
A Structured Approach to Teaching Recursion Using
Cargo-Bot

Elynn Lee Victoria Shan Bradley Beth Calvin Lin
The University of Texas at Austin
Department of Computer Science

2317 Speedway, Stop D9500
Austin, TX 78712

{elynnlee, vshan, bbeth, lin}@cs.utexas.edu

ABSTRACT
Recursion is a notoriously difficult concept to learn. This

paper presents a structured approach to teaching recursion
that combines classroom lectures and self-paced interaction
with Cargo-Bot, a video game in which users solve puzzles
using a simple visual programming language. After map-
ping Cargo-Bot games to a set of learning goals, we devise
a lesson plan that uses Cargo-Bot game playing to scaffold
key concepts used in writing recursive Java programs. We
empirically evaluate our approach using 204 undergraduates
enrolled in a CS2 course, and we show strong statistical evi-
dence that our approach improves student learning of recur-
sion over traditional lecture-based instruction alone.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Recur-

sion; K.3.2 [Computer and Information Science Edu-
cation]: Computer Science Education

Keywords
Education; recursion; video games

1. INTRODUCTION
Recursion is a fundamental concept in computer science

that novices often struggle to understand [14, 15, 22]. In
particular, students often fail to understand the passive flow
of recursion [22], which is the backward flow of control that
can take place after reaching the base case. While there
is considerable prior work in teaching recursion [1, 3, 6–
12, 16–21, 23–25, 27–29], there exist few controlled empirical
studies. Chaffin et al. [2] and Hulsizer [13] demonstrate sta-
tistically significant results in experiments with fewer than
17 students, but neither compares the results against a con-
trolled baseline.
To date, the largest controlled empirical study [26] lever-

ages a video game, Cargo-Bot, in which players write vi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER’14, August 11-13, 2014, Glasgow, Scotland, UK.
Copyright 2014 ACM 978-1-4503-2755-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2632320.2632356.

sual programs to solve puzzles involving cranes and boxes;
procedure calls are the only construct for repetition, so the
authors posit that this game can contextualize the learning
of recursion. In their study involving 47 magnet school stu-
dents taking AP Computer Science A, the authors find that
an experimental group—which first plays Cargo-Bot for 70
minutes and then receives 50 minutes of direct instruction—
sees a statistically significant improvement in assessment
scores when compared against a control group—which first
receives 50 minutes of direct instruction and then plays Cargo-
Bot for 70 minutes. Interestingly, both groups experience
the greatest learning gains directly after playing the video
game. Thus, we observe that the game appears to have some
educational benefit beyond simply contextualizing recursion.
Unfortunately, our attempt to repeat the experiment at

a larger scale at a major university failed to produce statis-
tically significant findings, and we conjecture that the ap-
proach was too unstructured. The game offers many puzzles
of widely varying difficulty, and the unstructured approach
does not tell students where they should focus their efforts,
so it is unclear if students ever progress to the puzzles that
involve more difficult recursive concepts such as passive flow.
In this paper, we hypothesize that a structured use of

Cargo-Bot can improve students’ ability to learn recursion.
In particular, we propose a structure that (1) defines a set
of learning goals with respect to recursion, (2) maps these
learning goals to Cargo-Bot puzzles, (3) prescribes a mini-
mal set of puzzles for students to solve, and (4) follows this
gameplay with direct classroom instruction. We test this
hypothesis by conducting an experiment with 204 students
spread across two classes of CS2 at The University of Texas
at Austin. One class serves as a control group: They receive
four 50 minute lectures of direct instruction. The other class
serves as the experimental group: They spend two class peri-
ods playing nine games of Cargo-Bot in a self-paced manner;
they then receive two 50 minute class periods of direct in-
struction. We assess student learning by administering tests
before and after the experiment.
We find with statistical significance that on calibrated as-

sessments, the experimental group is better at writing recur-
sive Java code than the control group (p ≤ 0.04612). When
we only consider the experimental students who complete
the nine Cargo-Bot puzzles, the p-value falls below 0.0018.
This paper makes the following contributions:

• We define a set of learning goals related to recursive
Java programming, and we map these learning goals
to nine Cargo-Bot puzzles.

