
International Journal of Parallel Programming," 1Iol. 20, No. 5, 1991

A Portable Implementation of SIMPLE

Calvin Lin 1 and Lawrence Snyder

Received December 1991; Revised June 1992

This paper describes how the SIMPLE fired dynamics benchmark is programmed
using a new language that promotes portability. Beginning with the mathe-
matics behind the SIMPLE simulation, we present in detail the process by
which a portable Orca program is written. We provide evidence that our
program is portable across the Intel iPSC/2, the nCUBE/7, the Sequent
Symmetry, the BBN Butterfly, and a simulated Transputer-based nonshared
memory machine. In addition, this paper illustrates that language constructs can
be provided to ease the burden of programming with message passing.

KEY WORDS: Portable parallel programming; SIMPLE; performance
results.

1. I N T R O D U C T I O N

The importance of portabil i ty is not in dispute. P rogram portabil i ty is
beneficial because its allows the cost of p rogram development to be
amort ized over a long lifetime that spans many machines. Portabil i ty also
allows and encourages p rogram sharing. Unfortunately, portabil i ty is not
as easily accomplished today as it has been in the past.

Portabil i ty in the parallel world is difficult because of the diversity
of available architectures. A program that relies on the low-level details
of one machine is likely to find those details nonexistent or inefficiently
implemented on another machine. While p rogramming at too low a level
is problematic, so too is p rogramming at too high a level. A high level of
abstract ion can be realized on all machines, but the gap between the
abstract ion and the machine is often too large to be bridged by compilers
and runtime systems alone; the result is poor performance.

This paper introduces the Orca p rogramming language. Orca

1 Department of Computer Science and Engineering, FR-35, University of Washington,
Seattle, Washington 98195.

363

0885-7458/91/1000-0363506 50/0 �9 1991 Plenum Pubhshmg Corporation

364 Lin and Snyder

programs are portable because they only require facilities that are
efficiently realizable on all MIMD multiprocessors. Moreover, certain key
aspects of Orca programs are parameterized, yielding programs that are
flexible enough to adapt to differenf architectures. In this paper we describe
the Orca specification of SIMPLE. This example demonstrates the
flexibility of Orca programs and shows how an appropriate choice of
language constructs leads to message passing programs that are clean and
concise.

The importance of SIMPLE as a parallel application comes from the
substantial body of literature already devoted to its study. SIMPLE is a
computational fluid dynamics code that was introduced in 1977 as a
benchmark to evaluate new computers. ~1) Since its creation it has been
widely studied, both to illustrate new programming approaches (2-5) and to
demonstrate program performance. (4'6-a~ This paper follows both tradi-
tions, using SIMPLE to illustrate the Orca language and to demonstrate
the portability of SIMPLE across a variety of MIMD machines.

This paper is organized as follows. Section 2 provides background on
the Orca language. Section 3 presents the SIMPLE computation, first in
terms of the mathematics involved and then in an algorithmic form.
Section 4 describes how to program SIMPLE in Orca C. The final three
sections give performance results and discuss the Orca C language with
respect to ease of programming and program performance.

2. T H E O R C A L A N G U A G E S

The Orca family of languages are based on Phase Abstractions, (n 13)

a MIMD message passing model that aims to support scalable and
portable scientific applications.

At a high level, a parallel program consists of logical units of
computation known as phases. A phase is a parallel algorithm: a set of
concurrent processes working together to accomplish some common goal.
Each process is defined by program text which in the most primitive case
differs from sequential code only in the existence of message passing opera-
tions. This paper discusses one of many possible languages that can be used
to specify these process codes, but rather than provide the programmer
with a sequential language with message passing libraries simply added on,
Orca C was designed with parallelism in mind. (Another such language,
based on Fortran, is under construction. These Orca languages share a
common set of abstractions but each attempts to maintain the flavor of the
language from which it is derived.) In the parlance of the Phase Abstrac-
tions, (12) the individual processes are part of the X level of specification,
and languages that describe them are X level languages. The remaining two

A Portable Implementation of SIMPLE 365

levels of the Phase Abstractions, the Y level and Z level are introduced
later.

As a distributed memory programming language, an Orca program
contains global data structures that are logically (and often physically)
distributed across the various processors. (For shared memory machines
the data may not be physically distributed but performance advantages--in
the form of improved locality of reference--may still exist. ~14)) For perfor-
mance reasons it is useful to create a correspondence between individual
processes and the data on which they operate. Both of these activities--the
decomposition of data and the binding of processes to this data--are
supported by ensembles.

An ensemble is defined to be a set with a partitioning; the resulting par-
titions are called sections. (12) For example, a data ensemble decomposes the
global data structures into sections that represent local memory. Similarly,
a code ensemble specifies the assignment of process instances to sections.
Together, these two entities specify which processes operate on which sec-
tions of data. Finally, since the processes must communicate, port ensembles
are used to specify each phase's communication structure. Orca C programs
communicate with each other through named ports, so a port ensemble
is a partitioned graph that binds ports of one section to those of another.

Once all of the phases have been defined, they can be combined to
solve a problem. The invocation of phases is ordered with the same control
flow constructs that are typically found in sequential imperative languages.
Similarly, phase invocation uses the same syntax as procedure calls in
sequential languages.

We can now summarize the structure of an Orca program:

�9 The X level consists of sequential code (but loop-level and instruc-
tion-level parallelism are not precluded) that defines the behavior
of processes.

�9 At the Y level, ensembles specify how processes are composed to
form a coherent parallel algorithm. While a phase may at present
have at most one code ensemble, it may consist of multiple data
ensembles--one for each global data structure it accesses--and
multiple port ensembles--for cases where a phase logically utilizes
more than one communication structure. For each section, the
process defined by the code ensemble operates on local data as
defined by the data ensembles and communicates with other
processes through the ports defined by the port ensembles.

�9 Finally, phases are invoked at the Z level to solve the overall
problem. A Z level program controls the execution sequence of the
constituent parallel algorithms.

366 Lin and Snyder

Subsequent sections illustrate the details of Orca C by describing their use
in the SIMPLE computation.

2.1. The X Level or Orca C

This section discusses the X level features of Orca C in general terms.

Message Passing. Message passing in Orca C is based on ports
and invoked by the transmit operator (~) , for which a port name on the
left specifies a send of the data on the righthand side, and a port on the
right indicates a receive into the variable on the lefthand side. The seman-
tics are that sends transmit immediately, with data buffered at the destina-
tion, and receives remove data from the buffer in order of arrival, blocking
on empty. For example, the following code fragment sends the value of the
pressure variable to whatever section is connected to the East port by the
port ensemble:

East ~ pressure;

The adjacent port might receive this value into a variable, edge-
Pressure, with a statement such as the following:

edgePressure .=: West;

In addition to support for ensembles and message passing, Orca C
possesses several features that facilitate parallel programming at the X
level, nemaly, array operators, support for boundary conditions, and fluff
(defined later).

Array Constructs. Array operators provide a concise way to
apply a single operator to multiple elements of a set. These operations are
defined only for conformable pairs of arrays, that is, arrays with the same
number of dimensions and the same number of elements per dimension.
Furthermore, Orca C allows for the manipulation of subportions of arrays
using slices. For example, a[x :y] specifies the xth through yth elements of
array a, inclusive. This notion applies to all dimensions of an array. Empty
brackets ([]) are shorthand for the entire dimension but may only be used
in cases where the array bounds are known at compile time. As an example
of an aray operation, the following computes the element-wise sum of the
b and e arrays and stores the result to the a array.

a[][] = b [][] + c [][];

Besides assignment and addition, array operators are also supported
for the other C arithmetic operators. The order of evaluation for the

A Portable Implementation of SIMPLE 367

constituents of an array operation is not defined. In particular, operations
on overlapping areas of memory should be avoided. For example, the
semantics of the following are implementation dependent:

a [l : 1 0] = a[0:9] .

Array slices are particularly useful in conjunction with message
passing. In addition to improving the clarity of the source code, slices have
performance implications. Compilers can easily gather array slices into a
single message, thus minimizing the number of messages sent. Without
array slices, a programmer must either gather the data explicitly or send
the elements of the array as individual components. In either case the
meaning of the code is clearer with slices, and the latter case requires the
existence of an optimizing compiler if good performance is expected. For
example, the following code fragment sends the left column of the a array
to the West neighbor as a single message.

West c a [] [0] ;

Since this slice is not contiguous in memory, the compiler copies it to
temporary storage before sending it to the West port.

Support for Boundary Conditions. Boundary conditions repre-
sent a problem in parallel programming because they lead to the prolifera-
tion of special case code. (15'16) Orca C provides a mechanism known as
derivative functions that allows boundary conditions to be specified at the
Y level as part of the problem specification. Together, the port ensembles
and derivative functions shelter the X level source code from boundary
conditions and lead to uniform code. This feature is discussed and
illustrated in Section 4.2.

