
The Portable Parallel Implementation of Two Novel Mathematical

Biology Algorithms in ZPL

Marios D. Dikaiakos*

Daphne Manoussaki$

Abstract

This paper shows that mathematical models of biolog-

ical pattern formation are ideally suited to data paral-

lelism. We present two new algorithms, one for simulat-

ing the dynamic structure of fibroblasts, and the other

for studying the self-organization of motile bacteria.

We describe implementations of these algorithms us-

ing a high level data parallel language called ZPL, and

we give performance results for the Kendall Square Re-

search KSR-2 and the Intel Paragon that include com-

parisons against sequential Fortran.

1 Introduction

Mathematical biology is one of the fastest growing

and most exciting applications of modern mathematics.

As biology becomes more quantitative, the increased

use of mathematical modeling is inevitable. Many of

these problems involve extensive numerical computa-

tions over large computational domains and are easily

amenable to dat ~parallelism. For example, in the field

of pattern formation in biological systems, the equa

tions that one derives are generally continuum mod-

els described by nonlinear partial-differential equations

that cannot be solved explicitly; thus, numerical meth-

ods are crucial in understanding their behavior. The

complex dynamics of the continuum often require long

*Department of Astronomy, FM-2o, University of Washing.

ton, Seattle, WA 9S195.
t Department of Computer Science and Engineering, Univer-

sity of Washington.

t Department Of Applied Mathematics, University of
Washington.

$Depmtment of Mathematics, Southern Methodkt Univer-

sit y, Dallas, TX 75275.

Permission to make digital/hard copies of all or pm-t of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication and its dote appear, and notice is given
that copyright is by permission of the Association for Computing Machine
Inc. (ACM). To copy otherwise, to republish,to post on servers or to
redistribute to lists, requires specific permission and/or fee.

lCS ’95 Barcelona, Spain o 1995 ACM 0-89791-726-6/95/0007. .$3.50

Calvin Lint

Diana E. Woodward$

calculations for each data point. Moreover, the biolog-

ical structures often form very complex patterns that

require large computational domains for their represen-

tation.

This paper makes two primary contributions. First,

we describe two new algorithms for solving mathemat-

ical biology problems. Second, by using the ZPL pro-

gramming language [15] to implement these algorithms,

we show that ZPL solves many of the problems that in-

hibit the widespread use of parallel machines.

The first algorithm models the structure of fibrob-

lasts, which are cells of the connective tissue that have

been extensively studied by biologists. Fibroblast pat-

terns have been compared to fingerprint patterns us-

ing theorems in topology [11], and theories have been

devised to describe their movement within the tissue.

However, there has been little work in quantifying the

influences within culture to validate these theories. In

a confluent culture, fibroblasts form dramatic patterns

of many parallel arrays of cells meeting at different an-

gles. Our assumptions on how local densities and local

orientations interact and change were based on biolog-

ical observations, and led to the creation of our new

mathematical model.

The second algorithm studies the self-organization of

motile bacteria, which aggregate in response to gradi-

ents of chemical attractants that they themselves ex-

crete. This chemically directed movement, which di-

rects the motion up a concentration gradient, is re-

ferred to as chemotaxis. Depending on the conditions

under which the cells are cultured, they form a vari-

ety of complex spatio-temporal patterns [5, 23]. Based

on the solid biological evidence for chemotaxis, we

have developed a cell-chemoattractant model mecha-

nism which haa enabled us to verify that it is the in-

teraction between the proliferating cells and chemoat-

tractant they produce that is crucial to the formation

of the observed geometric patterns.

u ~ The numerical solution for the equations of these

models provides a realistic litmus test for the use of

ZPL, an array sublanguage of the more general Orca

365

C programming language [14]. We show that ZPL
is a convenient platform for implementing these ap-
plications, yielding clean solutions and good perfor-

mance across different parallel machines. In part icu-

lar, convenience comes from the high level nature of

ZPL that frees the programmer from the details of

explicit communication and synchronization; from the

sequential semantics of the language that allow pro-

gram development and debugging to proceed on famil-

iar workstation environments; and from source level

portability—porting ZPL applications across platforms

only requires recompilation of the C code that is pro-

duced by the ZPL compiler. The ability to produce

eficient portable code comes from ZPL’s underlying

programming model [2], a claim that is supported by

the results presented here on two very different parallel

computers—the Kendall Square Research KSR-2 and

the Intel Paragon.

