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This paper describes how the SIMPLE fired dynamics benchmark is programmed 
using a new language that promotes portability. Beginning with the mathe- 
matics behind the SIMPLE simulation, we present in detail the process by 
which a portable Orca program is written. We provide evidence that our 
program is portable across the Intel iPSC/2, the nCUBE/7, the Sequent 
Symmetry, the BBN Butterfly, and a simulated Transputer-based nonshared 
memory machine. In addition, this paper illustrates that language constructs can 
be provided to ease the burden of programming with message passing. 

KEY WORDS: Portable parallel programming; SIMPLE; performance 
results. 

1. I N T R O D U C T I O N  

The importance of portabil i ty is not  in dispute. P rogram portabil i ty is 
beneficial because its allows the cost of p rogram development to be 
amort ized over a long lifetime that  spans many  machines. Portabil i ty also 
allows and encourages p rogram sharing. Unfortunately,  portabil i ty is not  
as easily accomplished today as it has been in the past. 

Portabil i ty in the parallel world is difficult because of  the diversity 
of available architectures. A program that  relies on the low-level details 
of  one machine is likely to find those details nonexistent or  inefficiently 
implemented on another  machine. While p rogramming  at too low a level 
is problematic,  so too  is p rogramming  at too  high a level. A high level of  
abstract ion can be realized on all machines, but  the gap between the 
abstract ion and the machine is often too large to be bridged by compilers 
and runtime systems alone; the result is poor  performance. 

This paper  introduces the Orca  p rogramming  language. Orca  
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programs are portable because they only require facilities that are 
efficiently realizable on all MIMD multiprocessors. Moreover, certain key 
aspects of Orca programs are parameterized, yielding programs that are 
flexible enough to adapt to differenf architectures. In this paper we describe 
the Orca specification of SIMPLE. This example demonstrates the 
flexibility of Orca programs and shows how an appropriate choice of 
language constructs leads to message passing programs that are clean and 
concise. 

The importance of SIMPLE as a parallel application comes from the 
substantial body of literature already devoted to its study. SIMPLE is a 
computational fluid dynamics code that was introduced in 1977 as a 
benchmark to evaluate new computers. ~1) Since its creation it has been 
widely studied, both to illustrate new programming approaches (2-5) and to 
demonstrate program performance. (4'6-a~ This paper follows both tradi- 
tions, using SIMPLE to illustrate the Orca language and to demonstrate 
the portability of SIMPLE across a variety of MIMD machines. 

This paper is organized as follows. Section 2 provides background on 
the Orca language. Section 3 presents the SIMPLE computation, first in 
terms of the mathematics involved and then in an algorithmic form. 
Section 4 describes how to program SIMPLE in Orca C. The final three 
sections give performance results and discuss the Orca C language with 
respect to ease of programming and program performance. 

2. T H E  O R C A  L A N G U A G E S  

The Orca family of languages are based on Phase Abstractions, (n 13) 

a MIMD message passing model that aims to support scalable and 
portable scientific applications. 

At a high level, a parallel program consists of logical units of 
computation known as phases. A phase is a parallel algorithm: a set of 
concurrent processes working together to accomplish some common goal. 
Each process is defined by program text which in the most primitive case 
differs from sequential code only in the existence of message passing opera- 
tions. This paper discusses one of many possible languages that can be used 
to specify these process codes, but rather than provide the programmer 
with a sequential language with message passing libraries simply added on, 
Orca C was designed with parallelism in mind. (Another such language, 
based on Fortran, is under construction. These Orca languages share a 
common set of abstractions but each attempts to maintain the flavor of the 
language from which it is derived.) In the parlance of the Phase Abstrac- 
tions, (12) the individual processes are part of the X level of specification, 
and languages that describe them are X level languages. The remaining two 
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levels of the Phase Abstractions, the Y level and Z level are introduced 
later. 

As a distributed memory programming language, an Orca program 
contains global data structures that are logically (and often physically) 
distributed across the various processors. (For shared memory machines 
the data may not be physically distributed but performance advantages--in 
the form of improved locality of reference--may still exist. ~14)) For  perfor- 
mance reasons it is useful to create a correspondence between individual 
processes and the data on which they operate. Both of these activities--the 
decomposition of data and the binding of processes to this data--are  
supported by ensembles. 

An ensemble is defined to be a set with a partitioning; the resulting par- 
titions are called sections. (12) For example, a data ensemble decomposes the 
global data structures into sections that represent local memory. Similarly, 
a code ensemble specifies the assignment of process instances to sections. 
Together, these two entities specify which processes operate on which sec- 
tions of data. Finally, since the processes must communicate, port ensembles 
are used to specify each phase's communication structure. Orca C programs 
communicate with each other through named ports, so a port ensemble 
is a partitioned graph that binds ports of one section to those of another. 

Once all of the phases have been defined, they can be combined to 
solve a problem. The invocation of phases is ordered with the same control 
flow constructs that are typically found in sequential imperative languages. 
Similarly, phase invocation uses the same syntax as procedure calls in 
sequential languages. 

We can now summarize the structure of an Orca program: 

�9 The X level consists of sequential code (but loop-level and instruc- 
tion-level parallelism are not precluded) that defines the behavior 
of processes. 

�9 At the Y level, ensembles specify how processes are composed to 
form a coherent parallel algorithm. While a phase may at present 
have at most one code ensemble, it may consist of multiple data 
ensembles--one for each global data structure it accesses--and 
multiple port ensembles--for cases where a phase logically utilizes 
more than one communication structure. For  each section, the 
process defined by the code ensemble operates on local data as 
defined by the data ensembles and communicates with other 
processes through the ports defined by the port ensembles. 

�9 Finally, phases are invoked at the Z level to solve the overall 
problem. A Z level program controls the execution sequence of the 
constituent parallel algorithms. 



366 Lin and Snyder 

Subsequent sections illustrate the details of Orca C by describing their use 
in the SIMPLE computation. 

2.1. The  X Level or  Orca C 

This section discusses the X level features of Orca C in general terms. 

Message Passing. Message passing in Orca C is based on ports 
and invoked by the transmit operator (~) ,  for which a port name on the 
left specifies a send of the data on the righthand side, and a port on the 
right indicates a receive into the variable on the lefthand side. The seman- 
tics are that sends transmit immediately, with data buffered at the destina- 
tion, and receives remove data from the buffer in order of arrival, blocking 
on empty. For example, the following code fragment sends the value of the 
pressure variable to whatever section is connected to the East port by the 
port ensemble: 

East ~ pressure; 

The adjacent port might receive this value into a variable, edge- 
Pressure, with a statement such as the following: 

edgePressure .=: West; 

In addition to support for ensembles and message passing, Orca C 
possesses several features that facilitate parallel programming at the X 
level, nemaly, array operators, support for boundary conditions, and fluff 
(defined later). 

Array Constructs. Array operators provide a concise way to 
apply a single operator to multiple elements of a set. These operations are 
defined only for conformable pairs of arrays, that is, arrays with the same 
number of dimensions and the same number of elements per dimension. 
Furthermore, Orca C allows for the manipulation of subportions of arrays 
using slices. For example, a[x :y] specifies the xth through yth elements of 
array a, inclusive. This notion applies to all dimensions of an array. Empty 
brackets ([ ]) are shorthand for the entire dimension but may only be used 
in cases where the array bounds are known at compile time. As an example 
of an aray operation, the following computes the element-wise sum of the 
b and e arrays and stores the result to the a array. 

a[ ][  ] = b [  ][  ] + c [  ][  ]; 

Besides assignment and addition, array operators are also supported 
for the other C arithmetic operators. The order of evaluation for the 
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constituents of an array operation is not defined. In particular, operations 
on overlapping areas of memory should be avoided. For example, the 
semantics of the following are implementation dependent: 

a [ l : 1 0 ]  = a[0:9] .  

Array slices are particularly useful in conjunction with message 
passing. In addition to improving the clarity of the source code, slices have 
performance implications. Compilers can easily gather array slices into a 
single message, thus minimizing the number of messages sent. Without 
array slices, a programmer must either gather the data explicitly or send 
the elements of the array as individual components. In either case the 
meaning of the code is clearer with slices, and the latter case requires the 
existence of an optimizing compiler if good performance is expected. For 
example, the following code fragment sends the left column of the a array 
to the West neighbor as a single message. 

West c a [  ] [0 ] ;  

Since this slice is not contiguous in memory, the compiler copies it to 
temporary storage before sending it to the West port. 

