 Prefetcher Design

The organization of our prefetcher is shown in Figure 4.3, where the gray boxes
represent our additions to the memory controller. Read commands enter the memory
controller and are sent to both the original memory controller and to the Stream
Filter. The Stream Filter keeps track of Read streams and generates the SLH.
This information from the Stream Filter is then fed to the Prefetch Generator,
which decides whether a prefetch command should be issued, and if so, places the
prefetch command in the Low Priority Queue (LPQ), where the Final Scheduler
can consider it, along with other commands in the LPQ and CAQ, when selecting
commands to issue to DRAM. Any prefetched data are then stored in the Prefetch
Buffer.

The Prefetch Buffer is checked twice. It is first checked before Read com-
mands are placed in the CAQ, so that Read commands can be satisfied by the
Prefetch Buffer, in which case the latency of going to DRAM is saved and the Read

command is squashed. The Prefetch Buffer is checked again when the Final Sched-

63

uler selects a Read command from the CAQ to send to memory; this check is useful
because the desired data may have arrived in the Prefetch Buffer while the Read

command was resident in the CAQ.

| from processors

Reads Y Reads/Writes

original 7
Power5+
memory
Stream controller
falicy Read/Write
Reorder
Queues
Prefetch update check status
Generator
J Conflict, Scheduler
ueue
%atus Centralized Prefetch
Low Arbiter Buffer
Priority Queue
Queue (CAQ)
(LPQ) ‘
\—’ Final Scheduler
MEMORY check status
CONTROLLER

| DRAM prefetched data

Figure 4.3: Overview of our prefetcher.

Stream Filter. To maintain information about Read streams, the Stream Filter
uses one slot to track each Read stream. Each slot maintains (1) the last address
accessed for this stream, (2) the length of the stream, (3) the stream’s direction,
and (4) the stream’s lifetime, which indicates when the stream should be evicted.

These slots are used as follows:

e If the Read, R,, is not part of a stream and if there is a vacant slot in the
Prefetch Filter, the last access field is set to the address of the Read request,
the length field is initialized to 1, the lifetime is initialized to a predetermined

value, and the direction is set to Positive.

e If R, is not part of a stream and there is no available slot, no prefetch will be

generated after R,,, but the SLH structure is updated as if a stream of length

64

1 had been detected.

e If R, is the most recent element of a previously detected stream, the stream
length is incremented by 1, the last access is set to the address of R,,, and the

lifetime of the stream is incremented by a predetermined value.

e The direction of the stream is set to Negative if the length of the previous
stream is 1 and the address of R, is smaller than the last address of the

stream.

e At every processor cycle, the lifetime fields are decremented by one. A stream
is evicted from a slot when its lifetime expires. At this point, the SLH struc-

ture is updated using the length value in the Stream Filter.

e At the end of each epoch, all streams are evicted from the Stream Filter.

Prefetch Buffer. The Prefetch Buffer holds data that are fetched from memory
by the memory-side prefetcher. We assume that this buffer is a set associative cache
with an LRU replacement policy. When there is a write request to an address in the
Prefetch Buffer, we invalidate the entry in the buffer. We also invalidate the entry
if a regular Read request matches the address, because in such cases the data will
likely be moved to the L1 or L2 cache, so it is unlikely to be useful in the Prefetch

Buffer again.

4.1.4 Implementation of Adaptive Stream Detection

We now present details for implementing Adaptive Stream Detection. For simplic-
ity, we restrict our explanation to streams with increasing addresses only, and we
only discuss prefetching for one cache line. It is straightforward to generalize this

approach to streams with decreasing addresses and multiple line prefetching.

65

Rather than implement the SLH explicitly, we construct the information
in the SLH using two tables of length fs. These Likelthood Tables, LHTcurr and
LHTnext, correspond to the [ht() function discussed previously. A given epoch uses
and updates information from LHT curr and gathers information for the start of the
next epoch in LHTnext. LHTnext is updated using the information from the Stream
Filter. When an entry of length %k in the Stream Filter is invalidated, LHTnext]i]
is incremented by 1, for all ¢, where 1 < ¢ < k. At the end of an epoch, LHTnext
is modified using the remaining valid entries in the Stream Filter; the contents of
LHTnext are moved to LHTcurr; and LHTnext is re-initialized. Each entry of the
tables is a logy(m) bit counter, where m is the maximum epoch length.

LHTcurr is used to make prefetch decisions for the current epoch. This
table has one comparator for each pair of consecutive table entries, i.e., LHT curr|i]
and LHT curr[i+1], for 1 < i < fs. At the beginning of an epoch, the contents of
LHTcurr are used to construct the SLH. As the epoch progresses, this information
is modified using the observed stream lengths of the current epoch. When an entry
of length k in the Stream Filter is invalidated, the value of LHTcurr[i] is decremented
by 1, for all 7, where 1 < < k.

When the Stream Filter observes that a Read request is part of a stream
of length k, prefetch requests are generated using the output of the comparison
of LHTcurr(k] and LHTcurr[k+1], as in inequality (4.5). Instead of multiplying
LHTcurr[k+1] by 2, for any k, the comparator for the (LHT curr[k], LHTcurr[k+1])
pair takes the left shifted value of LHT curr[k+1] as input.

4.1.5 Adaptive Scheduling

Clearly, speculative prefetch commands should be given lower priority than regular
commands. But because memory systems are becoming increasingly complex, and

because the Final Scheduler must make decisions whose effects may not be seen

66

until the future, it is not obvious what policy provides the best performance. For
example, a conservative policy that always gives prefetch commands lower priority
than regular commands may unnecessarily block prefetch commands behind regular
commands that cannot issue due to conflicts in the memory system. Thus, rather
than dictate a particular policy at design time, Adaptive Scheduling uses feedback to
dynamically select from one of five policies in order of decreasing conservativeness:
Only issue a command from the LPQ (1) if the CAQ is empty and the Reorder
Queues are empty, (2) if the CAQ is empty and the Reorder queues have no issuable
commands, (3) if the CAQ is empty, (4) if the CAQ has at most 1 entry and the
LPQ is full, (5) if the first LPQ entry has an earlier timestamp than the first CAQ
entry.

To choose from among these policies, the memory controller tracks the num-
ber of times that a regular command in the Reorder Queues cannot proceed to the
CAQ because it conflicts in the memory system with a previously issued prefetch
command. As the occurrences of these conflicts grows (or shrinks), the policy be-
comes more (or less) conservative. The policy is adjusted using the same epoch
size that is used to compute Stream Length Histograms. Thus, this approach de-
termines the priority of prefetch commands based on a measure of memory system
performance, rather than on some instantaneous property such as occupancy of a

queue.

4.2 Experimental Results

We evaluate Adaptive Stream Detection along several dimensions. We present over-
all performance and power results for all three benchmark suites. We then use a
subset of the benchmarks to illustrate additional points, choosing the two best-case
and the two worst-case benchmarks—in terms of PMS performance improvement—

from the SPEC and commercial benchmarks.

67

4.2.1 Hardware Costs

We evaluate a prefetcher that is configured as follows: Each thread has a Stream
Filter with 8 slots and LHTnext and LHTcurr tables that each hold 16 entries.
Because streams are tracked in both the positive and negative directions, LHTnext
and LHT curr each require 32 counters per thread. In addition to these per-thread
resources, the prefetcher has one 16 entry Prefetch Buffer (2KB) and an LPQ with
the same number of entries—3—as the CAQ. The current Power5+ memory con-
troller occupies about 1.61% of the entire chip area, with the dominant portion of
the memory controller being control logic. Our extensions to the memory controller
increase the area of the memory controller by about 6.08%, resulting in a 0.098%

increase in the total chip area.

4.2.2 Benchmark Results

We now compare simulation results for four configurations: no-prefetching (NP),
processor-side prefetching only (PS), memory-side prefetching only (MS), and processor-
and memory-side prefetching together (PMS). In PMS, only the memory-side prefetcher
uses Adaptive Stream Detection. In the following graphs, we present three different
comparisons: (1) PMS vs. NP (2) MS vs. NP, and (3) PMS vs. PS.

80 —

70 4 0 PMSvsNP
§ MSvsNP
;\560— 1 PMSvsPS
ESO
(Z p—
40 —
8
£ 30—
Lo
EZO—
10 [h|h
ol _Hll-n
682EE238E328¢82p25%8¢8¢8
€5 " 353p-°5888%° £ e
EU’ Nag— gg 8‘4:
V]

Figure 4.4: Performance improvements for the SPEC2006fp Benchmarks.

68

50 —

O PMSvsNP
. 40— @ MSvsNP
S B PMSvsPS
.C
8 304
:
£ 20 -
S
o 1N
5 2 o & 5] 3 g’ &

Average

Figure 4.5: Performance improvements for the NAS Benchmarks.

We see that the PMS configuration performs best, and the benefits from
memory-side and processor-side prefetching are largely complementary but not com-
pletely orthogonal.

For the SPEC2006fp benchmarks (Figure 4.4), we find that the performance
benefit of PMS over NP is between 0-68.6%, with an average of 32.7%. MS improves
performance over NP by an average of 14.6%, and PMS improves over PS by an
average of 10.2%. For the NAS benchmarks (Figure 4.5), the PMS approach sees
an average improvement of 24.2% over NP and 8.1% over PS. For the commercial
benchmarks (Figure 4.6), the PMS approach sees an average improvement of 15.1%
over NP and 8.4% over PS.

SMT Results. We have repeated the above experiments on a system that uses two
SMT threads on the same processor. For these experiments, we leave the Prefetch
Buffer size (16 cache lines) unchanged, but we double the size of the Stream Filter
and the number of LHT tables, so that each thread can track its own set of streams.
We find that SMT performance improvements are about the same as the single-
threaded results. For example, PMS improves performance over PS by 10.7%, 9.2%,
and 7.5%, respectively, for the SPEC2006fp, NAS, and commercial benchmarks. The
improvements for PMS over NP are 28.5%, 20.4%, and 11.1%, respectively.

69

20 —

O PMSvsNP
B MSvsNP
— B PMSvsPS
S 15
f=
‘®
O
Q
o 10 -
3
£
o
g 5
0
Q o = (0]
g 9 : F % @
£ '8 a @ 2
= 8 2
9]
c

Figure 4.6: Performance improvements for the commercial benchmarks.