Fluff . The nonshared memory programming paradigm encourages
users to program for locality. (13" 14) The general approach is to cache values
whenever possible: First obtain local copies of remote values, then
compute. The Orca term for these cached non-local values is fluff (see
Fig. 1). This notion is similar to Overlaps (17) and Guard Strips. (~8) To ease

(a) (b)

Fig. 1. Fluff. (a): Sections without fluff. (b): A local
section with fluff.

368 Lin and Snyder

the indexing of fluff it is useful to allocate memory that is contiguous to the
local data and that can be referenced using the same naming scheme as the
local data. Orca C's data ensembles provide a clean mechanism to define
fluff. Examples are given in Section 4.2.

2.2. The Y Level of Orca C

Phases, or parallel algorithms, are defined at the Y level. A phase is
defined by the combination of data ensembles, a code ensemble, and a port
ensemble. The ensembles making up a phase must all have the same
number of sections (partitions), allowing them to be placed into one-to-one
correspondence. This establishes the correspondence between data and a
process instance, as well as specifying neighbor relationships among
sections for communication purposes.

Each section of an ensemble represents a local thread that executes
independently. Therefore, through parameterization of critical features of
the computation such as the number of data values, the number of
processors, etc., the ensembles control the logical concurrency of an Orca
program.

2.3. The Z Level of Orca C

The Z level of Orca C is programmed using the C language. Syntacti-
cally, a Z level program looks like a standard C program. Semantically,
procedure invocation is replaced by phase invocation. Control flow is
based on scalar values that are local to the Z level--that is, these scalars
are not visible to the X level processes. The Z level program specifies the
order in which the various phases are invoked, but there is no implied
synchronization among these phases. If synchronization is desired, barrier
synchronization can be explicitly specified at the Z level. Finally, the Z
level program can access the data ensembles using the same array
constructs that are available at the X level. However, there are two
differences between ensemble access at the Z and X levels. First, the Z level
uses a global indexing scheme. Second, X level access is guaranteed to
involve only local memory access, which is not the case at the Z level. An
example of a Z level program is given in Fig. 2 and is discussed in
Section 4.

2.4. The Ensembles

While the ensembles exist across all three levels of programming, each
level sees a different view. For example, the Z level sees a global view of

A Portable Implementation of SIMPLE 369

Load(x, u, a, ...);
while (error > 8)
{

Delta (x, rho, J, time, iter);
Hydro (p, rho, J, ...);
Heat (x, rho, e, J, ...);
Energyl (x, u, ...);
error := Energy2 (en_error);

}
Output (x, u, ...);

Fig. 2. Z level program
body for S IMP L E .

the data ensembles, but each X level process sees only local portions of the
ensembles. Because of these different views, the Z and X levels can use
different indexing schemes to refer to the same data. The local view at the
X level is useful because it allows each process to execute the same source
code. Functions are provided to map between global and local indices.

Note that ensembles exist permanently and do not "belong" to any of
the different programming levels. To limit their scope at the X level, data
ensemble are logically passed from the Z to X levels in much the same way
that parameters are passed to procedure calls. The mechanism is pass by
reference. At present, if two phases require different data partitionings, the
programmer must explicitly move the data. For example, a Transpose
phase could be used to transpose the elements of a distributed matrix.
Details concerning the alignment of local and global views are presented in
Section 4.

2.5. The Overall Orca C Program

The overall program structure is given in Fig. 3. The (parameter list)
specifies arguments to the computation, including computation-specific
information such as the convergence limit and environment characteristics
such as the number of processors on the host machine. This data, plus

program <name> (<parameter list>)
configuration and constraint computations;
(<configuration parameter list>)
data ensemble definitions; /* Y Level */
port ensemble definitions;
code ensemble definitions;
phase definitions;
process defimtions

begin
program body

end.

Fig.

/*XLevel */

/* Z Level */

3. Schematic of Orca Program Structure.

370 Lin and Snyder

other information that might be read in from external media, such as the
size of the data sets, are input to configuration computations that the
programmer defines. These computations determine how the structures of
the program are configured to respond to the execution. Typical of a
configuration computation is the determination of the number of sections
the computation should have, i.e. how much logical concurrency is
appropriate for the prevailing conditions. Once computed, the parameters
are explicitly given in the (configuration parameter list> and are followed
by the definition of the parallel program.

3. THE S IMPLE C O M P U T A T I O N

The SIMPLE computation simulates the hydrodynamics of a
pressurized fluid inside a spherical shell. The state of the simulation is
maintained by recording the values of various physical quantities at a
number of points inside the shell. As simulated time progresses, these
values--representing such entities as pressure, density, viscosity and
temperature--are iteratively updated.

The algorithm is based on Lagrangian hydrodynamics, which gives the
following set of equations.

w h e r e

d(pY} = o (1) ~ is p o s i t i o n vec tor ,

d~ ff is ve loc i ty vec to r ,
p-~- + ~,(p + q) = 0 (2) p is m a s s dens i ty ,
de dr + (p + q)-~ = o (3) r is specif ic v o l u m e ,
de e is specif ic i n t e r n a l energy ,
d-'T - ,i = 0 (4) q is a r t i f i c i a l v i scos i ty ,
q = q(p, 6u) (5) p is p r e s su re ,
p = p(p, c) (6) 0 is t e m p e r a t u r e ,
Oe (Oe) dO (Oe ~ dr ~r is h e a t c o n d u c t i v i t y a n d
0-7= ~ ~ + \ ~ r l d ' 7 (7) t i s t i m e .

A cylindrical coordinate system is used to model the problem state.
Because of the spherical symmetry of this problem, the physical domain of
the problem is reduced to a quarter of an annular region (Fig. 4a) by
first projecting the shell onto a two-dimensional plane and then taking
the upper right quadrant of the projected annular region. Consequently,
vectors such as velocity have only an r component along the radius
direction and a z component along the vertical direction.

In order to solve the equations that simulate the motion of the fluid,
both the time and the physical domain are discretized. The time, t, is dis-
cretized into a sequence of steps and the physical domain is discretized into
a finite number of nodes. For the purposes of computer simulation, this 2D

A Portable Implementation of SIMPLE 371

~ (a,b) D,. / (i,j)

(a) ~ I I L (b)
r k

Fig. 4. Mapping of physical domain to computation domain.

projection can be transformed into Cartesian coordinates as shown in
Fig. 4b.

Two types of boundary conditions occur in SIMPLE: (1) pressure
may be applied to any surface and (2) the component of acceleration
normal to the surface may be zero along any surface. In this paper a type
i boundary condition is chosen for the inner surface and a type 2 boundary
condition is chosen for the outer surface.

What follows is the basic algorithm to solve the preceding set of equa-
tions. (19) For clarity the code to deal with boundary conditions is omitted
here. A detailed description can be found in the literature. (1'4)

In the algorithm below, the notation V,,j is used to denote the physical
variable of node (l, j) in the computation grid. It is assumed that the
pressure, density, Jacobian and viscosity are constants inside any square
surrounded by nodes (i,j), (i , j+ 1), (i+ 1, j + l) and (i + l , j) and that
they are represented as values in the node at the upper right corner of the
square, node (i+ 1, j + 1). Additionally, r and z denote the r and z com-
ponents of the coordinate, u and w denote the r and z components of the
velocity, and a r and a z denote the r and z component of the acceleration.
Finally, max_K and max_L refer to the largest indices of the simulated
problem space in the k and l dimensions, respectively.

The SIMPLE algorithm.

First compute the initial coordinates of all nodes and initialize the
variables of all nodes. Then iteratively carry out the following sequence of
steps until the error is sufficiently small:

1. Compute the next time step (6 0.
The standard rule, known as the Courant condition, is used. That
is, the time step should not be so large that a speed-of-sound
signal can move across a grid cell in one time step. So,

0.5 J,j]
3t := min,,J LCA[J~-~gj + ~r2] 1/2 J

372 Lin and Snyder

Here, the following notation is used:

2 a f , j = f , . , + f , _ l . , - f , , , t - f , - , d - 1

260 = f,-,, + f,-.,-, - f , - , , , - 1 - f , - ,,,

where f stands for any point quantity such as r, z, u, w. Ca is the
local speed of sound and can be computed as follows, where ~ is
the specific heat (~ = 1.4 for air):

Ca := . /~ P__~0
P,j

2. Compute the new acceleration (a). The derivative in Eq. 2 is
replaced by a contour line integral according to Green's theorem.
Furthermore, because the physical domain is discretized, the line
integral is reduced to a summation. Let f denote p + q.

f , ,a(zi 1 , j - z , , j 1)+ f , , ,+ l (Z , , a+ l - z , 1,,))
"[- f l + 1, j+ l (Z t+ 1,J - - Z, , j+ 1) "{- f l + , , j (Za. j - -1 - - Zi+ 1,J)/ ' a t. .=

u" 0.5 (p,.:Ji, a + p, . j+ lJ , . j+ l + P,+ l,j+ lJ ,+ l,a+ l + Pi+ l, aJ,+ t.j)

f ' ' ' i (r ' - l ' ' - r ' ' ' - ') + f ' ' ' + l (r i ' ' + ' - r ' - l ~ , . ,))

