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Abstract

This paper explains why parallel implementation of ma-
trix multiplication—a seemingly simple algorithm that can
be expressed as one statement and three nested loops—is
complex: Practical algorithms that use matrix multiplica-
tion tend to use matrices of disparate shapes, and the shape
of the matrices can significantly impact the performance of
matrix multiplication. We provide a class of algorithms that
covers the spectrum of shapes encountered and demonstrate
that good performance can be attained if the right algo-
rithm is chosen. These observations set the stage for hybrid
algorithms which choose between the algorithms based on
the shapes of the matrices involved. While the paper re-
solves a number of issues, it concludes with discussion of a
number of directions yet to be pursued.

1 Introduction

Over the last three decades, a number of different ap-
proaches have been proposed for implementing matrix-
matrix multiplication on distributed memory architectures
These include Cannon’s algorithm [4], broadcast-multiply-
roll [12, 11], and generalizations of broadcast-multiply-roll
[8, 13, 2]. The approach now considered the most practi-
cal, known as broadcast-broadcast, was first proposed by
Agarwal et al. [1], who showed that a sequence of parallel
rank-k updates is a highly effective way to parallelizeC =AB. This same observation was independently made by
van de Geijn and Watts [17], who introduced the Scalable
Universal Matrix Multiplication Algorithm (SUMMA). In
addition to computingC = AB, SUMMA implementsC = ABT andC = ATB as a sequence of matrix-panel-�This research was supported primarily by the PRISM project (ARPA
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of-vectors multiplications, andC = ATBT as a sequence
of rank-k updates. Later work [5] showed how these tech-
niques can be extended to a large class of commonly used
matrix-matrix operations that are part of the Level-3 Basic
Linear Algebra Subprograms (BLAS) [9].

These previous efforts have focused primarily on the
special case where the input matrices are approximately
square. Recent work by Li, et al. [15] creates a “poly-
algorithm” that chooses between algorithms (Cannon’s,
broadcast-multiply-roll, and broadcast-broadcast). Empir-
ical data show some advantage for different shapes of
meshes(e.g. square vs rectangular). However, since the
three algorithms are not inherently suited to specific shapes
of matrices, limited benefit is observed.

We previously observed [16] the need for algorithms to
be sensitive to the shape of the matrices and hinted that a
class of algorithms naturally supported by the Parallel Lin-
ear Algebra Package (PLAPACK) provides a good basis
for such shape-adaptive algorithms. Thus, a number of hy-
brid algorithms are now part of PLAPACK. This observa-
tion was also made by the ScaLAPACK [6] project, and
indeed ScaLAPACK includes a number of matrix-matrix
operations that choose algorithms based on the shape of the
matrix. We contrast our approach with ScaLAPACK’s later.

This paper describes and analyzes a class of parallel ma-
trix multiplication algorithms that naturally lends itself to
hybridization. The analysis combines theoretical results
with empirical results to provide a complete picture of the
benefits of the different algorithms and how they can be
combined into hybrid algorithms. A number of simplifi-
cations are made to focus on the key issues. Having done
so, a number of extensions are identified for further study.

2 Data Distribution

For all algorithms, we will assume that the processors
arelogically viewed as ar�cmesh of computational nodes
which are indexedPi;j , 0 � i < r and 0 � j < c,
so that the total number of nodes isp = rc. Physically,
these nodes are connected through some communication
network, which could be a hypercube (Intel iPSC/860), a



higher dimensional mesh (Intel Paragon, Cray T3D/E) or a
multistage network (IBM SP2).

Physically Based Matrix Distribution (PBMD). We
have previously observed [10] that data distributions should
focus on the decomposition of the physical problem to be
solved, rather than on the decomposition of matrices. Typ-
ically, it is theelements of vectorsthat are associated with
data of physical significance, and so it is their distribution
to nodes that is significant. A matrix, which is a discretized
operator, merely represents the relation between two vec-
tors, which are discretized spaces:y = Ax. Since it is
more natural to start by distributing the problem to nodes,
we first distributex andy to nodes. The matrixA is then
distributed so as to be consistent with the distribution ofx
andy.

To describe the distribution of the vectors, assume thatx
andy are of lengthn andm, respectively. We will distribute
these vectors using adistribution block sizeof bdistr. For
simplicity assumen = Nbdistr andm =Mbdistr. Partitionx andy so thatx = 0BBB@ x0x1

...xN�1 1CCCA andy = 0BBB@ y0y1
...yM�1 1CCCA

whereN >> p andM >> p and eachxi andyi is of
lengthbdistr. PartitioningA conformally yields the blocked
matrixA = 0BBB@ A0;0 A0;1 � � � A0;N�1A1;0 A1;1 � � � A1;N�1

...
...