We find it critical to replicate the locality identification hardware—in our
case the Stream Filter—for each thread. For our solution, this hardware is small,
as opposed to many other solutions [44, 9, 67] for which large tables would have to

be replicated.

25 —

0 Power Increase
1 Energy Reduction

l

20 —

15—

10

milc Frr—

ZEUSTP e
gromacs E—

cactusADM —e——

(%)
o (62}
|]
bwaves re———
dedlll
oplex e ——
tonto e

. _ 21
: ST
5 B 23 ®z

GemsFDTD e

Figure 4.7: DRAM Power and Energy comparison for the SPEC2006fp benchmarks.

Power and Energy Effects. In Figures 4.7, 4.8, and 4.9, we compare PMS
to PS in terms of DRAM power usage and energy consumption. We find that
PMS increases power consumption, on the average, by 2.7%, 1.6%, and 2.8% for

SPEC2006fp, NAS, and commercial benchmarks, respectively. For the same bench-

70

25
O Power Increase

B Energy Reduction
20 - »

15—

(%)

10 —

T
bt I —
cg —
ep i—
ft

is ——
U ——
mg Ee—
p —
Average mem—

Figure 4.8: DRAM Power and Energy comparison for the NAS benchmarks.

25 —

O Power Increase
B Energy Reduction

1

Figure 4.9: DRAM Power and Energy comparison for the commercial benchmarks.

20

15

(%)

10

tpee

o (93]
L1
trade? | omle—
notesbench | pmbemm
Average |l

71

marks, PMS reduces energy consumption by 9.8%, 7.9%, and 8.2%. For the four
benchmarks that are not memory intensive—gamess, namd, povray, and calculiz—
the power increase is negligible. Again, for SMT workloads, the DRAM power and

energy results are similar to the single threaded case.

Other Power Costs. Of course, the implementation of the prefetcher itself also
consumes power. We do not have benchmark-specific analyses of this power us-
age, but an analysis of the Power5+ chip and an area-based estimation of the MS
prefetcher provides the following figures. The memory controller on the Power5+
consumes about 1% of the chip’s power. The MS prefetcher increases the power
of the memory controller by approximately 6%, which is 0.06% of the chip’s total
power. As a reference, the Power5+ chip typically consumes roughly four times the
power as the DRAM chips for our workloads.

By contrast, if we were to add a 64KB table for detecting spatial locality,
as suggested by other approaches, we would add four such tables—one for each
thread—for the Powerb4. We believe that each 64KB table would consume up
to 25% of the power of a 64KB L1 I-cache (Loads constitute roughly 25% of all
instructions), which for the Power5+ is about 0.6% of the chip’s power. To support
four such tables would increase the chip’s active power by about 2.4%. Moreover,
as leakage power becomes more important to future systems, the power effects of

large tables will become more significant.

4.2.3 Detailed Results

Importance of Adaptive Stream Detection and Adaptive Scheduling.
Figure 4.10 shows that both Adaptive Stream Detection (ASD) and Adaptive Schedul-
ing contribute to performance gain. In this figure, the first bars in each cluster repre-
sent normalized execution times for our PMS approach. The next five bars compare

the PMS against the five scheduling policies that we discussed in Section 4.1.5. We

72

see that the Adaptive Scheduling improves performance upon these fixed policies
between 2.3% and 3.6%. We conclude that the impact of Adaptive Stream Detection

is much more significant than that of Adaptive Scheduling.

1.50
0 ASD + Adaptive Scheduling (best)

0 ASD + scheduling method 1 (most conservative)
0 ASD + scheduling method 2

@ ASD + scheduling method 3

“E-’ @ ASD + scheduling method 4
£ 125+ B ASD + scheduling method 5 (least conservative)
= B no ASD + next-line prefetcher + adaptive scheduling
5 0 no ASD + P5-style prefetcher + adaptive scheduling
=1
2
g 100+
°
N
©
£
[=} —
S 0.75
0.50 —

bwaves
milc

tonto

tpec
trade2

sap
notesbench

fa}
2
o
%
g
O

Figure 4.10: Impact of Adaptive Stream Detection and Adaptive Scheduling.

Figure 4.10 also provides a head-to-head comparison of Adaptive Stream
Detection against both next-line prefetching (second bar from the right) and the
Powerb5+’s processor-side prefetcher (rightmost bar) when all are implemented in the
memory controller. We see that Adaptive Stream Detection provides performance
that is 8.4% better than the next-line prefetcher. Somewhat surprisingly, in this
context the Powerb-style prefetcher yields worse performance than the next-line
prefetcher.

Figure 4.11 shows that a significant portion of streams are of length five
or shorter. These short streams are where Adaptive Stream Detection sees the
most benefit. A next-line prefetcher generates useless prefetches for all streams of
length one, and we see that the percentage of such streams is quite high for these
benchmarks. There is also a significant number of streams of length 2-5, which

is where a Powerb-style stream-based prefetcher sees the worst performance: For

73

these streams the useless prefetch that it issues before detecting the end of a stream
represents a non-trivial fraction of the total prefetches. Finally, observe that even
the four commercial benchmarks, which have poor spatial locality, have a significant
percentage of streams of length 2-5: roughly 37% for tpc-c, 49% for trade2, 40% for
sap, and 62% for notesbench. These percentages help explain why Adaptive Stream

Detection is beneficial even for workloads with low spatial locality.

100 —
90 — 0 streamlength 1
0 streamlength 2
80 — @ streamlength 3
@ stream length 4
70 —H 0 streamlength 5
60 —
£ 50

40 —

30 -
20 —
10
0

Figure 4.11: Stream Length Histograms of eight benchmarks. Streams of lengths
between 1 and 5 constitute 78-96% of all streams.

=

bwaves
milc

tonto

tpee
trade2

sap
notesbench

GemsFDTD

Prefetch Efficiency. Figure 4.12 presents three measures of the effectiveness of
Adaptive Stream Detection: (1) the percent of useful prefetches, (2) the prefetch cov-
erage, that is, the percent of Read commands (including processor-side prefetches)
that get its data from the Prefetch Buffer, and (3) the percentage of the regular mem-
ory commands—both Reads and Writes—that are delayed because of memory-side
prefetches. These values pertain only to prefetches generated by the memory-side
prefetcher, not the processor-side prefetcher. We see that the percentage of useful
prefetches is between 82% and 91%. The coverage is between 19% and 34%, and

only 1-3% of regular commands are delayed by the memory-side prefetch commands.

74

120 4 O useful prefetch
userul pr ches
110 @ cover pe
100 4 B delayed regular commands

90
80 —
70 —
60 —
50
40 —
30 -
20 —
10
0 -

(%)

bwaves
milc
tonto
tpce
trade2
sap

notesbench

GemsFDTD

Figure 4.12: Effectiveness of our prefetching approach.

Sensitivity to Prefetch Buffer and Stream Filter Size. Figures 4.13 and
4.14 show, for our PMS approach, the performance effect of the size of the Prefetch
Buffer and Stream Filter. In our simulations, we use a configuration with a 16-block
prefetch buffer and an 8-entry stream filter. We find that increasing the size of the
Prefetch Buffer or Stream Filter beyond this configuration improves performance

but with diminishing returns.

1.5 4
O 8blocks
O 16 blocks
B 32blocks
B 1024 blocks
3
8
E 104
S
0.5 -

bwaves
milc
tonto
tpec
trade2
sap

notesbench

GemsFDTD

Figure 4.13: Sensitivity of PMS to prefetch buffer size.

75

1.5

0 4entry
O 8entry
B 16eniry
B 64entry
8
8
E 10—
k)
0.5 -
B g [a) I} Q N Nl
¢ = 5 8 B § OB B
3 B =
5 B
o =

Figure 4.14: Sensitivity of PMS to stream filter size.

Further Improvement Opportunities for Latency Hiding. Figure 4.15 com-
pares our prefetching approach to a perfect memory-side prefetcher. We assume that
the perfect prefetcher can predict what to prefetch and when to issue prefetch re-
quests such that 2% of all Read requests find their data in the prefetch buffer, and
no memory commands are delayed because of the prefetch requests. We analyze the
relationship between our ASD prefetcher and the perfect prefetcher by varying z
between 0% and 100%, where z=100% represents the ideal memory-side prefetcher.

In Figure 4.15, we see that for all benchmarks, the performance improve-
ment of the ASD prefetcher is below the perfect prefetcher curve and it is far from
the ideal prefetcher. In other words, although our prefetching approach improves
performance significantly, it does not eliminate the memory latency problem com-
pletely. For example, for the GemsFDTD benchmark, the ASD prefetcher has a
coverage of 32.4% and improves performance by 10.2%. However, for the same
benchmark, the ideal memory-side prefetcher improves performance by 38.9%. The
ASD prefetcher achieves, on average, 21.3%, 24.6%, and 18.7% of the coverage, and
17.4%, 20.9%, and 14.1% of the performance improvement of the ideal prefetcher
for the SPEC2006fp, NAS, and commercial benchmarks, respectively.

There are three possible ways to make the performance of our prefetching

76

1.4

1.3

1.2

Performance

11

1.6
15
1.4
1.3
1.2

Performance

11

13

1.2

Performance

1.1

1.6
15
14
13

Performance

1.2
11

bwaves

+
20 40 60 80 100
GemsFDTD
+

20 40 60 80 100

tpce
+

20 40 60 80 100
sap

20 40 60 80 100

Coverage (%)

18

1.6

1.4

12

1.4

1.3

12

11

1.3
1.25
1.2
1.15
11
1.05

1.25

12

1.15

11

1.05

milc
+

20 40 60 80 100

tonto
+
20 40 60 80 100
trade2
20 40 60 80 100
notesbench
+
20 40 60 80 100

Coverage (%)

Figure 4.15: Performance effects of coverage rate. Solid line represents the perfect

prefetcher,

“+” represents our ASD prefetcher, dotted line is for the maximum

coverage that a memory-side prefetcher can achieve without prefetching the first
elements of streams, and 100% coverage corresponds to the ideal prefetcher.

method closer to the ideal prefetcher. First, we can try to increase available memory
bandwidth and/or to improve the Adaptive Scheduling technique further, so that
side effects of prefetch requests over regular memory commands are diminished. Re-
ducing side effects moves the performance point (“+” sign) of our prefetcher, in
Figure 4.15, upwards. Second, to move the performance point to the right, that is
to increase coverage, we can attempt to improve (including capacity increases for
the stream filter and prefetch buffer) the Adaptive Stream Detection method. The
current ASD approach does not prefetch first elements of streams. Therefore, for
the benchmarks in Figure 4.15, the maximum coverage we can get (dotted vertical
line) is the percentage of the non-first elements of streams, which is between 25.7%
and 49.4% of which we achieve 18.9-34.5%. Note that to obtain the maximum pos-
sible performance (top point of the dotted line), a prefetching mechanism needs to
be supported by increased memory bandwidth. Otherwise, coverage may increase
at the expense of increased bandwidth requirements, which may or may not result
improved performance. Finally, the third option to improve performance is to de-
velop hardware and/or software techniques to prefetch the first elements of streams.
Because, any coverage rate to the right of the dotted line in Figure 4.15 requires
prefetching of the first elements of streams, which constitute a significant portion
(50.6-74.5%) of all Read requests.