-I- f ,+ 1,j+ l(ri+ l,j -- r,,j+ 1) q-fl+ 1,j(r , . j -1 -- r,+

a,~ := 0.5 (p, , jJ , . j + p~.j+ 1J,,j+ l + Pi+ l,j+ 1Ji+ 1,y+ 1 "l- Pi+ l ,yJl+ 1.j)

3. Compute the new velocity (u) and new coordinates (x).

ui, j := u;,j + at ai, j

Xl, J : : Xi, J "~- ~ l Hi, J

4. Compute the new Jacobian (J) and volume of revolution (new_S) .

t rap_J1 ,,j := �89 [ri, j(zi, :_ 1 - z i - 1,j) + r,,a_ a(zi_ 1,j - zi, a)

-~-r i 1. j(zi , j - - z i . j _ l)]

t rap_J2 i J . _ 1 , " - - ~ [r , , y - l (Z i - l , j - l - - z , - 1 , j) q - r i - l . j - l (z , l , j - - Zt,3-- 1)

~- F,__ l , j (Z i . j _ 1 - - Zi-- 1,j-- 1)]

Ji.j := t e m p _ J l , , j + t m p _ J 2 , , j

o ld_S, , j := n e w - S i , j

n e w _ S t J . _ 1 , .-- ~ [(r,,j + ri, j 1 + r i - 1.j) t m p _ J l , , j

+ (r, . j_ 1 + r ,_ l,j 1 + r, l,j) t m p - J 2 i J

A Por tab le Imp lemen ta t i on o f SIMPLE 373

5. Compu te the new density (p) and artificial viscosity (q).

old_S,,j
Pt, j : = P , , j new_S,, j

trap 1 :=

tmp 2 :=

q,,j :=

JAr 6w-- Az 3u] 2
A - - A - ~ z ~ if [] < 0

otherwise

[d u 6 z - Llw 6r] 2
~r2~_--~z f if [] < 0

otherwise

1.5p,,j(tmp 1 + trap2) + 0.5p,,jCA ~/ tmp 1 + tmp2

6. Compu te the new energy (s) and pressure (p).

s,.j := e,,j - (p,,j + q,.j) delta_zi. J

tmp,.j := (7 - 1) s,,jp,.j

e,,j := e~.e - (�89 j + p,,j) + ql, j) delta-zi, j

p,,j := (y - 1) si, jp,. J

where delta_z is the difference between the new z (specific volume)
and the z in the previous iteration, z = 1/p.

7. Compu te the new tempera ture (0) and heat (heat).
The heat equat ion (Eq. 7) can be separated into 2 equations, one
for the k dimension and one for the l dimension. Since the physical
domain is discretized, both equat ions can be reduced to a set of
linear equat ions with a t r idiagonal matrix. Two passes are needed
to solve this set of linear equations. The first pass t ransforms the
tr idiagonal matr ix to an upper-r ight triangle matr ix and the
second pass directly computes the solution beginning with the last
equation.

Hea t flow into the shell is also calculated in this step.

f o r e a c h p ~ i r (i , j) d o

Z., := (r, - r,,~_~)(~,,~_~ - z,,j) - (~,,~-1 - ~,.,)(r,.~ -)
a,,j = O.lp,.ar.,jJ.,j/~

C'C',,, := 0.00018~,~=/J.j
C C,,jC C,,j + ~

KJ,,j := CC,.~ + CC..j+I

R (r.,, + r., ,_~) ((r=., -)2 (z.,, - z.,a-a) z) rd . . j

(8)
(9)

(lO)

(n)

(a2)

828/20/5-3

374 Lin and Snyder

e n d fo r

fo r j := 0 t o max_K do
fo r each i d o

D,,~ := a,,, + R..~ + R,j-1 (1 - e ~ , , , - 1)

o~,,j .= R,,~ / D,,j

e n d for

e n d fo r

fo r j = max_K t o 0 d o
fo r each i d o

0,,: = cr,,~O~z+~ + ~,,3

e n d for
e n d fo r
f o r i := 0 t o max_L d o

heat,,o .= (0,,o - 0,,1) R,,o ~t

(13)

(14)

(15)

(16)

(17)

e n d fo r

Repeat the calculations of statements 13-16 for the l dimension.

8. Compute the energy (energy) and work (work).

for each pair (i,j) d o

Tnt,~ 1~ pt~)St,j
1 z z g~ + ~ (. . . . + +, +-~,+~,,+1 + m , + , , ,) (~,,, +)

t,~p,,~ := �88 (p,., - p,~+l) (~ . - 1 - ~,.,) [(~..~ ~-~) (-.., + -,.,-,) - (~,,, - ~,,,-~) (- . , , + -..~-,)1

0 otherwise
work~, s := -trn1~.~ if (i,j) is on the west boundary of the computation grid

e n d for

9 . C o m p u t e t h e e r r o r .

total_energy := ~ energy,,j
h j

total_work := ~ work,,o
i

totaLheat := ~ heat,,o
i

error := total_energy - total-work + total_heat

A Portable Implementation of SIMPLE 375

The Parallel A lgor i thm.

Each of these nine steps could be a phase of a Z level program. Closer
inspection, however, reveals that this problem is naturally composed of just
five phases. Note that these equations only involve local neighbor values.
For example, the first step computes a global minimum; this computation
can be achieved using only communication with neighboring data points.
In the second step, the acceleration at point (i,j) is based on the (i,j) value
and six neighbors: (i+ 1,j), (i+ 1, j + 1), (i , j+ 1), (i - 1, j), (i - l, j - 1)
and (i, j - 1), which we refer to as the North, NorthEast, East, South, and
SouthEast neighbors, repectively. Step 4 requires the West, South, and
SouthWest neighbors to compute the value of the Jacobian, while Step 7
requires four neighbors. Finally, Step 9 accumulates the sum of the error
values over the entire data space.

When this algorithm is parallelized, each type of data dependency
induces a communication pattern. Since Steps 2 and 4 share the same data
dependencies, and since Steps 3, 5, and 6 have no dependencies, these steps
can be combined into a single phase, yielding the following phases, where
each phase is characterized by a single data dependency pattern (see
Fig. 5):

Delta Phase: Step 1

Hydro Phase: Steps 2, 3, 4, 5 and 6

Heat Phase: Step 7

Energyl Phase: Step 8

Energy2 Phase: Step 9

Note that this algorithm falls in the class of CAB algorithms as
described by Nelson. t2~ The Hydro, Heat and Energy! phases are compute
phases, while the Delta and Energy2 phases are Aggregate and Broadcast
phases.

4. T H E S I M P L E P R O G R A M

Having presented the SIMPLE algorithm in high level terms, the
Orca Z level program follows naturally (see Fig. 2). The computation

Hydro Heat Energy 1

Fig. 5. Data dependencies in SIMPLE.

376 Lin and Snyder

begins by invoking a phase that loads the initial problem state. Then,
a series of five phases---Delta, Hydro, Heat , Energy l , and Energy2- - i s
iteratively invoked until convergence is achieved, at which point the output
of the simulation is produced. Since we presume that input and output are
phases provided by the system, the programmer 's job is to define the five
computational phases.

We proceed by defining the data structures required by this program,
since these apply to all phases. Then, the specifics of each individual phase
will be addressed in turn.

4.1. D a t a E n s e m b l e s

Most programs will require many data ensembles for each phase. Since
all the ensembles of a phase must have the same partitioning, it is most
convenient to define all the data structures first, then define a single
partitioning, and finally apply the partitioning to all data structures to
form ensembles.

The arrays used to capture the state of the S IMPLE computation are
given in Table I along with short descriptions of what they represent. The
elements of the x, u and a arrays are two element double precision vectors
representing the r and z components in the physical domain. Not all items

Table I. Array Values in SIMPLE

Type Variable Description

Vect or x [rows] [cols] Position vectors
Vector u[rows] [cols] Velocity vectors
Vector a[rows] [eols] Acceleration vectors
double rho [rows] [cols] Fluid density
double p [rows] [cols] Fluid pressure
double q [rows] [cols] Fluid artificial viscosity
double delta-tau[rows][cols] Difference in specific volume
double e[rows] [eols] Energy
double theta [rows] [cols] Temperature
double J[rows] [cols] Jacobian of transformation
double S[rows] [cols] Volume of revolution
double delta-t[rows] [cols] Time step
double heat[rows] [cols] Heat flow across boundary
double en-error[rows] [eols] Energy check error (Energyl)
double int_en [rows] [cols] Internal energy (Energyl)
double kin_en [rows] [cols] Kinetic energy (Energyl)
double work[rows] [cols] Work done at boundary (Energyl)
double mass[rows] [cols] Zonal mass (Energyl)

A Portable Implementation of SIMPLE 377

are used in each phase. For example, the last five items are needed only in
the Energyl phase.

