
Using Peer Review to Teach Software Testing

Joanna Smith
University of Texas at Austin

joanna.smith@utexas.edu

Joe Tessler
University of Texas at Austin

joe.r.tessler@utexas.edu

Elliot Kramer
University of Texas at Austin

ejameskramer@gmail.com

Calvin Lin
University of Texas at Austin

lin@cs.utexas.edu

ABSTRACT
This paper explains how peer review can be used to teach
software testing, an important skill that is typically not care-
fully taught in most programming courses. The goals of such
peer review are (1) to frame testing as a fun and competitive
activity, (2) to allow students to learn from each other, (3) to
demonstrate the importance of testing by uncovering latent
bugs in the students’ code, and (4) to provide a mechanism
for evaluating testing skills. This paper explains how we
added peer review to an honors data structure course with-
out significantly reducing its heavy programming load. We
evaluate our intervention by summarizing surveys of student
attitudes taken throughout the course.

Categories and Subject Descriptors
D.2 [Software Engineering]: Testing and Debugging

General Terms
Human Factors

Keywords
Peer Review, Education, Software Testing

1. INTRODUCTION
Software testing is a crucial component of the software

lifecycle. A 2002 study by the National Institute of Stan-
dards and Technology reports that software bugs cost the
US economy an estimated $59.5 billion annually and that
more than a third of this cost could be eliminated by im-
proved software testing [17]. Bill Gates agrees with the im-
portance of software testing, saying, “[At Microsoft,] we have
as many testers as we have developers. And testers spend
all their time testing, and developers spend half their time
testing [8].”

Unfortunately, there are several reasons why it is difficult
to teach software testing. First, most students are not en-
thusiastic about testing [4]. Second, in most programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICER’12, September 9–11, 2012, Auckland, New Zealand..
Copyright 2012 ACM 978-1-4503-1604-0/12/09 ...$15.00.

courses, testing is not an important aspect of a student’s
grade, perhaps because testing is a complex process that can
be time-consuming to grade. Third, there is a self-fulfilling
aspect to the view that testing is unimportant: Students
who do not value testing are likely to produce poor test
cases, so they do not learn that testing can effectively reveal
bugs. Finally, testing is difficult to teach through lectures or
through mechanical procedures [12]; instead, “the challenge
... is to develop group activities that can foster insight—a
level of abstract understanding that can apply from situation
to situation—rather than emphasizing detailed procedural
understanding [12].”

The situation is further complicated if we wish to teach
white box testing of moderately large and complex pro-
grams. As opposed to black box testing, which focuses on a
program’s externally observable behavior, white box testing
adds richness and complexity; for example, it allows testers
to create custom test harnesses that stress specific internal
interfaces.

Peer review, or peer testing, in which students attempt to
break code written by their peers, has the potential to ad-
dress all of these problems. Because it is competitive, it can
be fun and exciting. Because the peer reviews are graded,
they can be weighted heavily in the student’s grade. Be-
cause peer testing often reveals bugs in a student’s program,
it can illustrate the benefits of good software testing. Fi-
nally, because the peer reviews describe the reviewer’s test-
ing methodology and because students receive multiple peer
reviews, the process exposes students to a variety of testing
ideas, allowing students to learn from their peers.

In this paper, we describe a novel approach of incorporat-
ing peer testing into a lower-division programming course,
where the testing includes white box testing of moderately
complex software. We also explain how we address a number
of issues that arise from such an activity, including issues of
fairness, anonymity, academic integrity, and the increased
workload.

More specifically, we add a peer testing component to two
of seven programming assignments in a freshman honors
data structures course. For these two assignments, students
work in pairs, first to produce their solution and then to
review four other solutions. The reviews are double-blind,
and the goal of each review is not simply to identify bugs,
but to provide insights as to the possible causes of the bugs
and to explain the reviewer’s testing methodology. Finally,
each team submits a peer testing report that summarizes
what they’ve learned from the process and that evaluates

the quality of the four reviews—and their underlying test
methodologies—that they received.

We find that we are able to add these peer testing ac-
tivities without reducing the heavy programming workload.
We also find, through surveys taken throughout the course,
that students enjoy peer testing, that students find peer test-
ing valuable, and that peer testing increases their perceived
ability to test software.

