
Copyright

by

Jia Chen

2019

The Dissertation Committee for Jia Chen
certifies that this is the approved version of the following dissertation:

Program Analysis Techniques for Algorithmic

Complexity and Relational Properties

Committee:

Isil Dillig, Supervisor

Calvin Lin, Supervisor

Vijay Chidambaram

Mohit Tiwari

Program Analysis Techniques for Algorithmic

Complexity and Relational Properties

by

Jia Chen, B.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2019

To my parents and my grandmother.

Acknowledgments

Thou thought’st to help me
and such thanks I give.
As one near death to those
that wish him live.

William Shakespeare
All’s Well That Ends Well

Life has its ups and downs, of that I was very well aware. But I would

never have expected that the ups and downs in my own life as a PhD student

to be like such a big roller coaster. Countless times in the past seven years

I had the thought that a PhD degree is, without doubt, out of reach for my

humble level of intelligence and creativity. Nothing looked bright in those

desperate moments.

The grim clouds that lowered upon my fate would never have been

dispelled, were it not for the help from the people that I am about to mention.

To this day, I am still amazed by how significantly my fortune has changed for

the better because of them. I sincerely thank every single person listed in this

section, and the gratitude will always be a part of me for the rest of my life.

Words are powerless to express my gratitude to my advisor, Isil Dillig.

It is not too far off to say that Isil almost single-handedly lifted me up to the

level where a PhD degree is within my reach. Her hands-on guidance on how

to pick a good research topic, how to approach a research problem, and how

v

to efficiently evaluate a research idea are invaluable assets that helped me get

through the tough challenges in my own work. When I was in need of help,

she never held back her time and effort to go over my problems with me and

lend me a hand in finding a good solution. She is truly one of the most caring

and supportive people I have ever met.

I also owe a great debt to my other advior, Calvin Lin. Calvin intro-

duced me to the world of research, and throughout my PhD years he has been

giving me important instructions on writing, teaching, and presentation skills.

He is an exemplary role model for me both as a researcher and as an educator.

I feel both lucky and honored to start my PhD under his supervision.

None of my research publications would have existed without the aid

of my collaborators. My deepest appreciation goes to Yu Feng. He taught me

what dilligence and perseverance mean with his own hard work. His passion,

optimism, and encouragement have helped me overcome numerous obstacles

over the years. I thank Jiayi Wei for the kindness of sharing his creative ideas

with me, in the absence of which I would not have accomplished half of what

I do today. I am grateful to Obsert Bastani, who offered valuable insights and

technical assistance during our collaboration.

I am thankful to my fellow PhD students Ashay Rane, Akanksha Jain,

Oswaldo Olivo, Curtis Dunham, Hao Wu, and Zhan Shi. Discussions with

them are always enlightening, and their numerous feedbacks on my talks and

my paper drafts were indispensable in helping me grow intellectually. Of

course, life as a researcher would be way less fun if not for the company of

vi

my labmates in the Utopia group — My gratitude goes to Yuepeng Wang,

Xinyu Wang, Kostas Ferles, Navid Yaghmazadeh, Greg Anderson, Rong Pan,

Shankara Pailoor, Jon Stephens, Jocelyn Chen, Jacob Van Geffen, and Rushi

Shah.

I want to thank Jeremy Dubreil, who offered me an intership position at

Facebook and mentored me for the entire summer. Thanks to his exceptional

guidance as well as support from other members in the Infer group, it was the

most pleasant and satisfying summer I ever had in the US.

I thank my friends in Austin who grew up with me in the past seven

years: Jinru Hua, Fei Xue, Xiang Li, Kai Hao, Liuyang Sun, Mu He, Keren

Wang, Bangguo Xiong, and Lingyuan Gao. It was them that made my days

joyful while I was not thinking about my research.

Finally, I wish to dedicate this thesis with affection to my family. Time

has taught me that life is fickle, but my family’s unconditional love to me stays

all the same irrespective of this fickleness. It was very fortunate for me to be

born where I was well educated and always supported no matter who I am or

what I do. I’m proud of them, and I wish that one day the skills I learned

from this graduate program could help me accomplish something that makes

them be proud of me as well.

vii

Program Analysis Techniques for Algorithmic

Complexity and Relational Properties

Publication No.

Jia Chen, Ph.D.