• We design two condensed lectures that integrate ex-
amples from Cargo-Bot into the discussion and that
replace an existing four lecture sequence.

• Using a study of 204 college students, we confirm our
hypothesis that structured use of Cargo-Bot improves
student learning of recursion.

2. RELATED WORK
Our work is informed by previous studies outlining best

practices in teaching recursion [1, 6, 9–11, 18, 20, 23] and
identifying common misconceptions of recursion. Students
often create incorrect models of recursion [14, 29]. Most
commonly they mistakenly model recursion as a loop struc-
ture and view recursion as iteration [6, 15, 24]. Moreover,
students often struggle to understand the passive flow of
recursion and the use of the stack for backtracking [22].
Our work is part of a growing effort to use visualizations

and games to teach recursion [8, 25, 28]. For example, Al-
ice is a 3D visual programming language that is useful for
teaching basic recursion, but it is insufficient for teaching
the more sophisticated details of recursion [4] because the
state-less nature of Alice prevents the platform from visually
representing recursion at a low level.
Two studies empirically study the use of games on student

understanding of recursion. Chaffin, et al [2] use a game in
which 16 students (including 14 upperclassmen) write depth-
first search programs to visualize the traversal of a binary
tree. Hulsizer [13] describes a similar experiment, reporting
statistically significant results for a pool of 10 participants.
Our work differs in two ways: We integrate gameplay with
classroom instruction, and we use larger populations in our
study.
As mentioned in the previous section, our work builds

directly on that of Tessler et al. [26], who combine the un-
structured use of Cargo-Bot and classroom instruction.

3. BACKGROUND: CARGO-BOT
Cargo-Bot is a game originally created for the Apple iPad

by Two Lives Left1. Gameplay centers on a crane that moves
and stacks a set of colored crates. Players write small visual
programs to move the crates from an initial configuration
to a goal configuration. The set of available instructions is
quite small. The crane can be directed to (1) move left; (2)
move right; or (3) move down and then up, in which case it
attempts to pick up a crate if it is empty, or it drops its crate
if it is not empty. Conditionals and procedure calls are also
provided. Significantly, recursion is the only mechanism for
repetition.

4. STRUCTURED LEARNING
To support structured learning, we first identify general

subtopics within recursion, leveraging numerous resources
such as existing course lecture materials, recursive problems
on past course assessments, and online instructional tools
such as CodingBat2. Our analysis reveals a few notable
content clusters, and we give these clusters the following
names to summarize their commonalities: recursion with
conditionals, mutual recursion, recursive backtracking, and
recursion with accumulators.
1http://twolivesleft.com/CargoBot/
2http://www.codingbat.com/

These clusters are mapped to the following learning goals:

1. Write recursive methods to progress toward some set
of base cases.

2. Write code that conditionally selects one of multiple
paths to make progress toward the base cases.

3. Trace a recursive call by visualizing the program stack.

4. Write code that uses passive flow to maintain state.

5. Utilize mutual recursion.

6. Utilize recursive calls as accumulators.

To scaffold student learning, we then align gameplay with
instruction by mapping a set of Cargo-Bot puzzles to each
learning goal. We find that Cargo-Bot puzzles bifurcate into
two classes: (1) counting problems and (2) divide and con-
quer problems. This phenomenon is reflected in the ini-
tial branching in the tree of Cargo-Bot puzzles depicted in
Figure 1. The tree is rooted with three basic puzzles that
introduce students to the mechanics of Cargo-Bot and ba-
sic gameplay. From there, each of the two main branches
moves through different recursive topics, roughly in order
of increasing complexity, progressing from recursion using
conditionals, to mutual recursion, to recursive backtracking,
and finally to recursion with accumulators.
Puzzles in the left branch are solved by using the stack to

count the number of times to execute a series of instructions.
Puzzles in the right branch are solved using divide and con-
quer algorithms, focusing on conditioning recursion on the
colors of crates. In our study, we prescribe a series of nine
puzzles through the left, or counting, branch that strikes a
balance between content coverage and brevity. These puz-
zles align with the learning goals #1–4 above and are shown
connected by the red arcs (light grey arcs) in Figure 1. They
are: Cargo-Bot 101, Transporter, Recurses, Go Left, Go Left
2, The Stacker, Clarify, Up the Greens, and Come Together.