Support for Boundary Conditions. Boundary conditions repre- 
sent a problem in parallel programming because they lead to the prolifera- 
tion of special case code. (15'16) Orca C provides a mechanism known as 
derivative functions that allows boundary conditions to be specified at the 
Y level as part of the problem specification. Together, the port ensembles 
and derivative functions shelter the X level source code from boundary 
conditions and lead to uniform code. This feature is discussed and 
illustrated in Section 4.2. 

Fluff .  The nonshared memory programming paradigm encourages 
users to program for locality. (13" 14) The general approach is to cache values 
whenever possible: First obtain local copies of remote values, then 
compute. The Orca term for these cached non-local values is fluff (see 
Fig. 1). This notion is similar to Overlaps (17) and Guard Strips. (~8) To ease 

(a) (b) 

Fig. 1. Fluff. (a): Sections without fluff. (b): A local 
section with fluff. 
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the indexing of fluff it is useful to allocate memory that is contiguous to the 
local data and that can be referenced using the same naming scheme as the 
local data. Orca C's data ensembles provide a clean mechanism to define 
fluff. Examples are given in Section 4.2. 

2.2. The Y Level of  Orca C 

Phases, or parallel algorithms, are defined at the Y level. A phase is 
defined by the combination of data ensembles, a code ensemble, and a port 
ensemble. The ensembles making up a phase must all have the same 
number of sections (partitions), allowing them to be placed into one-to-one 
correspondence. This establishes the correspondence between data and a 
process instance, as well as specifying neighbor relationships among 
sections for communication purposes. 

Each section of an ensemble represents a local thread that executes 
independently. Therefore, through parameterization of critical features of 
the computation such as the number of data values, the number of 
processors, etc., the ensembles control the logical concurrency of an Orca 
program. 

2.3. The Z Level of  Orca C 

The Z level of Orca C is programmed using the C language. Syntacti- 
cally, a Z level program looks like a standard C program. Semantically, 
procedure invocation is replaced by phase invocation. Control flow is 
based on scalar values that are local to the Z level--that is, these scalars 
are not visible to the X level processes. The Z level program specifies the 
order in which the various phases are invoked, but there is no implied 
synchronization among these phases. If synchronization is desired, barrier 
synchronization can be explicitly specified at the Z level. Finally, the Z 
level program can access the data ensembles using the same array 
constructs that are available at the X level. However, there are two 
differences between ensemble access at the Z and X levels. First, the Z level 
uses a global indexing scheme. Second, X level access is guaranteed to 
involve only local memory access, which is not the case at the Z level. An 
example of a Z level program is given in Fig. 2 and is discussed in 
Section 4. 

2.4. The Ensembles 

While the ensembles exist across all three levels of programming, each 
level sees a different view. For  example, the Z level sees a global view of 



A Portable Implementation of SIMPLE 369 

Load(x, u, a, ...); 
while (error > 8) 
{ 

Delta (x, rho, J, time, iter); 
Hydro (p, rho, J, ...); 
Heat (x, rho, e, J, ...); 
Energyl  (x, u, ...); 
error := Energy2 (en_error); 

} 
Output (x, u, ...); 

Fig. 2. Z level program 
body for S IMP L E .  

the data ensembles, but each X level process sees only local portions of the 
ensembles. Because of these different views, the Z and X levels can use 
different indexing schemes to refer to the same data. The local view at the 
X level is useful because it allows each process to execute the same source 
code. Functions are provided to map between global and local indices. 

Note that ensembles exist permanently and do not "belong" to any of 
the different programming levels. To limit their scope at the X level, data 
ensemble are logically passed from the Z to X levels in much the same way 
that parameters are passed to procedure calls. The mechanism is pass by 
reference. At present, if two phases require different data partitionings, the 
programmer must explicitly move the data. For example, a Transpose 
phase could be used to transpose the elements of a distributed matrix. 
Details concerning the alignment of local and global views are presented in 
Section 4. 

2.5. The Overall Orca C Program 

The overall program structure is given in Fig. 3. The (parameter list) 
specifies arguments to the computation, including computation-specific 
information such as the convergence limit and environment characteristics 
such as the number of processors on the host machine. This data, plus 

program <name> (<parameter list>) 
configuration and constraint computations; 
(<configuration parameter list>) 
data ensemble definitions; /* Y Level */ 
port ensemble definitions; 
code ensemble definitions; 
phase definitions; 
process defimtions 

begin 
program body 

end. 

Fig. 

/*XLevel  */ 

/* Z Level */ 

3. Schematic  of  Orca Program Structure. 
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other information that might be read in from external media, such as the 
size of the data sets, are input to configuration computations that the 
programmer defines. These computations determine how the structures of 
the program are configured to respond to the execution. Typical of a 
configuration computation is the determination of the number of sections 
the computation should have, i.e. how much logical concurrency is 
appropriate for the prevailing conditions. Once computed, the parameters 
are explicitly given in the (configuration parameter list> and are followed 
by the definition of the parallel program. 

3. THE S IMPLE C O M P U T A T I O N  

The SIMPLE computation simulates the hydrodynamics of a 
pressurized fluid inside a spherical shell. The state of the simulation is 
maintained by recording the values of various physical quantities at a 
number of points inside the shell. As simulated time progresses, these 
values--representing such entities as pressure, density, viscosity and 
temperature--are iteratively updated. 

The algorithm is based on Lagrangian hydrodynamics, which gives the 
following set of equations. 

w h e r e  

d(pY}  = o (1) ~ is p o s i t i o n  vec tor ,  

d~ ff is  ve loc i ty  vec to r ,  
p-~- + ~,(p + q) = 0 (2) p is m a s s  dens i ty ,  
de dr + (p + q)-~ = o (3) r is specif ic  v o l u m e ,  
de e is  specif ic  i n t e r n a l  energy ,  
d-'T - ,i = 0 (4) q is a r t i f i c i a l  v i scos i ty ,  
q = q(p, 6u) (5) p is  p r e s su re ,  
p = p(p, c) (6) 0 is t e m p e r a t u r e ,  
Oe ( Oe ) dO ( Oe ~ dr ~r is  h e a t  c o n d u c t i v i t y  a n d  
0-7= ~ ~ + \ ~ r l d ' 7  (7) t i s t i m e .  

A cylindrical coordinate system is used to model the problem state. 
Because of the spherical symmetry of this problem, the physical domain of 
the problem is reduced to a quarter of an annular region (Fig. 4a) by 
first projecting the shell onto a two-dimensional plane and then taking 
the upper right quadrant of the projected annular region. Consequently, 
vectors such as velocity have only an r component along the radius 
direction and a z component along the vertical direction. 

In order to solve the equations that simulate the motion of the fluid, 
both the time and the physical domain are discretized. The time, t, is dis- 
cretized into a sequence of steps and the physical domain is discretized into 
a finite number of nodes. For the purposes of computer simulation, this 2D 
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~ (a,b) D,. / (i,j) 

(a) ~ I I L (b) 
r k 

Fig. 4. Mapping of physical domain to computation domain. 

projection can be transformed into Cartesian coordinates as shown in 
Fig. 4b. 

Two types of boundary conditions occur in SIMPLE: (1) pressure 
may be applied to any surface and (2) the component of acceleration 
normal to the surface may be zero along any surface. In this paper a type 
i boundary condition is chosen for the inner surface and a type 2 boundary 
condition is chosen for the outer surface. 

What follows is the basic algorithm to solve the preceding set of equa- 
tions. (19) For clarity the code to deal with boundary conditions is omitted 
here. A detailed description can be found in the literature. (1'4) 

In the algorithm below, the notation V,,j is used to denote the physical 
variable of node (l, j )  in the computation grid. It is assumed that the 
pressure, density, Jacobian and viscosity are constants inside any square 
surrounded by nodes (i,j), ( i , j+ 1), ( i+  1, j + l )  and ( i + l , j )  and that 
they are represented as values in the node at the upper right corner of the 
square, node ( i+  1, j +  1). Additionally, r and z denote the r and z com- 
ponents of the coordinate, u and w denote the r and z components of the 
velocity, and a r and a z denote the r and z component of the acceleration. 
Finally, max_K and max_L refer to the largest indices of the simulated 
problem space in the k and l dimensions, respectively. 

The SIMPLE algorithm. 