This paper is organized as follows. Section 2 places our
work in the context of prior work, and Section 3 describes the
setting for our experiment. Section 4 describes our peer test-
ing intervention, and we evaluate the results in Section 5.

2. RELATED WORK
Peer review has been used in many teaching situations and

has been found to have many benefits: It improves writing
skills [14], develops critical thinking skills [5, 16], improves
self-efficacy [2], and can provide detailed and careful feed-
back [16, 15]. In the context of software development, peer
review has been used to critically comment on code qual-
ity [4] and to evaluate homework solutions using a web-based
system [13]. Clark describes how interactive peer testing can
be used to effectively review code in a third year capstone
course: Peer teams are given 35 minutes to conduct both
usability testing and code review, followed by 5 minutes to
discuss their findings with one of the code’s authors [4]. By
contrast, our study explores the use of anonymous and more
involved peer review, as students are given three days to
write reviews and to describe their test methodology.

Peer review bears some similarities to collaborative learn-
ing methods, in the sense that both attempt to engage stu-
dents to participate actively in the educational process. For
example, in JavaFest [11], groups of students compete to
design the optimal solution for a provided programming
problem. With respect to software testing, most prior work
on collaborative learning focuses on test input generation,
which applies to black box testing but does not extend to
richer forms of white box testing. For example, Carring-
ton [3] describes exercises in which students generate test
inputs for various software specifications, and Goldwasser [9]
describes an approach in which students competitively sub-
mit test cases to break each others’ code. However, Gold-
wasser’s approach focuses on black-box testing methods, where
students explore testing through small-scale programming
exercises, such as merging two sorted linked lists. By con-
trast, our approach allows students to explore both white-
box and black-box testing.

Testing has also been taught in the context of test-driven
development, an entire software development methodology
in which test cases are written first [6, 7]. Our work instead
teaches software testing without asking students to adopt
any specific software development methodology.

Finally, testing has been the subject of entire courses.
Harrison [10] describes an upper-division software testing
course that emphasizes two disparate testing roles—that of
the developer and that of the tester. Thus, students serve as
developers of one project and testers of a different project.
In their role as testers, student perform peer review, but the
emphasis of the course is on the importance of distinguishing
between these two testing roles.

Not competent 13
Probably not competent 13
Probably competent 17
Competent 8

Table 2: Pre-course Survey: “Are you competent at

software testing?”

3. BACKGROUND
The setting for our intervention is the Fall 2011 offering

of CS314H, an honors data structure course at The Uni-
versity of Texas at Austin. The students in this course are
predominantly freshmen honors students who are talented
and highly motivated. Nevertheless, the instructor, who has
taught this course for ten years, has been largely dissatisfied
with his students’ ability to acquire software testing skills,
despite his efforts to stress the importance of testing, to in-
troduce various testing ideas during lectures, to mandate
that students explain how they have tested their programs,
and to devote time in discussion sections (led by the teach-
ing assistaant) to share ideas about how the programs could
be tested.

This course has a heavy programming workload. There
are seven Java programming assignments. The assignments
start small but quickly grow in both scope and complexity.
Table 1 summarizes these assignments, showing those for
which they should do Pair Programming, and showing the
alloted time for each assignment.1 (The alloted time for
Assignment 7 includes the Thanksgiving holiday.)

The Fall 2011 instance of this course had 51 students,
1 TA, and 1 undergraduate grader who worked 20 hours
per week. On the first day of class, students were given
an anonymous survey which asked various questions about
their background. Included in the survey was one open-
ended question, “Are you competent at software testing?”
We classified their responses into four categories, and the
results are shown in Table 2; we conclude that students enter
the course largely unsure of whether they are competent
software testers.

4. OUR SOLUTION
Our solution has three main goals. First, we want to make

testing fun and competitive so that students will put effort
into testing. Second, we want students to learn from each
other, so that they can see how others approach the same
problem, perhaps with a greater degree of creativity than
they have. And third, we wish to illustrate the tangible
benefits of good software testing by uncovering latent bugs
in their code.

4.1 The Process
Before describing our peer review process, we first specify

five requirements for our solution.