4.1 Recursion in Cargo-Bot
Solutions to the easier puzzles utilize tail recursion, which

is indistinguishable from GOTO-style control flow. Later puz-
zles require students to use recursive backtracking to main-
tain a counter that is implicitly stored as state on the pro-
gram stack.
To illustrate this complexity, consider the puzzle “Come

Together,” the final puzzle in our set of prescribed puzzles.
Figure 2 depicts the puzzle’s goal state and its correspond-
ing recursive solution. The execution of a Cargo-Bot pro-
gram starts with the left-most instruction in the F0 func-
tion. From there, each subsequent instruction is executed
left-to-right. We see that the F1 function is recursive: It
calls itself whenever it encounters an empty column, and it
effectively remembers the number of times that the crane
has moved right, because the function moves left once for
each time that it moves right.

4.2 Modifications to Cargo-Bot
Beyond identifying and establishing a prescribed course of

Cargo-Bot content, we improve upon the game to support
accompanying instruction and to improve students’ experi-
ence with the game.

http://twolivesleft.com/CargoBot/
http://www.codingbat.com/

Figure 1: Taxonomy of Cargo-Bot puzzles.

Figure 2: Cargo-Bot puzzle “Come Together”.

4.2.1 Visualizing the Stack
Since an understanding of recursive solutions often re-

quires an understanding of the program stack, we modify the
game to include a visualization of the program stack, which
is particularly helpful in counting and backtracking puzzles.
These visual representations align with demonstrations of
the program stack in the companion classroom lectures.

4.2.2 Improving Game Feedback
In the original game, players are rewarded with up to

three stars depending on the length of their solution, but
this metric often rewards complex, inelegant solutions, so

we adjust the rating system to reward what we believe are
the cleanest, most elegant solutions.

4.2.3 Instrumentation
To facilitate data collection, users enter a unique univer-

sity ID when loading the initial page. All clickable actions
are logged and tagged with the associated university ID and
IP address. The log files can then be analyzed both at the
individual level and in aggregate. Collected data include
the number of attempts per puzzle, the ratings of correct
solutions, the time spent on each puzzle, and the number of
incorrect attempts at a solution.

5. EXPERIMENTAL DESIGN
Our experiment follows students in two sections of CS2

that are taught by the same instructor. One section of 136
students serves as the experimental group, while the other
section of 187 students serves as the control group. Only
those students consenting to the research study and complet-
ing all of the required parts of the experiment are included
in our results, resulting in 88 students in the experimental
group and 116 in the control group. These numbers are
nearly equally proportional to their corresponding section
total enrollments (65% vs. 62%, respectively), and there are
no statistically significant differences in student population
samples between the two groups.

5.1 Instruction and Gameplay
The existing CS2 course scope and sequence allots four

50 minute lectures to cover recursion: two on basic recur-
sion and two on recursive backtracking. To compare our
intervention to the status quo, the control group receives
the four lectures as they are traditionally given, while stu-
dents in the experimental group spend the first two lecture
periods playing Cargo-Bot and the last two lecture periods
receiving condensed lectures on recursion, one on basic re-
cursion and the other on recursive backtracking. These two
experimental lectures are given by one of the co-authors; for

the control group, the four lectures are given by the course
instructor.
Students in the experimental group are given five days to

complete the nine prescribed Cargo-Bot puzzles. They are
allowed to play the game during class with guidance from the
instructors and are encouraged to play on their own outside
of class. During these first two lecture periods, the experi-
mental group does not receive any formal instruction outside
of the Cargo-Bot gameplay mechanics. The two condensed
lectures cover the same content as the four lectures given
to the control group, and they reference Cargo-Bot through
worked examples. These lectures are condensed by omitting
several worked examples of recursive Java code.