First compute the initial coordinates of all nodes and initialize the 
variables of all nodes. Then iteratively carry out the following sequence of 
steps until the error is sufficiently small: 

1. Compute the next time step (6 0. 
The standard rule, known as the Courant condition, is used. That 
is, the time step should not be so large that a speed-of-sound 
signal can move across a grid cell in one time step. So, 

0.5 J,j ] 
3t := min,,J LCA[J~-~gj + ~r2] 1/2 J 
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Here, the following notation is used: 

2 a f , j = f , . , + f , _ l . , - f , , ,  t - f , - , d -  1 

260 = f,-,, + f,-.,-, - f , - , , , - 1  - f , -  ,,, 

where f stands for any point quantity such as r, z, u, w. Ca is the 
local speed of sound and can be computed as follows, where ~ is 
the specific heat (~ = 1.4 for air): 

Ca := . /~ P__~0 
P,j 

2. Compute the new acceleration (a). The derivative in Eq. 2 is 
replaced by a contour line integral according to Green's theorem. 
Furthermore, because the physical domain is discretized, the line 
integral is reduced to a summation. Let f denote p + q. 

f , ,a(zi  1 , j - z , , j  1 )+ f , , ,+ l (Z , , a+ l  - z ,  1,,) ) 
"[- f l  + 1, j+ l (Z t+  1,J - -  Z, , j+ 1) "{- f l  + , , j (Za. j - -1  - -  Zi+ 1,J)/ '  a t. .= 

u" 0.5 (p,.:Ji, a + p, . j+ lJ , . j+ l + P,+ l,j+ lJ ,+  l,a+ l + Pi+ l, aJ,+ t.j) 

f ' ' ' i ( r ' - l ' ' - r ' ' ' - ' ) + f ' ' ' + l ( r i ' ' + ' - r ' - l ~  , . , ) )  

-I- f ,+ 1,j+ l(ri+ l,j -- r,,j+ 1) q-fl+ 1,j(r , . j -1 -- r,+ 

a,~ := 0.5 (p, , jJ , . j  + p~.j+ 1J,,j+ l + Pi+ l,j+ 1Ji+ 1,y+ 1 "l- Pi+ l ,yJl+ 1.j) 

3. Compute the new velocity (u) and new coordinates (x). 

ui, j := u;,j + at  ai, j 

Xl, J : :  Xi, J "~- ~ l  Hi, J 

4. Compute the new Jacobian (J) and volume of revolution (new_S) .  

t rap_J1 ,,j := �89 [ri, j(zi,  :_  1 - z i -  1,j) + r,,a_ a(zi_ 1,j - zi, a) 

-~-r i 1. j(zi ,  j - - z i . j _ l )  ] 

t rap_J2  i J . _  1 , " - - ~ [ r , , y - l ( Z i - l , j - l - - z , - 1 , j )  q - r i - l . j - l ( z ,  l , j - -  Zt,3-- 1) 

~- F,__ l , j ( Z i . j _  1 - -  Zi-- 1,j-- 1)]  

Ji.j  := t e m p _ J l , , j  + t m p _ J 2 , , j  

o ld_S, , j  := n e w - S i ,  j 

n e w _ S t  J . _  1 , .-- ~ [(r,,j + ri, j 1 + r i -  1.j) t m p _ J l , , j  

+ (r, . j_ 1 + r ,_  l,j 1 + r, l,j) t m p - J 2 i J  
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5. Compu te  the new density (p) and artificial viscosity (q). 

old_S,,j 
Pt, j : =  P , , j  new_S,, j  

trap 1 := 

tmp 2 := 

q,,j := 

JAr 6w--  Az 3u] 2 
A - - A - ~ z ~  if [ ] < 0  

otherwise 

[ d u 6 z -  Llw 6r ] 2 
~r2~_--~z f if [ ] < 0  

otherwise 

1.5p,,j(tmp 1 + trap2) + 0.5p,,jCA ~/ tmp 1 + tmp2 

6. Compu te  the new energy (s) and pressure (p). 

s,.j := e,,j - (p,,j  + q,.j) delta_zi. J 

tmp,.j := (7 - 1) s,,jp,.j 

e,,j := e~.e - (�89 j + p,,j) + ql, j )  delta-zi, j 

p,,j := (y - 1) si, jp,. J 

where delta_z is the difference between the new z (specific volume)  
and the z in the previous iteration, z = 1/p. 

7. Compu te  the new tempera ture  (0) and heat (heat). 
The heat  equat ion (Eq. 7) can be separated into 2 equations,  one 
for the k dimension and one for the l dimension. Since the physical 
domain  is discretized, both  equat ions can be reduced to a set of 
linear equat ions with a t r idiagonal  matrix.  Two passes are needed 
to solve this set of  linear equations.  The first pass t ransforms the 
tr idiagonal  matr ix  to an upper-r ight  triangle matr ix  and the 
second pass directly computes  the solution beginning with the last 
equation.  

Hea t  flow into the shell is also calculated in this step. 

f o r  e a c h  p ~ i r  ( i , j )  d o  

Z., := (r,  - r,,~_~)(~,,~_~ - z,,j) - (~,,~-1 - ~,.,)(r,.~ - ...... ) 
a,,j = O.lp,.ar.,jJ.,j/~ 

C'C',,, :=  0.00018~,~=/J.j 
C C,,jC C,,j + ~ 

KJ,,j := CC,.~ + CC..j+I 

R . . . . .  (r.,, + r., ,_~) ((r=., - . . . . . .  )2 (z.,, - z.,a-a) z) rd . . j  

(8) 
(9) 

(lO) 

(n) 

(a2) 

828/20/5-3 
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e n d  fo r  

fo r  j := 0 t o  max_K do  
fo r  each i d o  

D,,~ := a,,, + R..~ + R,j-1 (1 - e ~ , , , - 1 )  

o~,,j .= R,,~ / D,,j 

e n d  for  

e n d  fo r  

fo r  j = max_K t o  0 d o  
fo r  each i d o  

0,,: = cr,,~O~z+~ + ~,,3 

e n d  for  
e n d  fo r  
f o r  i := 0 t o  max_L d o  

heat,,o .= (0,,o - 0,,1 ) R,,o ~t 

(13) 

(14) 

(15) 

(16) 

(17) 

e n d  fo r  

Repeat the calculations of  statements 13-16 for the l dimension. 

8. Compute  the energy (energy) and work (work). 

for  each pair  (i,j) d o  

Tnt,~ 1~ pt~)St,j  
1 z z . . . .  g~ . . . . . . . . . . . . .  + ~ (  . . . .  + . . . .  +, +-~,+~,,+1 + m , + , , , )  (~,,, + . . . .  ) 

t,~p,,~ := �88 (p,., - p,~+l ) ( ~ . - 1  - ~,., ) [(~..~ .. . .  ~-~) (-.., + -,.,-,) - (~,,, - ~,,,-~) (- . , ,  + -..~-, )1 

0 otherwise 
work~, s := -trn1~.~ if (i,j) is on the west boundary of the computation grid 

e n d  for  

9 .  C o m p u t e  t h e  e r r o r .  

total_energy := ~ energy,,j 
h j  

total_work :=  ~ work,,o 
i 

totaLheat :=  ~ heat,,o 
i 

error :=  total_energy - total-work + total_heat 
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The Parallel  A lgor i thm.  

Each of these nine steps could be a phase of a Z level program. Closer 
inspection, however, reveals that this problem is naturally composed of just 
five phases. Note that these equations only involve local neighbor values. 
For example, the first step computes a global minimum; this computation 
can be achieved using only communication with neighboring data points. 
In the second step, the acceleration at point (i,j) is based on the (i,j) value 
and six neighbors: (i+ 1,j), ( i+ 1, j +  1), (i , j+ 1), ( i -  1, j), ( i -  l, j -  1) 
and (i, j -  1), which we refer to as the North, NorthEast, East, South, and 
SouthEast neighbors, repectively. Step 4 requires the West, South, and 
SouthWest neighbors to compute the value of the Jacobian, while Step 7 
requires four neighbors. Finally, Step 9 accumulates the sum of the error 
values over the entire data space. 

When this algorithm is parallelized, each type of data dependency 
induces a communication pattern. Since Steps 2 and 4 share the same data 
dependencies, and since Steps 3, 5, and 6 have no dependencies, these steps 
can be combined into a single phase, yielding the following phases, where 
each phase is characterized by a single data dependency pattern (see 
Fig. 5): 

Delta Phase: Step 1 

Hydro Phase: Steps 2, 3, 4, 5 and 6 

Heat Phase: Step 7 

Energyl Phase: Step 8 

Energy2 Phase: Step 9 

Note that this algorithm falls in the class of CAB algorithms as 
described by Nelson. t2~ The Hydro, Heat and Energy! phases are compute 
phases, while the Delta and Energy2 phases are Aggregate and Broadcast 
phases. 