Our parallel implementation partitions the arrays into contiguous
two-dimensional subarrays (blocks). This choice reflects two assumptions:
First, contiguous blocks give the greatest locality of reference; second,
because data dependencies are local in nature, blocks will minimize the
amount of communication among sections. While these assumptions may
not hold universally, they have been empirically confirmed for the execu-
tion of SIMPLE on a number of machines. (21) Further discussion on data
partitioning is given in Section 7.

The block partitioning of the pressure array is specified with the
following data ensemble declaration:

partition block[?][g] double p[rows][cols];

which states that the array p has global dimensions rows • cols and will be
partitioned onto a section array (process array) of size r • c. Here, partition
is a keyword for ensemble declarations and block is simply a name used to
identify this partition. Figure 6 shows graphically how the pressure array is
converted into an ensemble. (Section 6.1 shows how an alternate decom-
position is declared.)

A property of this global view of data decompositions is that local
sections are implicitly defined to have size s • t, where s = rows/? and
t = cols/& (If ? does not divide rows evenly, some sections will have
s = trows/?J while others will have s = Frows/?]. The value of t is treated
analogously.) This means the X level processes contain no assumptions
about the data decomposition; thus the program scales in both the number
of logical processors and in the problem size. These meanings of rows, cols,
?, & s, and t are established in the configuration portion of the program,
and we will refer to these variables throughout this paper.

PlO P l l P12 P13 P14 P15

P30 P31 P32 P33 P34 P35

P50 P51 P52 P53 P54 P55

Data Smmture Data Ensemble

Fig. 6. The Pressure Array. P, and its ensemble, where rows = eols = 6,
F= ~=3, s=t=2.

378 Lin and Snyder

Table II. Scalar Values for SIMPLE

Type Variable Description

double ttme Time
mt iter Current iteration
double bound_p Pressure at the inner shell

This block partitioning is applied to each of the arrays of Table I. In
addition to the arrays, three global scalar values are used (see Table II). It
is helpful to assign a copy of the global scalars to each section for use in
local computations. The last item in Table II is used only in the Hydro
phase and then only for computations along the "west wall."

4.2. T h e D e l t a Phase

The Delta phase computes delta_ t, the size of the next time step of the
simulation, by computing the value of delta_t at each point and then
taking the minimum of these values. To compute this minimum value over
all sections, the sections are organized to form a binary tree where
minimum delta_t values are passed up the tree starting from the leaves.
See Fig. 7.

Port Ensemble. The following ports are declared for the Delta
phase as part of the Y level specification:

Delta. portnames ~ P, L, R

This binds each section's ports to the (possible different) names used in the
process' port declaration. The pairing of port names to define a binary tree
is specified as shown next. This syntax is only intended to be one of several
methods of specifying the communication graph. In the future, rather
than defining the graph is this textual manner, we envision using tools- -

Delta and Energy2 Phases Hydro and Energyl Phases

Fig. 7.

Heat Phase

C o m m u n i c a t i o n g raphs and por t ensembles for S I M P L E .

A Portable Implementation of SIMPLE 379

graphical (such as ParaGraph (22)) and
specifications.

Delta[i] . port. R ~ Delta [2 * i]. port. P

otherwise--to produce these

where 0 ~ < i < ~ 1

Delta[i] . por t .L *-~ Delta[2 * i + 1]. port. P
F x ~

where 0 ~< i < ---7 1
2

Note that this port ensemble declaration associates only a subset of the
ports, namely, those that are connected as in Fig. 7. The remaining ports,
those on the boundary of the problem space, can be bound to derivative
functions. These functions compute the boundary conditions using data
local to the section. For example, the specification

Fx~ 1-< Delta[i] . port. L receive ~ Largest_ Value() where --~--- -.~ i< Processors

Delta[i] . port. R receive ~ Largest_ Value() where F • ~ 1 -< ---~---- ..~ i < Processors

states that for leaf sections, a "receive" from the Left port will return
the value computed by the Larges t_Value() function. In this case, the
derivative function is trivial:

double Largest_Value()
{

return (MaxDouble);
}

Observe that derivative functions lead to code uniformity. In this example
a single X level source program suffices for all processes despite the fact
that not all processes have the same number of children. Of course,
uniformity could be achieved by having the X level program check for the
existence of children, but such tests for special cases add clutter, increase
compile and/or execution time, and can be error prone. Furthermore, as will
be shown in the next section, even modestly more complicated boundary
conditions lead to the proliferation of special case code.

Finally, we mention that in a mature version of Orca C, global reduc-
tion operators such as Max, Min, and Sum would be implemented as
primitives of the Z level language, greatly simplifying this entire phase
(see Section 4.6).

380 Lin and Snyder

Code Ensemble. Having defined the data and port ensembles, the
next task is to provide processes that operate on each section. This is the
role of the code ensemble (see Fig. 8).

Del ta[i] .code :=xDel ta(); where 0 ~ < i < ? x ?

This declaration specifies that each of the ~ x ? sections is assigned an
instance of the xDelta() code, which is shown in Fig. 9.

Several features of the X level code are noteworthy:

�9 parameters - -The arguments to the process are formals that
establish a correspondence between local variables and the
sections of the ensembles. For example, the local x array will be
bound to a block of ensemble x.

�9 f l u f f - - T h e size of the local array is based on the size of the
data ensemble and is thus logically an input to the process.
Furthermore, the local array may contain fluff, as shown by the
local declaration x [- l : s] [- 1 : t] and the formal declaration
x[1 :s] [l : t] , where the upper bounds of these array declarations
are inclusive. Thus the local x array contains extra rows and
columns to hold values from neighboring sections. The data is
aligned so that extra rows and columns are placed at the top,
bottom, left, and right of the ensemble data, and the compiler
checks that these values do not exceed the amount of fluff that is
declared globally at the Y level. This language support for fluff
allows all parts of the array, including fluff, to be accessed with the
same indexing scheme.

�9 local computat ion--The logic of the process is essentially the
sequential computation of the original program. A sequential
execution can be obtained by setting the number of partitions to
be one.

�9 array operators- -The last line of the program shows an example
of an array assignment where all elements of the delta_t array are
assigned the same value.

I I I I I
I I I I I

Fig. 8. The code ensemble for the Delta
phase.

A Portable Implementation of SIMPLE 381

xDelta(x[0 s -1] [0 . t -1] , rho[0 s -1] [0 : t -1] , J[0:s-1][0 t - l] , delta.t[0-s-1][0 t - l] , time, lter)
double x [- l : s] [-1 t]; /* fluff of 1 on all four sides */
double rho[0:s][0 t]; /* fluff of 1 along two sides */
double J[0.s][0.t];
double del ta- t[0.s-1][0: t-1]; /* no fluff*/
double time,
tnt iter;
port Parent, Left, Right;

(
lnt l, j;
double ca; /* speed of sound */
double temp, r.del, r_delta lmMelt~_t,

/* Compute delta_t */
for (i=O; a<s; l + +)
{

for (3=0, l<t ; 1++)
{

ca = sqr t (GAMMA * p[i][j] rho[i][j]);/* GAMMA'. a constant for specific heat of air */
r..del= x[i+l l [j+l] r + x[i][j+l] [i+l][jJ.r - x[i][j].r,
r -ae l t ,= x[i+l]fj+l] r + • r - x[i][j] r - x[i][j+a] r;
delta_tO]O] = CO * J[1][j] (ca * sqrt(r-del * r_del + r..de[ta * r.delta));

}
}

/* Compute the local minimum */
lm_delta_t = delta_t[0][0],
for (i=O; i<s; i++)
{

for (j=O; i<t , i++)
{

if (delta_t[i]~] < Ira_delta_t) lm-delta_t = delta_till[j],
}

}

/* Compute the global minimum */
temp < = = Left; /* receive */
lm_delta_t = Min(temp, lm.tlelta_t);
temp < = = Right; /* recewe */
lm..delta_t = Min(temp, lm_delta_t);
Parent < = = lm-deltaA, /* send */

/* Broadcast the result */
lm.Aclta_t < = = Parent; /* receive */
Left < = = lm.Aelta_t; /* send */
Right < = = Ira-delta_t, /* send */

delta_t[][] = lm-delta_t; /* array assignment */
}

Fig. 9. X level code for the Delta phase.

The C o m p l e t e Phase. To summarize , the data ensembles, the
port ensemble, and the above code ensemble collectively define the Del ta
phase. With this specification and the above definition of the corresponding
X level code, the Del ta phase can now be compi led for execution. U p o n
execution, a number of sections will exist as specified by parameters to the
program, and these sections are logically connected to form a binary tree.

382 Lin and Snyder

Each section is assigned to a processor for execution and contains one
process that performs the code of Fig. 9. The end result is a parallel
algorithm that computes the global minimum of all delta_ t values.

4.3. The Hydro Phase

This phase calculates the new position, velocity, acceleration,
Jacobian, viscosity, density, pressure, and energy of each node after the
next time step. The computation is divided into two steps. In the first step
density, pressure, viscosity and the Jacobian are passed to the West,
SouthWest, and South neighbors (see Fig. 10a). These values are used to
compute the new acceleration, velocity and position of each node. In the
second step, the newly computed position and velocity values are sent to
the North, NorthEast, East, South and West neighbors so that they may
be used to compute the new values of the Jacobian, viscosity, density,
pressure and energy at each node (see Fig. 10b).