5.2 Evaluation
Each participating student takes a pre-test and a post-

test, and each test evaluates student understanding of re-
cursion by asking them to complete two tasks: (1) trace and
explain the outcome of a recursive function and (2) write
a recursive function to accomplish a given task. Each test
also contains a survey that gauges student motivation and
self-awareness: Students rate their abilities on a scale from
“Strongly Agree” to “Strongly Disagree” regarding their un-
derstanding of recursion, their ability to follow the execution
of a recursive function, and their ability to write a recursive
function. The experimental group also rates their enjoyment
of Cargo-Bot, rates their ability to play Cargo-Bot, and indi-
cates whether they recognize that their Cargo-Bot solutions
use recursion. All students take the pre-test prior to any
instruction or formal discussion of recursion. Likewise, the
post-test is given only after students complete the four 50
minute class meetings appropriate to their group.

5.2.1 Designing the Evaluations
To measure student understanding of recursion, the pre-

and post-tests use performance tasks aligned with our de-
scriptive taxonomy (see Figure 1). Each assessment is de-
signed to be completed within the 10 minutes allotted for
daily quizzes and to be structured similarly to previous daily
quizzes. Our quizzes are constructed to reflect the following
learning objectives:

• When tracing recursive functions, students will be
able to (1) track function calls on the program stack
and (2) explain the purpose of a given recursive func-
tion.

• When writing recursive functions, students will be
able to use Java to (1) identify and construct appropri-
ate base cases, (2) divide a problem into suitable sub-
problems, and (3) return values appropriately through
both active and passive control flow.

Table 1 summarizes each of the tests’ contents (Section 5.2.3
explains why there are four test forms). Figures 3 shows an
example of a tracing problem that assesses students’ ability
to trace and understand recursive functions. In this exam-
ple, an ideal answer to the second question is “the function
counts the number of digits in the positive integer n”.
Figures 4–7 show the writing problems for Forms A-D,

respectively. For example, in Figure 7, the solution requires
the programmer to maintain a counter, and an elegant re-
cursive solution uses backtracking. Students must break the
problem into subproblems, identify the base cases, and re-
turn the proper values up the stack.

Form Tracing Writing

Pre-Test A Decimal-
to-binary
conversion

Greatest
Common
Denominator

B Count number
of digits

Flood Fill

Post-Test C Modulus Count subset
sums

D Duplicate
removal

Stairway

Table 1: Summary of test items. Forms A and B are pre-
tests, while Forms C and D are post-tests.

public int foo(int n) {
if (n == 0)

return 0;
return 1 + foo(n / 10);

}

What is the value of foo (12346)?

What do you think this function does?

Figure 3: A recursive tracing problem.

5.2.2 Grading Rubric
The grading rubric outlined in Table 2 is applied to all

test forms to evaluate students’ final test scores. The tracing
problem is worth 6 points, and the writing problem is worth
14 points, for a total of 20 possible points.

Tracing Problem 6
Correct return value 3
Correct function description 3

Writing Problem 14
Non-recursive solution 0
Recursive solution, non-terminating 3
Recursive solution, terminating 6
Recursive solution, terminates w/progress 9
Recursive solution, correct, with: 14
— Invalid Java syntax -1
— Unnecessary base cases -1
— Unnecessary function calls -1
— Extra return values -1

Table 2: Grading Rubric for pre- and post-tests.

5.2.3 Test Validation
To strengthen the reliability of our assessments, each of

the pre- and post-tests has two versions: Students in both
groups randomly take either Form A or Form B as a pre-test
and either Form C or Form D as a post-test. Because each
test is open-ended, we assume that the tests may be uneven
in difficulty. To accurately evaluate students across all com-
binations of test forms, we take a two-pronged approach:

1. Each of the open-ended responses is graded by the
same grader using a common rubric (see Table 2).

Given two numbers , write a recursive
function that returns their greatest
common divisor (the largest number
that is a factor of both numbers).