4. T H E  S I M P L E  P R O G R A M  

Having presented the SIMPLE algorithm in high level terms, the 
Orca Z level program follows naturally (see Fig. 2). The computation 

Hydro Heat Energy 1 

Fig. 5. Data dependencies in SIMPLE. 
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begins by invoking a phase that loads the initial problem state. Then, 
a series of five phases---Delta,  Hydro,  Heat ,  Energy l ,  and Energy2- - i s  
iteratively invoked until convergence is achieved, at which point the output 
of the simulation is produced. Since we presume that input and output are 
phases provided by the system, the programmer 's  job is to define the five 
computational phases. 

We proceed by defining the data structures required by this program, 
since these apply to all phases. Then, the specifics of each individual phase 
will be addressed in turn. 

4.1.  D a t a  E n s e m b l e s  

Most programs will require many data ensembles for each phase. Since 
all the ensembles of a phase must have the same partitioning, it is most 
convenient to define all the data structures first, then define a single 
partitioning, and finally apply the partitioning to all data structures to 
form ensembles. 

The arrays used to capture the state of the S IMPLE computation are 
given in Table I along with short descriptions of what they represent. The 
elements of the x, u and a arrays are two element double precision vectors 
representing the r and z components in the physical domain. Not  all items 

Table I. Array Values in SIMPLE 

Type Variable Description 

Vect or x [ rows ] [ cols ] Position vectors 
Vector u[rows] [cols] Velocity vectors 
Vector a[rows] [eols] Acceleration vectors 
double rho [rows] [cols ] Fluid density 
double p [ rows ] [ cols ] Fluid pressure 
double q [ rows ] [ cols ] Fluid artificial viscosity 
double delta-tau[rows][cols] Difference in specific volume 
double e[ rows ] [ eols ] Energy 
double theta [ rows ] [ cols ] Temperature 
double J[rows] [cols] Jacobian of transformation 
double S[rows ] [cols] Volume of revolution 
double  delta-t[rows] [cols] Time step 
double heat[rows] [cols] Heat flow across boundary 
double en-error[rows] [eols] Energy check error (Energyl) 
double int_en [rows] [cols] Internal energy (Energyl) 
double kin_en [rows] [cols] Kinetic energy (Energyl) 
double  work[rows] [cols] Work done at boundary (Energyl) 
double mass[rows] [cols] Zonal mass (Energyl) 
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are used in each phase. For  example, the last five items are needed only in 
the Energyl phase. 

Our parallel implementation partitions the arrays into contiguous 
two-dimensional subarrays (blocks). This choice reflects two assumptions: 
First, contiguous blocks give the greatest locality of reference; second, 
because data dependencies are local in nature, blocks will minimize the 
amount of communication among sections. While these assumptions may 
not hold universally, they have been empirically confirmed for the execu- 
tion of SIMPLE on a number of machines. (21) Further discussion on data 
partitioning is given in Section 7. 

The block partitioning of the pressure array is specified with the 
following data ensemble declaration: 

partition block[?][g] double p[rows][cols];  

which states that the array p has global dimensions rows • cols and will be 
partitioned onto a section array (process array) of size r • c. Here, partition 
is a keyword for ensemble declarations and block is simply a name used to 
identify this partition. Figure 6 shows graphically how the pressure array is 
converted into an ensemble. (Section 6.1 shows how an alternate decom- 
position is declared.) 

A property of this global view of data decompositions is that local 
sections are implicitly defined to have size s • t, where s = rows/? and 
t =  cols/& (If ? does not divide rows evenly, some sections will have 
s = trows/?J while others will have s = Frows/?]. The value of t is treated 
analogously.) This means the X level processes contain no assumptions 
about the data decomposition; thus the program scales in both the number 
of logical processors and in the problem size. These meanings of rows, cols, 
?, & s, and t are established in the configuration portion of the program, 
and we will refer to these variables throughout this paper. 

PlO P l l  P12 P13 P14 P15 

P30 P31 P32 P33 P34 P35 

P50 P51 P52 P53 P54 P55 

Data Smmture Data Ensemble 

Fig. 6. The Pressure Array. P, and its ensemble, where rows = eols = 6, 
F= ~=3, s=t=2.  
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Table II. Scalar Values for SIMPLE 

Type Variable Description 

double ttme Time 
mt iter Current iteration 
double bound_p Pressure at the inner shell 

This block partitioning is applied to each of the arrays of Table I. In 
addition to the arrays, three global scalar values are used (see Table II). It 
is helpful to assign a copy of the global scalars to each section for use in 
local computations. The last item in Table II is used only in the Hydro 
phase and then only for computations along the "west wall." 

4.2.  T h e  D e l t a  Phase  

The Delta phase computes delta_ t, the size of the next time step of the 
simulation, by computing the value of delta_t at each point and then 
taking the minimum of these values. To compute this minimum value over 
all sections, the sections are organized to form a binary tree where 
minimum delta_t values are passed up the tree starting from the leaves. 
See Fig. 7. 

Port Ensemble. The following ports are declared for the Delta 
phase as part of the Y level specification: 

Delta.  portnames ~ P, L,  R 

This binds each section's ports to the (possible different) names used in the 
process' port declaration. The pairing of port names to define a binary tree 
is specified as shown next. This syntax is only intended to be one of several 
methods of specifying the communication graph. In the future, rather 
than defining the graph is this textual manner, we envision using tools- -  

Delta and Energy2 Phases Hydro and Energyl Phases 

Fig. 7. 

Heat Phase 

C o m m u n i c a t i o n  g raphs  and  por t  ensembles  for S I M P L E .  
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graphical (such as ParaGraph (22)) and 
specifications. 

Delta[i] .  port.  R ~ Delta [2 * i]. port. P 

otherwise--to produce these 

where 0 ~ < i < ~  1 

Delta[i] .  por t .L  *-~ Delta[2 * i + 1 ]. port. P 
F x ~  

where 0 ~< i < ---7 1 
2 

Note that this port ensemble declaration associates only a subset of the 
ports, namely, those that are connected as in Fig. 7. The remaining ports, 
those on the boundary of the problem space, can be bound to derivative 
functions. These functions compute the boundary conditions using data 
local to the section. For example, the specification 

Fx~ 1-< Delta[i] .  port. L receive ~ Largest_ Value( ) where --~--- -.~ i<  Processors 

Delta[i] .  port. R receive ~ Largest_ Value( ) where F • ~ 1 -< ---~---- ..~ i < Processors 

states that for leaf sections, a "receive" from the Left  port will return 
the value computed by the Larges t_Value()  function. In this case, the 
derivative function is trivial: 

double Largest_Value( ) 
{ 

return (MaxDouble); 
} 

Observe that derivative functions lead to code uniformity. In this example 
a single X level source program suffices for all processes despite the fact 
that not all processes have the same number of children. Of course, 
uniformity could be achieved by having the X level program check for the 
existence of children, but such tests for special cases add clutter, increase 
compile and/or execution time, and can be error prone. Furthermore, as will 
be shown in the next section, even modestly more complicated boundary 
conditions lead to the proliferation of special case code. 

Finally, we mention that in a mature version of Orca C, global reduc- 
tion operators such as Max, Min, and Sum would be implemented as 
primitives of the Z level language, greatly simplifying this entire phase 
(see Section 4.6). 
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Code Ensemble. Having defined the data and port ensembles, the 
next task is to provide processes that operate on each section. This is the 
role of the code ensemble (see Fig. 8). 

Del ta[ i ] .code  :=xDel ta(  ); where 0 ~ < i < ? x ?  

This declaration specifies that each of the ~ x ? sections is assigned an 
instance of the xDelta(  ) code, which is shown in Fig. 9. 

Several features of the X level code are noteworthy: 

�9 parameters - -The  arguments to the process are formals that 
establish a correspondence between local variables and the 
sections of the ensembles. For  example, the local x array will be 
bound to a block of ensemble x. 

�9 f l u f f - - T h e  size of the local array is based on the size of the 
data ensemble and is thus logically an input to the process. 
Furthermore, the local array may contain fluff, as shown by the 
local declaration x [ -  l : s ] [ -  1 : t]  and the formal declaration 
x[  1 :s] [ l : t ] ,  where the upper bounds of these array declarations 
are inclusive. Thus the local x array contains extra rows and 
columns to hold values from neighboring sections. The data is 
aligned so that extra rows and columns are placed at the top, 
bottom, left, and right of the ensemble data, and the compiler 
checks that these values do not exceed the amount of fluff that is 
declared globally at the Y level. This language support for fluff 
allows all parts of the array, including fluff, to be accessed with the 
same indexing scheme. 

