
Perceptron Learning for Predicting the Behavior of Conditional Branches

Daniel A. Jiménez Calvin Lin
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712f djimenez,ling@cs.utexas.edu
Abstract

Branch prediction, i.e., predicting the outcome of a condi-
tional branch instruction, is essential to the performance of
current and future microprocessors. We show how percep-
trons can be used to improve the state of the art in branch
prediction. We explore the unusual challenges this domain
presents for neural systems, and we show why other neural
methods, such as back-propagation, provide no additional
accuracy in this context. Finally, we identify other areas
where neural systems can be applied to microprocessor im-
plementation.

1 INTRODUCTION

Modern microprocessors achieve good performance by ex-
ecuting many instructions in parallel. Thisinstruction-level
parallelism (ILP) can be limited by various bottlenecks, so
microprocessors often perform speculative work to reduce
the impact of these bottlenecks. One particularly impor-
tant type of speculation isdynamic branch prediction, which
predicts the likely direction of conditional branch instruc-
tions before the conditions have been decided. Current tech-
niques can achieve correct branch prediction rates of 95% [1],
i.e., misprediction rates of 5%, but the high cost of recov-
ering from misprediction [2] remains one of the largest im-
pediments to performance on current and future processors.
Small improvements in accuracy can have a large impact on
performance; decreasing the misprediction rate from, say,5%
to 4% can decrease the execution time of a typical program by
as much as 14%, given reasonable assumptions about other
aspects of the microarchitecture.

This paper describes how we have successfully used per-
ceptrons in branch prediction [3], explains why the particular
constraints of the problem favor simple methods over other
methods such as back-propagation, and argues that the gen-
eral area of hardware speculation is a rich one for neural sys-
tems.

0 50 100

Percentage of Taken Branches

0

1000

2000

3000

4000

5000

N
um

be
r o

f B
ra

nc
he

s
20 40 60 80

Percentage of Taken Branches

0

100

200

300

N
um

be
r o

f B
ra

nc
he

s

Figure 1: Bias in branches. Thex axis gives thebias of a branch,
i.e., the percentage of time a branch istaken, and they axis shows
the number of branches with a given bias in the SPEC 2000 integer
benchmarks. Of all branches, 53% aretaken at least 98% or at most
2% of the time. The graph on the right excludes these branches,
again showing clear biases and a surprising number of branches taken
exactly half the time.

2 BACKGROUND AND RELATED
WORK

Dynamic Branch Prediction. The outcome of a given
branch is often highly correlated with the outcomes of other
recent branches [4]. This history of branch outcomes forms
a pattern that can be used to provide a dynamic context for
prediction. Most modern branch predictors are based on this
pattern history. Recent branch prediction work focuses on re-
fining the scheme of Yeh and Patt [4, 5, 6]. In this scheme,
every time a branch outcome becomes known, a single bit
(0 for not taken, 1 for taken) is shifted into a pattern history
register. A pattern history table (PHT) of two-bit saturating
counters is indexed by a combination of branch address and
history register. The high bit of the counter is taken as the
prediction. Once the branch outcome is known, the counter
is decremented if the branch isnot taken, or incremented oth-
erwise, and the pattern history is updated. One problem with
such schemes isaliasing, where the limited memory causes
two unrelated branches to use the same prediction resources,



resulting in poor performance. Many techniques have been
proposed to reduce aliasing [1, 5, 6]; these techniques work
well in practice.

Neural Networks in Compilers. Static branch prediction
uses program features, such as control-flow and opcode in-
formation, to predict branch behavior at compile time [7, 8].
Calder, et al. have shown how static prediction can achieve
misprediction rates of 20% by supplying program informa-
tion as input to a feed-forward neural network trained with
back-propagation [8]. In general, static branch prediction
performs worse than dynamic techniques, but can be use-
ful for performing static compiler optimizations. Neural net-
works have also been used to schedule straight-line machine
code in a compiler [9] to increase ILP.