Examples :
gcd (12 , 36) returns 12
gcd (14 , 10) returns 2

Please implement your method in proper Java
syntax and use the following method signature :

public int gcd(int a, int b)
{

// ...
}

Figure 4: The recursive writing problem for Form A.

2. We create a baseline set of scores by asking 36 current
computer science majors who have already completed
CS2 to take one or two of the four tests. Their raw
scores are used to provide summary statistics for each
test form, which allow us to establish a mapping from
raw scores to standard z-scores. The summary statis-
tics of the baseline group are shown in Table 3.

Tracing Writing Total
mean stdev mean stdev mean stdev

Form A 5.12 1.76 7.11 6.92 12.11 6.88
Form B 4.58 2.32 11.14 3.98 15.43 4.59
Form C 5.81 0.75 7.75 5.14 13.56 5.38
Form D 4.06 2.84 10.44 4.95 14.50 6.48

Table 3: Baseline Scores from Upperclassmen. Forms A and
B are pre-tests, while Forms C and D are post-tests.

5.3 Student Diversity
To minimize bias and priming effects on survey and perfor-

mance data, the gender and race/ethnicity data associated
with each ID are retrieved from institutional data records
only after the student assessments are collected (see Ta-
ble 4). Here, the ethnic label “Hispanic” supersedes the
race label “White”; university institutional data equate the
label “White” with “Non-Hispanic White”. The “Other”
category encapsulates students who identify as races other
than those listed, as multiracial, or who choose to withhold
this information from public records.

6. RESULTS
By examining the performance gains from the pre-test to

post-test scores, we show by a statistically significant mar-
gin that students who play our prescribed pathway through
Cargo-Bot score higher than those who do not.

6.1 Statistical Tools
To account for variation in the two different forms of the

pre- and post-tests, we calculate the standard z-score for
each student. A z-score gives the relationship of a given
raw score to the mean score and standard deviation of the

In any modern image editor , you have
access to the "fill" or paint bucket tool ,
which fills all instances of a target
color with a given replacement color
at some given location in the image .
Your task is to implement this algorithm
recursively .

Example :
If fill is called on a pixel in the middle
area in the image on the left below ,
fill should return the image on the right .

Assume you have access to the Image
class with the following methods :

Color getColor (int x, int y) -
returns the color at (x,y) or null if
the given (x,y) is outside of the image .

void setColor (int x, int y, Color c) -
sets the color at (x,y) or throws an
error if (x,y) is outside of the image .

Also , you can easily compare two colors
using the equals method , e.g.,

color1 . equals (color2).

Please implement your method in proper Java
syntax and use the following method signature :

public void fill(Image img , Color targetColor ,
Color replaceColor , int x, int y)

{
// ...

}

Figure 5: The recursive writing problem for Form B.

population as a whole,

z = score− µ
σ

Here, the population as a whole is defined by the baseline
scores, as explained in Section 5.2.3.
By using z-scores instead of raw test scores, we account

for the variance in difficulty among tests when comparing
the pre-test scores to the post-test scores. Negative z-scores
in our study are to be expected, since the baseline repre-
sents students who have completed the course. The differ-
ence between the post-test and pre-test z-scores measures a
student’s performance gains. A positive difference indicates
that a student has improved over time, while a negative dif-
ference means that they have regressed over time.
We use a one-way Type-III ANCOVA (Analysis of Covari-

ance) model to minimize the variance in error of our results.
We use four possible combinations of pre-tests and post-tests
in our experiment. By randomly assigning each student a
pre-test and a post-test, we mitigate the potential for sys-
temic bias among particular test forms. We must, however,
account for potential sources of variance, such as the pre-test
scores, that could affect the outcome of the study. Following

Female Male Asian Black Hispanic White Other
Control 21.3% 78.7% 29.31% 2.59% 28.45% 37.07% 2.59%
Experimental 22.3% 77.7% 29.55% 4.55% 17.05% 46.59% 2.27%
Total 21.7% 78.3% 29.41% 3.43% 23.53% 41.18% 2.45%

Table 4: Demographic breakdown of student groups.