...AM�1;0 AM�1;1 AM�1;N�1 1CCCA (1)

where each subblock is of sizebdistr � bdistr. Blocks ofx and y are assigned to a 2D mesh of nodes in column-
major order. The matrix distribution is induced by assigning
blocks of columnsA�;j to the same column of nodes as
subvectorxj , and blocks of rowsAi;� to the same row of
nodes as subvectoryi [16]. This distribution wraps blocks
of rows and columns onto rows and columns of processors,
respectively. The wrapping is necessary to improve load
balance.

Data movement. In the PBMD representation, vectors
are fully distributed (not duplicated), while a single row
or column of a matrix will reside in a single row or col-
umn of processors. One benefit of the PBMD represen-
tation is the clean manner in which vectors, matrix rows,
and matrix columns interact. Converting a column of a
matrix to a vector requires a scatter communication within
rows. Similarly, apanelof columns can be converted into a

multivector (a group of vectors) by simultaneously scatter-
ing the columns within rows. For details, see [16].

3 A Class of Algorithms

The target operation will beC = �AB + �C
where for simplicity we will often treat only the case where� = 1 and� = 0. There are three dimensions involved:m,n, andk, whereC,A, andB arem�n,m� k, andk�n,
respectively.

It is always interesting to investigate extremal cases
which happen when one or more of the dimensions equal
unity:

One dimension equals unity:m, n largek = 1 A andB become column and row vec-
tors, respectively, and the operation
becomes arank-1update.m,k largen = 1 C and B are column vectors, and
the operation becomes a matrix-vector
multiply.n, k largem = 1 C andA are row vectors, and the op-
eration becomes a row vector-matrix
multiply.

Two dimensions equal unity:m largen = k = 1 C andA become column vectors, andB a scalar. The operation becomes a
scaled vector addition (axpy).n largem = k = 1 C andB become row vectors, andA a
scalar. Again, the operation becomes
a scaled vector addition.k largem = n = 1 A andB become row and column vec-
tors, respectively, andC a scalar. The
operation becomes an inner-product
(dot).

Implementing the matrix-matrix multiplication for these de-
generate cases is relatively straight-forward: The rank-1up-
date is implemented by duplicating vectors and updating
local parts ofC on each node. The matrix-vector multi-
plications are implemented by duplicating the vector to be
multiplied, performing local matrix-vector multiplications
on each node, and reducing the result toC. In the cases
where two dimensions are small, the column or row vectors
are redistributed like vectors (as described in the previous
section) and local operations are performed on these vec-
tors, after which the results are redistributed as needed.

In the next section, we will discuss how the case where
none of the dimensions are unity can be implemented as
a sequence of the above operations, by partitioning the



operands appropriately. We present this along with one mi-
nor extension where rather than dealing with one row or col-
umn vector at a time, a number of these vectors are treated
as a block (panel or multivector). This reduces the number
of messages communicated and improves the performance
on each node by allowing matrix-matrix multiplication ker-
nels to be called locally.

3.1 Notation

For simplicity, we will assume that the dimensionsm,n, andk are integer multiples of the algorithmic block sizebalg, we will use the following partitionings ofA, B, andC: X = � X1 � � � XnX=balg � = 0B@ X̂1
...X̂mX=balg 1CA

whereX 2 fA;B;Cg, andmX andnX are the row and
column dimension of the indicated matrix. HereXi andX̂i
indicatepanelsof columns and rows, respectively. Also,X = 0B@ X1;1 � � � X1;nX=balg

...
...XmX=balg ;1 � � � XmX=balg;nX=balg 1CA

In these partitionings,balg is chosen to maximize the per-
formance of the local matrix-matrix multiplication opera-
tion. In the below discussion, we will usêM = m=balg,N̂ = n=balg, andK̂ = k=balg.

3.2 Two dimensions are “large”

First we present algorithms that use kernels that corre-
spond to the extremal cases discussed above where one di-
mension equals unity.

Panel-panel update based algorithm:m and n large.
Notice that ifm andn are both large compared tok, thenC contains the most elements, and an algorithm that moves
data inA andB rather thanC may be a reasonable choice.

Observe thatC = AB = � A1 � � � AK̂ �0B@ B̂1
...B̂K̂ 1CA= A1B̂1 + � � �+AK̂B̂K̂

Thus, if we know how to perform one updateC  C +AiB̂i in parallel, the complete matrix-matrix multiplica-
tion can be implemented aŝK calls to this “panel-panel
multiplication” kernel. In [17, 16] it is shown that one

panel-panel update can be implemented by the following
sequence of operations: Duplicate (broadcast)Ai within
rows; Duplicate (broadcast)̂Bi within columns; On each
node perform an update to the local portion ofC. Comput-
ing C = AB is then implemented by repeated calls to this
kernel, once for eachAi; B̂i pair.