Characteristics of Branch Prediction. Dynamic branch
prediction has four characteristics that present challenges for
neural methods. First, branches, which can only have two
outcomes,taken and not taken, are highly biased. For in-
stance, a branch that transfers control from the end of a loop
back to the beginning will usually betaken, since loops usu-
ally iterate many times before finishing. Figure 1 shows the
bias of branches in the SPEC 2000 integer benchmark suite.
Second, branch predictors must operate while they are being
trained, and they can never stop learning, since branch behav-
ior may change over the course of a program. Thus, the pre-
diction mechanism must learn quickly and adapt to changing
behavior. Third, for a conditional branch to have a significant
impact on the performance of a program, it must be executed
many millions of times. Thus, for important branches, there
are many training samples. Finally, branch predictors must
meet strict physical constraints. They must operate in one
CPU cycle, typically one or two nanoseconds, and be small
enough to fit on a chip. Most of the hardware devoted to
branch predictors is memory for large tables, so thehardware
budget of a predictor, i.e., the cost of the predictor as a com-
ponent of the chip, is appropriately measured in kilobytes.A
typical predictor occupies 16K bytes of SRAM [10].

3 NEURAL BRANCH PREDICTION

Our dynamic branch predictor replaces the typically used ta-
ble of two-bit counters with a table of neurons [3]. When a
branch instruction is encountered, the address of the branch
is hashed to select a neuron from the table. The selected neu-
ron is used to predict the likely direction of the branch. Once
the actual branch outcome is known, the neuron is updated
with the training rule.

We use the Block neuron [11], a type of perceptron [12,
13], because it provides good accuracy and lends itself to
a fast and compact representation in hardware. Although
perceptrons cannot learn linearly inseparable functions with
100% accuracy [14], we have found that they work well in
practice for branch prediction.

The inputs to the perceptron are the bits of the pattern his-
tory register, i.e. the outcome of the last several branches,

represented as bipolar values. For a history length ofn, the
perceptron hasn+ 1 inputs: then bits of pattern history and
a constant bias input of one. For each input, there is a cor-
responding weight; the output is the dot product of the input
and weight vectors. The branch is predictedtaken if the out-
put is at least zero,not taken otherwise. When the prediction
is incorrect or the magnitude of the output is below a constant
threshold�, training is done by perceptron learning [15] with
unit learning rate. To simplify the implementation, we use
small integer weights with saturating arithmetic. The bipolar
nature of the input and output data allows several optimiza-
tions so that a hardware implementation can operate quickly.
The output of the perceptron is the dot product of the weights
and input vector. The entire operation closely resembles an
unsigned integer multiply, for which very efficient circuits
exist [16]. The predictor can also be pipelined, i.e., consec-
utive predictions and trainings can be overlapped in time to
provide faster operation. These two observations lead to a
single-cycle implementation of our predictor. More details
are available from our technical report [3].

3.1 Design Space
Given a fixed hardware budget, three parameters control the
design of the perceptron branch predictor. We tuned each of
these parameters for a set of hardware budgets using training
data representing approximately 10% of the branches exe-
cuted in the SPEC 2000 integer benchmarks.

History Length. The number of branch outcomes to store
in the pattern history register has a great impact on the accu-
racy of the predictor. Longer history lengths yield greater
accuracy but also require longer weights vectors. As the
history length increases, the number of neurons that can be
represented in the the same space decreases, resulting in in-
creased aliasing. Thus, the history length must be tuned for
each given hardware budget. (See Table 1.)

Table 1: Best History Lengths for Various Hardware Budgets. The
perceptron predictor can use longer history lengths than the well-
knowngshare predictor.

Hardware budget History Length
in kilobytes

1 12
2 22
4 28
8 34
16 36
32 59
64 59
128 62
256 62
512 62



Number of bits per weight. Each weight is represented
by a signed integer. The size of this integer affects accuracy.
If the weights are too small, the perceptron will be unable
to effectively learn correlations between the history and the
branch outcome. If the weights are too large, aliasing can
adversely affect accuracy. We have empirically found that
9 bit weights provide the best balance. The accuracy of the
predictor is not particularly sensitive to this parameter.