Given an array of integers , arr , and a
target sum , sum , write a recursive
function that returns the number of
subsets in arr that contain elements
that add up to sum.

Example :
given arr = [1 ,2 ,3 ,2] and sum = 4, there
are 2 subsets , [1 ,3] and [2 ,2] that sum
to 4, so countSubsets (arr , sum) returns 2.

Please implement your method in proper Java
syntax and use the following method signature :

public int countSubsets (int [] arr , int sum) {
{

// ...
}

Figure 6: The recursive writing problem for Form C.

A child can climb stairs 1, 2, or 3
steps at a time. Write a recursive
function that returns the number
of distinct ways the child can
climb n stairs .

Please implement your method in proper Java
syntax and use the following method signature :

public int stairways (int n)
{

// ...
}

Figure 7: The recursive writing problem for Form D.

the practices established by Dimitrov and Rumrill, Jr. [5] to
evaluate improvement between pre-tests and post-tests, we
use the ANCOVA model with the pre-test scores serving as
a covariate. This model allows us to measure the post-test
score as it relates to a given independent variable such as
group (control or experimental) or gender, using the pre-
test as a covariate. To extend our analysis, we use a Tukey
test to determine the differences among categories, such as
gender or group.

6.2 Analysis of Student Performance Gains
Figure 8 shows the increase from the average pre-test z-

score to average post-test z-score for the control and ex-
perimental groups. While the experimental group clearly
improves more than the control group, we find that the in-
crease in scores is not statistically significant. When we run
the ANCOVA model for each group with the pre-test as a
covariate, we see statistically significant results for the writ-
ing score (p ≤ 0.04612) but not for the tracing or total score.

Figure 8: Improvement in terms of z-scores from the pre-test
to the post-test.

The results of the tracing scores are consistent with those
of Tessler et al.’s experiment [26]. When we use ANCOVA
to model gains by gender and race/ethnicity with pre-test
as a covariate, we find that gender and race/ethnicity are
not significant factors for gains in total, tracing, or writing
scores across the entire group.

Figure 9: Number of puzzles completed by students in the
experimental group.

Figure 9 shows the number of prescribed Cargo-Bot puz-
zles completed by the students in the experimental group.
Only 26.14% percent of students completed all nine assigned
puzzles. 40.9% completed at least eight and 64.77% com-
pleted at least seven of the prescribed puzzles. On aver-
age, students completed seven of the nine required puzzles
and a total of eight puzzles on average. We see in Table 5
that those students who complete eight or nine puzzles score
higher than the control group by a statistically significant
margin. By contrast, students who complete seven or fewer

Exp vs Control Total Score (p) Writing Score (p)
6 puzzles 0.8701 0.8391
7 puzzles 0.8706 0.9812
8 puzzles 0.0439 0.0746
9 puzzles 0.0043 0.0018

Table 5: Results of experimental group performance against
the control sorted by number of puzzles completed. The
completion of eight or nine puzzles correlates to a statisti-
cally significant difference in group performance (α < 0.05).

puzzles do not score significantly higher than the control
group.
Finally, we explore the effect of our intervention on final

exam performance, which takes place after students have
submitted a significant recursive programming assignment.
We find that the experimental group retains some of their
advantage on the final exam’s recursion-related questions,
which are created and graded by the course’s instructional
staff. Those who complete at least 8 prescribed puzzles per-
form better than the control group in both tracing (p ≤
0.03997) and writing (p ≤ 0.08867), though the latter is not
statistically significant. The advantage is also not statisti-
cally significant for those who complete just 7 of the puzzles
(p ≤ 0.3851 for tracing, p ≤ 0.3469 for writing).