Matrix-panel multiply based algorithm: m and k large.
If m andk are both large compared ton, thenA contains
the most elements, and an algorithm that moves data inC
andB rather thanA may be a reasonable choice.

Observe thatC = � C1 � � � CN̂ � = A � B1 � � � BN̂ �
so thatCj = ABj . Thus, if we know how to performCj  ABj in parallel, the complete matrix-matrix mul-
tiplication can be implemented aŝN calls to this “matrix-
panel multiplication” kernel. In [16] it is shown that one
matrix-panel update can be implemented by the following
sequence of operations: ScatterBj within rows followed
by a collect (all-gather) within columns to duplicate it;
Perform a matrix-multivector multiplication local on each
node, yielding contributions toCj ; Reduce (sum) the result
toCj . By calling this kernel for eachBj ; Cj pair,C = AB
is computed.

Panel-matrix multiply based algorithm: n and k large.
Finally, if n andk are both large compared tom, thenB
contains the most elements, and an algorithm that moves
data inC andA rather thanB may be a reasonable choice.
The algorithm for this is similar to the matrix-panel based
algorithm, except that it depends on a panel-matrix kernel
instead.

3.3 Two dimensions are “small”

Next we present algorithms that use kernels that corre-
spond to the extremal cases discussed above where two di-
mensions equal unity. Notice that implementation of these
kernels is unique to PLAPACK, since other libraries like
ScaLAPACK do not provide a facility for distributing vec-
tors other than as columns or rows of matrices.

Column-axpy based algorithm:m large. Notice that ifn = k = 1, the matrix-matrix multiplication becomes a
scaled vector addition:y  �x + y, sometimes known
as an “axpy” operation. Ifn andk are both small (e.g.,
equal one), thenC andA will exist within only one or a
few columns of nodes, whileB is a small matrix that exists
within one node, or at most a few nodes. To get good paral-
lelism, it becomes beneficial to redistribute the columns ofC andA like vectors.



Observe thatC = � C1 � � � CN̂ �= � A1 � � � AK̂ �0B@ B1;1 � � � B1;N̂
...

...BK̂;1 � � � BK̂N̂ 1CA
So thatCj = A1B1;j + � � � + AK̂BK̂j . Thus, if we know

how to perform one updateCj  Cj + ApB̂pj in parallel,
the complete computation ofCj can be implemented aŝK
calls to this “axpy” kernel, and the complete matrix-matrix
multiply is accomplished by computation of allCjs. The
following operations implement the computation ofCj :� Redistribute (scatter) the columns ofCj like vectors� for q = 1; : : : ; K̂

– Redistribute (scatter) the columns ofAq like vec-
tors; Duplicate (broadcast)Bqj to all nodes; Up-
date local part ofCj  Cj +AqB̂qj .� Redistribute (gather) the columns ofCj to where they

started

Repeated calls to this kernel compute the finalC.
It may appear that the cost of redistributingCj andAq is

prohibitive, making this algorithm inefficient. Notice how-
ever that the redistribution ofCj is potentially amortized
over many updates. Also, the ratio of the computation withAq and the cost of redistribution of this data is typicallybalg : 1. Thus, whenk is small but comparable tobalg,
which itself is reasonably large, this approach is a viable
alternative.

Row-axpy based algorithm:n large. Notice that ifm =k = 1, the matrix-matrix multiplication again becomes a
scaled vector addition, except that now rows ofC andB
are redistributed like vectors. The algorithm is similar to
the last case discussed.

Dot based algorithm:k large. Notice that ifm = n = 1,
the matrix-matrix multiplication becomes an inner-product
between one rowA and one columnB. Form andn small,
we observe thatC = 0B@ C1;1 � � � C1;N̂

...
...CM̂;1 � � � CM̂N̂ 1CA= 0B@ Â1

...ÂM̂ 1CA� B1 � � � BN̂ �

so thatCij = ÂiBj . Computation of eachCij can be ac-
complished by redistributing columns of̂Ai and rows ofBj
like vectors, performing local operations that are like local
inner-products which are then reduced toCij .
3.4 Cost analysis

Notice that the above algorithms are implemented as an
iteration over a sequence of communications and computa-
tions. By modeling the cost of each of the components, one
can derive models for the cost of the different algorithms.
Thus, we obtain a performance model based on the esti-
mated cost of local computation as well as models of the
communication required. Parameters for the model include
the cost of local computation, message latency and band-
width, and cost of packing and unpacking data before and
after communications. Due to space limitations, we do not
develop this cost analysis in this paper. Rather, we present
graphs for the estimated cost of the different algorithms in
the next section.