�9 local computat ion--The  logic of the process is essentially the 
sequential computation of the original program. A sequential 
execution can be obtained by setting the number of partitions to 
be one. 

�9 array operators- -The last line of the program shows an example 
of an array assignment where all elements of the delta_t array are 
assigned the same value. 

I I I I I 
I I I I I 

Fig. 8. The code ensemble for the Delta 
phase. 
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xDelta(x[0 s -1] [0 . t -1 ] ,  rho[0 s -1] [0 : t -1] ,  J[0:s-1][0 t - l ] ,  delta.t[0-s-1][0 t - l ] ,  time, lter) 
double x [ - l : s ] [ -1  t]; /* fluff of 1 on all four sides */ 
double rho[0:s][0 t]; /* fluff of 1 along two sides */ 
double J[0.s][0.t]; 
double del ta- t[0.s-1][0: t-1];  /* no fluff*/  
double time, 
tnt iter; 
port Parent, Left, Right; 

( 
lnt l, j; 
double ca; /* speed of sound */ 
double temp, r.del, r_delta lmMelt~_t, 

/* Compute delta_t */ 
for (i=O; a<s; l + + )  
{ 

for (3=0, l<t ;  1++) 
{ 

ca = sqr t (GAMMA * p[i][j] rho[i][j]);/* GAMMA'. a constant for specific heat of air */ 
r..del= x[ i+l l [ j+l ]  r + x[i][j+l] . . . .  [i+l][jJ.r - x[i][j].r, 
r -ae l t ,=  x[i+l]fj+l] r + • r - x[i][j] r - x[i][j+a] r; 
delta_tO]O] = CO * J[1][j] (ca * sqrt(r-del * r_del + r..de[ta * r.delta)); 

} 
} 

/* Compute the local minimum */ 
lm_delta_t = delta_t[0][0], 
for (i=O; i<s; i++)  
{ 

for (j=O; i<t ,  i++)  
{ 

if (delta_t[i]~] < Ira_delta_t) lm-delta_t = delta_till[j], 
} 

} 

/* Compute the global minimum */ 
temp < = =  Left; /* receive */ 
lm_delta_t = Min(temp, lm.tlelta_t); 
temp < = =  Right; /* recewe */ 
lm..delta_t = Min(temp, lm_delta_t); 
Parent < = =  lm-deltaA, /* send */ 

/* Broadcast the result */ 
lm.Aclta_t < = =  Parent; /* receive */ 
Left < = =  lm.Aelta_t; /* send */ 
Right < = =  Ira-delta_t, /* send */ 

delta_t[][] = lm-delta_t; /* array assignment */ 
} 

Fig. 9. X level code for the Delta phase. 

The C o m p l e t e  Phase. To summarize ,  the data ensembles,  the 
port ensemble,  and the above code ensemble  collectively define the Del ta  
phase. With this specification and the above  definition of the corresponding 
X level code,  the Del ta  phase can now be compi led for execution.  U p o n  
execution,  a number  of sections will exist as specified by parameters to the 
program, and these sections are logically connected to form a binary tree. 
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Each section is assigned to a processor for execution and contains one 
process that performs the code of Fig. 9. The end result is a parallel 
algorithm that computes the global minimum of all delta_ t values. 

4.3. The  Hydro  Phase 

This phase calculates the new position, velocity, acceleration, 
Jacobian, viscosity, density, pressure, and energy of each node after the 
next time step. The computation is divided into two steps. In the first step 
density, pressure, viscosity and the Jacobian are passed to the West, 
SouthWest, and South neighbors (see Fig. 10a). These values are used to 
compute the new acceleration, velocity and position of each node. In the 
second step, the newly computed position and velocity values are sent to 
the North, NorthEast, East, South and West neighbors so that they may 
be used to compute the new values of the Jacobian, viscosity, density, 
pressure and energy at each node (see Fig. 10b). 

Port  Ensemble. The data motion shown in Fig. 10 leads to an 
overall communication structure for this phase that is a 6-mesh, as shown 
in Fig. 7 and specified by the ensemble here. 

Hydro. portnames ~ N, NE, E, S, SW, W 

This Y level declaration is bound with the X level declaration of ports 
using positional correspondence. The X level declaration is shown in 
Fig. 13 and is reproduced here. Note that the Y level port names (stated 
earlier) and the X level port names (next) can differ. 

xHydro(p[O:s- 1][0:t- 1], rho[0:s- 1][0:t - 1], J[0:s- 1] [0:t - 1 ]...bound_p) 

port North, NorthEast, East, South, SouthWest, West; 

(a) (b) 

Fig. 10. Data motion in the Hydro phase. 
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This binding provides a level of indirection that allows X level codes of dif- 
ferent phases to share port ensembles if their communication structures are 
identical. This is important because it allows X level code to be developed 
in isolation while still allowing them to reuse existing port ensembles. 

The pairing of port names to define a communication channel is 
specified as follows: 

Hydro [i] [ j ] .  port. N ~ Hydro [ i -  1 ] [ j ] .  port. S 

where 1~<i<?, 0 ~ < j < g  

Hydro [i] [ j ] ,  port. W ~ Hydro [i] [ j -  1 ]. port. E 

where 0~<i<?,  l ~ < j < g  

Hydro [i] [ j - 1 ], port. NE  ~ Hydro [ i -  1 ] [ j ] ,  port. S W 

where l ~ < i < f ,  l ~ < j <  

The boundary conditions are set by binding the following functions to 
ports on the edges. 

Hydro Is]  [ i] .  port. N (positionR) 

Hydro [ i ] [ t ]. port. E (positionR) 

Hydro[i] [0].  port. W (positionR) 

Hydro [0] ] [i] .  port. S (positionR) 

Hydro[s] I t ] .  port .NE (positionR) recewe ~ NE_xr( ); 

Hydro[O] [0].  port, S W  (positionR ) recewe ~ SW_xr(  ); 

recewe ~ East_xr( ); 

recewe ~ West_xr( ); 

reeetve ~ South_xr( ); 

recetve *-~ North_xr( ); where 0 ~< i < E 

where 0 ~< i < ? 

where 0 ~< i < ? 

where 0 ~< i < ? 

The implementation of the East_xr()  derivative function is shown in 
Fig. 11; the other boundary functions are similar. This example illustrates 
the use of typed messages, which in Orca C are called flavors to differen- 
tiate them from types of the language. Flavors provide a way to define 
types for messages. They are needed because the X level code typically uses 
a single port to transmit different kinds of data. For example, Fig. 12 shows 
four different receives on the East port, each expecting to receive a double 

E~t~O 
{ 

return (x[ ][t].r + (x[l[tl.r - x[][t-1].r)); 
} 

Fig. 1 I. Example of derivative function 
definition. 
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/* The X level code: */ 
for (i=l;  i<s+l ;  i++) 
( 

x[il{t].r < = =  (positionR) East; 
x[i][t].z < = =  (positionZ) East; 
u[i][t].r < = =  (velocityR) East; 
u[i][t],z < = =  (velocityZ) East; 

) 

Fig. 12. 

/* Expecting a message of flavor positionR */ 

Implicit invocation of derivative functions in X level code. 

but each representing a logically different kind of data; these different 
logical types are the message's flavor. In this case, if there were no flavors 
there would be no way to differentiate the types of the different messages. 
Flavors are currently defined by using C's typecast mechanism. The above 
example shows how flavors are specified when binding derivative functions 
to ports; this flavor specification is required whenever multiple derivative 
functions returning the same language type are bound to the same port of 
the same phase, that is, whenever there is ambiguity as to which derivative 
function to use. 

xHydro(p[O:s-1][O:t-1], rho[O:s-1][O:t-1], J[O:s-1][O:t-1] ... bound_p) 
double p[0:s][0:t]; 
double rho[0:s][0:t]; 
double J[O:s][O:t]; 

double "bound_p; 
port North, NorthEast, East, South, SouthWest, West; 

{ 
int i, j; 
double dehorn; 

/* Receive from the East a column of the rho array */ 
/* and place it in the rightmost column of rho. */ 
rho[O:s][t] < = =  East; /* array slice */ 

/* other communica t ion . . .  */ 

/* Compute acceleration */ 
for (i=0; i<s; i+,q-)~ '1 
( 

for (j=O; i<t i  i++) 
{ i -  

denom = (rho[i]~] * J[i][j] + rho[i][j+l] * J[i][j+l] + 
rho[i+ll[j+l] * J[i+l][j+l] + rho[i+l][j] * J[i+l][j]) / 2; 

} 
} 
/* other c o m p u t a t i o n . . .  */ 

Fig. 13. Sketch of X level code for the Hydro phase. 
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Again, we emphasize that a more sophisticated programming environ- 
ment will provide alternate methods of specifying the port ensembles and 
boundary conditions. 