This paper is organized as follows. Section 2 de-

scribes the new algorithm for simulating fibroblast

structures. Section 3 discusses the self-organization of

motile bacteria and the new model for simulating this

process. Section 4 provides some basic background on

ZPL. The next two sections describe the ZPL imple-
mentation of the two algorithms and give performance

results. Concluding remarks are given in Section 7.

2 The Fibroblast Application

2.0.1 Modeling Fibroblasts

Fibroblasts are long, spindle-shaped cells of the con-

nective tissue, the space between organs and tissues.

When in culture they interact forming parallel arrays

and patterns [11]. This interaction has been described

with a model consisting of a parabolic differential equa-

tion and an integral equation [8]. When in culture they

also acquire a mono- or bipolar shape, which allows us

to easily attribute an axis of orientation to each cell.

Fibroblasts are highly motile cells and move along this

axis of orientation. At a macroscopic level we can as-

sign a local orientation to almost every point in the

culture. The few points where an orientation cannot

be uniquely assigned are called points of discontinuity.

The Fibroblast model is based on the following biolog-

ical observations:

● Cells influence the orientation of their neighboring

cells: In particular, upon meeting a cell with an

orient ation similar to its own, a cell will tend to

move, change its orientation, and align itself with

its neighbors. If the orientation are dissimilar, cells

do not affect each other’s movement.

. Local cell densities are inj?uenced by the local cell

orientation distribution: In areas where all cells

are aligned parallel to each other (parallel arrays),

we assume that cell movement will be simply dif-

fusive and will depend on the local cell densities.

In areas where there is great local variation in cell

orientation, we assume that cell movement will be

hindered.

Based on these observations, we conclude that the vari-

ables that best describe the cell distribution are the cell

density N and the cell orientation 0; 0 is the angle that

the cell forms with a fixed reference axis. This leads to

the following model (in non-dimensional form) [11]

et= f K(X, y, o(E,~),~(y,t), N(x, O ~(y,t)) dy –
B(E)

V . Jo + random (1)

where l?(e) denotes a ball of radius c around X, i.e., a

small neighborhood of X. The kernel K measures the

rate of change in angle due to the angle and density of

neighboring cell populations. In our numerical solution

of the equations we set

k,N(y)
A’ = 1(60) sin (~3” W N(39N[X)+k2 (3)

where 60= l\e(x) – o(y~ll

I is a step function which determines the maximum

difference M in angle at which cells may influence each

ot her’s orient at ion.

J8 is the flux of angle, that is, the orientation that

the cells tend to carry with them as they move. We

assume that cells move slowly so that at each time step

the local effects have time to set in and completely

determine the cells’ orient ation. Therefore, we make

the approximation Jo = O. The diffusive flux of the

cells, JN, is given by:

JN = -[F. v(ND)]i (4)

The diffusion D is a function of the cell density and the

orientation variation (~):

D(Z,aeN)= a
N(%)2 + b

(5)

Here, ~ = (cos(0), sin(e)) is the unit vector n in the

direction of orientation, and

(6)

is the rate of change of orientation in the direction of

local orientation (the direction along which the cells

are able to move).

366

2.1 Numerical Simulation of Fibrob-

lasts

To calculate equation (3) for a meshpoint (i, j) we ap-

proximate the integral using Simpson’s rule. Numer-

ical simulations have shown that a reasonable choice

for meshsize is Ax = Ay = d, where d is the radius

within which a cell will influence a neighboring cell.

With such a choice of Ax, the approximation to the

integral is written as:

with

Here, 66ij,i-lj = IId$,j –O*~-l,j Il. Similar definitions hold
for the other three terms. We can thus approximate

the integro-differential equation by a system of non-

stiff ordinary differential equations for which the time

derivative can be discretized using forward Euler:

The cell density was calculated using first order up-

winding for the flux term J = (Jl, J2):

where JNi+ ~ ,j is the value of JN calculated upstream

of the point (i+ ~, j) along the x direction (similarly for

the other three terms). On the boundary we assume

no flux for the cells or their angles.

The numerical domain for our simulations consists of

a square grid of size at least 40 x 40. Being explicit, the

methods require 0(n2) flops for each time step, where

Figure 1: Fibroblast cell-orientation after 50,000 steps.

n x n is the number of points in the mesh. For our

simulation, we set the dist antes between mesh-points

to AZ = Ay = 0.01. For our parameter values, the

system shows stable solutions if At < 0.001. We keep

At constant throughout the calculation to produce a

predictable number of iterations. The number of iter-

ations determines the number of angle discontinuities

within the dish. For t > 100 the cells become pretty

much aligned throughout the dish. The results in this

paper correspond to runs of 50,000 iterations.