The University of Texas at Austin, 2019

Supervisors: Isil Dillig
Calvin Lin

Analyzing standard safety properties of a given program has tradition-

ally been the primary focus of the program analysis community. Unfortunately,

there are still many interesting analysis tasks that cannot be effectively ex-

pressed with standard safety properties. One such example is to derive the

asymptotic complexity of a given program. Another example is to verify re-

lational properties, i.e. properties that must be satisfied jointly by multiple

programs of multiple runs of one program. Existing program analysis tech-

niques for standard safety properties are usually not immediately applicable to

asymptotic complexity analysis problems and relational verification problems.

New approaches are therefore needed to solve these unconventional problems.

This thesis studies techniques for algorithmic complexity analysis as

well as relational verification. To that end, we present three case studies:

(1) We propose a new fuzzing technique for automatically finding inputs that

viii

trigger a program’s worst-case resource usage. (2) We show how to build a scal-

able, end-to-end side channel detection tool by combining static taint analysis

and a program logic designed for verifying non-interference of a given program.

(3) We propose a general and effective relational verification algorithm that

combines reinforcement learning with backtracking search. A common theme

among all these solutions is to exploit problem-specific structures and adapt

existing techniques to exploit those structures accordingly.

ix

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.2.1 Understanding worst case complexity 3