Our focus in this dissertation has been to hide the latency between the mem-
ory controller and DRAM. Reducing latency inside the processor is beyond the scope

of this study, and we leave it as a future work.

Accurately Constructing Frequency Histograms. The success of Adaptive
Stream Detection depends on the accuracy of the computed Stream Length His-
tograms, which are computed using the Stream Filter. Because the Stream Filters
have finite size, the computed SLH is actually an approximation of a complete

SLH. We have found that this approximation of the SLH closely matches the

78

actual SLH, as shown in Figure 4.16, which is a sample epoch in the GemsFDTD

benchmark.

50 —

0 actual
40 1 our approximation
30 —
20 —
10 |i
o [l hw.________ .
4 5 6

7 8 9 10 11 12 13 14 15 16

Frequency (%)

Stream Length

Figure 4.16: Accuracy of calculating Stream Length Histograms.

Interaction with the Memory Scheduler. The impact of a prefetcher can be
sensitive to the choice of memory scheduler that is used. For the results presented
in this chapter, we use the Adaptive History-Based memory scheduler (AHB), but
to investigate the interaction between memory scheduling algorithms and our new
prefetching technique, we also study two less sophisticated memory schedulers, in-
order and memoryless, which provide reduced DRAM bandwidth compared to the
AHB scheduler. When a simple in-order scheduler is used, the performance gain of
our prefetcher is reduced by about 5%. For the better memoryless scheduler, the
performance gain of our prefetcher is reduced by about 1%. These results indicate
that the benefit of our prefetching approach increases as other bottlenecks in the
memory subsystem are reduced.

We also find that our adaptive history-based memory scheduling approach
and the new prefetching method that we have introduced complements each other.
When compared with a system where neither of these two improvements exist, i.e.
with memoryless scheduling and without any memory-side prefetching, combined

implementation of our two techniques improves performance of the SPEC20061p,

79

NAS, and the commercial benchmarks by 14.3%, 13.7%, and 11.2%, respectively.

4.3 Summary

We have introduced a new stream-based prefetching technique that is effective for
streams of any length, including extremely short streams. The key idea is to moni-
tor the amount of spatial locality in a program’s execution to adjust the aggressive-
ness of a basic stream prefetcher. By capturing such spatial locality in a Stream
Length Histogram, our prefetcher can probabilistically decide when to start and stop
prefetching based on the recently observed behavior. A secondary contribution is
the notion of Adaptive Scheduling, which adapts the aggressiveness of the prefetcher
based on the observed number of conflicts between prefetch commands and regular
commands. Previous techniques [43] have monitored specific aspects of the memory
system, but we show that such fixed policies can be overly conservative.

Using extremely accurate simulators for a modern microprocessor and its
memory system, we have shown that Adaptive Stream Detection and Adaptive
Scheduling provide significant performance improvements, even for commercial work-
loads that have low spatial locality. This solution also has low DRAM power
costs and modestly improves DRAM energy consumption. If implemented in the
Power5+, our solution increases the area of the chip by less than 0.1%. Compared
to other prefetching strategies, the hardware cost of our approach is minimal. More-
over, because its spatial locality detection component is small, the cost advantage
of Adaptive Stream Detection improves—relative to other approaches that require

large tables—as the number of hardware threads increases.

80

Chapter 5

DRAM Power Optimizations

In the previous two chapters we developed techniques with small modifications to
the memory controller to improve memory bandwidth and memory latency. Because
power is now a first order concern, and because DRAM can consume up to 45% of
a system’s power [42], it’s natural to ask whether memory controllers can improve
power utilization, as well. In particular, there are two possible goals with respect
to power: (1) maximize performance for a given power threshold; (2) achieve good
energy efficiency. This second goal is important for large servers where energy
efficiency translates into lower energy bills. This second goal is difficult because
it requires us to consider the tradeoffs between power reduction and performance
reduction. In this chapter, we present and evaluate new techniques for managing
both aspects of DRAM power. We assume that the DRAM supports a power-down
command, which puts a portion of the DRAM into a low-power mode, which can
be found on today’s DRAM’s.

A basic mechanism for reducing power is to put memory devices into a low-
power mode when they are idle. Unfortunately, the overuse of this mechanism
can limit performance, as there are associated entrance and exit latencies for a

particular low power mode. An intelligent memory scheduler would seem to be a

81

natural partner with these low power modes, but the scheduling goal of low power
and good performance are at odds. For good performance, the scheduler typically
selects commands that avoid hardware conflicts, essentially spreading the commands
across many physical memory devices. However, to reduce power consumption, the
scheduler would like to cluster commands to a subset of the physical devices, allowing
one or more of them to be put into low-power mode.

In this chapter we study three aspects of the solution space. First, we study
the benefit of powering-down portions of the DRAM when they become idle and
powering them back up on demand. Second, we study the impact of modifying
the memory scheduler so that it issues commands in response to the state of the
DRAM, that is, with cognizance of the powered-down ranks. This modified memory
scheduler is a natural extension of our previously studied adaptive history-based
(AHB) memory scheduler. Finally, given a power budget, we develop a throttling
method to accurately estimate the length of time during which commands should
be blocked in the reorder queues, allowing DRAM ranks to be powered-down.

This chapter makes the following contributions:

1. We present a power-down mechanism for the memory controller in the context

of server-class memory systems.

2. We present simple modifications to the previously described adaptive history-
based schedulers. These modifications optimize for power by clustering com-
mands to the same rank to create rank locality, thereby increasing the periods

during which other ranks can be powered down.

3. We evaluate our new Power-Aware AHB scheduler, along with three previ-
ously proposed memory schedulers. Our detailed simulators provide results
for performance and energy efficiency, as well as for power consumption. We

see that for the daxpy kernel, our new Power-Aware AHB scheduler reduces

82

DRAM power by 42.6% and improves performance by 53.5% when compared
with a standard FIFO scheduler with no power-down mechanism. We find
that our Power-Aware AHB improves the energy efficiency of the Stream and
NAS benchmarks by a factor of 5. The simplicity and success of our modi-
fications argue that the adaptive history-based scheduler provides a powerful

framework for all aspects of memory scheduling.

4. We present a throttling approach that actively reduces DRAM power by block-
ing memory commands. The goal of this method is to estimate the throttling
delay such that DRAM power consumption falls below a predetermined power

budget and show that performance degradation is as small as possible.

In the next sections we describe our new solutions regarding DRAM power
consumption, we present experimental results, and finally we conclude and summa-

rize our work.

5.1 Power- and Performance-Aware Memory Controllers

This section describes our new approach to memory controller design, which makes
the memory controller both power-aware and performance-aware. We present three
additions to current memory controllers: a power-down unit to schedule rank power-
down signals, an augmented form of adaptive history-based schedulers that includes

power criteria, and a throttling mechanism to manage power requirements.

5.1.1 Power-Down Unit in the Memory Controller

The IBM Powerb5+ memory controller uses a command bus to transmit memory
commands to DRAM. Every command on this bus has a command type and an
address. We propose a new type of power-down command, in which the rank to be

powered down is encoded in the address bits.

83

In the power-down unit of the memory controller, we maintain two extra
components for each rank: a rank-lowpower bit and a counter. The rank-lowpower
bit is set when the rank is in low power mode. The counter maintains the number
of cycles remaining until the rank becomes idle. Each time a regular command (a
Read or a Write) is sent to any bank of a powered-down rank, the rank’s counter is
initialized to the maximum of the current value and the latency of the new command.

The overuse of power-down commands can degrade performance in two ways.
First, power-down commands consume command bus bandwidth. Second, there will
be unnecessary switches between low and high power modes in DRAM, which will
waste two DRAM cycles. Finally, in most modern DRAM chips, when a rank enters
low power mode, it has to stay in that mode for a certain number of cycles. Thus,
powering down a rank prematurely can increase the latency for memory commands
waiting for the powered-down rank.

We now present a protocol to decide when to send a power-down command to
DRAM. At every cycle, the power-down unit checks rank counters, rank-lowpower
bits, and the commands waiting in the CAQ. A power-down command is sent to
a rank that meets the following conditions: (1) The rank counter is zero, which
indicates that the rank is idle. (2) The rank-lowpower bit is zero, because otherwise
a new power-down command for the rank will be redundant and will unnecessarily
occupy the command bus. (3) There is no command for the rank waiting in the
CAQ; this condition avoids powering down a rank if a Read or Write to that rank
is imminent. (4) The command at the front of the CAQ cannot be issued in this
cycle. To reduce performance degradation, we give priority to regular commands
over power-down commands.

The memory controller can send only one power-down command at any cycle,
so at each cycle, the power-down unit checks for the above conditions starting at a

random rank number. Randomization eliminates any bias in cases where more than

84

one rank satisfies the power-down conditions.

5.1.2 Power-Aware Adaptive History-Based Schedulers

We now describe how the adaptive history-based memory schedulers can be adapted
to include power information. As we described in Chapter 3, a history-based sched-
uler uses the history of recently scheduled memory commands when selecting the
next memory command. In particular, scheduling goals are encoded in finite state
machines. Previously, two scheduling goals were considered to improve performance:
(1) minimize the latency of the scheduled command, and (2) match some desired
balance of Reads and Writes. By scheduling commands to match an expected ratio
of Reads and Writes, the scheduler avoids bottlenecks that arise from uneven Read
and Write reorder queues.