1. The process should be double-blind, which removes
bias and allows reviewers to be honest in their analysis
and feedback without the fear of offending a friend.

1Pair programming is a software development methodology
in which two students share a computer to collaborate on
all aspects of the assignment.

Assignment Name Description Pairs? Alloted Time

1 Image Manipulation Manipulate digital images No 7 days
2 Random Writer Use Markov process to generate text that No 9 days

is similar to some corpus of text
3 Critters Write interpreter for simulate creatures Yes 14 days
4 Tetris Implement Tetris game Yes 14 days
5 Boggle Implement Boggle game No 14 days
6 Treaps Implement Treaps data structure Yes 9 days
7 Web Crawler Implement web crawler and search engine No 21 days

Table 1: The seven programming assignments in previous versions of CS314H.

2. The process should encourage students to take the peer
review process seriously, which will increase the chance
that students will learn from each other.

3. The process should be fair in its assignment of review-
ers to reviewees. Each team should get to review a
representative cross section of the class’s solutions, as
opposed to, for example, only testing the best solu-
tions and finding very few bugs. Similarly, each team
should see reviews from a representative cross section
of the teams, so that they are more likely to receive
some reviews that use good test methedologies.

4. The process should preserve academic integrity by not
allowing students to read or copy each other’s code.

5. The process should allow rich test methodologies be-
yond black-box testing, including the ability to do unit
testing and to create custom test harnesses.

Our peer review process can now be described in terms of
three deadlines that the student teams must meet.

1. At the first deadline, teams submit their solutions to
the assignment. The solutions are then anonymized
and obfuscated. Four reviewers are then assigned to
each team’s solution.

2. At the second deadline, teams submit their peer re-
views, which include a description of their test method-
ology and of their findings. These reviews are then
anonymized and distributed to the reviewees.

3. At the third deadline, teams submit their Peer Test-
ing Reports, which describes what they learned in this
process and also evaluates the peer reviews that they
have received. At this point, teams may also submit
revised solutions that fix bugs that have been pointed
out by peer reviews.

We can now provide details about how our process meets
our stated requirements.

To implement a double-blind review process, we use a one-
way mapping from a student’s ID to a number. These num-
bers serve as identifiers, ensuring that the students are not
aware of who they are interacting with in the process. By
giving reviewers obfuscated byte code, reviewers are shielded
from any identifying comments or tell-tale stylistic quirks.

To encourage students to think about the quality of the
various peer reviews and to encourage students to write good
reviews, each reviewee grades each review. The instructional

staff also grades each review. In sum, the peer review rep-
resents 50% of the grade for Assignments 5 and 6.

To ensure a fair assignment of reviewers, we first place the
teams into quartiles based on each team’s performance thus
far in the course, and we then randomly assign reviewers
from each quartile so that each team’s solution is reviewed
by one team from each quartile. In our case, our 26 teams
did not divide 4 evenly, so our process could only guarantee
that each team was reviewed by teams from at least three
different quartiles.

We preserve academic integrity and anonymity by obfus-
cating the code before compiling it into bytecode. Only
the bytecode is distributed, and if a student does reverse
the compilation, the code is extremely difficult to read and
easily identifiable as obfuscated code. We employ a Java
obfuscator called Smokescreen [1] for this purpose.

We encourage rich testing methodologies by giving stu-
dents access to byte code with well defined interfaces, which
allows them to create test harnesses and to perform unit
testing on individual methods of well-defined interfaces. In
addition, because the students are creating peer reviews of
the same projects that they themselves are asked to com-
plete, the same test harness that they use for peer testing
can be directly applied to their own code.

4.2 The Reviews
Each review has two components. The first is an eval-

uation of the reviewee’s code for bugs, and the second is a
description of the testing methodology. The first component
is further subdivided into two categories, namely, a summary
of the most important findings and detailed comments that
describe specific test cases and bugs. The second component
helps the students learn from good reviewers. It also helps
the reviewees understand the bugs that were identified in
the peer review, and it helps the reviewee in evaluating the
peer reviews.

By having the students grade each other’s reviews, we
hope to to make them accountable to their peers. We also
hope to encourage their natural competitiveness, as teams
will want to find more bugs than the other reviewers of the
same code.