Code Ensemble. The code ensemble for this phase is identical to 
that of the Delta phase except each section is assigned an instance of the 
xHydro(  ) function instead of the xDelta( ) function. The xHydro(  ) code is 
too large to be given in complete detail, but Fig. 13 shows a schematic of 
the process code. Note the following features: 

�9 array slices--Slices are both a notational convenience and an 
efficiency optimization. These provide a clean way to refer to an 
entire row (or in general, a d-dimensional block) of data. Further- 
more, when slices are used in conjunction with the transmit 
operator (~),  the compiler can perform "message vectorization" 
to send the entire block as a single message, thus minimizing the 
number of messages transmitted. 

�9 no special case code--Typically,  processes on the edge of the 
processor array must be treated separately. In Orca C, boundary 
conditions are handled by derivative functions and port ensem- 
bles, reducing the need for special case code. 

4.4. The Heat  Phase 

The Heat phase calculates the temperature and heat of each node after 
the next time step. Because the heat equation is separable in two dimen- 
sions, the computation of the heat phase is divided into two steps. The first 
step solves the equation in the k direction and the second step solves the 
equation in the l direction. 

Port  Ensemble. The data motion for the Heat phase is depicted in 
Fig. 14. Because of data dependencies between loops, each sweep must 
be completed before the next one begins, which means that this phase will 
see limited speedup after parallelization. This data motion requires the 
following port declaration and port ensemble. 

Data Motion: 

Time: Sweep West 

Fig. 14. 

Sweep East Sweep West Sweep North Sweep North 

Sweep South 

Data  motion in the Heat phase. 



386 Lin and Snyder 

Heat. portnames ~ N, E, S, W 

H e a t [ i -  1 ] [ j ] .  port. S ~ Heat[i] l - j ] .  port .N 

Heat [ i ]  [ j -  1 ] .  port .E ~ Heat [ i ]  [ j ] .  port. W 

w h e r e  1 ~ < i < ? ,  O ~ < j < g  

w h e r e  0 ~ < i < ? ,  l<<.j<g 

C o d e  E n s e m b l e .  T h e  c o d e  e n s e m b l e  is c o n c e p t u a l l y  i d e n t i c a l  to  

t h o s e  of  t h e  p r e v i o u s  phases .  A h i g h - l e v e l  d e s c r i p t i o n  of  t he  X level  c o d e  

is p r e s e n t e d  in Fig.  15. 

4.5. The Energy1 Phase 

T h e  p u r p o s e  of  t h e  E n e r g y l  p h a s e  is to  c o m p u t e  the  e n e r g y  a n d  w o r k  

a n d  to  c h e c k  t h a t  e n e r g y  h a s  b e e n  c o n s e r v e d  in  t he  c a l c u l a t i o n s .  T h e  p o r t  

xHeat() 
port 

{ 
North, East, South, West; 

loop /* West-East Sweep */ 
{ 

receive R from West; 
compute equations 13, 14, 15; /* See Section 3 */ 
send R to the East; 

} 

loop /* East-West Sweep */ 
{ 

receive theta from East; 
compute equations 16, /* See Sectaon 3 */ 
send theta to the West; 

} 

Compute heat flow at West Border of the Grid, 

loop /* South-North Sweep */ 
{ 

receive R from South; 
compute equations 13, 14, 15; /* See Section 3 */ 
send P~ to the North; 

} 

loop /* North-South Sweep */ 
{ 

receive thetabom North; 
compute equations 16; /* See Section 3 */ 
send R to the South; 

} 

Compute heat flow at South Border of the Grid; 

Fig. 15. Sketch of X level code for the Heat phase. 
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ensemble for the Hydro phase can be reused here because these phases 
have the same communication structure. Only the X level code changes. 
A major portion of this code is shown in Fig. 16. 

4.6. The Energy2 Phase 

Finally, the Energy2 phase sums the error of each node to compute 
the total error in the SIMPLE computation. Like the Delta phase, the 
Energy2 phase performs an aggregate and broadcast. This phase can thus 
share the port ensemble of the Delta phase. The X level code differs chiefly 
in the use of addition--rather than minimum--as the global reduction 
operator. 

As mentioned in Section 4.2, global reduction operators are frequently 
used in scientific computations and a mature version of Orca will provide 
these as primitives of the language. Figure 17 shows how a global reduction 
operator simplifies the Energy2 phase to a single statement of the Z level 
program. Here the GlobalSum operator accepts the en_error ensemble as a 
parameter and returns the result in the same ensemble. Note that this 

xEnergyl(x[0 s-1][0:t-l], u[0 s-l][0 t - l ] ,  mass[O s-l][0 t - t ] )  
Vector x[-~ s][-1 t], 
Vector u[-1 s][-1 t], 
double rho[0 s][0 t], 

double mass[0 s][0 t], 
port North, NorthEast, East, South, SouthWest, West, 

{ 
lnt i, j, 

for (~=0, ~<s, ~++) 
{ 

for (j=0, z<t, i++) 
{ 

m~[~]b)  = ~ho[qb] * s[dbl[OL 

} 

/* Send left column of mass[][] West *I 
West <==  mass[0 s-1][0l, 
ma~s[0 slit] <==  ]~ast, 

/* Send bottomJeft corner of mass[][] SouthWest */ 
SouthWest <==  mass[0][0], 
mass[s][t] <==  NorthEast, 

/* Send bottom row of mass[][] South *[ 
South <==  mass[all0 t - l ] ,  
mo.qs[s][O t] <==  North, 

/* Compute internal and kinetic energy */ 
for 0=0. I<s, ~++) 
{ 

for (1=0, i<t, ~++) 
( 

mt-ea[i]b] = e[qb] * rnass[db], 
km_en[=J[j] = ((mass[i]b] + mas~[~]b+l ] mass[~+lJb+i  } + mass[~+l][j]) /8)  * 

( . [ i+ l ] i i+~ l  �9 * ~[ ,+qb+~]  r + .~ ,+ l ] l j+ l l  ~ * . [~+~]b+l]  ~), 
} 

} 
/* Compute work, heat and e/~ergy */ 

} 

Fig. 16. Sketch of X level code for the Energyl  phase. 
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Loa d~x ,  u, a, ..), 
while (error  > ~5) 
{ 

D e l t a  (x, rho,  .l, tnne ,  iter); 
H y d r o  (p,  the ,  J ,  - .); 
H e a t  (x, rho,  e~ J ,  -, ); 
E n e r g y l  (x, u, . .), 
e r ror  :=  G l o b a l _ S u m  (on_error);  

} 
Output (x, u,  ...); 

Fig. 17, The Energy2 phase using 
global reduction. 

phase has no corresponding user-deft'ned Y or X level code. Furthermore, 
these operators provide a high-level abstraction whose implementation 
could be optimized once for each individual machine. 

5. P R O G R A M M A B I L I T Y  I S S U E S  

In SIMPLE, the processes forming each phase are instances of a single 
process. For example, the Delta phase uses instances of the xDelta() 
process. Thus, SIMPLE appears not to require the full MIMD capability 
of code ensembles--where the instances can be instances of different 
processes--but requires only the Single Program Multiple Data capability. 
This apparent uniformity derives largely from mechanisms provided by 
Orca C. 

Typically, processes on the edge of the processor array must be treated 
separately. A receive into the East port must be conditionally executed 
because processes on the East edge have no eastern neighbors. (Although 
our reference to the "receive" operation implies a message passing 
language, shared memory programs also have to deal with these special 
cases.) Isolated occurrences of these conditionals pose little problem, but 
since in SIMPLE there can be up to nine different cases---depending on 
which portions of the boundaries are contained within a process--these 
conditional cases can lead to convoluted codeJ 15'16) For example, suppose 
a program in its conditional expression assumes that the process is either 
a NorthEast, East, or SouthEast section, as shown here: 

i f  ( N o r t h E a s t )  

( 

/ *  special  case t * /  

} 

else if (Ease) 
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/*  spec• case 2 * /  

else if (SouthEast) 

/* s p e c i a l  case 3 */ 

A problem arises if the programmer now decides that a vertical strips 
decomposition would be more efficient. This code assumes that exactly one 
of the three boundary conditions holds. But in the vertical strips decom- 
position there is only one section on the eastern edge, so all three condi- 
tions apply, not just one. Therefore, the change in data decomposition 
forces the programmer to rewrite this boundary condition code. 