1.2.2 Detecting side-channel vulnerability 4

1.2.3 Proving general relational properties 4

1.3 Thesis Outline . 5

Chapter 2. Dynamic Detection of Algorithmic Complexity Vul-
nerabilities 6

2.1 Overview . 7

2.2 Motivating Example . 8

2.3 Formal Description . 11

2.3.1 Problem Definition . 12

2.3.2 Recurrence Computation Graphs 13

2.3.3 Algorithmic Vulnerability Testing as Discrete Optimization 17

2.3.4 Genetic Programming 20

2.3.5 Fitness Function . 23

2.4 Implementation . 24

2.5 Evaluation . 26

2.5.1 Asymptotic Bound Analysis 27

x

2.5.2 Comparison Against SlowFuzz 29

2.5.3 Availability Vulnerability Detection 33

2.5.4 Performance Bug Detection 34

Chapter 3. Relational Verification for Non-Interference 37

3.1 Overview . 38

3.2 Motivating Example . 40

3.3 Threat Model . 43

3.4 Side-Channels and Bounded Non-interference 44

3.4.1 Language . 45

3.4.2 QCHL Proof Rules . 46

3.4.3 Loop Invariant Generation 57

3.5 Implementation . 59

3.6 Evaluation . 65

3.6.1 Comparison Against Blazer 65

3.6.2 Detection of Known Vulnerabilities 69

3.6.3 Discovery of Zero-Day Vulnerabilities 72

3.7 Limitations . 75

Chapter 4. Enhanced Relational Verification Using Reinforce-
ment Learning 76

4.1 Verifying Relational Properties 78

4.2 Representing Proof Strategies 82

4.3 Learning Algorithm Overview 86

4.4 Reinforcement Learning . 90

4.4.1 Background on Reinforcement Learning 90

4.4.2 MDP for Relational Verification 92

4.4.3 Function Approximation 95

4.4.4 Reinforcement Learning Algorithm 98

4.5 Policy-Guided Proof Search . 100

4.5.1 Using policy to guide search 103

4.5.2 Finding minimal failing strategies 104

4.6 Implementation . 106

xi

4.7 Evaluation . 108

4.7.1 Translation Validation Benchmarks 109

4.7.2 Medley of Relational Verification Benchmarks 114

Chapter 5. Related Works 118

Chapter 6. Conclusion and Future Work 129

Appendix 132

Appendix 1. Proofs of Selected Theorems 133

1.1 Proof of Theorem 3 . 133

1.2 Proof of Theorem 4 . 139

1.3 Proof of Theorem 6 . 141

1.4 Proof of Theorem 7 . 143

1.5 Proof Theorem 8 . 145

Bibliography 146

xii

List of Tables

2.1 Evaluation on textbook algorithms. 27

2.2 Evaluation on STAC Benchmarks. 32

4.1 Comparison with other relational verification tools on transla-
tion validation benchmarks . 114

4.2 Comparison with other relational verification tools on miscella-
neous benchmarks. 115

xiii

List of Figures

2.1 QuickSort with middle pivot selection 8

2.2 A simple DSL for expressing generators in motivating example 9

2.3 Recurrent computation graph with c internal states and m out-
put states. 14

2.4 RCG semantics . 15

2.5 Mutation operator . 22

2.6 Crossover operator . 23

2.7 Comparison against SlowFuzz 30

3.1 Gabfeed code snippet that contains a timing side channel . . . 40

3.2 Themis configuration file for Gabfeed. 40

3.3 Language used in our formalization 45

3.4 Rules for computing resource usage 47

3.5 QCHL proof rules . 51

3.6 Helper rules for figure 3.5 . 54

3.7 Workflow of the Themis tool 59

3.8 Comparison between Themis and Blazer. 66

3.9 Evaluation on existing vulnerabilities 68

3.10 Evaluation Themis on identifying zero-day vulnerabilities from
popular Java applications . 72

3.11 Eclipse Jetty code snippet that contains a timing side channel 74

4.1 Example programs . 77

4.2 Selected rules for reducing 2-safety verification problem to stan-
dard Hoare triples . 79

4.3 Example proof strategies . 83

4.4 An example of an MDP constructed for a relational verification
problem. 90

4.5 Coeus architecture . 107

xiv

4.6 Comparison on translation validation benchmarks 111

4.7 Comparison on existing benchmarks [50] and equivalence check-
ing problems obtained from solutions to exercises from Leet-
Code and HackerRank . 116

xv

Chapter 1

Introduction

1.1 Motivation

Traditionally, the primary focus of the program analysis community

has been the analysis of standard safety properties of a girven program. Intu-

itively, a safety property states that a “bad” event never happends in any run

of the program. Such properties can therefore be refuted by observing a sin-

gle trace of the program [174]. Many important program analysis tasks, such

as null pointer dereference detection [55], use-after-free detection [177, 106],

integer overflow detection [54], downcast safety checking [170] and taint track-

ing [82, 10], can be natually modeled as standard safety properties. Over the

years, various automated techniques—both static and dynamic—have been

developed to facilitate these analysis tasks. Examples of such techniques are

fuzz testing [171], binary rewriting [137], abstract interpretation [47], symbolic

execution [95], and deductive verification [101].

Despite the emphasis on standard safety checking in the program anal-

ysis literature, there are many interesting analysis tasks that go beyond stan-

dard safety properties. One such example is to derive the asymptotic complex-

ity of a given program. Reasoning about a program’s asymptotic complexity,

1

especially in the worst case, is an important problem that has many practical

applications, including performance bug detection and identification of secu-

rity vulnerabilities. For instance, automated complexity analysis can identify

cases where an algorithm’s expected worst-case complexity does not match

that of its implementation, thus indicating the presence of a performance bug.

Such techniques are also useful for detecting availability vulnerabilities that

allow attackers to cause denial-of-service (e.g., through algorithmic complex-

ity attacks [48, 181, 35, 96]). Since the asymptotic behavior of a program is

defined by its resource usage on a series of inputs with growing sizes [46], a

single program trace is typically not sufficient to precisely characterize it. As

a result, the problem falls outside the scope of standard safety analysis.

Another example that cannot be effectively modeled as standard safety

is the verification of relational properties, i.e., properties that must be satisfied

jointly by multiple programs or multiple runs of one program. A prototyp-

ical relational property is program equivalence which requires that two pro-

grams have the same observable behavior when executed on the same input.

Another example is non-interference [74], which states that two terminat-

ing executions of a program must produce the same output given the same

non-confidential input, regardless of the confidential data accessed by the pro-

gram. Non-interference is important in privacy-oriented software since its vi-

olation makes the system vulnerable to side-channel attacks, which have been

used to infer confidential data involving user accounts [83, 61], cryptographic

keys [97, 33, 6], geographic locations [161], and medical data [39]. In addition,

2

relational properties also arise in the context of software evolution [102, 103]

and version control [169].

Unconventional tasks like asymptotic complexity analysis and relational

verification have been less well-studied than traditional standard safety analy-

sis , yet they become increasingly relevant today as security and confidentiality

get increasingly valued in the process of modern software development. The

main topic of this thesis is to develop new techniques for reasoning about al-

gorithmic complexity and relational properties, which are problems that fall

outside of the standard safety analysis.

1.2 Contributions

We now give an overview for the specific analysis tasks we examined

and highlight the contributions of this thesis.

1.2.1 Understanding worst case complexity

The first problem we address is the analysis of a program’s worst case

computational complexity. For example, given a program that performs tradi-

tional quicksort on an integer array, our technique will identify the worst-case

complexity for this program is Θ(n2) and provide a series of concrete inputs

(with increasing size) that demonstrate the Θ(n2) behavior.

To solve this problem, we propose a new fuzzing technique for auto-

matically finding inputs that trigger a program’s worst-case resource usage.

We demonstrate how the problem of algorithmic complexity analysis can be

3

reduced to the problem of optimal program synthesis, and we show how the

synthesis problem can be solved with evolutionary search.