4.3 The Choice of Programming Assignments
Assuming that peer testing is not incorporated into every

programming assignment, there are two factors to consider
in deciding where it should be incorporated: (1) the timing
of the assignment within the semester and (2) the suitability
of the assignment for peer review.

The issue of timing is not clear cut. On the one hand, if

peer testing is introduced early in the course, it may provide
lasting benefits for the remainder of the course. On the
other hand, if too many students have poor testing skills,
then peer review may not be fruitful, so it may be useful
to delay peer review until students have learned some basic
concepts, terminology, and techniques as applied to some
early, simpler programming assignments.

The issue of suitability is more clear cut. An ideal can-
didate for peer review is a programming assignment with
a well-defined interface with plenty of freedom in the im-
plementation. The well-defined interface ensures that stu-
dents will be able to access important methods, allowing for
deeper testing beyond black-box testing of the overall pro-
gram. The freedom of implementation encourages a variety
of development and testing strategies.

4.4 Challenges
Our peer testing activities introduces two challenges with

respect to workload.
First, peer testing increases the student workload. They

are being asked to do more testing, more writing, and more
critical thinking. In particular, the students need to write
the actual peer reviews, along with two additional reports
for each peer-tested assignment.

Second, peer testing as we have defined it introduces strict
deadlines, where each tight deadline builds upon the previ-
ous one. The process fails if large numbers of students do not
meet their deadlines. For example, if a team does not submit
their solution on time, their peers may not have sufficient
time to conduct their reviews. Worse, if a team submits
code that does not compile or is badly dysfunctional, then
their peers cannot meaningfully test it. Similar issues arise
from missing the second deadline.

4.5 Implementation Details

Choice of Assignments.
We add peer testing to Assignments 5 and 6, which occur

late in the course. We do not introduce peer review ear-
lier because we first use lectures, discussion sections, and
the early assignments to teach the students various testing
concepts, such as black-box testing, white-box testing, unit
testing, and the notion of a test harness, as they apply these
concepts to simpler programs.

In addition, both Assignment 5 and 6 are ideal for peer
testing because they give students great freedom in imple-
menting well-defined interfaces and they provide testing chal-
lenges. In particular, the solutions to Assignment 5 typically
make heavy use of recursion, which is a confusing topic for
many students. Assignment 6 requires students to use ran-
domization to produce balanced trees, and the random be-
havior introduces testing challenges.

We choose to not add peer testing to Assignment 7 be-
cause it is designed to evaluate all of the skills that each
student has acquired over the course of the semester. Thus,
this assignment is completed individually. In addition, this
assignment is the most challenging and open-ended of the as-
signments, which makes it a poor candidate for peer testing,
because the behavior and interfaces are not well defined.

Pair Programming.
We allow students to work in pairs on these assignments

both because it reduces the increased workload and because

it is often helpful to be able to discuss ideas with a partner,
particularly when developing relatively new skills.

Changes to the Schedule.
To preserve the number of programming assignments in

our course, we add peer testing to Assignment 5 while re-
taining the 14 days that are allocated for this assignment.
(See Figure 1.) Thus, the additional five days of peer testing
shrinks the amount of time that students have to complete
the assignment. To mitigate the effects of this shrinkage, we
allow students to work in pairs, whereas students in previous
classes worked individually (see Table 1).

Because Assignment 6 is one that has always been done
in pairs, we simply add 5 days for peer testing to the end
of the original schedule. As a result, the deadlines for As-
signment 6 are identical to those for Assignment 5, ie, there
are 9 days until the first deadline, then 3 days until the sec-
ond deadline, and then 2 days for the final deadline. To
preserve the overall course schedule, we remove a five day
gap that formerly existed between in the schedule between
Assignments 4 and 5.

Submission Logistics.
The entire peer testing process is made easy by the ex-

istence of Google Docs—specifically Google Forms. With
basic scripting, we easily map the students to a number and
distribute the bytecode via email. All reviews are then sub-
mitted online via forms generated by another script that
automatically fills in the proper reviewer and reviewee ID
number. The student grades for a review are submitted in a
different form with the same scripting algorithm. By using
Google Forms, the instructor can easily evaluate all reviews
and grades in a single spreadsheet.