We modify these AHB schedulers by adding power savings as a new goal. We
do this by creating a state machine where power usage is the first optimization goal,
which we describe below. Because both performance and power goals are important,
we probabilistically combine the three FSM’s to produce a scheduler that encodes all
goals. The result is a history-based scheduler that is optimized for both performance
and power, but for one particular mix of Read/Writes. To accommodate a wide
variety of Read/Write mixes, we use adaptivity in the same sense as the original
adaptive history-based scheduler, namely, our adaptive scheduler observes the recent
command pattern and periodically chooses the most appropriate of three history-

based schedulers.

Optimizing for Power

Our Power-Aware History-Based scheduler uses power as the first optimization cri-
terion. The basic idea is to group commands for the same rank as closely as possible

in the CAQ. This will reduce the number of power-down operations while providing

85

the same amount of power savings. In the state machine for the scheduler, we define
the priorities for each possible command in the reorder queues as follows: The set
of commands to the same rank with the last command sent to the CAQ has the
highest priority, the set of commands to the same rank with the second from the
last command has the second priority, and so on. Since there may be more than one
command in each of these sets, our approach breaks ties using performance as the

second criterion. Algorithm 4 depicts this process.

Algorithm 4 power_scheduler(n)

// m is the history string size

1: for all command sequences of size n do

2:

for each possible next command do
Calculate priority with respect to power.

end for

Sort possible commands with respect to priorities.

for commands with equal priority in terms of power do
Use expected_latency to make decisions.

end for

10: Sort possible commands with respect to expected_latency.

11: for commands with equal power priority and expected_latency do

12: Use Read/Write ratios to make decisions.
13: end for

14:

15: for each possible next command do

16: Output the next state in the FSM.

17: end for

18: end for

Combining State Machines Probabilistically

As with the original AHB scheduler, we probabilistically combine our multiple op-
timization goals to form a single history-base scheduler. Algorithm 5 weights each
criterion and produces a probabilistic decision. At runtime, a random number is

periodically generated to determine the rules for state transitions as follows:

86

Algorithm 5 probabilistic_scheduler
1: if random_number < thresholdl then
2 command_pattern_scheduler
3: else

4 if random _number < threshold2 then

5 expected_latency_scheduler

6: else

7

8

9

power_scheduler
end if
: end if

The algorithm basically interleaves three state machines into one, periodically
switching among the three in a probabilistic manner, where the threshold values are

system-dependent and are determined experimentally.

5.2 Evaluation of the Power-Down Mechanism

To evaluate the effects of the power-down mechanism that we have introduced, we
first present detailed results for the daxpy kernel. Then, for the Stream and NAS
Benchmarks, we compare our Power-Aware AHB approach to the in-order, memo-
ryless, and AHB schedulers. To measure performance, we use simulated execution
time as our metric. To measure power, we use Watts as our metric. Finally, to

measure efficiency, we use 1/Joules.

5.2.1 DAXPY Results

Figure 5.1 shows how three previously studied memory schedulers—in-order, mem-
oryless, and adaptive history-based—compare in terms of power (left graph) and
performance (right graph). We see that the more sophisticated schedulers provide
better performance but at the expense of higher average power consumption.
Figure 5.2 compares the power and performance of these three schedulers

when combined with our Power-Down mechanism. These results are all normalized

87

| 3 in-order - 3 in-order
1 B memoryless] B memoryless
m— AHB ® mmm AHB

9] 1 £]

g 10 £ ol

T 10 — 5 10— —

e E .

g g

< - a j

. B o]

© 0.5 ® 05—

E | E

o]

Z - Z - I I

0.0 - — 0.0 - —

Figure 5.1: Left: Power consumption of Inorder, Memoryless, and Adaptive History-
Based schedulers (without the Power-Down mechanism). Right: Performance of
these three schedulers.

15—+ 15—+
b [in-order 1 [in-order
E =3 memoryless E =3 memoryless
- . mEm AHB 2 - Em AHB
§ 1 Em Power-Aware AHB = g Em Power-Aware AHB
s 10 S 1.0]
@ . e .
. B
< 4 w 4
B - B J
N N
T 05— T 05—
E E
o (=}
Z | |:| Z - |:| I I
0.0 - 0.0 - L

Figure 5.2: Left: Power consumption of Inorder, Memoryless, and Adaptive History-
Based schedulers with the Power-Down mechanism. Right: Performance of these
schedulers with the Power-Down mechanism.

88

[in-order

[in-order
=3 memoryless
=3 memoryless == AHB

5 - I AHB 5 -

B Power-Aware AHB
& 4)

2 2

N |:| |:| N

0 0 L

Figure 5.3: Efficiency Comparison, Left: no Power-Down, Right: with Power-Down.

Normalized Efficiency
w
]
Normalized Efficiency
w
1

with respect to the in-order scheduler without the Power-Down mechanism, so we
can see that the Power-Down mechanism reduces power consumption by 40-60%.
Comparing the right graphs of Figures 5.1 and 5.2, we see that the Power-Down
mechanism has a small effect on performance. Execution time increases by 2.5%
for the in-order scheduler, by 2.1% for the memoryless scheduler, and 3.7% for the
AHB scheduler.

Figure 5.2 also shows results for our new Power-Aware AHB scheduler, which
when compared with the AHB scheduler (with the Power-Down mechanism) de-
grades performance by 1.6% and reduces power by 10.8%.

From these figures, it is difficult to understand how the schedulers compare in
terms of energy efficiency. Figure 5.3 shows these same results using energy efliciency
as a metric. We see that the AHB scheduler with the Power-Down mechanism is
4.9 times more efficient than the baseline in-order scheduler that does not use the
Power-Down mechanism, and the Power-Aware AHB scheduler is an additional 9.4%
more efficient than the AHB scheduler.

We conclude that, for daxpy, our power-aware adaptive history-based sched-

uler reduces power usage considerably and gives the best results in terms of efficiency.

89

1.50 4

O in-order + no power-down
O memoryless + no power-down
@ AHB + no power-down
@ in-order + power-down
@ memoryless + power-down
1.25 - B AHB + power-down
B Power-Aware AHB + power-down _ _
% 1.00 — r r r r r r r r
[
&
E
g 075
B
N
©
£
S
> 050+
0.25
0.00 — _— _— _— _— _— _— _— _—

copy
scale
vsum
triad
daxpy
fill

sum
Average

Figure 5.4: Comparison of power consumption for the Stream Benchmarks.

5.2.2 Stream and NAS Results

Figure 5.4 compares the four schedulers with and without the Power-Down mecha-
nism. We see that the Power-Aware AHB gives the best power consumption results
in each benchmark. On average the PA-AHB scheduler’s power consumption is 5%
better than the baseline in-order scheduler, and it is 5% better compared to the
AHB scheduler. We compare the efficiency of the schedulers in Figure 5.5.

The NAS benchmarks are not as memory intensive as the Stream bench-
marks, so the original AHB scheduler does not provide as much performance im-
provement (5-16%). On the other hand, because the memory system is less heavily
utilized, when the Power-Down mechanism is added to the AHB, we see substantial
power savings (Figure 5.6). As a result, our Power-Aware AHB scheduler signifi-

cantly improves efficiency, as well (Figure 5.7).

90

50—

O in-order + no power-down
O memoryless + no power-down
O AHB + no power-down
4.5 — @ in-order + power-down
@ memoryless + power-down
B AHB + power-down
404 B Power-Aware AHB + power-down
3.5
&
& 30—
2
2 25
E .
w
E 20— n
=} —~ —
Z M —
15—
1.0
0.5 —
0.0 - = L L Ll Ll

copy
scale
vsum
triad
daxpy
fill

sum
Average

Figure 5.5: Efficiency comparison for the Stream Benchmarks.

5.3 Throttling Mechanism

The power-down mechanism that we presented can reduce power consumption to
certain degree, but for additional power savings, we now describe a throttling mech-
anism that blocks commands to the DRAM.

Our throttling approach blocks commands for all ranks for some fixed period
of T cycles. Other implementations could power-down single ranks at a time, but we
do not explore this option here. Commands that are blocked cannot proceed to the
CAQ), so they accumulate in the reorder queues, reducing bandwidth between the
memory controller and the DRAM. When combined with our power-down mecha-
nism, this throttling allows a rank to be powered-down for almost T cycles. If T is
sufficiently long, the reorder queues become filled with commands for the blocked

rank, and the system stalls. Thus, by changing the value of T, we can arbitrarily

91

1.50 4

O in-order + no power-down
O memoryless + no power-down
@ AHB + no power-down
@ in-order + power-down
B memoryless + power-down
1.25 - B AHB + power-down
B Power-Aware AHB + power-down
) -]]]]]]]]]
] 1.00
g
[
&
E
g 075
B
N
©
£
S
> 050+
0.25
0.00 - __I __I LL __l __. LL LL LL LL

B 9 oy] ©

lu

mg

P
Average

Figure 5.6: Comparison of power consumption for the NAS Benchmarks.

lower our system’s average power consumption.

5.3.1 Estimating the Throttling Delay

To reduce DRAM power consumption to a target level, accurate estimation of the
throttling delay, T, is crucial. An inaccurate model for T can cause two problems:
(1) if T is overestimated, power consumption will be lower than the target, but
at the same time performance will degrade more than it is necessary, (2) if T is
underestimated, power consumption will be higher than the target. This second
problem can be solved by choosing a lower target for power when estimating T.
However, this conservative approach also will degrade performance unnecessarily.
In this section, we explain how we can accurately estimate the throttling
delay that will reduce DRAM power consumption to a predetermined level, thereby

causing as small a performance degradation as possible. Our method develops a

92

70—

E in-order I+ no power-dm/vtrj'n
- memoryless + no power-down
6.5 O AHB iyno power-%mn
60 = in-order I+ pol/ver-dowg
.0 memoryless er-down
B AHB iy ower-%%n
55 B Power-Aware AHB + power-down
5.0 —
> 45—
kG
2 4.0 H
2 35
E X
w —
£ 3.0
2 25
2.0
15—
1.0
0.5
0.0 -

bt

cg

ep

ft

is

lu

mg

P
Average

Figure 5.7: Efficiency comparison for the NAS Benchmarks.

regression model for estimating T and records the model coeflicients in firmware.
The memory controller, depending on the memory command pattern and a power
budget, uses the model coefficients to calculate the throttling delay. We assume that
the time period is sufficiently long for which a calculated T be valid that the overhead
of the calculation is negligible. Note that the model coefficients vary depending
on the processor frequency and DRAM properties. Thus, if system configuration
changes, these coefficients should be regenerated.