Port Ensemble. The data motion shown in Fig. 10 leads to an
overall communication structure for this phase that is a 6-mesh, as shown
in Fig. 7 and specified by the ensemble here.

Hydro. portnames ~ N, NE, E, S, SW, W

This Y level declaration is bound with the X level declaration of ports
using positional correspondence. The X level declaration is shown in
Fig. 13 and is reproduced here. Note that the Y level port names (stated
earlier) and the X level port names (next) can differ.

xHydro(p[O:s- 1][0:t- 1], rho[0:s- 1][0:t - 1], J[0:s- 1] [0:t - 1]...bound_p)

port North, NorthEast, East, South, SouthWest, West;

(a) (b)

Fig. 10. Data motion in the Hydro phase.

A Portable Implementation of SIMPLE 383

This binding provides a level of indirection that allows X level codes of dif-
ferent phases to share port ensembles if their communication structures are
identical. This is important because it allows X level code to be developed
in isolation while still allowing them to reuse existing port ensembles.

The pairing of port names to define a communication channel is
specified as follows:

Hydro [i] [j] . port. N ~ Hydro [i - 1] [j] . port. S

where 1~<i<?, 0 ~ < j < g

Hydro [i] [j] , port. W ~ Hydro [i] [j - 1]. port. E

where 0~<i<?, l ~ < j < g

Hydro [i] [j - 1], port. NE ~ Hydro [i - 1] [j] , port. S W

where l ~ < i < f , l ~ < j <

The boundary conditions are set by binding the following functions to
ports on the edges.

Hydro Is] [i] . port. N (positionR)

Hydro [i] [t]. port. E (positionR)

Hydro[i] [0]. port. W (positionR)

Hydro [0]] [i] . port. S (positionR)

Hydro[s] I t] . port .NE (positionR) recewe ~ NE_xr();

Hydro[O] [0]. port, S W (positionR) recewe ~ SW_xr();

recewe ~ East_xr();

recewe ~ West_xr();

reeetve ~ South_xr();

recetve *-~ North_xr(); where 0 ~< i < E

where 0 ~< i < ?

where 0 ~< i < ?

where 0 ~< i < ?

The implementation of the East_xr() derivative function is shown in
Fig. 11; the other boundary functions are similar. This example illustrates
the use of typed messages, which in Orca C are called flavors to differen-
tiate them from types of the language. Flavors provide a way to define
types for messages. They are needed because the X level code typically uses
a single port to transmit different kinds of data. For example, Fig. 12 shows
four different receives on the East port, each expecting to receive a double

E~t~O
{

return (x[][t].r + (x[l[tl.r - x[][t-1].r));
}

Fig. 1 I. Example of derivative function
definition.

384 Lin and Snyder

/* The X level code: */
for (i=l; i<s+l ; i++)
(

x[il{t].r < = = (positionR) East;
x[i][t].z < = = (positionZ) East;
u[i][t].r < = = (velocityR) East;
u[i][t],z < = = (velocityZ) East;

)

Fig. 12.

/* Expecting a message of flavor positionR */

Implicit invocation of derivative functions in X level code.

but each representing a logically different kind of data; these different
logical types are the message's flavor. In this case, if there were no flavors
there would be no way to differentiate the types of the different messages.
Flavors are currently defined by using C's typecast mechanism. The above
example shows how flavors are specified when binding derivative functions
to ports; this flavor specification is required whenever multiple derivative
functions returning the same language type are bound to the same port of
the same phase, that is, whenever there is ambiguity as to which derivative
function to use.

xHydro(p[O:s-1][O:t-1], rho[O:s-1][O:t-1], J[O:s-1][O:t-1] ... bound_p)
double p[0:s][0:t];
double rho[0:s][0:t];
double J[O:s][O:t];

double "bound_p;
port North, NorthEast, East, South, SouthWest, West;

{
int i, j;
double dehorn;

/* Receive from the East a column of the rho array */
/* and place it in the rightmost column of rho. */
rho[O:s][t] < = = East; /* array slice */

/* other communica t ion . . . */

/* Compute acceleration */
for (i=0; i<s; i+,q-)~ '1
(

for (j=O; i<t i i++)
{ i -

denom = (rho[i]~] * J[i][j] + rho[i][j+l] * J[i][j+l] +
rho[i+ll[j+l] * J[i+l][j+l] + rho[i+l][j] * J[i+l][j]) / 2;

}
}
/* other c o m p u t a t i o n . . . */

Fig. 13. Sketch of X level code for the Hydro phase.

A Portable Implementation of SIM PIE 385

Again, we emphasize that a more sophisticated programming environ-
ment will provide alternate methods of specifying the port ensembles and
boundary conditions.

Code Ensemble. The code ensemble for this phase is identical to
that of the Delta phase except each section is assigned an instance of the
xHydro() function instead of the xDelta() function. The xHydro() code is
too large to be given in complete detail, but Fig. 13 shows a schematic of
the process code. Note the following features:

�9 array slices--Slices are both a notational convenience and an
efficiency optimization. These provide a clean way to refer to an
entire row (or in general, a d-dimensional block) of data. Further-
more, when slices are used in conjunction with the transmit
operator (~), the compiler can perform "message vectorization"
to send the entire block as a single message, thus minimizing the
number of messages transmitted.

�9 no special case code--Typically, processes on the edge of the
processor array must be treated separately. In Orca C, boundary
conditions are handled by derivative functions and port ensem-
bles, reducing the need for special case code.

4.4. The Heat Phase

The Heat phase calculates the temperature and heat of each node after
the next time step. Because the heat equation is separable in two dimen-
sions, the computation of the heat phase is divided into two steps. The first
step solves the equation in the k direction and the second step solves the
equation in the l direction.

Port Ensemble. The data motion for the Heat phase is depicted in
Fig. 14. Because of data dependencies between loops, each sweep must
be completed before the next one begins, which means that this phase will
see limited speedup after parallelization. This data motion requires the
following port declaration and port ensemble.

Data Motion:

Time: Sweep West

Fig. 14.

Sweep East Sweep West Sweep North Sweep North

Sweep South

Data motion in the Heat phase.

386 Lin and Snyder

Heat. portnames ~ N, E, S, W

H e a t [i - 1] [j] . port. S ~ Heat[i] l - j] . port .N

Heat [i] [j - 1] . port .E ~ Heat [i] [j] . port. W

w h e r e 1 ~ < i < ? , O ~ < j < g

w h e r e 0 ~ < i < ? , l<<.j<g

C o d e E n s e m b l e . T h e c o d e e n s e m b l e is c o n c e p t u a l l y i d e n t i c a l to

t h o s e of t h e p r e v i o u s phases . A h i g h - l e v e l d e s c r i p t i o n of t he X level c o d e

is p r e s e n t e d in Fig. 15.

4.5. The Energy1 Phase

T h e p u r p o s e of t h e E n e r g y l p h a s e is to c o m p u t e the e n e r g y a n d w o r k

a n d to c h e c k t h a t e n e r g y h a s b e e n c o n s e r v e d in t he c a l c u l a t i o n s . T h e p o r t

xHeat()
port

{
North, East, South, West;

loop /* West-East Sweep */
{

receive R from West;
compute equations 13, 14, 15; /* See Section 3 */
send R to the East;

}

loop /* East-West Sweep */
{

receive theta from East;
compute equations 16, /* See Sectaon 3 */
send theta to the West;

}

Compute heat flow at West Border of the Grid,

loop /* South-North Sweep */
{

receive R from South;
compute equations 13, 14, 15; /* See Section 3 */
send P~ to the North;

}

loop /* North-South Sweep */
{

receive thetabom North;
compute equations 16; /* See Section 3 */
send R to the South;

}

Compute heat flow at South Border of the Grid;

Fig. 15. Sketch of X level code for the Heat phase.

A Portable Implementation of SIMPLE 387

ensemble for the Hydro phase can be reused here because these phases
have the same communication structure. Only the X level code changes.
A major portion of this code is shown in Fig. 16.

4.6. The Energy2 Phase

Finally, the Energy2 phase sums the error of each node to compute
the total error in the SIMPLE computation. Like the Delta phase, the
Energy2 phase performs an aggregate and broadcast. This phase can thus
share the port ensemble of the Delta phase. The X level code differs chiefly
in the use of addition--rather than minimum--as the global reduction
operator.