In Orca C, this scenario poses no problem because processes send and 
receive data through ports which in some cases involve interprocess com- 
munication and in other cases invoke derivative functions. Since the X level 
source code does not know what's on the other end of a port, the handling 
of boundary conditions has been decoupled from the X level source code. 
Note that instead of cluttering up the process code, special cases due to 
boundary conditions are handled at the problem level where they naturally 
belong. 

Orca C's array operators and array slices are high-level constructs that 
eliminate the low-level chores of iterating over arrays and bundling 
messages. Such higher-level programming is syntactically cleaner and less 
error prone than the use offer loops. 

Finally, Orca C incorporates the notion of fluff, which is a user 
managed cache that is particularly useful in applications with local 
neighbor computations. Orca C's data ensemble declarations provide an 
easy way to declare these extra data buffers and to specify their geometric 
relation to the local sections. 

6. P E R F O R M A N C E  RESULTS 

This section presents evidence for the claim that programs based on 
the Phase Abstractions--and therefore those written in O r c a C - - a r e  
portable. (23) Our approach was to take a single portable implementation 
of SIMPLE and execute it on several multiprocessors. Speedups were 
computed for each machine and compared against one another. 

There is no currently agreed upon definition of portability for parallel 

828/20/5-4 
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programs. Clearly, the ability to execute on different machines is a 
necessity. In addition, a portable program must run well on these machines. 
For  this discussion, we consider a program that achieves similar speedups 
across a set of machines to be portable across these machines. The justifica- 
tion is that similar speedup curves are an indication that the program has 
extracted the same amount of parallelism from each machine. To be sure, 
there are problems with this approach, so we must be aware of the defini- 
tion's limitations when analyzing the results. The main pitfall is that one 
maehine may be inherently better suited for one application than another, 
in which ease we would not expect to see identical speedups. 

Note that other commonly used metrics such as MF LO P S  or program 
execution time are too machine dependent to be the basis for a definition 
of portability; these machine dependencies make comparison across 
machines difficult. For example, comparing machines that are identical 
except for their clock speeds would produce different performance results 
even though this program is clearly portable between the two. For this 
reason, speedup---which eliminates some variables such as clock speed and, 
to some extent processor power--was chosen as our metric. Actual execu- 
tion times are given in the Appendix A. Machine characteristics are given 
in Appendix B. 

Experimental Setup. A variety of multiprocessors were used in 
the experiment, along with a detailed simulator of a Transputer-based 
machine. One muttiprocessor is a Sequent Symmetry Model A, which has 
20 Intel 80386 processors connected by a shared bus to a 32 MB memory 
module. Each processor has a unified 64K cache and an 80387 floating 
point accelerator324) 

A second machine is a 24 node BBN Butterfly GP1000. Each node has 
a Motorola 68020 processor, 4 MB of local memory, and a processor node 
controller that interacts with an omega network to make remote references 
when needed. Together, the memory modules, the process node controllers, 
and the network form a single shared memory that all processors can 
access. Local memory access is about 12 times faster than remote access325) 

Two machines are 32 node Intel iPSC/2 hypercubes in which all inter- 
processor communication is through message passing. ~26) Both have 32 
nodes with 80386 processors and a 64KB unified cache. They differ in that 
one has an iPSC SX floating point accelerator and 8MB of memory on 
each node (we refer to this as iPSC/2 F), while the other (iPSC/2 S) has the 
slower Intel 80387 floating point coprocessor and only 4MB of memory per 
node. 

The 64 node nCUBE/7 is a nonshared memory hypercube in which 
each node has a custom main processor and 512 KB of memory, t27) 
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Finally, we have a detailed simulator of a Transputer-based nonshared 
memory machine. Using detailed information about arithmetic, logical and 
communication operators of the TS00,tg) this simulator executes a Poker C 
program and produces time estimates for the program execution. Poker C 
is the precursor to Orca C~28); the two languages share the same message 
passing semantics. 

Our implementation of SIMPLE is structured in the manner discussed 
in Section 3. The entire program was written in C, including code to 
support a primitive form of ensembles. (C was used because the Orca C 
compiler is still under development.) The Orca message passing interface 
was implemented on all machines. These were directly supported on the 
non-shared memory machines, while on the Sequent and Butterfly they 
were written using shared memory. 

R e s u l t s .  Figure 18 shows that similar speedups were achieved on all 
machines. Speedup values were computed based on a sequential version of 
our program. As mentioned earlier, many hardware characteristics can 
affect speedup, and these can explain the differences among the curves. 
In this discussion we concentrate on communication costs, the feature 
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that best distinguishes these machines. For example, the iPSC/2 F and 
nCUBE/7 have identical interconnection topologies but the ratio of com- 
putation speed to communication speed is greater on the iPSC/2. (29'3~ This 
has the effect of decreasing speedup since it diminishes the percentage of 
time spent computing, and this is where parallelism occurs. In other words, 
the larger fraction of time spent on communication increases the fraction of 
non-computation overhead. Similarly, since message passing latency is 
lowest on the Sequent's shared bus, the Sequent shows the best speedup. 
This claim assumes little or no bus contention, which is a valid assumption 
considering the modest bandwidth required by SIMPLE. After considering 
these machine differences, our claim of portability appears to be accurate. 

As a reference point, Fig. 19 shows the results of Hiromoto et  aL ~s) on 
a Denelcor HEP using 4096 data points. (In our experiments, changing the 
problem size from 1680 to 4096 points involved the modification of com- 
pile-time constants and recompilation. When Orca C is complete, the 
problem size can be a runtime parameter.) These results are included only 
to show that our portable program is competitive with machine-specific 
code. The many differences with our results--including different problem 
sizes, different architectures, and possibly even different problem 
specifications--make it difficult to draw any stronger conclusions. As 
another reference point, Fig. 19 compares our results on the iPSC/2 S 
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against those of Pingali and Rogers' parallelizing compiler for a functional 
languageJ 1~ Both experiments were run on iPSC/2's with 4MB of memory 
and 80387 floating point units. The largest potential difference lies in the 
performance of the sequential programs on which speedups are computed. 
All other parameters appear to be identical. 

The SIMPLE program doesn't exercise all the features of Orca C, 
partly because of the low communication costs of SIMPLE and partly 
because of the small sizes of our multiprocessors. The next section discusses 
features of Orca C programs that make them flexible, and thus portable. 
These features become more significant in the context of newer, larger 
machines (particularly mesh machines), and for programs that require 
larger communication costs. We first give one detailed example of the 
flexibility of Orca programs. 

6.1. Data  Par t i t ion ing Exper iment  

The choice of data partitioning can significantly affect program per- 
formance. For SIMPLE, two obvious choices are a block decomposition 
and a strip decomposition. Because all communication is with nearest 
neighbors, blocks yield less overall data transmission but more messages 
(in the Hydro and Energyl phases each interior section has six neighbors). 
With strips, each section has at most two neighbors, so fewer messages are 
sent. However, more data is transmitted because each section has a larger 
perimeter to area ratio. 

Pingali and Rogers (1~ pose the question of whether squares or strips 
are better. Data ensembles ease the task of changing data partitions and 
provide a mechanism for studying this question. The Block partitioning is 
the data ensemble described in previous sections. This will be compared 
against the Strip partitioning in which each section contains a vertical strip 
of the data ensembles. 

Recall that the data ensembles discussed earlier create f x ? arrays of 
blocks. With the Phase Abstractions, the Strip partitioning is easily derived 
from the Block partitioning by setting ?= 1 and ~= Processors in the 
program's configuration computation section. The actual data ensemble 
declaration--shown again here--does not change. 

partition block[~][?] Vector x[rows][co/s]; 

In addition, Strips require that each process have only East-West 
neighbors instead of the six neighbors used in Block. By using the port 
ensembles to bind functions to unused ports--in this case the North, 
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South, NorthEast and SouthWest ports--the program can easily accom- 
modate this change in the number of neighbors. No other source level 
changes are required. 