1.2.2 Detecting side-channel vulnerability

The second problem we address is the static detection of side-channel

vulnerabilities. Our technique takes the source code (or the bytecode) of an

application together with a set of annotations describing the data that should

be considered confidential. Then it check whether the resource usage pattern

of the application is correlated with the values of the confidential data.

We show how we can build a scalable, end-to-end side channel detection

tool by combining static taint analysis and Quantitative Cartesian Hoare Logic

(QCHL), a program logic designed for verifying non-interference of a given

program. Static taint analysis allows us to quickly scan the entire program

and nail down code regions that may potentially be vulnerable. QCHL allows

us to analyze the identified code region precisely, reducing the number of false

alarms.

1.2.3 Proving general relational properties

The third problem we address is the proof of general relational prop-

erties, such as functional equivalence, symmetry, and transitivity. These rela-

tional properties serve as the basis of many practical applications, including

certified compiler transformation [134], regression check [102, 103], automatic

merge conflict resolution [169], and static verification of relational code con-

4

tract [168].

We show how to formulate the relational verification problem as a

Markov Decision Process, whose optimal policy can be solved by the technique

of policy gradient from reinforcement learning. We then propose an general

and effective relational verification algorithm that combines the learned policy

with a backtracking search.

1.3 Thesis Outline

To evaluate our analysis techniques, we build three different systems in

our study:

• Singularity, a worst-case algorithmic complexity analyzer based on

dynamic fuzzing. This will be the topic of chapter 2.

• Themis, a static analyzer that tries to verify the absence of resource-

usage side channel vulnerability. Chapter 3 covers the verifier in more

detail.

• Coeus, an extension of Themis’ verification algorithm to generalize to

a wider variety of properties and programs. We discuss the enhancement

and its implications in chapter 4 .

We discuss related works in Chapter 5. Conclusion and future work

will be presented in Chapter 6.

5

Chapter 2

Dynamic Detection of Algorithmic

Complexity Vulnerabilities

In this chapter, we propose a dynamic program analysis technique that

automatically find the worst-case algorithmic complexity of a given program.

While there is a large body of literature on worst-case complexity analy-

sis [80, 36, 164, 86], most of these techniques do not produce worst performance

inputs, henceforth called WPIs, that trigger the worst-case performance be-

havior of the target program. Such WPIs are very useful for many real-world

applications mentioned in Chapter 1.1. For example, they can be used to

debug performance problems or to confirm the presence of security vulnerabil-

ities. Furthermore, WPIs can shed light on the cause of worst-case executions,

and they also help programmers write suitable sanitizers to guard their code

against potential DoS attacks. Hence, our goal here is not only to determine

the worst-case complexity, but to also produce concrete input that triggers the

worst case.

6

2.1 Overview

The key insight underlying our approach is that WPIs almost always

follow a specific pattern that can be expressed as a simple program. For in-

stance, to trigger the worst-case performance of an insertion sort algorithm,

the input array must be in reverse sorted order, which can be programmatically

generated by appending larger and larger numbers to an empty list.

Based on this observation, we transform the algorithmic complexity

vulnerbility detection problem to a program synthesis problem, where the goal

is to find a program that expresses the common pattern shared by all WPIs.

In particular, given a target program P whose resource usage we want to max-

imize, our algorithm synthesizes another program G, called a generator, such

that the outputs of G correspond precisely to the WPIs of P. Since the com-

mon pattern underlying WPIs can often be represented using small generator

programs, this approach allows us to discover WPIs very efficiently.

The problem of finding patterns that characterize WPIs corresponds to

an optimal synthesis problem, where the goal is to synthesize a generator G such

that the values produced by G maximize the target program’s resource usage.

Our method solves this optimal synthesis problem by performing feedback-

guided optimization using genetic programming. Specifically, we represent

generators using a new programming model called Recurrent Computation

Graphs (RCG) that are (a) expressive enough to model most input patterns of

interest and yet (b) restrictive enough to make the search space manageable.

Given this representation, our method looks for an optimal RCG by applying

7

def quick_sort(xs):

if(xs.length <= 1):

return xs

pivot = xs[xs.length/2]

left, middle, right = []

for x in xs:

if(x==pivot):

middle.append(x)

elif(x<pivot):

left.append(x)

else:

right.append(x)

left = quick_sort(left)

right = quick_sort(right)

return concat(left, middle, right)

Figure 2.1: QuickSort with middle pivot selection

genetic operators (e.g., mutation, crossover) to existing RCGs and biasing the

search towards generators that maximize the target program’s resource usage.