2.2 Numerical Simulation Results

In our parallel simulations, cell densities are initially

uniform throughout the grid. Local cell orientations

are assigned randomly at each meshpoint. After a short

time (t=O. 1) cells begin to align. Moreover, we notice

small density variations which are due to the large an-

gle variations that are still persistent at this stage. As

time progresses, cells further align themselves, while

the number of discontinuities decreases.

Figure 1 shows the cell orientations at the end of the

simulation. On this plot, we have marked some discon-

tinuities as arches and others as triradii. Triradii are

3-point-star patterns which appear at the confluence

of three parallel arrays of different average orientation

near the point of confluence. From Figure 2 we see that

cell densities are uniform except at the points of discon-

t inuit y. Just below the arches, cell densities are lower,

as observed in real cell cultures, with the cell density

being higher on the arch (curve above the discontinu-

ity). At the triradii, cell densities appear higher, too,

due to the decreased diffusion predicted by our model,

resulting in cell clumping. This clumping occurs in our

model because we allow cell movement towards the dis-

continuity. In the actual cell cultures, cells will stay

away from areas of large angle variations. Hence, they

367

Cell Densities

Figure 2: Fibroblast cell-density after 50,000 steps.

appear at lower densities at the center of a t riradius.

We are currently refining our model to address this

problem.

Our numerical simulations of the model show pat-

terns that closely resemble the patterns observed in

culture [3]. The similarity between the biological and

numerically found patterns provides strong indication

that our model captures important characteristics of

the cell interactions. Further biological experiments

could provide us with accurate parameter values for

our simulations.

3 Bacteria Application

3.1 Modeling Bacteria

Conditions have been found under which chemotactic

strains of different bacterial species aggregate to form

geometric patterns of different complexity. These pat-

terns form when motile cells, inoculated on semisolid

agar, respond to gradients of chemical attractants that

they themselves excrete [5, 23]. These fascinating ex-

perimental patterns are a new class of kinetic pat-

terns [22] in which both random motion (diffusion)

and chemically directed movement (chemotaxis) are es-

sential. The simplest patterns, and thus, those most

amenable to mathematical analysis, are the periodic

arrays of continuous or perforated rings generated by

the bacterium Salmonella typhimurium. A reaction-

diffusion-chemotaxis model based on the Oster-Murray

mechanism [18] provides a description of the essential

components required to generate simple periodic pat-

terns. This mathematical model consists of a system of

coupled nonlinear partial differential actuations for the

bacteria-chemoat tract ant- substrate interactions; how-

ever, such continuum models can be shown to be the

result of using behavioral ‘rules’ in ‘random walk’ in-

dividuals [1, 4]. The model is based on the following

known biological fact:

● It is the interaction between the cells and chemoat-

tradant that causes self-organization into the ob-

served patterns. In the semi-solid medium, the

cells start out at the center of the dish, prolif-

erate, and produce and degrade chemoattractant;

they only sense the chemoattractant and not the

substrate. The cells and chemoattractant are both

diffusive.

We denote the density of (motile) cells by n, the

concentration of chemoattractant by c, and the con-

centration of substrate by s. In the S. typhimurium

experiments, the consumption of substrate is negligi-

ble. Therefore, we assume that the substrate concen-

tration is constant, and thus s is just a parameter. It is

convenient to cast the model in non-dimensional terms

(Murray [17] provides a general discussion):

a
r = –V . J. – V . JChemO + fl(n, c,s) (7)

d
–V . J. + $2(7L, c,s) – ~3(Tz, c,s)

TtC =
(8)

where:

●

●

●

The

J. = -Dn Vn and JC = -DCVC are the diffusive

fluxes of the cells and chemoattractant, respec-

tively.

JChemO = x(n, C)VC is the chemotactic flux. The

functional form for the chemotactic response is the

one determined experimentally, X(n, c) = om/(1 +

~c)z, where a measures the strength of chemo-

taxis, and ~ the saturation of the chemotactic sen-

sitivity (at high levels of chemoattractant).

~1 (n, C, s), ~z(n, C, s), f3(n, c,s) are proliferation of

cells, and production and degradation of chemoat-

tractant. We choose the simplest forms possible

which are consistent with the experimental obser-

vations:

fl(% c, s) = pn(l – ;) (9)

f,(n, c,.) = ~
l+yn

(lo)

fs(n, c, s) = –c (11)

parameter p measures the rate of proliferation, and

-y the saturation of the chemoattractant production (at

high levels of cells).