6.3 Survey Results
Our assessments ask students to rate their attitudes and

abilities in relation to recursion. Students are shown the
following three statements and are asked to choose “Strongly
Agree”, “Agree”, “Neither Agree nor Disagree”, “Disagree”,
or “Strongly Disagree” in response:

• I understand recursion.

• I can follow the execution of a recursive function.

• I can write a recursive function.

In comparing the experimental and control groups, we find
no statistically significant results from the surveys. We do,
however, see a few interesting points. We find that student
attitudes do not always match student performance. We
see that most students enjoy playing Cargo-Bot, but less
than 36% of the students are confident in their Cargo-Bot
abilities, while over 62% of these same students are confident
in their ability to write a recursive function (see Figure 10).

7. CONCLUSIONS
In this paper, we have proposed a new method of teaching

recursion that uses Cargo-Bot in conjunction with classroom
instruction. Our results are encouraging both because of
the strong statistical evidence of the approach’s effectiveness
and because of the fairly large number of students—204—
involved.
While these results are encouraging, empirical educational

studies are clearly methodologically difficult, so we plan to
conduct additional studies that refine the methodology and
that explore other related questions. For example, direct
instruction might be considered the most passive of educa-
tional methods, so it would be interesting to compare self-
guided game playing with self-guided problem solving using
instruments similar to CodingBat.

Acknowledgments.
We thank Mike Scott, Lara Schmidt, and Zhao Song for

their help in conducting our experiment on their class. We
thank the students who participated in our study and Alex
Suchman for his guidance on statistical analysis. Our work
is partially supported by the National Science Foundation
under grant #CNS-1138506 and by OnRamps coordinated
by The University of Texas at Austin. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of its funding sources.

References
[1] Alan C. Benander and Barbara A. Benander. Student

monks—teaching recursion in an IS or CS programming
course using the Towers of Hanoi. Journal of Informa-
tion Systems Education, 19(4):455–467, 2008.

[2] Amanda Chaffin, Katelyn Doran, Drew Hicks, and
Tiffany Barnes. Experimental evaluation of teaching
recursion in a video game. In Proceedings of the 2009
ACM SIGGRAPH Symposium on Video Games, Sand-
box ’09, pages 79–86, New York, NY, USA, 2009. ACM.

[3] Diana I. Cordova and Mark R. Lepper. Intrinsic moti-
vation and the process of learning: Beneficial effects of
contextualization, personalization, and choice. Journal
of Educational Psychology, 88(4):715–730, 1996.

[4] Wanda Dann, Stephen Cooper, and Randy Pausch. Us-
ing visualization to teach novices recursion. In Proceed-
ings of the 6th Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’01, pages 109–112, New York, NY, USA, 2001. ACM.

[5] Dimiter M Dimitrov and Phillip D Rumrill, Jr. Pretest-
posttest designs and measurement of change. Work: A
Journal of Prevention, Assessment and Rehabilitation,
20(2):159–165, 2003.

[6] Jeffrey Edgington. Teaching and viewing recursion
as delegation. J. Computing Sciences in Colleges,
23(1):241–246, October 2007.

[7] Gary Ford. A framework for teaching recursion.
SIGCSE Bulletin, 14(2):32–39, June 1982.

[8] Carlisle E. George. EROSI—visualising recursion and
discovering new errors. SIGCSE Bulletin, 32(1):305–
309, March 2000.

[9] David Ginat and Eyal Shifroni. Teaching recursion
in a procedural environment—how much should we
emphasize the computing model? SIGCSE Bulletin,
31(1):127–131, March 1999.

[10] James Eugene Greer. An empirical comparison of tech-
niques for teaching recursion in introductory computer
sciences. Ph.D. dissertation, The University of Texas
at Austin, May 1987.

[11] Katherine Gunion, Todd Milford, and Ulrike Stege.
Curing recursion aversion. SIGCSE Bulletin,
41(3):124–128, July 2009.

Figure 10: Post-test (except where noted) survey results for experimental group.

[12] WenJung Hsin. Teaching recursion using recursion
graphs. Journal of Computing Sciences in Colleges,
23(4):217–222, April 2008.