Threshold. The threshold� controls the invocation of the
training algorithm. To achieve best accuracy, this parameter
must be tuned for each possible history length. Interestingly,
we have experimentally found that the best threshold� for a
given history lengthh is alwaysexactly � = b1:93h + 14

for our benchmarks. This is because adding another weight
to a neuron increases the average output of the neuron (before
thresholding) by some constant, so the threshold must be in-
creased by a constant, yielding a linear relationship between
history length and threshold.

3.2 Accuracy
We simulated the perceptron predictor along with thegshare
predictor (tuned for history length), a PHT scheme that is
a standard against which other predictors are judged. The
gshare scheme uses the exclusive-OR of the branch address
and history register as an index into the PHT; this scheme
has proven effective in distributing two-bit counters evenly
among branches, reducing destructive aliasing. Using sim-
ulation, we measured misprediction rates at various hard-
ware budgets. Figure 2 shows the accuracy of each predic-
tor for the 126.gcc program, a standard benchmark for
branch prediction, and for a composite sample of 100 mil-
lion branches from each of the SPEC 2000 integer bench-
marks. For126.gcc, the perceptron predictor improves the
misprediction rate by 25.6% overgshare at a hardware bud-
gets of 128K bytes. This improvement is significant: Given
reasonable assumptions about the microarchitecture, thisim-
provement would result in a decrease of up to 18% in the ex-
ecution time of the program. For the composite sample, the
perceptron predictor improves accuracy by 5.4% overgshare
with a budget of 128K bytes. Note that since learning is done
online, there is no need for separate training and testing sets
to report accuracy.

3.3 Analysis of the Predictor
One of the main benefits of the perceptron predictor is its
ability to consider much longer histories than other meth-
ods [3]. PHT-based predictors can only consider history
lengths of about 17 since the number of table entries is expo-
nential in the history length. This is a problem when the dis-
tance between correlated branches is longer than the length
of a pattern history shift register [17]. Even if a PHT scheme
could somehow implement longer history lengths, it may not
help because longer history lengths require longer training
times for these methods [18]. One scheme has been proposed

1 2 4 8 16 32 64 128 256 512

Hardware Budget, Kilobytes

0

2

4

6

8

10

P
er

ce
nt

 M
is

pr
ed

ic
te

d

Perceptron vs. other techniques, 126.gcc

Gshare
Perceptron

1 2 4 8 16 32 64 128 256 512

Hardware Budget, Kilobytes

0

2

4

6

8

10

P
er

ce
nt

 M
is

pr
ed

ic
te

d

Perceptron vs. other techniqes, composite

Gshare
Perceptron

Figure 2: Hardware Budget vs. Prediction Rate. The perceptron
predictor is more accurate thangshare for hardware budgets over
16K for126.gcc. On the composite of all benchmarks, the percep-
tron predictor achieves greater accuracy at all hardware budgets.



to support long histories by using variable length path histo-
ries [19], but this requires complex profiling that is impracti-
cal.

Perceptrons are unable to learn linearly inseparable func-
tions with 100% accuracy. To measure this effect on our
predictor, we performed an experiment that computed the
“ideal” prediction function for each branch, i.e., the function
of the branch history with the lowest misprediction rate, for
each benchmark, and simulated the perceptron predictor and
gshare, each with a 512K byte budget. When more than 50%
of these prediction functions are linearly separable, the per-
ceptron predictor is always more accurate thangshare. When
the opposite is true, the perceptron predictor is less accurate.
On average, 40% of the branches in a benchmark are linearly
inseparable, so the perceptron predictor is usually more ac-
curate. Also, joininggshare and the perceptron predictor in a
hybrid predictor results in even better accuracy [3].