To describe and evaluate our model generation method, we first investigate
the relationship between power consumption and throttling delay for various bench-
marks. We then explain how to develop various models for throttling delay; we
discuss the metrics used to statistically evaluate our models; and finally, we present

the comparison of the model results.

93

5.3.2 Relationship Between Power and Throttling Delay

To determine the interaction between DRAM power consumption and the throttling
delay, we conduct experiments on the Stream benchmarks, which represent a wide
variety of memory access patterns. For each benchmark, we perform simulations by
varying T between 100 and 9,000 processor cycles for every 10,000 cycle interval. We
also investigate the effect of data alignment by varying offsets between data vectors
to generate 16 different versions of each benchmark. Figure 5.8 depicts the results for
the benchmarks individually and also for all seven of them combined. In this figure,
we observe that the relationship between power and T varies depending on both the
benchmark and the offset between vectors in the same benchmark. For example, in
the figure for all the benchmarks, we see that if the target power consumption is 40
Watts, depending on the benchmark and the offset value, the appropriate value of T
varies between about 500 and 5,000 cycles. Thus, our experiments indicate that the
relationship between power consumption and T is non-linear and that using only

target power level to predict T will cause unnecessary performance degradation.

5.3.3 Models for Throttling Delay

Since the relationship between power and T is not linear, instead of trying to find a
direct relationship between these two variables, we determine other features that can
be used to relate them, and we use those features together with power to generate
models for T. In Figure 5.8 we observe that the relationship between DRAM power
consumption and T depends on the number of Reads, the number of Writes, and
the offset between data streams.

To predict T for a given power target P, our baseline model is T1=f1(P,a),
where a is a constant. This model lacks information about the number of Reads,
Writes, and the offset between data streams. To examine a more detailed model, we

create T2=f2(P,R,W,a) which includes the number of Reads and Writes in addition

94

Power (Watts)

B 2} o]
o (=] o

N
o

copy

vsum

scale

triad

0 0
fill sum
80 80
760 60
g ..
<40t T,
o .,
= RN
o
& 20t .
0 0

daxpy

ALL

0 0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Throttle Duration, T (cycles) Throttle Duration, T (cycles)

Figure 5.8: Relationship between DRAM power consumption and the throttling
delay, for the Stream benchmarks.

95

to power information. And finally, we create T3={3(P,R,W,B,a), which adds the
number of bank conflicts, B, to the model T2. Our conjecture is that the number
of bank conflicts, together with the number of Reads and Writes, will be a good
representation for the power effects of the offset between data streams.

To determine coefficients for these models, we use our measurements for the

Stream benchmarks, and we perform linear regression.

5.3.4 Regression Models

We now explain how linear regression can be used to develop models for throttling
delay. We set up a system of equations where the known values are measured DRAM
power, throttling delay, number of Reads, Writes, and bank conflicts. The unknowns
in the system are the model coefficients. Solving this system gives us the values of
the model coeflicients that we are looking for.

The data used to determine unknown coefficients in regression analysis will
be referred to as the training set, and the data used for testing the performance of
models is known as the test set. The best way to evaluate the performance of a
model is to use test sets that are independent from the training set.

Linear regression models for the throttling delay can be defined as

yi = Bo + Br1®i + Bo®in + ... + BpPip, i=1,2,....,m. (5.1)

where n is the number of elements in the training set, p is the number of coeffi-
cients less one (the degrees of freedom) in the model, and the y;’s are the measured

throttling delays. This equation can also be stated in matrix form as:

y =203 (5.2)

The elements of the ® matrix are known. Each column of this matrix (some-

96

times called basis functions) represents one feature of the model. For example, for
the model we propose in (5.1) the first column represents the measured DRAM
power, the second column the number of Reads, the third column the number Writes,
and the fourth column the number of bank conflicts. The values of y are the mea-
sured throttling delays from our training set. To find the value of the 3 vector, the

coefficients of our model, we use a least squares method, which is defined as

B=2a'y (5.3)

where ®7 is the pseudo-inverse of ® [6].

The models we have discussed thus far are called first-order regression mod-
els, because the exponent of each ®; is one. Alternatively we can define second-order
models which include quadratic, @?, and cross-product, ®;®;, terms. These models
are called complete second-order models. Higher order models may sometimes pro-
vide better fit, but these might not generalize well. Thus, in our study we do not

evaluate second-order models.

5.3.5 Statistical Analysis

To assess the adequacy of the models for T, we use coefficient of determination,
R?, which is probably the most extensively used measure of goodness for regression
models. There are various definitions of R?, each with its potential pitfalls [40]. We

use the following definition, as suggested by Mason et al. [47]:

n

> (i — i)

=5 (5.4)

n
> (yi — 5)?
i=1
In assessing the model accuracy R? is equal to unity when the model is as

good a predictor of the target data as the simple model g = g, and it equals to zero

97

if the model predicts the data values exactly [6]. For classification problems an R?
value of 0.01 is generally acceptable, while for regression problems we need smaller

values.

5.3.6 Comparison of the Model Results

The R? values for the test data set are 0.1659, 0.1344, and 0.0026 for the models
T1, T2, and T3, respectively. Clearly, model T3 achieves the best accuracy, and
it is also the the only model that satisfies the <0.01 requirement for the R%. In
Figure 5.9, we present the errors for predicting T for each of the three models. As
the R? results suggest, we see that the model T3 predicts T much more accurately
than the other two models.

More accurate estimation of the throttling delay results in more accurate
estimation for DRAM power consumption as well. In Figure 5.10, we show the
power effects of the three throttling delay models. This figure suggests that when
we use T3, power consumption will in the range of +/- 3% of the target. However,
for the other two models, the error range is about +/- 20%. The experiments
and regression results confirm our conjecture that the number of bank conflicts,
together with the number of Reads and Writes, create a good representation for

DRAM power.

5.4 Summary

In this chapter we have shown how memory controllers can be used to improve power
consumption as well as performance. We have evaluated three techniques. First,
we show that a passive power-down mechanism that does not reorder memory com-
mands can significantly reduce power consumption at the expense of a degradation
of performance of less than 2.5%. This mechanism works well for all of the mem-

ory schedulers that we studied. Second, we introduce the Power-Aware Adaptive

98

Errorin T (cycles) Error in T (cycles)

Error in T (cycles)

4000
3000
2000
1000

-1000

—2000
-3000

—4000

4000
3000
2000
1000

-1000f

—2000
—-3000
—4000

4000
3000
2000
1000

-1000
—2000
—-3000
—4000

Model uses Power

Model uses Power, Reads, and Writes

Model uses Power, Reads, Writes, and Bank Conflicts

B 5 o A M g Gbioga Mo Rt E5 TG N B R e 3 a8 S m b i e b A

Test cases

Figure 5.9: Errors in predicting the throttling delay, T.

99

% error in power prediction % error in power prediction

% error in power prediction

Model uses Power

Model uses Power, Reads, and Writes
T T

Model uses Power, Reads, Writes, and Bank Conflicts
T T T

8 o N 82 0 8 0700 US40 67 X0 A A Ae iR
Pl BORERARFCR RS :“':?r\"

Test cases

Figure 5.10: Proximity to the target DRAM power.

100

History-Based scheduler, a small modification of the previously studied Adaptive
History-Based scheduler. This Power-Aware AHB scheduler improves the energy
efficiency of the Stream and NAS benchmarks by an average of 400% compared
to the in-order scheduler. The simple and effective changes to the original AHB
scheduler support the claim that the AHB scheduler is a powerful framework for a
variety of scheduling concerns. Finally, we present a throttling mechanism, which
actively blocks commands in the reorder queues and can further decrease power
consumption. This throttling mechanism might prove useful when memory systems

must stay beneath some peak power threshold.

101

Chapter 6

Related Work

6.1 Methods to Improve Bandwidth

To increase sustained memory bandwidth, memory systems are organized as multiple
banks that can be accessed simultaneously. In banked memory systems, simultane-
ous access is achieved by implementing some sort of interleaving [11]. Interleaved
memory systems considerably improve bandwidth, but restrictions on accesses to
banks, i.e. bank conflicts, prevent the system from attaining the maximum avail-
able bandwidth. Elimination of bank conflicts has been extensively studied for
several decades. There are basically two broad classes of techniques to avoid bank

conflicts: static approaches and dynamic methods.

6.1.1 Static Methods

Static bank conflict avoiding techniques, such as skewing [21, 13] or prime memory
systems [60, 58], attempt to arrange the order of memory commands to minimize
bank conflicts. Unfortunately, these static methods are effective for reducing only
intra-stream bank conflicts, i.e. conflicts caused by one stream. There are also

compiler-based methods such as data padding and loop transformations. For ex-

102

ample, Moyer [53] presents a compiler-based approach, in which loops are unrolled
and instructions are reordered to improve memory locality. But Moyer’s technique

applies specifically to stream-oriented workloads in cacheless systems.

6.1.2 Dynamic Methods

Dynamic conflict avoiding techniques have been proposed by various research groups
[7, 71, 57, 52, 51, 50, 49, 61] to alleviate both intra- and inter-stream bank conflicts.
As an example, the Impulse memory system by Carter et al. [7] improves memory
performance by dynamically remapping physical addresses, but it requires modifi-
cations to the applications and the operating system.

There are also various heuristics that have been proposed to reorder memory
commands. Valero et al. [71, 57] describe a memory reordering technique that
dynamically eliminates bank conflicts by enforcing a strict round robin ordering
of bank accesses. This ordering maximizes the average distance between any two
consecutive accesses to the same bank and thus reduces the stalls due to bank
conflicts. However, this technique considers only bank conflicts, and it can only
eliminate bank conflicts if the requests are fairly uniformly distributed among banks.

McKee et al. [52, 51, 50, 49] propose a memory subsystem, Stream Memory
Controller (SMC), to maximize bandwidth for streaming applications. Their design
includes three main components: stream buffers, caches and a memory command
scheduler. The compiler detects streams in the code and generates non-cacheable
memory requests that bypass caches at run time and go directly to the stream
buffers, which are essentially FIFO queues. The memory scheduler dynamically
selects commands from either the stream buffers or from the caches. McKee et al.
observe two issues in reordering commands in SMC: selecting the memory bank
to which the next access to schedule, and selecting the FIFO queue which has a

command for that particular bank. They examine and evaluate various dynamic

103

ordering heuristics, but they don’t propose an algorithm. The bank selection and
FIFO selection policies that they evaluate are versions of a round robin scheduler.
The memory controller considers each stream buffer in sequential fashion, streaming
as much data as possible to the current buffer before going to the next buffer. This
approach may reduce conflicts among streams, but it does not reorder references
within a single stream.