4 Results

This section provides performance results for the de-
scribed algorithms on the Cray T3E and IBM SP-2. Our
implementations are coded using PLAPACK which natu-
rally supports these kinds of algorithms. In addition, we
report results from our performance model, using parame-
ters measured for the different architectures.

Ultimately, it is the performance of the local 64-
bit matrix-matrix multiplication implementation that de-
termines the asymptotic performance rate that can be
achieved. Since the algorithms make repeated calls to paral-
lel implementations of kernels that assume that one or more
of the dimensions are small, the operands to the matrix-
matrix multiplication performed on each individual proces-
sor also have different shapes that depend on the algorithm
chosen. Even on an individual processor the shape of the
operands can greatly affect the performance of the local
computation, as is demonstrated in Table 1. In that ta-
ble, the small dimensions were set equal to the blocking
size used for the parallel algorithm, specifically 128 for the
Cray T3E. It is this performance that becomes an asymp-
tote for the per-node performance of the parallel implemen-
tation. It should be noted that since these timings were first
performed, Cray has updated its BLAS library, and perfor-
mance for the sequential matrix-matrix multiply kernels is
much less shape dependent. Thus, the presented data is
of qualitative interest, but performance is now considerably
better than presented in the performance graphs.

It is interesting to note that the local matrix-matrix mul-
tiply performs best for panel-panel update operations. To



Ratem n k (MFLOPS/sec)

4096 4096 128 439
4096 128 4096 172
128 4096 4096 237
4096 128 128 230
128 4096 128 184
128 128 4096 184

Table 1: Performance of local 64-bit matrix-matrix multi-
plication kernel on one processor of the Cray T3E.

those of us experienced with high-performance architec-
tures this is not a surprise: This is the case that is heavily
used by the LINPACK benchmark, and thus the first to be
fully optimized. There is really no technical reason why for
a block size of 128 the other shapes do not perform equally
well. Indeed, as an architecture matures, those cases also
get optimized. For example, on the Cray T3D the perfor-
mance of the local matrix-matrix BLAS kernel is not nearly
as dependent on the shape.

In Fig. 1, we report performance on the Cray T3E the dif-
ferent algorithms. By fixing one or more dimensions to be
large, we demonstrate that, indeed, the appropriateness of
the presented algorithms is dependent upon the shape of the
operands. Of particular interest are the asymptotes reached
by the different algorithms and how quickly the asymptotes
are approached.

Let us start by concentrating on the top two graphs of
Fig. 1. Notice that whenm and n are large, it is the
panel-panel based algorithm that attains high performance
quickly. This is not surprising since the implementation
makes repeated calls to an algorithm that is specifically
designed for smallk. The matrix-panel based algorithms
suffer from the fact that for smallk they incur severe load
imbalance. The dot and axpy based algorithms incur con-
siderable overhead, which is particularly obvious whenk is
small, and also hampers the asymptotic behavior of these
algorithms.

In the middle two graphs of Fig. 1 we show that whenm andk are large, a matrix-panel algorithm is most ap-
propriate, at least whenn is small. However, since thelo-
cal matrix-matrix multiply does not perform as well in the
matrix-panel case, eventually the panel-panel based algo-
rithm outperforms the others.

In the bottom two graphs of Fig. 1, we show that when
only one dimension is large it becomes advantageous to
consider the dot or axpy based algorithms.

5 Conclusions and Future Work

We have presented a flexible class of parallel matrix mul-
tiplication algorithms. Theoretical and experimental results
show that by choosing the appropriate algorithm from this
class, high performance can be attained across a range of
matrix shapes.

The analysis provides a means for choosing between the
algorithms based on the shape of the operants. Furthermore,
the developed techniques can easily used to parallelize other
cases of matrix-matrix multiplication (C = ABT , C =ATB, andC = ATBT ) and other matrix-matrix opera-
tions, as are included in the level-3 BLAS [9]. We intend to
pursue this line of research in the near future.
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Figure 1: Performance of the various algorithms on a 16 processor configuration of the Cray T3E. Within each row of graphs,
we compare predicted performance (left) to observed performance (right). In the top row of graphs,m andn are fixed to be
large, andk is varied. In the middle row,m andk are fixed to be large, andn is varied. Finally, in the bottom row,n is fixed
to be large, andm andk are simultaneously varied.
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