Comparison with Back-Propagation. We compared the
perceptron predictor with another standard neural technique,
back-propagation. A hardware implementation of back-
propagation would be too slow for branch prediction, since
the more complex multi-layer architecture would require
many cycles for both prediction and training. For this exper-
iment, we ignored the hardware budget and the need to use a
fixed number of bits for the weights; the goal was to under-
stand how different neural approaches perform independent
of these constraints. We compared the performance of both
predictors for history lengths between 5 and 100. For back-
propagation, we used one hidden layer with eight units, and
we tuned the learning rate. On the126.gcc benchmark,
with a history length of 60, the perceptron predictor has a
misprediction rate of 2.44%, compared with 3.33% for back-
propagation. We would expect back-propagation to perform
better than perceptron, since it can learn linearly insepara-
ble functions. However, back-propagation takes longer to
learn branch behavior than the perceptron. Figure 3 shows
the accuracy and training times of back-propagation and
perceptrons on the126.gcc benchmark. At each history
length, the perceptron predictor is more accurate than back-
propagation. Although back-propagation should be able to
asymptotically exceed the accuracy of the perceptron, the
longer training time for back-propagation causes it to be
slightly less accurate overall.

4 FUTURE DIRECTIONS

The increasing use of speculation in modern processors has
opened many opportunities for new research. Currently,ad
hoc schemes are used to drive predictions. We believe that
accuracy can be increased by using neural techniques. As
mentioned earlier, neural networks can be applied to data
prefetching and compiler optimizations, but there are many
other areas in which neural predictors can be helpful:

Indirect Branch Prediction. Indirect branches, i.e.,
branches through a pointer such as virtual method calls, calls

0 20 40 60 80 100

History Length

0

2

4

6

8

10

M
is

pr
ed

ic
tio

n 
R

at
e

Perceptron
Back-propagation

200 400 600 800 1000

Number of times branch is executed

0

5

10

M
is

pr
ed

ic
tio

n 
R

at
e

Perceptron
Back-propagation

Figure 3: Comparison of Perceptron and Back-Propagation. On
the left, thex-axis is history length and they-axis is misprediction
rate. As history lengths increase, the advantage of the perceptron
predictor over back-propagation also increases. On the right, thex
axis is the number of times a branch has been executed (starting at
30, where the learning rates start to diverge) and they axis shows
the average misprediction rate at that time; only branches executed
at least 1000 times are included. Although back-propagation is more
powerful, the perceptron is able to learn more quickly.



through jump tables, and function returns, also need to be
predicted. A neural branch predictor could be extended to
predict the target address of these branches by choosing from
among a small set of recently used addresses.

Assigning confidence to decisions.A processor can use
a confidence in a prediction to guide speculation. For ex-
ample, if a branch is predictedtaken, but confidence in that
prediction is low, the processor may choose to speculatively
execute both thetaken andnot taken branches, dropping the
wrong path when the branch condition becomes available.
When confidence is high, the processor may choose to ex-
ecute the predicted path only, saving execution resources for
other concurrent computations. A scheme to compute confi-
dence levels for branch predictions has been proposed [20],
but the output of a neural system, when interpreted as a prob-
ability [21], can provide the same confidence level as a free
side-effect.

Value Prediction. Some processors predict the value that
an instruction will compute before it has been executed, so
that the value can speculatively be fed to another instruction
executing in parallel [22]. Neural systems could be used to
predict which of a set of previously computed values the in-
struction is likely to compute. Value predictors require a level
of confidence in a prediction before they will work, so neural
systems seem particularly well-suited to this application.

5 CONCLUSION

Modern microprocessors increasingly rely on speculation to
boost ILP. Thus, improvements in prediction mechanisms are
critical to the performance of microprocessors. Until now,
hardware-based prediction techniques have ignored neural
methods. However, technology trends, such as the availabil-
ity of large hardware budgets, now make such methods feasi-
ble, particularly if they can be designed to produce results
quickly with on-line training. The perceptron predictor is
one such technique, and we can anticipate the development
of many others if the computer architecture and neural com-
puting communities come together to study speculation.

Acknowledgments. This research was funded in part
by DARPA Contract #F30602-97-1-0150 and by NSF CA-
REER grant ACI-9984660. We thank Steve Keckler, Kathryn
McKinley and Risto Miikkulainen for their help in this work.