Similar to static approaches, the preceding dynamic reordering studies are
also restricted to bank conflicts. Valero et al.’s and McKee et al.’s approaches
can be complementary to our approach in the sense that an AHB scheduler can
use these methods as another optimization criteria. For example, when there are
multiple commands in the reorder queues to choose from and when all the other
optimization criteria are equal, an AHB scheduler can select the command that
matches a predetermined sequence rather than choosing the oldest command.

Rixner et al. [61] explore several heuristics for reordering accesses on the
Imagine stream processor [38]. Each of these heuristics reorder memory operations
by considering the characteristics of modern DRAM systems and modern memory
controllers. For example, one policy gives row accesses priorities over column ac-
cesses, and another gives column accesses priorities over row accesses. None of these
simple policies is shown to be best in all situations, and none of them uses the
command history when making decisions. Furthermore, these policies are not easily
extended to more complex memory systems with a large number of different types

of hardware constraints.

6.2 Hardware Prefetching for Irregular Applications

One line of hardware prefetching research has extended next-line prefetching [65, 34]
by adding non-unit strides [55], by predicting strides [2, 19], and by supporting

irregular strides using Markov predictors [33, 62]. Nesbit and Smith [54] introduce

104

the Global History Buffer to improve prefetch effectiveness and reduce table sizes.
None of these prefetchers has successfully exploited low amounts of spatial locality.

Another line of research focuses on detecting and exploiting spatial locality
without tracking individual streams [32, 39, 44, 9]. Instead, variations of the Spatial
Locality Detection Table, introduced by Johnson et al., track accesses to individual
regions of memory so that spatially correlated data can be prefetched together. A
problem with these approaches is the need for large tables to detect locality. Somogyi
et al. [67] show how much smaller tables can be used by correlating spatial locality
with the program counter in addition to parts of the data address. As a result,
Spatial Memory Streaming can use tables as small as 64KB. Moreover, Somogyi
et al. show performance improvements for commercial workloads, indicating that
their technique can handle locality patterns that span large regions of memory.
By contrast, our approach cannot prefetch as aggressively across irregular locality
patterns but instead attempts to use a much smaller amount of hardware to prefetch
the very small streams that likely make up these larger patterns.

Scheduled Region Prefetching (SRP) [43] prefetches large regions of memory,
such as 4KB at a time, and introduces mechanisms for reducing the opportunity
cost of prefetches. Prefetches to open banks are given priority, prefetched data are
brought into the LRU position of the L2 sets, and prefetch commands are given low
priority in the memory controller. In particular, the SRP prioritizer receives feed-
back from the memory system and issues prefetch commands only if the channels
are idle and there is no pending request from the L2 cache. By contrast, our method
uses feedback from the memory system to select from among five different prioriti-
zation policies, where its most conservative policy is roughly equivalent to the SRP
prioritization policy. Our scheduling technique can improve performance because
for some workloads the most conservative policy unnecessarily inhibits prefetches.

For example, there may be pending demand requests that will not conflict with a

105

prefetch command because they target different memory banks.

One issue with SRP is the high memory bandwidth pressure that it incurs
because of its large regions. Wang et al. [73] solve this problem by using the compiler
to trigger the prefetches selectively. Our solution instead uses a modest amount of
hardware to prefetch at a much finer granularity.

Others have studied memory-side prefetching [1, 7, 75, 76, 66] and have shown
that memory-side prefetching is largely orthogonal to processor-side prefetching [7,
26]. Unlike our approach, previous methods do not monitor the status of the memory

system, so they can increase latencies for regular memory accesses.

6.3 DRAM Power Optimizations

Power consumption of the memory subsystem has recently received considerable
attention. Power optimization techniques in DRAM can be classified in three cate-
gories [4]: hardware-based methods inside memory controller, compiler or operating

system-directed techniques, and hybrid approaches.

6.3.1 Hardware-Based Approaches

Delaluz et al. [16] show, in the context of cacheless systems with Rambus DRAM,
that the power-down idea offers good power savings for in-order scheduling. Their
goal is to try to match predicted idle time with a low-power mode that has the
appropriate latency to resume activity, however they do not evaluate this method
in systems with caches. Fan et al. [18] extend this work to systems with 2-level
caches. Irani et al. [31] give a theoretical analysis of dynamic power management
in memory controllers. All of these methods basically monitor usage of memory
sections and move to a different power level if the usage exceeds a threshold level.
Since threshold values are system and application dependent, these algorithms are

difficult to tune.

106

Previous hardware-based approaches for power savings assume in-order schedul-
ing of the memory commands. We show that performance of memory system can
be improved dramatically if commands are reordered [28, 29, 27]. As reordering
improves performance, it naturally reduces the length of the gaps between memory
commands. Since threshold-based predictive algorithms passively monitor memory
traffic to decide when to power-down a memory section, we expect that shorter gaps
will make those algorithms less effective. In contrast, our work takes an active ap-

proach and tries to reorder commands to save power while preserving performance.

6.3.2 Compiler- or Operating System-Based Approaches

Compiler-directed approaches aim to group memory accesses to the same memory
sections to increase the size of idle periods. This goal is achieved by loop trans-
formations [37], data layout optimizations [36], instruction scheduling [74, 46, 56],
or with combinations of these methods [15]. In cacheless single processor systems,
compile-time techniques can help the memory controller make better predictions for
idle periods of memory sections. However, in systems with multi-level caches or
with shared memory controllers [69, 35], the role of the compiler for power savings
is limited.

Various studies have explored operating system support for power savings.
Vahdat et al. [70] suggest incorporating energy efficiency as a first order design
criteria for operating systems. Lu et al. [45] propose shutting down unused system
components to save energy. By controlling the set of physical devices that are
in active use, the actual power consumption for their access can be controlled by
putting inactive devices into low-power mode. Zhou et al. [77] use this approach
and change the size of allocated memory for processes by tracking page miss rate
VS. memory size curve.

Other OS-based approaches rely on improving the placement of data in phys-

107

ical memory. Better page allocation policies can also save energy. By allocating new
pages to memory that is already in use, the number of active memory devices can be
kept to a minimum [41, 17]. One performance optimization is to have the operating
system activate memory used by a newly scheduled process during a context switch,
thus largely hiding the latency of exiting low-power mode [17, 23]. Intelligent page
migration [14, 24], where data is moved from one memory device to another to re-
duce the number of active memory devices, has also been proposed. Recent work
by Huang et al. [24] proposes an OS-based approach which reshapes memory traffic
at the page granularity. This property of their method is similar to our approach of
reordering memory commands.

Our scheduling methods and OS-based approaches may be complementary
to each other, because our approach operates at a much finer granularity compared
to OS-based techniques. However, with the use of large page sizes [35], OS-based
techniques which require data migration may degrade performance considerably.

Of course, any approach that minimizes the number of active memory devices
also reduces the available memory bandwidth. Accesses previously performed in
parallel to different memory devices may need to be performed serially to the same
memory device. Most previous work does not accurately model the performance
loss that stems from such serialization. By contrast, our detailed simulators allow

us to model such effects accurately.

6.3.3 Hybrid Approaches

Recent studies have shown the importance of addressing DRAM power consumption
in large server systems [42, 5]. Huang et al. propose a cooperative software-hardware
approach that tracks process-specific idle periods to exploit DDR’s low-power modes
for ranks of DRAM devices [25]. Felter et al. [20] jointly manage processor and

DRAM power by attempting to maximize system performance for a given total

108

power budget, which is particularly useful when either the CPU or DRAM is signif-
icantly less utilized than the other. Our approach is transparent to software, which

we believe is critical for successful adoption.

109

Chapter 7

Conclusions and Future Work

In the last few decades, because of increasing memory latencies and increasing band-
width demands, memory systems have become a major performance bottleneck for
computer systems. More recently, power consumption of DRAM chips has also be-
come a first order concern. Previous proposals for improving latency, bandwidth,
or power aspects of memory systems have significantly increased the complexity of
processors and /or memory organizations. Although processor and memory systems
have been explored extensively, the interface between them, the memory controller,
had received relatively less attention. As processors and memory systems become
increasingly complex, it is natural to explore ways that the memory controller can
be made more sophisticated. Therefore, in this dissertation, we have concentrated
on the memory controller, and we have proposed novel solutions to all three aspects
of memory systems. We have evaluated our techniques in the context of the memory
controller of a highly tuned modern processor, the IBM Powerb5+. Our evaluation
for both technical and commercial benchmarks in single-threaded and simultane-
ous multi-threaded environments has shown that our techniques for latency hiding,
bandwidth increase, and power reduction achieve significant improvements.

This dissertation makes the following contributions:

110

e To increase available bandwidth between the memory controller and DRAM,
we have introduced a scheduling approach that incorporates several novel tech-
niques. In this approach, we use the command history to select commands that
reduce delays due to resource conflicts. We use the command history also to
schedule commands that match some expected command pattern. Because
the goals of these two techniques may conflict, we probabilistically combine
them in a single history-based scheduler that partially satisfies both goals.
Finally, we implement three history-based schedulers—each tailored to a dif-
ferent command pattern—and we dynamically select from among those based

on the observed ratio of Reads and Writes.

Our new scheduling approach improves the performance of the Stream,
NAS, and a set of commercial benchmarks over a scheduler that does not
change the order of commands by 55.6%, 25.6%, and 51.6%, respectively.
When compared to the best approach proposed so far, for the same bench-

marks, our scheduler is better by 16.0%, 9.7%, and 7.5%, respectively.

To explain our results, we have looked inside the memory system to
provide insights about how our solution changes the various bottlenecks within
the system. We have found that our solution is more robust than previous
scheduling approaches in the sense that our solution is less sensitive to changes
in design parameters. We have also found that the AHB scheduler is superior
to the previous schedulers even when the other schedulers are given additional

hardware resources.

e To hide memory latency, we have introduced a new stream-based prefetching
technique, Adaptive Stream Detection, which is effective for streams of any
length, including very short streams. By monitoring the amount of spatial lo-
cality in a program’s execution in a Stream Length Histogram, our prefetcher

can probabilistically decide when to start and stop prefetching based on the

111

recently observed behavior. A secondary contribution of our prefetching ap-
proach is the notion of Adaptive Scheduling, which adapts the aggressiveness
of the prefetcher based on the observed number of conflicts between prefetch

commands and regular commands.