In the biological experiments, patterns are formed

from an initial inoculum of cells at the center of a petri

dish, with no cells elsewhere. These cells then diffuse

and proliferate, spreading out radially. At, the same

368

time, they produce chemoattractant which causes them

to aggregate. It is the interplay between this aggrega-

tive destabilizing effect, reflected in the chemotactic

coefficient (cr), and the stabilizing effects of the diffu-

sion of the cells (Dn) and of the chemoattractant (DC),

that is crucial to the formation of spatially heteroge-

neous pattern.

3.2 Numerical Solution of the Bacteria

Model

In our numerical investigations of the behavior of the

model, we focus on cell density (rather than chemoat-

tractant (or substrate) concentration) as this is the

quantity of primary interest. Moreover, since there is

no variation in the patterns through the thickness of

the agar, equations (10)-(11) for the cell density and

chemoattractant concentration can be solved on a two-

dimensional grid. To develop and analyze the model

equations we use an explicit forward Euler finite dif-

ference scheme. The experimental patterns are gener-

ated from an initial inoculum at the center of a dish,

so we choose as our initial conditions a 10 x 10 mesh

point area at the center of the domain in which cell

density n. = 1.0, with n = 0.0 elsewhere. Initially c

= O everywhere. These conditions are then perturbed

with + l% random noise in order to break the synl-

metry. Experimentally the cells are confined to a dish,

so we impose zero flux boundary conditions. However,

pattern formation (in both the experiments and the

simulations) takes place well before the leading edge of

the perturbation reaches the domain boundary, so the

boundary conditions are not relevant, nor is the shape

of the mesh, which is a square containing at least 301

x 301 grid points. The time step used in the integra-

tions is 0.005. The reliability y of this numerical method

was monitored by doubling the mesh size and halving

the time step, which produced qualitatively similar re-

sults. We have also tested an implicit Crank-Nicholson

method which was successfully used by Scribner et {L1.

[20] to investigate traveling bands of bacteria, and the

method of lines to reduce the partial differential equa-

tions to ordinary differential equations. However, be-

cause of the stiffness of the model equations, there is

little or no gain in using these implicit methods.

To examine explicitly the role of the chrmotaxis co-

efficient, CY, in the self-organization of bacteria, we fix

IIn = 0.1, and D. = 0.3, together with ~ = 1.0, ~ = 0.2,

p = ().()3, and s = 1.0. lVith these parameters, linear

analysis shows that the non-trivial uniform steady state

(n,c) = (1,1/1.2) can be driven unstable by spatial per-

turbations when w > CY.rjt z 0.818. This is the usual

way that spatial patterns are generated in most models

for biological pattern formation [17]. For a given ini-

tial condition, rings are most likely to form when the

chemotactic response (a) is low (but above the criti-

Figure 3: Patterns of bacteria cell-density after 300,000

time steps.

cal value for patterns to propagate). This also corre-

sponds in the dimensional problem to slow production

or rapid consumption of chemoattractant (or, when s is

non- constant, to rapid consumption of the substrate).

However, spots will be more likely than rings when a is

sufficiently large that gradients in chemotactic concen-

tration do not need to be so steep for the recruitment

of cells into clusters.

This is illustrated, for w = 3.0, in Figure 3 which

shows how, after 300,000 time steps, the pattern has

spread sequentially outward, wit h rings forming at a

fixed distance from one another, and then breaking up

into spots. For even larger values of a (more precisely,

for large values of the ratio &/D,,) the numerical cal-

culations ultimately fail because the peaks in the solu-

tions became very sharp and steep. This is lmore likely

to be the limitation of the step size in our numerical

scheme rather than chemotactic collapse [7] since the

cell removal term, —pnz, prevents formation of singu-

larities.

We therefore suggest that the cell-chemoattractant

mechanism (10)-(11) is a likely candidate for gener-

ating simple periodic patterns found in the S. ty-

phirnuraum experiments. hloreover, by choosing as our

bifurcation parameter the chemotactic coefficient, a,

we have confirmed the biological observation that it

is the sensitivity in chernotactic response that affects

the nature of the pattern. Detailed numerical simu-

lations and bifurcation pattern sequences, as well as

non-dimensioualized (biological) parameter values, are

reported elsewhere [23].