REFERENCES

[1] S. McFarling. Combining branch predictors. Technical Report
TN-36m, Digital Western Research Laboratory, June 1993.

[2] Brad Calder and Dirk Grunwald. Fast and accurate instruction
fetch and branch prediction. InProceedings of the 21st In-
ternational Symposium on Computer Architecture, pages 2–11,
April 1994.

[3] Daniel A. Jiménez and Calvin Lin. Dynamic branch prediction
with perceptrons. InProceedings of the 7th Int’l Symposium
on High Performance Computer Architecture, pages 197–206,
January 2001.

[4] T.-Y. Yeh and Y. Patt. Two-level adaptive branch prediction.
In Proceedings of the 24th ACM/IEEE Int’l Symposium on Mi-
croarchitecture, November 1991.

[5] E. Sprangle, R.S. Chappell, M. Alsup, and Y. N. Patt. The
Agree predictor: A mechanism for reducing negative branch
history interference. InProceedings of the 24th International
Symposium on Computer Architecture, June 1997.

[6] A.N. Eden and T.N. Mudge. The YAGS branch prediction
scheme. InProceedings of the 31st Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, November 1998.

[7] T. Ball and J. Larus. Branch prediction for free. InProceedings
of the SIGPLAN ’93 Conference on Programming Language
Design and Implementation, pages 300–313, June 1993.

[8] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin,
M. Mozer, and B. Zorn. Evidence-based static branch predic-
tion using machine learning.ACM Transactions on Program-
ming Languages and Systems, 19(1), 1997.

[9] Elliot Moss, Paul Utgoff, John Cavazos, Doina Precup, and
Darko Stefanovic. Learning to schedule straight-line code. In
Neural Information Processing Systems, December 1997.

[10] R.E. Kessler. The Alpha 21264 microprocessor.IEEE Micro,
19(2):24–36, March/April 1999.

[11] H. D. Block. The perceptron: A model for brain functioning.
Reviews of Modern Physics, 34:123–135, 1962.

[12] F. Rosenblatt.Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms. Spartan, 1962.

[13] M. L. Minsky and S. A. Papert.Perceptrons, Expanded Edition.
MIT Press, 1988.

[14] L. Faucett. Fundamentals of Neural Networks: Architectures,
Algorithms and Applications. Prentice-Hall, Englewood Cliffs,
NJ, 1994.

[15] Christopher M. Bishop.Neural Networks for Pattern Recogni-
tion. Oxford University Press, 1995.

[16] Y. Hagihara, S. Inui, A. Yoshikawa, S. Nakazato, S. Iriki,
R. Ikeda, Y. Shibue, T. Inaba, M. Kagamihara, and M. Ya-
mashina. A 2.7ns 0.25um CMOS 54� 54b multiplier. InPro-
ceedings of the IEEE International Solid-State Circuits Con-
ference, February 1998.

[17] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt. An anal-
ysis of correlation and predictability: What makes two-level
branch predictors work. InProceedings of the 25th Annual In-
ternational Symposium on Computer Architecture, July 1998.

[18] P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and
capacity aliasing in conditional branch predictors. InProceed-
ings of the 24th International Symposium on Computer Archi-
tecture, June 1997.

[19] J. Stark, M. Evers, and Y. N. Patt. Variable length path branch
prediction. InProceedings of the 8th International Conference
on Architectural Support for Programming Languages and Op-
erating Systems, October 1998.

[20] E. Jacobsen, E. Rotenberg, and J.E. Smith. Assigning con-
fidence to conditional branch predictions. InProceedings of
the 29th Annual International Symposium on Microarchitec-
ture, December 1996.



[21] D. A. Jiménez and N. Walsh. Dynamically weighted ensem-
ble neural networks for classification. InProceedings of the
1998 International Joint Conference on Neural Networks, May
1998.

[22] K. Wang and M. Franklin. Highly accurate data value predic-

tion using hybrid predictors. InProceedings of the 30th An-
nual International Symposium on Microarchitecture, Decem-
ber 1997.