Figure 20 shows our results for problem sizes of 1K and 2K points on 
four machines. The Block partitioning performed better in every case, and 
the difference between the two strategies generally increases as the number 
of processors grows. This means that the overhead of sending more 
messages in Blocks is offset by the fact that Block transmits less overall 
data than Strips. Thus, we expect Block's performance advantage to 
increase with the problem size since such changes do not alter the number 
of messages sent, but only increase the size of these messages. Our 
results appear to confirm this intuition. We conclude that for SIMPLE, 
partitioning by blocks is superior to partitioning by strips. 

7. P O R T A B I L I T Y  ISSUES 

For a parallel program to be portable it must not be tied to the details 
of any one architecture: It must be flexible and adapt to different machine 
characteristics. We now show how Orca C provides a flexible program 
structure. 

m 

-" = 2048 points: stops 
r 1024 points: s tops  

12 

0 4 8 12 16 20 24 28 32 

Number o f  Processors 

(a) Str ips vs. Squares on the Butterfly 

_ _  - ~ - _  z =  = .  

0 4 8 12 16 20 24 28 32 

Number o f  Processors 

(C) SI / lps  vs. Squares on the I P S C / 2 F  

O- . . . .  O 2048 points: squares 
r . . . .  r 1024 points: squares 

4 8 12 16 20 24 28 32 

Number o f  Processors 

Co) Str ips vs. Squares on the Symmetry  

32 

~ .  28 

~ 20 

00 4 8 12 16 20 24 28 32 

Number o f  Processors 

(d) S m p s  vs. Squares on the N C U B E  

Fig. 20, Vertical strips vs. blocks. 



A Portable Implementation of SlMPLE 395 

Scaling. The data ensembles directly support scaling. Changes to 
both the problem size and the number of processors are accommodated 
implicitly in the data ensemble declaration. Recall that the section size is 
defined as: 

s 
6 - -  

cols 
t = , where (s x t) defines the section size, 

(rows • cols) defines the problem size, and 

(~ x ?) defines the number of sections. 

We see that doubling the problem size in the rows dimension implicitly 
doubles s, creating sections that are twice as high. Similarly, increasing the 
number of sections by changing the value of f or ? implicitly decreases the 
section size. 

Granularity. The same mechanism that provides implicit scaling 
can be used to explicitly control granularity. The size of each section can 
be controlled by either changing the number of processors or by changing 
the number of sections in the ensemble declaration7 

M u l t i p l e  T h r e a d s .  Each section corresponds to a logical thread of 
concurrency. By creating more sections than there are processors, Orca C 
programs can make use of multiple threads. This technique can help hide 
communication latency and can take advantage of the fast hardware 
context switching provided by architectures such as the Tera Computer (31) 
and the MIT Alewife MachineJ 32) 

Da t a  P a r t i t i o n i n g .  Perhaps the most important characteristic in 
achieving good performance is the data partitioning. In general, the best 
choice of partitions depends on details of both the machine and the 
problem to be solved. For  example, in some cases a strips decomposition 
is desirable while in other cases a block decomposition is better/33) 

In Orca C changes to the data partitioning are localized to the 
ensemble declarations. This was illustrated in the previous section where a 
one line change in the configuration section was sufficient to convert from 
a block to a strip decomposition. 

Of course, the change in data partitioning leads to a different com- 
munication pattern. In this case, sections of the vertical strips parti- 
tioning have no North, South, NorthEast  or SouthWest neighbors. Note, 
however, that the port ensemble, as declared in Section 4.3, requires no 
changes, nor does the specification of the boundary conditions or process 
code. 
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Changes in the Communication Graph. Ideally, portable 
parallel programs are written without assumptions about the underlying 
architecture. On the other hand, knowledge of machine details can be used 
to optimize program performance, such as when the logical communication 
graph is made to match an architecture's communication structure. 
Consider embedding the binary tree of the Delta phase onto a mesh 
architecture. Some logical edges will necessarily span multiple physical 
links (that is, dilation is greater than one), so a better way to implement 
the global minimum on a mesh is to use the "rows and columns" approach 
where values are first compared along each row of processors, then the 
minimum of each row is compared along a single column (see Fig. 21). 
With proper foresight an Orca C program can be written to realize either 
approach. 

Instead of a binary tree, the "rows and columns" approach uses an 
n-ary tree, so the X level code is parameterized, as shown in Fig. 22. With 
the code suitably parameterized, this program can now execute efficiently 
on a variety of architectures. The "rows and columns" approach uses the 
following port ensemble declaration: 

Delta[i]  [ j ]  .port. P ~ Del ta[ i]  [ j  - 1 ] .port. C[O] 

Delta [i] [0] .port. P ~ Delta [ i -  1 ] [0] .port. C[  1 ] 

O <~ i <~ ?, l~<j<? 

1~<i<?  

Locality. Notice that sections capture the important notion of 
locality. Because of the high latency of message passing, the need for 
locality of reference on nonshared memory machines is clear. But because 
all multiprocessors have some type of memory hierarchy, locality of 
reference can usually be exploited even on shared memory machines. "4) 

Fig. 21. Rows and columns 
to compute the global minimum. 
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xDelta(x[0:s-1][0. t  1], . ) 
do~ble x[-1.s][-l:t]; 

{ 
mt i, j; 
double t e m p , . . .  , 

/* Compute  the global ITI . . . . . . . .  / 
for (i=O; i<n,  i + + ]  
{ 

temp < = =  Child[i]; /* receive */ 
lrn_delta_t = Mm(temp, ira_delta_t); 

) 
Parellt < = =  lm_delta_t; /* send */ 

/* Broadcast  the result */ 
lm_delta_t < = =  Parent ,  /* receive */ 
for (i=0; i<n; i++)  
{ 

Child[i] < = =  Ira_delta_t; /* send */ 
} 

deltz_t[][] = hn delta_t; /* ~.rray assignment */ 
} 

Fig. 22. Parametcrized X level code for the Delta phase. 

Process  to  P r o c e s s o r  Mapping. When the logical communica- 
tion structure of a program does not match the physical communication 
structure of the underlying machine, the processes must be mapped to the 
processors and the choice of mapping can influence program performance. 
A good mapping will achieve low interprocessor communication while 
maintaining good load balance. While Orca C does not solve this mapping 
problem, the port ensembles do provide information--the logical 
communication graph--that is essential to performing such a mapping. 

Our experiments with different mesh-to-hypercube mappings showed 
negligible performance differences for three different mappings: a Random 
mapping, a Default mapping, and a Binary Reflected Grey Code mapping. 
To compute the Default mapping the nodes of a mesh are assigned 
numbers in row major order and the nodes of a hypercube are numbered 
according to their position in the cube. Node 1 of the mesh is then mapped 
to node 1 of the hypercube, node 2 of the mesh is mapped to the node 2 of 
the hypercube, etc. Because of the relatively slow processors and small 
machine diameters, the performance differences were very small. For 
example, using 32 processors on the iPSC/2 F, the Random mapping was 
never more than 1.9 % slower than the other mappings. Presumably, the 
importance of good mappings will become more significant as processor 
speeds increase and machines grow in diameter. For the shared memory 
machines in our experiments the issue of mapping processes to processors 
doesn't exist. 



398 Lin and Snyder 

8. CONCLUSION 

In this paper we have presented Orca C and shown how it is used to 
program SIMPLE. We have supplied evidence that this Orca program is 
portable across a variety of multiprocessors, and we have discussed the 
features of Orca in terms of ease of programming and portability. Finally, 
we speculate that the flexibility of Orca C programs will become even more 
important in the future. As the trend towards larger machines continues, 
the increased cost of communication will force programs to deal effectively 
with issues of data motion, granularity, and locality. 
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APPENDIX  A. 

Execution Time in Milliseconds a 

1680 points 

P Symmetry nCUBE/7 Butterfly iPSC/2 F 

1 65310 173968 60940 34199 
4 17530 48535 41471 10267 
6 12200 34667 29899 7398 
8 9410 27339 23901 5838 

10 7720 22716 21422 4959 
12 6460 19252 19482 4205 
14 6170 18650 18966 4108 
16 5160 15497 18015 3445 

4096 points 

P iPSC/2 S 

1 107924 
4 29398 
8 16550 

16 9683 
32 5510 

a All programs compiled without the -O flag on (no optimizer). Times given for 11 iterations 
of SIMPLE, not including, initialization time (memory allocation, file I/O). 
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