4 The ZPL Array Sublanguage

ZPL is a data parallel language that allows arrays and

subarrays to be manipulated as whole entities [15]. The

language provides constructs that lead to concise pro-

grams while eliminating tedious and error prone array

indexing. The language’s conciseness was first illus-

369

trated by the SIMPLE computational fluid dynamics

benchmark, which is approximately 5000 lines when

coded in C plus message passing, but only 500 lines

and considerably more readable when coded in ZPL

[16]. In addition, ZPL programs have sequential se-

mant ics and cent rol flow, which considerably simplifies

the program development and debugging process.

A chief goal of ZPL is to provide portability and ef-

ficiency across diverse parallel computers. Our current

ZPL compiler produces machine independent ANSI C

as object code, which is then compiled on the tar-

get machine and Iinked with machine-specific libraries

to produce executable code. Performance matching

hand-coded, explicitly parallel C code has been demon-

strated on both shared and nonshared memory parallel

computers [16]. The mathematical biology applications

described here provide further evidence that compiled

ZPL code is of high quality.

We now briefly describe the main ZPL constructs

and data types. Some of the more powerful features

of the language, which were not needed in these two

applications, are omitted here but described elsewhere

[15, 21]. ZPL supports a typical set of data types (e.g.

real, integer, char), dense arrays of arbitrary dimen-

sion, the usual arithmetic and logical operators which

can be applied to either scalars or arrays, parallel prefix

operators (e.g. reduce and scan), and the standard con-

trol structures (if, for, while, etc.), including recur-

sion. ZPL has two classes of variables that serve as ba-

sic units of computation: parallel arrays and scalars. In

the ZPL model, concurrency is derived from the array

and parallel-prefix operators (reductions and scans).

Specifically, ZPL’S parallel arrays are distributed across

physical processors, while all scalar data is replicated.

(ZPL also has indexed arrays, which are not distributed

and do not produce parallelism.) All concurrency is

managed by the compiler and run-time system, shield-

ing the application programmer from the tedious de-

tails of communication and synchronization.

The ZPL code fragment below is characteristic of

both the fibroblast and bacteria codes and illustrates

some distinguishing features of ZPL. First, regions are

central to ZPL. Line 5 shows how regions, which are

simply sets of array indices, can be declared. In this

case R is a square 2D index set. (Regions need not be

statically declared, but dynamic regions are beyond the

scope of this discussion.) Line 11 shows how a region

can be used to define the storage of parallel arrays, in

this case U and V, whose base-types are double-precision

floating point values. Lines 17 and 18 show how regions

can be used to specify new regions: of is a keyword

and South is a user-defined direction which together

define a new region that is disjoint and adjacent to

R, and offset from R by the vector South. That is,

[South of RI is the (n+l)s~ row of the index space.

Finally, line 22 shows how regions are used to specify

Application Fibroblasts Bacteria

Fort ran 461 lines 255 lines

ZPL 224 lines 197 lines

Table 1: Code sizes for the kernels of the applications

under investigation.

array operations: the region R specifies the index set

over which the statement is to be applied. Thus, line

22 will assign to all elements of the array Temp whose

indices are in the range (I. .n) x (i. .n). Line 22 also

illustrates the use of the At operator (Q). For example,

U@South refers to the parallel array whose indices are

displaced from [R] by the vector South. Thus, the @

operator can be viewed as a “shift” operator.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

program Bacteria;

-- Declarations --

constant beta : integer = 2.0;

region R = [1. .n, i.. nl;

direct ion North = [-1, 01;

south = [+1, o];

procedure Bacteriao ;

var U, V: [R] double;

Temp: [R] double;

-- Initialization --

begin

[R] u := 0.0;

[South of R]

[Morth of RI u := 0.0;

[R] Temp : = (U@South/ ((1 + beta* V@South) *

(1 + beta*VWouth))) ;

end;

5 Implement at ion Issues

Implementing the mathematical biology applications

with ZPL proved to be easy, even for users with lim-

ited parallel-programming experience. The algorithms

described in Sections 2 and 3 are both inherently data

parallel. In the fibroblast simulation the cell orien-

tations and densities are determined by information

from neighboring cells. Similarly, the bacteria forma-

tion patterns are caused by diffusion in which cell den-

sities for one time step can be computed from local-

ized information of the previous time step. We found

the ZPL programs for the Fibroblast and the Bacte-

ria models to be more readable (and shorter—see Ta-

ble 1) than the original sequential Fortran programs.