As mentioned in Section 4.2, global reduction operators are frequently
used in scientific computations and a mature version of Orca will provide
these as primitives of the language. Figure 17 shows how a global reduction
operator simplifies the Energy2 phase to a single statement of the Z level
program. Here the GlobalSum operator accepts the en_error ensemble as a
parameter and returns the result in the same ensemble. Note that this

xEnergyl(x[0 s-1][0:t-l], u[0 s-l][0 t - l] , mass[O s-l][0 t - t])
Vector x[-~ s][-1 t],
Vector u[-1 s][-1 t],
double rho[0 s][0 t],

double mass[0 s][0 t],
port North, NorthEast, East, South, SouthWest, West,

{
lnt i, j,

for (~=0, ~<s, ~++)
{

for (j=0, z<t, i++)
{

m~[~]b) = ~ho[qb] * s[dbl[OL

}

/* Send left column of mass[][] West *I
West <== mass[0 s-1][0l,
ma~s[0 slit] <==]~ast,

/* Send bottomJeft corner of mass[][] SouthWest */
SouthWest <== mass[0][0],
mass[s][t] <== NorthEast,

/* Send bottom row of mass[][] South *[
South <== mass[all0 t - l] ,
mo.qs[s][O t] <== North,

/* Compute internal and kinetic energy */
for 0=0. I<s, ~++)
{

for (1=0, i<t, ~++)
(

mt-ea[i]b] = e[qb] * rnass[db],
km_en[=J[j] = ((mass[i]b] + mas~[~]b+l] mass[~+lJb+i } + mass[~+l][j]) /8) *

(. [i+ l] i i+~ l �9 * ~[,+qb+~] r + .~ ,+ l] l j+ l l ~ * . [~+~]b+l] ~),
}

}
/* Compute work, heat and e/~ergy */

}

Fig. 16. Sketch of X level code for the Energyl phase.

388 Lin and Snyder

Loa d~x , u, a, ..),
while (error > ~5)
{

D e l t a (x, rho, .l, tnne , iter);
H y d r o (p, the , J , - .);
H e a t (x, rho, e~ J , -,);
E n e r g y l (x, u, . .),
e r ror := G l o b a l _ S u m (on_error);

}
Output (x, u, ...);

Fig. 17, The Energy2 phase using
global reduction.

phase has no corresponding user-deft'ned Y or X level code. Furthermore,
these operators provide a high-level abstraction whose implementation
could be optimized once for each individual machine.

5. P R O G R A M M A B I L I T Y I S S U E S

In SIMPLE, the processes forming each phase are instances of a single
process. For example, the Delta phase uses instances of the xDelta()
process. Thus, SIMPLE appears not to require the full MIMD capability
of code ensembles--where the instances can be instances of different
processes--but requires only the Single Program Multiple Data capability.
This apparent uniformity derives largely from mechanisms provided by
Orca C.

Typically, processes on the edge of the processor array must be treated
separately. A receive into the East port must be conditionally executed
because processes on the East edge have no eastern neighbors. (Although
our reference to the "receive" operation implies a message passing
language, shared memory programs also have to deal with these special
cases.) Isolated occurrences of these conditionals pose little problem, but
since in SIMPLE there can be up to nine different cases---depending on
which portions of the boundaries are contained within a process--these
conditional cases can lead to convoluted codeJ 15'16) For example, suppose
a program in its conditional expression assumes that the process is either
a NorthEast, East, or SouthEast section, as shown here:

i f (N o r t h E a s t)

(

/ * special case t * /

}

else if (Ease)

A Portable Implementat ion of SIMPLE 389

/* spec• case 2 * /

else if (SouthEast)

/* s p e c i a l case 3 */

A problem arises if the programmer now decides that a vertical strips
decomposition would be more efficient. This code assumes that exactly one
of the three boundary conditions holds. But in the vertical strips decom-
position there is only one section on the eastern edge, so all three condi-
tions apply, not just one. Therefore, the change in data decomposition
forces the programmer to rewrite this boundary condition code.

In Orca C, this scenario poses no problem because processes send and
receive data through ports which in some cases involve interprocess com-
munication and in other cases invoke derivative functions. Since the X level
source code does not know what's on the other end of a port, the handling
of boundary conditions has been decoupled from the X level source code.
Note that instead of cluttering up the process code, special cases due to
boundary conditions are handled at the problem level where they naturally
belong.

Orca C's array operators and array slices are high-level constructs that
eliminate the low-level chores of iterating over arrays and bundling
messages. Such higher-level programming is syntactically cleaner and less
error prone than the use offer loops.

Finally, Orca C incorporates the notion of fluff, which is a user
managed cache that is particularly useful in applications with local
neighbor computations. Orca C's data ensemble declarations provide an
easy way to declare these extra data buffers and to specify their geometric
relation to the local sections.

6. P E R F O R M A N C E RESULTS

This section presents evidence for the claim that programs based on
the Phase Abstractions--and therefore those written in O r c a C - - a r e
portable. (23) Our approach was to take a single portable implementation
of SIMPLE and execute it on several multiprocessors. Speedups were
computed for each machine and compared against one another.

There is no currently agreed upon definition of portability for parallel

828/20/5-4

390 Lin and Snyder

programs. Clearly, the ability to execute on different machines is a
necessity. In addition, a portable program must run well on these machines.
For this discussion, we consider a program that achieves similar speedups
across a set of machines to be portable across these machines. The justifica-
tion is that similar speedup curves are an indication that the program has
extracted the same amount of parallelism from each machine. To be sure,
there are problems with this approach, so we must be aware of the defini-
tion's limitations when analyzing the results. The main pitfall is that one
maehine may be inherently better suited for one application than another,
in which ease we would not expect to see identical speedups.

Note that other commonly used metrics such as MF LO P S or program
execution time are too machine dependent to be the basis for a definition
of portability; these machine dependencies make comparison across
machines difficult. For example, comparing machines that are identical
except for their clock speeds would produce different performance results
even though this program is clearly portable between the two. For this
reason, speedup---which eliminates some variables such as clock speed and,
to some extent processor power--was chosen as our metric. Actual execu-
tion times are given in the Appendix A. Machine characteristics are given
in Appendix B.

Experimental Setup. A variety of multiprocessors were used in
the experiment, along with a detailed simulator of a Transputer-based
machine. One muttiprocessor is a Sequent Symmetry Model A, which has
20 Intel 80386 processors connected by a shared bus to a 32 MB memory
module. Each processor has a unified 64K cache and an 80387 floating
point accelerator324)

A second machine is a 24 node BBN Butterfly GP1000. Each node has
a Motorola 68020 processor, 4 MB of local memory, and a processor node
controller that interacts with an omega network to make remote references
when needed. Together, the memory modules, the process node controllers,
and the network form a single shared memory that all processors can
access. Local memory access is about 12 times faster than remote access325)

Two machines are 32 node Intel iPSC/2 hypercubes in which all inter-
processor communication is through message passing. ~26) Both have 32
nodes with 80386 processors and a 64KB unified cache. They differ in that
one has an iPSC SX floating point accelerator and 8MB of memory on
each node (we refer to this as iPSC/2 F), while the other (iPSC/2 S) has the
slower Intel 80387 floating point coprocessor and only 4MB of memory per
node.

The 64 node nCUBE/7 is a nonshared memory hypercube in which
each node has a custom main processor and 512 KB of memory, t27)

A Portable Implementation of SIMPLE 391

Finally, we have a detailed simulator of a Transputer-based nonshared
memory machine. Using detailed information about arithmetic, logical and
communication operators of the TS00,tg) this simulator executes a Poker C
program and produces time estimates for the program execution. Poker C
is the precursor to Orca C~28); the two languages share the same message
passing semantics.

Our implementation of SIMPLE is structured in the manner discussed
in Section 3. The entire program was written in C, including code to
support a primitive form of ensembles. (C was used because the Orca C
compiler is still under development.) The Orca message passing interface
was implemented on all machines. These were directly supported on the
non-shared memory machines, while on the Sequent and Butterfly they
were written using shared memory.

R e s u l t s . Figure 18 shows that similar speedups were achieved on all
machines. Speedup values were computed based on a sequential version of
our program. As mentioned earlier, many hardware characteristics can
affect speedup, and these can explain the differences among the curves.
In this discussion we concentrate on communication costs, the feature

16

14 - -

12

10

8 - -

4

2

0 o

o o 1 6 8 0 p o i n t s on the S y m m e t r y
0 - - - - - - - 0 1680 points o n the N C U B E / 7
~x ~ 1680 points on the B u t ~ r f l y
r 0 1 6 8 0 points o n the Intel i P S C / 2

o o 1 6 8 0 points on a Transputer

s

/

/ . i

. : ~ ' ~ j . t r "

/
2

Fig. 18.

4 6 8 I0 12 14

N u m b e r o f Processors

SIMPLE speedup on various machines.

16

392 Lin and Snyder

that best distinguishes these machines. For example, the iPSC/2 F and
nCUBE/7 have identical interconnection topologies but the ratio of com-
putation speed to communication speed is greater on the iPSC/2. (29'3~ This
has the effect of decreasing speedup since it diminishes the percentage of
time spent computing, and this is where parallelism occurs. In other words,
the larger fraction of time spent on communication increases the fraction of
non-computation overhead. Similarly, since message passing latency is
lowest on the Sequent's shared bus, the Sequent shows the best speedup.
This claim assumes little or no bus contention, which is a valid assumption
considering the modest bandwidth required by SIMPLE. After considering
these machine differences, our claim of portability appears to be accurate.