5. EVALUATION

5.1 Methodology
There are several possible methods of evaluating our peer

review intervention. One method is to split the class in half,
so that one group acts as a control group against the peer
testing group. We discard this approach as being potentially
unfair, since one group could gain an advantage over the
other that could impact their final grade. Another option
is to split the class in half and alternate their use of peer
testing, but this approach runs the risk of a spillover effect,
where those who do peer review earlier may perform better
on the next assignment even without peer review. Another
method is to use two classes with similar populations where
one is the control, but for logistical reasons, two such courses
were difficult to find.

We choose instead to introduce peer review to one entire
class at the same time and to focus on observing changes
in student attitudes over the course of the semester. To
track the students’ attitudes and self-perceptions, we con-
duct surveys at the end of each assignment. The questions
remain constant throughout the semester, and are brief, sim-
ple statements with which students can Strongly Disagree,
Disagree, Agree, or Strongly Agree. Each survey also in-
cludes an open text box that allows students to provide ar-
bitrary comments.

5.2 Survey Results

Figure 1: Modifying the schedule for Assignment 5 to include peer testing.

����
����
����
����

����
����
����
����

Day 0
Day 9

Day 12
Day 14

Original Schedule

Modified Schedule

Grade Peer Tests
Peer Testing

Programming

Programming

We observe that early in the semester, students believe
that they are good testers (See Figure 2). These results
differ from the pre-course survey, where students express
skepticism in their testing abilities, and we conjecture that
because the surveys are taken immediately after students
submit their programs, these confident responses refer to
the students’ perceived ability to test the just-submitted as-
signments.

As the semester progresses, we see that student confidence
drops. Here, we believe that as the assignments become
more difficult and as students receive low testing scores on
previous assignments, students begin to understand the lim-
its of their abilities.

Beginning with Assignment 4, testing confidence begins to
rise, and confidence rises further after Assignments 5 and 6,
which incorporate peer testing. These changes in attitude
suggest that peer testing has been successful.

Over the course of the semester, we see similar trends for
the question “I like testing software” (see Figure 3).

Figure 2: I’m good at testing software.

Error bars are represented by the vertical lines overlapping
each bar.

We also observe that the students both like and believe
that they learned from peer review, as is shown in Figures 4
and 5. These results show that the students believe that peer
review is an effective use of their time and that it engages
them in the process of learning to test software.

One common comment is: “It was fun to try to break
other people’s code.” Another common comment is some-
thing akin to “they definitely helped us catch some good
bugs that we missed.” On the negative side, students often
complain that peer review would be easier if each reviewee’s
assumptions were clearly stated, and if output was standard-
ized.

Figure 3: I like testing software.

Error bars are represented by the vertical lines overlapping
each bar.

Finally, several students indicate that they wanted to do
peer review for all of their remaining assignments.

Figure 4: I liked peer review.

Error bars are
represented by the vertical lines overlapping each bar.

5.3 Other Results
With a decade of experience, we believe that the heavy

workload in this course causes some students to miss dead-
lines, particularly late in the semester.2 Hence, the need
to adhere to strict deadlines for our peer review activities
was an early concern. However, in this case study, only two
teams submitted late solutions for Assignment 5. In one

2Unfortunately, we do not have the detailed historical
records needed to definitively support this claim.

Figure 5: I learned something through peer review.

Error bars
are represented by the vertical lines overlapping each bar.

case, the delay was minimal, a matter of hours, and they
were able to fully participate in the remaining peer review.
In the other case, the team was a day late and received no
peer review. Remarkably, for Assignment 6, all deadlines
were met. For Assignment 7, which did not include peer
review, one student submitted an assignment one day late,
while another submitted an assignment two days late. We
conjecture that the power of peer pressure helps students
meet deadlines, a point that has been observed elsewhere [4],
but our main observation here is that we were able add both
extra work and additional deadlines without creating addi-
tional missed deadlines.