Implementing the same applications with explicit par-

370

Figure 4: Data-dependences and boundary conditions

for the Fibroblast example.

allelism using either message-passing or shared memory

constructs would have been much more tedious. The

conciseness of ZPL is attributed mainly to:

1.

2.

3.

The implicit handling of data decomposition, com-

munication and synchronization;

The provision of specific support for common types

of boundary conditions;

The provision of high-level constructs that are

known to have efficient parallel implementations,

such as array operations and Reductions and

Scans.

As an example, we present a short Fortran excerpt

from the Fibroblast application that initializes periodic

boundary conditions on the two-dimensional array of

cell-angles and then calculates angle derivatives along

the y-axis:

do

78

do

12

11

A

78 j=l, n+2

theta(l, j) = theta(n+2, j)

theta(n+2, j) = theta(2, j)

cent inue

11 i=2, n+l

do 12 j=2, n+l

thy(i, j) =

angle_ subtr(theta(i-l, j) , theta(i+l, j))

/(2 . OdO*h)

cent inue

cent inue

pictorial description of the corresponding data-

dependencies and boundary conditions is given-in Fig-

ure 4. The ZPL implementation includes definitions for

the region of the parallel arrays upon which the com-

putation is being carried out, and for the dtrecttons of

dat~flow:

region R= [1. .n,l. .nl;

direction North = [-1 ,01 ;

South = [+1 ,0] ;

var

/* declare parallel arrays */

theta, thy : [R] double;

/* declare of h as scalar */

h: double;

The actual code consists of a high-level implementation

of the periodic boundary conditions and the sequential

semantics of the Fortran code, applied to parallel ar-

rays:

[North of R]

[South of RI wrap theta;

[R] thy : =

angle. subtr(theta@South, thetaQNorth)

/(2*h) ;

The last line illustrates another convenient feature of

ZPL: scalar promotion. The angle~ubtr() function

was written to accept scalar parameters but here is

passed thetaWcmth and theta@North aa parameters.

This type of promotion can be significant in allowing

code re-use from sequential programs, and also illus-

trates how parallel arrays in ZPL have been elevated

to the same status as the scalar data types. (The scalar

expression (2*h) is also trivial promoted to an array

expression of the same size and shape as the other ar-

rays in the statement.)

6 Performance Results

To study the efficiency of the ZPL codes we performed

a large number of runs on three different platforms: the

Kendall Square Research KSR-2 [6], the Intel Paragon

[9], and DEC-Alpha workstations running PVM [13].

The KSR-2 is a COMA (Cache Only Memory Archi-

tecture) multiprocessor with 40 MHz custom processors

configured as a hierarchy of slotted packetized rings.

Each leaf-level ring contains 32 processors. The KSR

architecture provides a shared address space with phys-

ically distributed memory, Memory modules of each

node play the role of a very large hardware-managed

cache. Cache coherence is provided through a hierar-

chical direct ory scheme which enforces sequential con-

sistency. The Intel Paragon is a message-lpassing sys-

tem based on the Intel i860XP, a 50 MHz micropro-

cessor. Communication between the processors is car-

ried through a mesh interconnection network. PVM

is a message passing interface for distributed comput-

ing that uses the TCP/IP communication protocols to

connect, in our case, a networks of workstations. The

high availability of workstations makes this an attrac-

tive development environment. Our workstations are

DEC 3000/400 AXP’S with 133 MHz clocks.

Our study focuses on two measures of performance:

a comparison of the execution times for the ZPL codes

and their corresponding sequential Fortran programs,

and an assessment of the scalability of the ZPL codes

as the numbers of processors is increased. The first

371

I Fibroblasts

I KSR I Intel Paraaon I DEC

Fortran . 2114.75 - I -

ZPL 3159.7 2914.17 I 1675.54
—

I Bacteria

] KSR I Intel Paraaon I DEC

I Fortran I 46919.16 I 20198.88 - I _ I
1 1

I ZPL I 47519.79 I 18946.03
#

I 9754.75 I

Table 2: Comparison of Fortran and ZPL execution

times on one processor.

metric provides a measure of the sequential efficiency

of the ZPL compiler. We would expect the code gener-

ated by the ZPL compiler to be less efficient than the

hand-written Fortran code because of the extra book-

keeping that is introduced to exploit parallelism. This

extra overhead, however, must not be large if this par-

allel solution is to represent an alternative to sequential

implement ations.