[13] Andrew Hulsizer. Teaching Recursion Through Inter-
active Media. Masters thesis, The University of Texas
at Austin, 2011.

[14] Hank Kahney. What do novice programmers know
about recursion? In Elliot Soloway and James C.
Spohrer, editors, Studying the Novice Programmer.
Lawrence Erlbaum Associates, Hillsdale, New Jersey,
1989.

[15] Claudius M. Kessler and John R. Anderson. Learning
control flow: Recursive and iterative procedures. In
Elliot Soloway and James C. Spohrer, editors, Studying
the Novice Programmer. Lawrence Erlbaum Associates,
Hillsdale, New Jersey, 1989.

[16] Robert L. Kruse. On teaching recursion. SIGCSE Bul-
letin, 14(1):92–96, February 1982.

[17] Dalit Levy and Tami Lapidot. Recursively speaking:
analyzing students’ discourse of recursive phenomena.
SIGCSE Bulletin, 32(1):315–319, March 2000.

[18] Peter L. Pirolli and John R. Anderson. The role of
learning from examples in the acquisition of recursive
programming skills. Canadian Journal of Psychology,
39(2):240–272, June 1985.

[19] Irene Polycarpou, Ana Pasztor, and Malek Adjouadi.
A conceptual approach to teaching induction for com-
puter science. SIGCSE Bulletin, 40(1):9–13, March
2008.

[20] Anthony Robins, Nathan Rountree, and Janet Roun-
tree. My program is correct but it doesn’t run: a review
of novice programming and a study of an introductory
programming paper. Technical Report, OUCS-2001-06,
2001. University of Otago.

[21] Manuel Rubio-Sánchez and Isidoro Hernán-Losada. Ex-
ploring recursion with Fibonacci numbers. SIGCSE
Bulletin, 39(3):359–359, June 2007.

[22] Tamarisk Lurlyn Scholtz and Ian Sanders. Mental mod-
els of recursion: Investigating students’ understanding
of recursion. In Proceedings of the Fifteenth Annual
Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’10, pages 103–107, New
York, NY, USA, 2010. ACM.

[23] Amber Settle. What’s motivation got to do with it?
A survey of recursion in the computing education lit-
erature. Technical Reports, Paper 23, 2014. DePaul
University. http://via.library.depaul.edu/tr/23.

[24] Raja Sooriamurthi. Problems in comprehending re-
cursion and suggested solutions. SIGCSE Bulletin,
33(3):25–28, June 2001.

[25] John Stasko, Albert Badre, and Clayton Lewis. Do al-
gorithm animations assist learning?: an empirical study
and analysis. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing
Systems, CHI ’93, pages 61–66, New York, NY, USA,
1993. ACM.

[26] Joe Tessler, Bradley Beth, and Calvin Lin. Using
Cargo-Bot to provide contextualized learning of recur-
sion. In Proceedings of the Ninth Annual International
ACM Conference on International Computing Educa-
tion Research, ICER ’13, pages 161–168, New York,
NY, USA, August 2013. ACM.

[27] Susan Wiedenbeck. Learning recursion as a concept
and as a programming technique. SIGCSE Bulletin,
20(1):275–278, February 1988.

[28] Derek Wilcocks and Ian Sanders. Animating recur-
sion as an aid to instruction. Computers & Education,
23(3):221–226, 1994.

[29] Michael Wirth. Introducing recursion by parking cars.
SIGCSE Bulletin, 40(4):52–55, November 2008.

http://via.library.depaul.edu/tr/23

	Introduction
	Related Work
	Background: Cargo-Bot
	Structured Learning
	Recursion in Cargo-Bot
	Modifications to Cargo-Bot
	Visualizing the Stack
	Improving Game Feedback
	Instrumentation

	Experimental Design
	Instruction and Gameplay
	Evaluation
	Designing the Evaluations
	Grading Rubric
	Test Validation

	Student Diversity

	Results
	Statistical Tools
	Analysis of Student Performance Gains
	Survey Results

	Conclusions