As a reference point, Fig. 19 shows the results of Hiromoto et aL ~s) on
a Denelcor HEP using 4096 data points. (In our experiments, changing the
problem size from 1680 to 4096 points involved the modification of com-
pile-time constants and recompilation. When Orca C is complete, the
problem size can be a runtime parameter.) These results are included only
to show that our portable program is competitive with machine-specific
code. The many differences with our results--including different problem
sizes, different architectures, and possibly even different problem
specifications--make it difficult to draw any stronger conclusions. As
another reference point, Fig. 19 compares our results on the iPSC/2 S

: : Htromoto et a l .

(~ 0 Lm&Snyder
0 - 0 Pingah&Rogers

32

2 0

16

12

8

4

0
0

/
/

7 - - - "

8

Fig. 19.

12 16 20 24

Number of Processors

SIMPLE with 4096 points.

A Portable Implementation of SIMPLE 393

against those of Pingali and Rogers' parallelizing compiler for a functional
languageJ 1~ Both experiments were run on iPSC/2's with 4MB of memory
and 80387 floating point units. The largest potential difference lies in the
performance of the sequential programs on which speedups are computed.
All other parameters appear to be identical.

The SIMPLE program doesn't exercise all the features of Orca C,
partly because of the low communication costs of SIMPLE and partly
because of the small sizes of our multiprocessors. The next section discusses
features of Orca C programs that make them flexible, and thus portable.
These features become more significant in the context of newer, larger
machines (particularly mesh machines), and for programs that require
larger communication costs. We first give one detailed example of the
flexibility of Orca programs.

6.1. Data Par t i t ion ing Exper iment

The choice of data partitioning can significantly affect program per-
formance. For SIMPLE, two obvious choices are a block decomposition
and a strip decomposition. Because all communication is with nearest
neighbors, blocks yield less overall data transmission but more messages
(in the Hydro and Energyl phases each interior section has six neighbors).
With strips, each section has at most two neighbors, so fewer messages are
sent. However, more data is transmitted because each section has a larger
perimeter to area ratio.

Pingali and Rogers (1~ pose the question of whether squares or strips
are better. Data ensembles ease the task of changing data partitions and
provide a mechanism for studying this question. The Block partitioning is
the data ensemble described in previous sections. This will be compared
against the Strip partitioning in which each section contains a vertical strip
of the data ensembles.

Recall that the data ensembles discussed earlier create f x ? arrays of
blocks. With the Phase Abstractions, the Strip partitioning is easily derived
from the Block partitioning by setting ?= 1 and ~= Processors in the
program's configuration computation section. The actual data ensemble
declaration--shown again here--does not change.

partition block[~][?] Vector x[rows][co/s];

In addition, Strips require that each process have only East-West
neighbors instead of the six neighbors used in Block. By using the port
ensembles to bind functions to unused ports--in this case the North,

394 Lin and Snyder

South, NorthEast and SouthWest ports--the program can easily accom-
modate this change in the number of neighbors. No other source level
changes are required.

Figure 20 shows our results for problem sizes of 1K and 2K points on
four machines. The Block partitioning performed better in every case, and
the difference between the two strategies generally increases as the number
of processors grows. This means that the overhead of sending more
messages in Blocks is offset by the fact that Block transmits less overall
data than Strips. Thus, we expect Block's performance advantage to
increase with the problem size since such changes do not alter the number
of messages sent, but only increase the size of these messages. Our
results appear to confirm this intuition. We conclude that for SIMPLE,
partitioning by blocks is superior to partitioning by strips.

7. P O R T A B I L I T Y ISSUES

For a parallel program to be portable it must not be tied to the details
of any one architecture: It must be flexible and adapt to different machine
characteristics. We now show how Orca C provides a flexible program
structure.

m

-" = 2048 points: stops
r 1024 points: s tops

12

0 4 8 12 16 20 24 28 32

Number o f Processors

(a) Str ips vs. Squares on the Butterfly

_ _ - ~ - _ z = = .

0 4 8 12 16 20 24 28 32

Number o f Processors

(C) SI / lps vs. Squares on the I P S C / 2 F

O- O 2048 points: squares
r r 1024 points: squares

4 8 12 16 20 24 28 32

Number o f Processors

Co) Str ips vs. Squares on the Symmetry

32

~ . 28

~ 20

00 4 8 12 16 20 24 28 32

Number o f Processors

(d) S m p s vs. Squares on the N C U B E

Fig. 20, Vertical strips vs. blocks.

A Portable Implementation of SlMPLE 395

Scaling. The data ensembles directly support scaling. Changes to
both the problem size and the number of processors are accommodated
implicitly in the data ensemble declaration. Recall that the section size is
defined as:

s
6 - -

cols
t = , where (s x t) defines the section size,

(rows • cols) defines the problem size, and

(~ x ?) defines the number of sections.

We see that doubling the problem size in the rows dimension implicitly
doubles s, creating sections that are twice as high. Similarly, increasing the
number of sections by changing the value of f or ? implicitly decreases the
section size.

Granularity. The same mechanism that provides implicit scaling
can be used to explicitly control granularity. The size of each section can
be controlled by either changing the number of processors or by changing
the number of sections in the ensemble declaration7

M u l t i p l e T h r e a d s . Each section corresponds to a logical thread of
concurrency. By creating more sections than there are processors, Orca C
programs can make use of multiple threads. This technique can help hide
communication latency and can take advantage of the fast hardware
context switching provided by architectures such as the Tera Computer (31)
and the MIT Alewife MachineJ 32)

Da t a P a r t i t i o n i n g . Perhaps the most important characteristic in
achieving good performance is the data partitioning. In general, the best
choice of partitions depends on details of both the machine and the
problem to be solved. For example, in some cases a strips decomposition
is desirable while in other cases a block decomposition is better/33)

In Orca C changes to the data partitioning are localized to the
ensemble declarations. This was illustrated in the previous section where a
one line change in the configuration section was sufficient to convert from
a block to a strip decomposition.

Of course, the change in data partitioning leads to a different com-
munication pattern. In this case, sections of the vertical strips parti-
tioning have no North, South, NorthEast or SouthWest neighbors. Note,
however, that the port ensemble, as declared in Section 4.3, requires no
changes, nor does the specification of the boundary conditions or process
code.

396 Lin and Snyder

Changes in the Communication Graph. Ideally, portable
parallel programs are written without assumptions about the underlying
architecture. On the other hand, knowledge of machine details can be used
to optimize program performance, such as when the logical communication
graph is made to match an architecture's communication structure.
Consider embedding the binary tree of the Delta phase onto a mesh
architecture. Some logical edges will necessarily span multiple physical
links (that is, dilation is greater than one), so a better way to implement
the global minimum on a mesh is to use the "rows and columns" approach
where values are first compared along each row of processors, then the
minimum of each row is compared along a single column (see Fig. 21).
With proper foresight an Orca C program can be written to realize either
approach.

Instead of a binary tree, the "rows and columns" approach uses an
n-ary tree, so the X level code is parameterized, as shown in Fig. 22. With
the code suitably parameterized, this program can now execute efficiently
on a variety of architectures. The "rows and columns" approach uses the
following port ensemble declaration:

Delta[i] [j] .port. P ~ Del ta[i] [j - 1] .port. C[O]

Delta [i] [0] .port. P ~ Delta [i - 1] [0] .port. C[1]

O <~ i <~ ?, l~<j<?

1~<i<?

Locality. Notice that sections capture the important notion of
locality. Because of the high latency of message passing, the need for
locality of reference on nonshared memory machines is clear. But because
all multiprocessors have some type of memory hierarchy, locality of
reference can usually be exploited even on shared memory machines. "4)

Fig. 21. Rows and columns
to compute the global minimum.

A Portable Implementation of SIMPLE 397

xDelta(x[0:s-1][0. t 1], .)
do~ble x[-1.s][-l:t];

{
mt i, j;
double t e m p , . . . ,

/* Compute the global ITI /
for (i=O; i<n, i + +]
{

temp < = = Child[i]; /* receive */
lrn_delta_t = Mm(temp, ira_delta_t);

)
Parellt < = = lm_delta_t; /* send */

/* Broadcast the result */
lm_delta_t < = = Parent , /* receive */
for (i=0; i<n; i++)
{

Child[i] < = = Ira_delta_t; /* send */
}

deltz_t[][] = hn delta_t; /* ~.rray assignment */
}

Fig. 22. Parametcrized X level code for the Delta phase.

Process to P r o c e s s o r Mapping. When the logical communica-
tion structure of a program does not match the physical communication
structure of the underlying machine, the processes must be mapped to the
processors and the choice of mapping can influence program performance.
A good mapping will achieve low interprocessor communication while
maintaining good load balance. While Orca C does not solve this mapping
problem, the port ensembles do provide information--the logical
communication graph--that is essential to performing such a mapping.