Table 2 presents the running times of the Fibrob-

last and Bacteria codes running on one processor of

the KSR-2, Intel Paragon, and DEC-Alpha architec-

t ures. The ZPL codes on the DEC-Alpha worksta-

tion run under PVMl. The running times reported for

the Fibroblast application correspond to a mesh size of

100 x 100 and 2000 time-steps. The running times re-

ported for the Bacteria application correspond to runs

on a 481 x 481 mesh and 2000 time-steps. Table 2

shows that the ZPL codes running on one processor

achieve performance that is competitive with that of

the hand-written Fort ran programs.

Figures 5 and 6 show the running times for the same

instances of the Fibroblast and the Bacteria applica-

tions on the KSFt-2 and Intel Paragon multiprocessors.

From these plots we can see that for both applications

the ZPL codes scale very well with the number of avail-

able processors. This can also be seen from the relative

speedup curves shown in Figure 7. Here, speedup is de-

fined as the ratio of the running time on a given number

of processors over the running time of the same code on

one processor of the same machine. From the plots in

Figure 7 we see that the speedups achieved with the

Fibroblast code are smaller than those for the Bacte-

ria code. To further investigate this and to learn more

about the behavior of the codes, we used the perfor-

mance monitoring environment on the Intel Paragon

[19] to instrument the C code produced by the ZPL

compiler. In particular, we used XZpd [10] to instru-

ment the program and collect traces, and Paragraph

[12] to visualize performance. We produced detailed

diagrams showing parallelism profiles, processor uti-

] We have no measurements of Fortran codes for the DEC-

Alpha because we have no Fortran compiler for thk. machine.

m KSR-2
-Ir,el PuagOn
0 Sequdal mmul m (FmgOIo

g Sqlm!hl Fauml C5& (RmgoIl)

Number of Rocessar$

Fhroblast ZPL Code 2000 time steps, 100x1CKIgrid

Figure 5: Running Times of the Fibroblast application

(1 OOX1OO grid, 2000 iterations).

w KSR-2
- huelPmgml
us-qmlid I%m’mcO&(vamg.m)

4mm

3moo

~

E
GZmoo

10WO

o
1 2 4 8 16 32

Numbzr ofPmsewors
Bacteria ZPL Code 2000 dme steps, 481x481 grid

Figure 6: Running Times of the Bacteria application

(481x481 grid, 2000 iterations).

— Lin. spdlQ
--o. - BIuAcs.3c(kddFMwm)
--a-- Fikdiauc&(blPm8aI)
– e- BxxaiaCdc(lCSii.2)

o~
Numberof ITOCmm

Figure 7:

speedups

Relative Speedup.

372

Bra m Em -. . .. ,— ,-
m!.,m,. —

:

:

f
,

:

.

:
,-

=. l,,. ,., .
mm WW’ ‘“ “ “ “ “ “

Figure 8: Average utilization of processors for the Fi-

broblast (top) and the Bacteria codes (bottom) run-

ning on Intel Paragon. The dark-grey color denotes

the percentage of running time that a processor spends

wait ing for communicant ion.

lization, communication overhead, communication pro-

files, and patterns of communication. These profiles

confirmed that the lower speedups in the case of the

Fibroblast application are due to the higher communi-

cation overhead incurred by the Fibroblast runs. For

example, Figure 8 illustrates this overhead in terms of

average processor utilization during a small number of

iterations running on a 16-processor partition of lntel’s

Paragon. This instance of the Fibroblast application

exchanges 23,870 messages (total of 4, 138,240 bytes)

within a 3.59-second monitoring window, whereas the

Bacteria code exchanges only 2,844 messages (total

of 2, 693, 600 bytes) within a 14.33-second monitoring

window.

7 Conclusions

In this paper we have shown that mathematical mod-

els of pattern formation in biology are ideally suited

to large scale parallel programming. We have pre-

sented new algorithms for solving two mathematical

biology problems, one in the study of the formation

of fibroblast structures, the other in the study of the

self-organization of motile bacteria. By focusing on

these applications where detailed experimental data are

available, we have been able to develop basic mech-

anisms for pattern formation which should serve as

important paradigms in more complex developmental

and behavioral systems. Furthermore, we have shown

that the ZPL programming language provides an ideal

means of expressing these mathematical models, both

from a performance aspect and an ease-of-use aspect.

The performance of the two codes on the KSR, and Intel

Paragon were found to be competitive with sequential

Fortran programs.