We have shown that when implemented as a memory-side prefetcher,
our prefetching approach provides significant performance improvements, even
for commercial workloads that have low spatial locality. When we combine
our scheduling and prefetching methods, we obtain 14.3%, 13.7%, and 11.2%
performance improvements for the SPEC2006fp, NAS, and the commercial

benchmarks, respectively.

We have shown how memory controllers can be used to improve power con-
sumption as well as performance. We have made three contributions. First,
we have presented details of how to implement a DRAM power-down mech-
anism with as small a performance degradation as possible. Second, we have
modified our scheduling method to include power consumption as a new crite-
rion during scheduling. Finally, we have introduced a throttling mechanism,
which actively blocks commands in the reorder queues. To accurately calcu-
late the duration of throttling for a given power budget, we have developed a

methodology which uses regression models based on the measurement data.

In addition to providing substantial performance and power improvements, our tech-

niques are superior to the previously proposed methods in terms of cost as well.

For example, a version of our scheduling approach has been implemented in the

Power5+, and it has increased the transistor count of the chip by only 0.02%. Simi-

larly, we estimate that our prefetching approach will increase the transistor count of

the chip by approximately 0.12%, which is much less than the cost of the previously

proposed methods.

112

This dissertation has shown that without increasing the complexity of neither
the processor nor the memory organization, all three aspects of memory systems can
be significantly improved with low-cost enhancements to the memory controller.

Although we have evaluated our solutions in the context of the IBM Power5+,
our solutions should apply to other modern general purpose processors too. Because,
most modern systems use a common DRAM technology, therefore, the assumptions
that our solutions make about DRAMs are true for other systems as well. In partic-
ular, our solutions rely on the following assumptions: (1) complex DRAM structure
with multiple units of sub-organization, and (2) existence of a power-down mecha-
nism in DRAM. Because of increasing bandwidth demands, we should expect more
parallelism in future DRAM organizations. And because of increasing importance of
power consumption, we should also expect DRAMs to continue having power-down
mechanisms. Therefore, our solutions are likely to apply to future systems as well.

The current trend in computer architecture is to use simultaneous multi-
threading and to design multi-processor chips. This trend increases the pressure
on the memory system. Thus, memory controllers, and therefore our solutions, are
likely to become more important in the future.

There are two possible ways to extend this research: (1) we can try to further
improve the techniques that we have presented, and (2) we can implement our
techniques in places other than the memory controller.

Although our techniques provide significant improvements, they are far from
obtaining the performance of the ideal memory system, which has zero latency
and infinite bandwidth. Indeed, the ideal memory system will further improve
the performance of the SPEC2006fp, NAS, and commercial benchmarks by 44.2%,
37.6%, and 52.9%, respectively, over the combined use of our latency and bandwidth
improvement techniques.

We have shown that our memory scheduling approach achieves more than

113

95% of the bandwidth of a perfect scheduler. Therefore, there is not much headroom
to improve this method on the Power5+. However, for other systems, incorporating
bank conflicts into the scheduler can be considered at the expense of costlier design.
Despite our scheduling approach, the prefetching method that we have introduced
has headroom for further improvements. A major improvement to our method may
occur if the compiler generates prefetch instructions for streams of length one and
our prefetching technique gives special attention to those prefetches. Modifying
cache replacement policies may also affect the occurrence of single element streams.
Another improvement opportunity is to extend our prefetching method by designing
multiple prefetchers and selecting one by using certain bits of the memory address
and/or program counter. Also, in this dissertation, we have evaluated the implemen-
tation of only single line prefetching. As another improvement to our prefetching
technique, implementation of multiple line prefetching can be considered.

Finally, in this dissertation, we have focused to improve the bandwidth and
latency between the memory controller and DRAM. However, similar concerns exist
in other parts of systems as well. A natural extension of our work is the application
of our techniques into the L2 cache controller to improve bandwidth and latency

inside the chip.

114

[1]

[2]

[6]

[7]

(8]

Bibliography

T. Alexander and G. Kedem. Distributed prefetch-buffer/cache design for high-
performance memory systems. In HPCA ’96: Proceedings of the 2nd International
Symposium on High Performance Computer Architecture, pages 254-263. IEEE Com-
puter Society, 1996.

J.-L. Baer and T.-F. Chen. Effective hardware-based data prefetching for high-
performance processors. IEEE Transactions on Computers, 44(5):609-623, 1995.

D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrish-
nan, and S. Weeratunga. The NAS parallel benchmarks (94). Technical report, RNR
Technical Report RNR-94-007, March 1994.

L. Benini, A. Macii, and M. Poncino. Energy-aware design of embedded memories:
A survey of technologies, architectures, and optimization techniques. Transactions on
Embedded Computing Systems, 2(1):5-32, 2003.

R. Bianchini and R. Rajamony. Power and energy management for server systems.
Technical Report DCS-TR-528, Rutgers University, June 2003.

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
1995.

J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C.
Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. Impulse: Building a
smarter memory controller. In HPCA’ 99: Proceedings of the 5th International Sym-
posium on High Performance Computer Architecture, pages 70-79. IEEE Computer
Society, 1999.

A. Charlesworth, N. Aneshansley, M. Haakmeester, D. Drogichen, G. Gilbert,

115

[10]

[11]
[12]

[13]

[14]

[15]

[16]

R. Williams, and A. Phelps. The starfire SMP interconnect. In Proceedings of the
1997 ACM/IEEE Conference on Supercomputing (CDROM), pages 1-20. ACM Press,
1997.

C. F. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos. Accurate and complexity-effective
spatial pattern prediction. In HPCA ’04: Proceedings of the 10th International Sym-
posium on High Performance Computer Architecture, pages 276-287. IEEE Computer
Society, 2004.

J. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu, D. Plass, J. Dawson, P. Muench,
L. Powell, M. Floyd, B. Sinharoy, M. Lee, M. Goulet, J. Wagoner, N. Schwartz, S. Run-
yon, G. Gorman, P. Restle, R. Kalla, J. McGill, and S. Dodson. Design and implemen-
tation of the Power5 microprocessor. In Proceedings of the 41st Annual Conference on
Design Automation, pages 670-672, 2004.

H. G. Cragon. Memory Systems and Pipelined Processors. Jones and Bartlett, 1996.
Z. Cvetanovic. Performance analysis of the Alpha 21364-based HP GS1280 multipro-
cessor. In ISCA’ 03: Proceedings of the 30th Annual International Symposium on
Computer Architecture, pages 218-229. ACM Press, 2003.

I. D. T. Harper and J. R. Jump. Performance evaluation of vector accesses in parallel
memories using a skewed storage scheme. In ISCA ’86: Proceedings of the 13th Annual
International Symposium on Computer Architecture, pages 324-328. IEEE Computer
Society, 1986.

V. Delaluz, M. Kandemir, and I. Kolcu. Automatic data migration for reducing energy
consumption in multi-bank memory systems. In DAC ’02: Proceedings of the 39th
Conference on Design Automation, pages 213-218. ACM Press, 2002.

V. Delaluz, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Energy-oriented compiler
optimizations for partitioned memory architectures. In CASES ’00: Proceedings of the
2000 International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems, pages 138-147. ACM Press, 2000.

V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. Irwin.
DRAM energy management using software and hardware directed power mode control.
In HPCA ’01: Proceedings of the 7Tth International Symposium on High Performance
Computer Architecture. IEEE Computer Society, 2001.

116

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. Irwin.
Scheduler-based DRAM energy management. In DAC ’02: Proceedings of the 39th
Conference on Design Automation, pages 697-702. ACM Press, 2002.

X. Fan, C. Ellis, and A. Lebeck. Memory controller policies for DRAM power manage-
ment. In ISLPED ’01: Proceedings of the 2001 International Symposium on Low-Power
Electronics and Design, pages 129-134. ACM Press, 2001.

K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. Memory-system design consider-
ations for dynamically-scheduled processors. In ISCA ’97: Proceedings of the 24th An-
nual International Symposium on Computer Architecture, pages 133-143. ACM Press,
1997.

W. Felter, K. Rajamani, C. Rusu, and T. Keller. A performance-conserving approach
for reducing peak power consumption in server systems. In ICS ’05: Proceedings of the
19th ACM International Conference on Supercomputing, pages 293-302. ACM Press,
2005.

Q. S. Gao. The Chinese remainder theorem and the prime memory system. In ISCA
’93: Proceedings of the 20th Annual International Symposium on Computer Architec-
ture, pages 337-340. ACM Press, 1993.

http://www.micron.com. Technical report.

H. Huang, P. Pillai, and K. G. Shin. Design and implementation of power-aware virtual
memory. In USENIX 2003 Annual Technical Conference, 2003.

H. Huang, K. G. Shin, C. Lefurgy, and T. Keller. Improving energy efficiency by making
DRAM less randomly accessed. In ISLPED ’05: Proceedings of the 2005 International
Symposium on Low-Power Electronics and Design, August 2005.

H. Huang, K. G. Shin, C. Lefurgy, K. Rajamani, T. Keller, E. V. Hensbergen, and
F. Rawson. Cooperative software-hardware power management for main memory.
In Proceedings of the Power-Aware Computer Systems: 4th International Workshop,
pages 61-77, 2004.

C. Hughes and S. Adve. Memory-side prefetching for linked data structures. Technical
Report UITUCDCS-R-~2001-2221, University of Illinois at Urbana-Champaign, 2001.

I. Hur. Method and system for creating and dynamically selecting an arbiter design in a
data processing system. US patent filed by International Business Machines, September

2004.

117

[28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

I. Hur and C. Lin. Adaptive history-based memory schedulers. In Proceedings of the
37th Annual ACM/IEEE International Symposium on Microarchitecture, pages 343—
354. IEEE Computer Society, December 2004 (Winner, Best Paper Award).

I. Hur and C. Lin. Adaptive history-based memory schedulers for modern processors.
IEEE Micro (Top Picks Issue), 26(1):22—29, 2006.

I. Hur and C. Lin. Memory prefetching using adaptive stream detection. In Proceedings
of the 39th Annual ACM/IEEFE International Symposium on Microarchitecture. IEEE
Computer Society, December 2006.