Our experiments with different mesh-to-hypercube mappings showed
negligible performance differences for three different mappings: a Random
mapping, a Default mapping, and a Binary Reflected Grey Code mapping.
To compute the Default mapping the nodes of a mesh are assigned
numbers in row major order and the nodes of a hypercube are numbered
according to their position in the cube. Node 1 of the mesh is then mapped
to node 1 of the hypercube, node 2 of the mesh is mapped to the node 2 of
the hypercube, etc. Because of the relatively slow processors and small
machine diameters, the performance differences were very small. For
example, using 32 processors on the iPSC/2 F, the Random mapping was
never more than 1.9 % slower than the other mappings. Presumably, the
importance of good mappings will become more significant as processor
speeds increase and machines grow in diameter. For the shared memory
machines in our experiments the issue of mapping processes to processors
doesn't exist.

398 Lin and Snyder

8. CONCLUSION

In this paper we have presented Orca C and shown how it is used to
program SIMPLE. We have supplied evidence that this Orca program is
portable across a variety of multiprocessors, and we have discussed the
features of Orca in terms of ease of programming and portability. Finally,
we speculate that the flexibility of Orca C programs will become even more
important in the future. As the trend towards larger machines continues,
the increased cost of communication will force programs to deal effectively
with issues of data motion, granularity, and locality.

A C K N O W L E D G M ENTS

It is a pleasure to thank Jinling Lee and Kevin Gates for implementing
SIMPLE. We thank the members of the Orca Project--Langdon Beeck,
George Forman, Scott Hauck, and Ton Ngo--for their contributions in
designing Orca C. We also thank the referees for their careful reading
and detailed comments. Finally, we wish to thank Hans Mandt and the
Advanced Systems Laboratory of Boeing Computing Services for providing
access to their Butterfly multiprocessor, and Walter Rudd and others at the
Oregon Advanced Computing Institute for providing access to their iPSC/2
and nCUBE/7. This research was supported in part by Office of Naval
Research Contract N00014-89-J-1368.

APPENDIX A.

Execution Time in Milliseconds a

1680 points

P Symmetry nCUBE/7 Butterfly iPSC/2 F

1 65310 173968 60940 34199
4 17530 48535 41471 10267
6 12200 34667 29899 7398
8 9410 27339 23901 5838

10 7720 22716 21422 4959
12 6460 19252 19482 4205
14 6170 18650 18966 4108
16 5160 15497 18015 3445

4096 points

P iPSC/2 S

1 107924
4 29398
8 16550

16 9683
32 5510

a All programs compiled without the -O flag on (no optimizer). Times given for 11 iterations
of SIMPLE, not including, initialization time (memory allocation, file I/O).

A Por tab le Imp lemen ta t i on o f SIMPLE 399

APPENDIX B.

o ~

o gE

0

o ~

0 .o ~

~ o
0

400 Lin and Snyder

REFERENCES

1. W. Crowley, C. P. Hendrickson, and T. I. Luby, The SIMPLE Code, Technical Report
UCID-17715, Lawrence Livermore Laboratory (1978).

2. K. Ekanadham and Arvind, SIMPLE: Part I, An Exercise in Future Scientific
Programming, Technical Report CSG Technical Report 273, MIT (1987).

3. D. Gannon and J. Panetta, SIMPLE on the CHIP, Technical Report 469, Computer
Science Department, Purdue University (1984).

4. D. Gannon and J. Panetta, Restructuring Simple for the CHiP Architecture, Parallel
Computing, 3:305-326 (1986).

5. J. M. Meyers, Analysis of the SIMPLE Code for Dataflow Computation, Technical
Report MIT/LCS/TR-216, MIT (1979).

6. T. S. Axelrod, P. F. Dubois, and P. G. Eltgroth, A Simulator for MIMD Performace
Prediction--Application to the S-1 MklIa Multiprocessor, Proc. of the Int'l. Conf. on
Parallel Processing, pp. 350-358 (1983).

7. D. E. Culler and Arvind, Resource Requirements of Dataflow Programs, Proc. of the Int'l.
Symp. on Computer Architecture, pp. 141-150 (1988).

8. R. E. Hiromoto, O. M. Lubeck, and J. Moore, Experiences with the Denelcor HEP,
Parallel Computing, 1:197-206 (1984).

9. T. J. Holman, Processor Element Architecture for Nonshared Memory Parallel
Computers, PhD Thesis, University of Washington, Department of Computer Science
(1988).

10. K. Pingali and A. Rogers, Compiler Parallelization of SIMPLE for a Distributed Memory
Machine, Technical Report 90-1084, Cornell University (1990).

11. G. Alverson, W. Griswold, D. Notkin, and L. Snyder, A Flexible Communication
Abstraction for Nonshared Memory Parallel Computing, Proc. of Supercomputing '90
(November 1990).

12. W. Griswold, G. Harrison, D. Notkin, and L. Snyder, Scalable Abstractions for Parallel
Programming, Proc. of the Fifth Distributed Memory Computing Conference, Charleston,
South Carolina (1990).

13. L. Snyder, Applications of the "Phase Abstractions" for Portable and Scalable Parallel
Programming, in Languages, Compilers, and Run-Time Environments for Distributed
Memory Machines, Joel Saltz and Piyush Mehrotra, Eds., North Holland (1992).

14. C. Lin and L. Snyder, A Comparison of Programming Models for Shared Memory Multi-
processors, Proc. of the Int'l. Conf. on Parallel Processing, Vol. II, pp. 163-180 (1990).

15. K. Gates, SIMPLE: An Exercise in Programming in Poker, Technical Report, Applied
Mathematics Department, University of Washington (1989).

16. D. Notkin, D. Socha, M. Bailey, B. Forstall, K. Gates, R. Greenlaw, W. Griswold,
T. Holman, R, Korry, G. Lasswell, R. Mitchell, P. Nelson, and L. Snyder, Experiences
with Poker, Proc. of the ACM SIGPLAN Symp. on Parallel Programming: Expertence
with Applications, Languages, and Systems (July 1988).

17. M. Gerndt, Updating Distributed Variables in Local Computations, Concurrency--
Practice and Experience, 2(3):171-193 (September 1990).

18. S. Otto, MetaMP: A Higher Level Abstraction for Message-Passing Programming.
Technical Report CS/E 91-003, Oregon Graduate Institute of Science and Technology
(1991).

19. J. Lee, Extending the SIMPLE Program in Poker, Technical Report 89-11-07,
Department of Computer Science and Engineering, University of Washington (1989).

20. P. Nelson, Parallel Programming Paradigms, PhD Thesis, University of Washington,
Department of Computer Science (1987).

A Portable Implementation of SIMPLE 401

21. J. Lee, C. Lin, and L. Snyder, Programming SIMPLE for Parallel Portability, in
Languages and Compilers for Parallel Computing, U. Banerjee, D. Gelernter, A. Nicolav,
and D, Padua, Eds., Springer-Verlag (1992).

22. D. Bailey, J. Curly, and C. Loomis, ParaGraph: Graph Editor Support for Parallel
Programming Environments, Technical Report 89-53, Department of Computer and
Information Science, Umversity of Massachusetts, Amherst (August 1989).

23. C. Lin and L. Snyder, Portable Parallel Programming: Cross Machine Comparisons for
SIMPLE, Fifth SIAM Conference on Parallel Processing (1991).

24. T. Lovett and S. Thakkar, The Symmetry Multiprocessor System, Proc. of the IntZ Conf.
on Parallel Processing, pp. 303--310 (1988).

25. G. Alverson, Abstractions for Effectively Portable Shared Memory Parallel Programs,
PhD Thesis, University of Washington, Department of Computer Science and Engineering
(1990).

26. Intel Corporation, iPSC/2 User's Guide (October 1989).
27. NCUBE Corporation. NCUBE Product Report, Beaverton, Oregon (1986).
28. L. Snyder, Parallel Programming and the Poker Programming Environment, Computer,

pp. 2"7-36 (July 1984).
29. T. Dunigan, Hypercube Performance, Proc. of the 2nd Conf. on Hypereube Architectures,

pp. 178-192 (1987).
30. T. Dunigan, Performance of the Intel iPSC/860 and NCUBE 6400 Hypereubes, Technical

Report ONRL/TM-11790, Oak Ridge National Laboratory (1991).
31. R. Alverson, D. Caltahan, D. Cummings. B. Koblenz, A. Porterfield, and B. Smith, The

Tera Computer System, tnt7. Conf. on Supercomputing, pp. 1~5 (June 1990).
32. A. Aganval, D. Chaiken, G. D'Souza, K. Johnson, D. Kranz, J. Kubiatowlcz,

K. Kurihara, B.-H. Lim, G. Maa, D. Nussbaum, M. Parkin, and D. Yeung, The MIT
Alewife machine: A Large Scale Distributed-Memory Multiprocessor, The Workshop on
Multithreaded Computers at Supereomputing 3)1 (November 1991).

33. J. Saltz, V. Naik, and D. Nicol, Reduction of the Effects of the Communication Delays
in Scientific Algorithms on Message Passing MIMD Architectures, SIAM Journal of
Statistical Computing, 8(1):118-~-134 (January 1987).