8 Acknowledgments

It is a pleasure to thank Brad Chamberlain and Yi Sun

for their help with ZPL. Julian Cook first suggested

the problem of modeling Fibroblasts and developed

a preliminary model with D. Manoussaki. His con-

tribution is gratefully acknowledged. D.E. Woodward

would also like to thank the Department of Mathemat-

ics, University of Washington, for its kind hospitality

during her visit. This work was supported partly by

an HPCC/ESS grant from NASA, a grant from the

University of Washington Zoology Dept., and ARPA

Grant NOO014-92-J-1824.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

W. Alt. Biased random walk models for chemo-

taxis and related diffusion approximations. J.

Math. Biol., 9:147-177, 1980.

Gail Alverson, William Griswold, Calvin Lin,

David Notkin, and Lawrence Snyder. Abstractions

for portable, scalabIe parallel programming. Tech-

nical Report 93–12–09, Department of Computer

Science and Engineering, University of Washing-

ton, submitted to IEEE Trans. on Parallel and

Distributed Systems, 1993.

Jonathan Bard. Morphogenesis. Cambridge Uni-

versity Press, 1991.

H.C. Berg. Random walks in Biology. Princeton

University Press, 1983 [Expanded edition, 1993].

E.O. Budrene and H.C. Berg. Complex patterns

formed by motile cells of Escherichia coli. Nature,

349:630-633, 1991.

Henry Burkhardt. Overview of the KSR1 com-

puter system. Technical Report KSR-TR-9202001,

Kendall Square Research, February 1992.

S. Childress and J .K. Perkus. Nonlinear aspects

of chemotaxis. Math. Biosci., 56:217-237, 1981.

J. Cook and D. Manoussaki. Continuum Model

for Fibroblast Pattern Formation: Some Prelim-

inary Ideas. Technical report, Dept. of Applied

Mathematics, University of Washington, 1994.

Intel Corporation.

overview. Technical

Paragon XP/S product

report, 1992.

373

[10] Intel Corporation. Paragon’s Application Tools

User’s Guide, June 1994.

[11] Tom Elsdale and Frances Wasoff. Fibroblast Cul-

ture and Dermatoglyphics: The topology of two

planar patterns. ROUX’s Archives of Developmen-

tal Biology 180, pages 121-147, 1976.

[12] M.T, Heath and J.A. Etheridge. Visualizing the

Performance of Parallel Programs. IEEE Software,

8(5):29-39, September 1991.

[13] Oak Ridge National Laboratory. PVM 3 User’s

Guide and Reference Manual, May 1993.

[14] Calvin Lin and Lawrence Snyder. A portable im-

plementation of SIMPLE. International Journa/

of Parallel Programming, 20(5):363401, 1991.

[15] Calvin Lin and Lawrence Snyder. ZPL: An array

sublanguage. In Uptal Banerjee, David Gelern-

ter, Alexandru Nicolau, and David Padua, editors,

Languages and Compilers for Parallel Computing,

pages 96-114. Springer-Verlag, 1993.

[16] Calvin Lin and Lawrence Snyder. SIMPLE per-

formance results in ZPL. In ?h Workshop on

Languages and Compilers for Parallel Computing,

1994.

[17] J.D. Murray. Mathematical Biology. Springer-

Verlag, 1989 [2nd corrected edition 1993].

[18] G.F. Oster and J.D. Murray. Pattern formation

models and development al constraints. J. Exp.

200/., 251:186-202, 1989.

[19] B. Ries, R. Anderson, W. Auld, K. Callaghan,

E. Richards, and W. Smith. The Paragon Per-

formance Monitoring Environment. In Supercom-

puting ’94, pages 850-859, 1994.

[20] T.L. Scribner L.A. Segel and E.H. Rodgers. A nu-

merical study of the formation and propagation of

traveling bands of chemotactic bacteria. J. theor.

Biol., 56:217-237, 1974.

[21] Lawrence Snyder. A ZPL programming guide,

Technical Report 94-12–02, Department of Com-

puter Science and Engineering, University of

Washington, 1994.

[22] J. W.T. Wimpenny. Microbial systems: patterns

in space and time. Adv. Micro. Ecol., 12:469–522,

1992.

[23] D.E. Woodward, R. Tyson, M.R. Myerscough,

J .D. Murray, E.O. Budrene, and H.C. Berg.

Spatio-temporal patterns generated by Salmonella

typhimurium. Biophysicai J., 1994 (submitted).

374