6. CONCLUSIONS
Software testing is a subject that can be difficult to teach,

perhaps because it relies heavily on experiential learning;
at the same time, because it is an activity that most stu-
dents do not enjoy, students tend to expend minimal effort
on testing. In this paper, we have described our experience
in incorporating peer testing into a course with a heavy pro-
gramming component and a tight schedule. We were able
to do so without removing or significantly simplifying any
of the programming assignments. Our results show that de-
spite the extra work, the vast majority of students enjoyed
peer testing and found it worthwhile, and many students
expressed an interest in doing additional peer testing. The
larger point, of course, is that students are often willing to do
more work if the extra effort comes in the form of enjoyable
activities that show tangible benefits.

Peer testing as we have described it imposes additional
burdens on the student. In our experience with honors stu-
dents, the students welcomed these additional burdens, but
it would be interesting to see if peer testing would achieve
similar results with a more general student population.

With our encouraging results, we would like to see further
study in the use of peer testing in introductory programming
classes, ideally studies that use a properly selected control
group. Another avenue for future work is to explore the con-
jecture that with improved ability to test software, students
produce software with fewer defects.

7. ACKNOWLEDGMENTS

We thank George Veletsianos and Bill Press for their valu-
able comments on this work. This work funded in part by
NSF grant CNS-1138506.

8. REFERENCES
[1] Smokescreen. http://www.leesw.com/smokescreen/.

[2] K. Anewalt. Using peer review as a vehicle for
communication skill development an active learning.
J. Comput. Small Coll., 21(2):148–155, 2005.

[3] D. Carrington. Teaching software testing. In ACSE
’97, the 2nd Australasian Conference on Computer
Science Education, pages 59–64. ACE, 1997.

[4] N. Clark. Peer testing in software engineering projects.
In ACE ’04, the 6th Australasian Conf. on Computing
Education, volume 30, pages 41–48. ACE, 2004.

[5] R. Davies and T. Berrow. An evaluation of the use of
computer peer review for developing higher-level skills.
Computers in Education, 30(1):111, 1998.

[6] C. Desai, D. Janzen, and K. Savage. A survey of
evidence for test-driven development in academia.
ACM SIGCSE Bulletin, 40(2):97–101, June 2008.

[7] S. H. Edwards. Teaching software testing: Automatic
grading meets test-first coding. In OOPSLA ’03, the
18th annual ACM SIGPLAN conference on
Object-oriented Programming, Systems, Languages,
and Applications, pages 318–319. SPLASH, 2003.

[8] J. Foley and C. Murphy. Q&A: Bill Gates On
Trustworthy Computing. Information Week, May
2002.

[9] M. H. Goldwasser. A gimmick to integrate software
testing through curriculum. In SIGCSE ’02, the 33rd
SIGCSE Technical Symposium on Computer Science
Education, pages 271–275. CSE, 2002.

[10] N. B. Harrison. Teaching software testing from two
viewpoints. Journal of Computing Sciences in
Colleges, 26(2):55–62, December 2010.

[11] M. Hauswirth, D. Zaparanuks, A. Malekpour, and
M. Keikha. The javafest: A collaborative learning
technique for java programming courses. In PPPJ ’08,
the 6th Int’l. Symposium on Principles and Practice of
Programming in Java, pages 3–12. PPPJ, 2008.

[12] C. Kaner and S. Padmanabhan. Practice and transfer
of learning in the teaching of software testing. In
CSEET ’07, the 20th Conf. on Software Engineering
Education & Training, pages 157–166, 2007.

[13] E. Z.-F. Liu, S. S. J. Lin, C.-H. Chiu, and S.-M. Yuan.
Web-based peer review: The learner as both adapter
and reviewer. IEEE Transactions on Education,
44(3):246–251, August 2001.

[14] J. Liu, D. T. Pysarchik, and W. W. Taylor. Peer
review in the classroom. Bioscience, 52(9):824–829,
September 2002.

[15] E. Silva and D. Moriera. Webcom: a tool to use peer
review to improve student interaction. J. Educ.
Resour. Comput., 3(1):1–14, 2003.

[16] W. J. Wolfe. Online student peer reviews. In
Proceedings of the 5th Conference on Information
Technology Education. ACM Press, 2004.

[17] W. E. Wong. Teaching software testing: Experiences,
lessons learned and the path forward. In 24th Conf. on
Software Engineering Education and Training
(CSEE&T), 2011, pages 530–534. IEEE, 2011.