S. Irani, S. Shukla, and R. Gupta. Online strategies for dynamic power management
in systems with multiple power-saving states. Transactions on Embedded Computing
Systems, 2(3):325-346, 2003.

T. L. Johnson, M. C. Merten, and W.-M. W. Hwu. Run-time spatial locality detec-
tion and optimization. In Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 57-64. IEEE Computer Society, 1997.

D. Joseph and D. Grunwald. Prefetching using markov predictors. In ISCA ’97:
Proceedings of the 24th Annual International Symposium on Computer Architecture,
pages 252-263. ACM Press, 1997.

N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers. In ISCA ’90: Proceedings of the 17th An-
nual International Symposium on Computer Architecture, pages 364-373. ACM Press,
1990.

R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5 chip: A dual-core multithreaded
processor. IEEE Micro, 24(2):40-47, 2004.

M. Kandemir. Impact of data transformations on memory bank locality. In DATE
’04: Proceedings of the Conference on Design, Automation and Test in Furope, page
10506. IEEE Computer Society, 2004.

M. Kandemir, U. Sezer, and V. Delaluz. Improving memory energy using access pat-
tern classification. In ICCAD ’01: Proceedings of the 2001 IEEE/ACM International
Conference on Computer-Aided Design, pages 201-206. IEEE Computer Society, 2001.
B. Khailany, W. J. Dally, U. J. Kapasi, P. Mattson, J. Namkoong, J. D. Owens,
B. Towles, A. Chang, and S. Rixner. Imagine: Media processing with streams. IEEE
Micro, 21(2):35-46, 2001.

118

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

S. Kumar and C. Wilkerson. Exploiting spatial locality in data caches using spatial
footprints. In ISCA ’98: Proceedings of the 25th Annual International Symposium on
Computer Architecture, pages 357-368. IEEE Computer Society, 1998.

T. O. Kvalseth. Cautionary note about R2. The American Statistician, 39(4):279-285,
November 1985.

A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware page allocation. In ASPLOS-
IX: Proceedings of the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 105-116. ACM Press, 2000.
C. Lefurgy, K. Rajamani, F. L. Rawson III, W. Felter, M. Kistler, and T. W. Keller.
Energy management for commercial servers. IEEFE Computer, 36(12):39-48, December
2003.

W. F. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM latencies with an inte-
grated memory hierarchy design. In HPCA ’01: Proceedings of the 7th International
Symposium on High Performance Computer Architecture, pages 301-312. IEEE Com-
puter Society, 2001.

W. F. Lin, S. K. Reinhardt, D. Burger, and T. R. Puzak. Filtering superfluous
prefetches using density vectors. In ICCD ’01: Proceedings of the International Con-
ference on Computer Design: VLSI in Computers € Processors, pages 124-132. IEEE
Computer Society, 2001.

Y.-H. Lu, L. Benini, and G. D. Micheli. Operating-system directed power reduction.
In ISLPED ’00: Proceedings of the 2000 International Symposium on Low-Power Elec-
tronics and Design, pages 37-42. ACM Press, 2000.

C.-G. Lyuh and T. Kim. Memory access scheduling and binding considering energy
minimization in multi-bank memory systems. In DAC ’04: Proceedings of the 41st
Annual Conference on Design Automation, pages 81-86. ACM Press, 2004.

R. L. Mason, R. F. Gunst, and J. L. Hess. Statistical Design and Analysis of Experi-
ments. John Wiley & Sons, 1989.

J. D. McCalpin. Stream: Sustainable memory bandwidth in high performance com-
puters. Technical report, http://www.cs.virginia.edu/stream/.

S. A. McKee. Hardware support for dynamic access ordering: Performance of some

design options. Technical Report CS-93-08, University of Virginia, September 1993.

119

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

S. A. McKee. Mazimizing Memory Bandwidth for Streamed Computations. PhD thesis,
University of Virginia, May 1995.

S. A. McKee, R. H. Klenke, K. L. Wright, W. A. Wulf, M. H. Salinas, J. H. Aylor, and
A. P. Batson. Smarter memory: Improving bandwidth for streamed references. [EEE
Computer, pages 54—63, July 1998.

S. A. McKee, W. A. Wulf, J. H. Aylor, M. H. Salinas, R. H. Klenke, S. I. Hong,
and D. A. B. Weikle. Dynamic access ordering for streamed computations. [EEFE
Transactions on Computers, 49(11):1255-1271, 2000.

S. A. Moyer. Access ordering and effective memory bandwidth. PhD thesis, University
of Virginia, 1993.

K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history buffer.
In HPCA ’04: Proceedings of the 10th International Symposium on High Performance
Computer Architecture, pages 96-105, 2004.

S. Palacharla and R. E. Kessler. Evaluating stream buffers as a secondary cache re-
placement. In ISCA ’94: Proceedings of the 21st Annual International Symposium on
Computer Architecture, pages 24-33. IEEE Computer Society, 1994.

P. R. Panda and L. Chitturi. An energy-conscious algorithm for memory port alloca-
tion. In ICCAD ’02: Proceedings of the 2002 IEEE/ACM International Conference on
Computer-Aided Design, pages 572-576. ACM Press, 2002.

M. Peiron, M. Valero, E. Ayguade, and T. Lang. Vector multiprocessors with arbitrated
memory access. In ISCA ’95: Proceedings of the 22nd Annual International Symposium
on Computer Architecture, pages 243-252. ACM Press, 1995.

R. Raghavan and J. P. Hayes. On randomly interleaved memories. In Proceedings of
the 1990 ACM/IEEE Conference on Supercomputing, pages 49-58. IEEE Computer
Society, 1990.

K. Rajamani. Memsim users’ guide, IBM research report. Technical Report RC23431,
October 2004.

B. R. Rau. Pseudo-randomly interleaved memory. In ISCA ’91: Proceedings of the
18th Annual International Symposium on Computer Architecture, pages 74-83. ACM
Press, 1991.

S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory access

120

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

scheduling. In ISCA ’00: Proceedings of the 27th Annual International Symposium on
Computer Architecture, pages 128-138, June 2000.

S. Sair, T. Sherwood, and B. Calder. A decoupled predictor-directed stream prefetching
architecture. IEEE Transactions on Computers, 52(3):260-276, March 2003.

H. Schwetman. CSIM19: a powerful tool for building system models. In WSC "01:
Proceedings of the 33nd Conference on Winter Simulation, pages 250-255. IEEE Com-
puter Society, 2001.

S. L. Scott. Synchronization and communication in the T3E multiprocessor. In
ASPLOS-VII: Proceedings of the Seventh International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 26-36. ACM Press,
1996.

A. Smith. Sequential program prefetching in memory hierarchies. IEEE Transactions
on Computers, 11(12):7-12, December 1978.

Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory thread for correlation
prefetching. In ISCA ’02: Proceedings of the 29th Annual International Symposium on
Computer Architecture, pages 171-182, 2002.

S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial memory
streaming. In ISCA ’06: Proceedings of the 33th Annual International Symposium on
Computer Architecture, pages 252-263. ACM Press, 2006.

Standard Performance Evaluation Corporation. SPEC CPU 2006,
http://www.spec.org, August 2006.

J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Lee, and B. Sinharoy. Power4 system
microarchitecture. IBM Journal of Research and Development, 46(1):5-26, 2002.

A. Vahdat, A. Lebeck, and C. S. Ellis. Every joule is precious: the case for revisit-
ing operating system design for energy efficiency. In EW 9: Proceedings of the 9th
Workshop on ACM SIGOPS European Workshop, pages 31-36. ACM Press, 2000.

M. Valero, T. Lang, J. M. Llaber, M. Peiron, E. Ayguade, and J. J. Navarra. Increasing
the number of strides for conflict-free vector access. In ISCA ’92: Proceedings of the
19th Annual International Symposium on Computer Architecture, pages 372—-381. ACM
Press, 1992.

R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nishtala, and B. Lee. Performance

121

[73]

[74]

[75]

[76]

[77]

optimizations and bounds for sparse matrix-vector multiply. In Proceedings of the 2002
ACM/IEEE Conference on Supercomputing, pages 1-35. IEEE Computer Society, 2002.
Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and C. C. Weems. Guided region
prefetching: a cooperative hardware/software approach. In ISCA ’03: Proceedings of
the 30th Annual International Symposium on Computer Architecture, pages 388—398.
ACM Press, 2003.

Z. Wang and X. S. Hu. Power aware variable partitioning and instruction scheduling
for multiple memory banks. In DATE ’0/: Proceedings of the Conference on Design,
Automation and Test in Europe, page 10312. IEEE Computer Society, 2004.

C.-L. Yang and A. R. Lebeck. Push vs. pull: data movement for linked data structures.
In ICS ’00: Proceedings of the 14th International Conference on Supercomputing, pages
176-186. ACM Press, 2000.

L. Zhang, Z. Fang, M. Parker, B. Mathew, L. Schaelicke, J. Carter, W. Hsieh, and
S. McKee. The Impulse memory controller. [EEE Transactions on Computers,
50(11):1117-1132, November 2001.

P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar. Dynamic
tracking of page miss ratio curve for memory management. In ASPLOS-XI: Proceed-
ings of the 11th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 177-188. ACM Press, 2004.

122

Vita

Ibrahim Hur was born in Izmir, Turkey, on March 29, 1968, the son of Hamza Hur
and Mufide Hur. After receiving his high school diploma from Izmir Ataturk Lisesi
in Izmir, he took the annual national university entrance examination, in which his
score ranked him 40" among about one million students. He studied Computer
Science and Engineering at Ege University, Izmir. After receiving his Bachelor of
Science degree in 1991, he worked as a systems analyst for two years in a project
for NATO. In 1993, he received a scholarship from Turkish government for graduate
studies, and he came to the United States. He completed the degree of Master of
Science in Computer Science at Southern Methodist University, Dallas, Texas, in
1995, and he entered the Graduate School at The University of Texas at Austin. In
1997, he joined the International Business Machines Corporation. He is currently
employed by the IBM Systems and Technology Group in Austin, where he works in
the areas of computer architecture and performance analysis. During his graduate
studies, Ibrahim was supported by teaching and research assistantships, and he

received the IBM Ph.D. Fellowship in 2000 and 2001.

Permanent Address: 247 Sokak No.2/2 D.15, Bornova, Izmir, Turkey

This dissertation was typeset with A TEX 2:by the author.

123