2.2 Motivating Example

We now informally describe our complexity testing technique on the

simple quickSort example shown in Figure 2.1 as Python code. For concrete-

ness, let us assume that generators are expressed in the simple DSL shown in

Figure 2.2. Specifically, a program G in this language is a tuple (c, e) where

c is a constant seed value and e is an expression that operates over lists and

integers. In particular, the semantics of program G is an infinite sequence of

values where the i’th value in the sequence is given by ei(c), denoting i suc-

cessive applications of expression e to value c. As we will see in Section 2.3,

8

P := (C, λx.LE)
E := IE | LE
C := Int | List
IE := Int | x | plus(IE, IE) | minus(IE, IE)

| times(IE, IE) | length(LE)
LE := List | x | append(LE,E) | prepend(E,LE)

| concat(LE,LE)

Figure 2.2: A simple DSL for expressing generators in motivating example

this DSL is a simple instantiation of the recurrent computation graph model

that we use to express generators.

The input pattern that triggers the worst-case complexity of this quickSort

implementation can be described using the following generator in the DSL of

Figure 2.2:

G∗ =
(
[0], λx.append(prepend(length(x) + 1, x), length(x))

)
which produces the following sequence of inputs:

[0], [2, 0, 1], [4, 2, 0, 1, 3], [6, 4, 2, 0, 1, 5], . . .

Observe that these inputs indeed trigger the worst-case behavior of the quickSort

implementation from Figure 2.1 because (a) the smallest value in each list of

the sequence is the middle element, and (b) the quicksort implementation

Figure 2.1 chooses the middle element as its pivot.

We now explain how Singularity triggers this O(n2) behavior of this

quicksort implementation by solving an optimal program synthesis problem.

9

Specifically, our goal is to find a generator G in the DSL of Figure 2.2 that

maximizes the running time of quicksort for sufficiently large inputs. As men-

tioned earlier, Singularity solves this optimization problem using genetic

programming (GP).

Specifically, Singularity starts with a population of randomly-generated

programs that conform to the context-free grammar given in Figure 2.2 and

evaluates the fitness of each program. Since our goal is to maximize running

time, the fitness function assigns a higher score to programs that take longer.

For simplicity, let us assume that we evaluate running time on some particular

input size, such as arrays of length 100.

Even though it is highly unlikely that the target generator G∗ occurs

in the initial population P , it might be the case that P contains several use-

ful, albeit suboptimal, functions such as f1 = λx.append(x, length(x)) and

f2 = λx.prepend(length(x), x). These functions are useful in the sense that

the desired pattern can be obtained by mixing these functions using genetic

operators.

For the next iteration, the genetic programming algorithm randomly

picks “fit” generators from the previous iteration. For example, the input

patterns ([0], f1) and ([0], f2) are likely to be selected because they have higher

than average resource usage. Singularity then uses these input patterns to

generate a new population by combining them using genetic operators, such

as mutation and crossover. For example, we can obtain the following program

10

f3 from f1 and f2 by using the crossover operation:

λx.append(prepend(length(x), x), length(x))

In particular, crossover replaces a random sub-expression from one program

with another sub-expression from another program. In this case, we can obtain

f3 from f1, f2 by replacing the sub-expression x in f1 with f2. Furthermore,

f3 results in higher resource consumption compared to f1 and f2.

We continue the process of generating new populations and monitor

both their maximal and average performance. In general, average performance

will keep increasing over generations and, at some point, Singularity will

generate the desired program G∗ from ([0], f3) by mutating the sub-expression

length(x) to length(x) + 1. Since ([0], f ∗) can be used to generate an input

of size 100 that achieves the maximal possible resource usage, our algorithm

will terminate with the desired input pattern G∗. Observe that we can now

determine the worst-case complexity of this quicksort implementation by mea-

suring the running time of quickSort on the input values generated by G∗ and

using standard techniques to fit a curve through these data points.

2.3 Formal Description

In this section, we formally present the problem as well as out solution.

11

2.3.1 Problem Definition

Given a target program P, our goal is to find an input pattern that

triggers P’s worst-case resource usage. As mentioned in Section 2.1, we repre-

sent input patterns as generator programs G that produce an infinite sequence

of increasingly large inputs for P.

Definition 1. (Generator) Given a program P with signature τ → τ ′, a

generator G for P is a program with signature unit → Stream(τ). We write

Gi to indicate the i’th element in the stream produced by G and require that

size(Gi) > size(Gj) whenever i > j.

Because our goal is to maximize the resource usage of a given program,

we need a metric for measuring the size of an input and its corresponding

resource usage. Thus, a problem configuration in our setting consists of a

triple (P,Σ,Ψ), where P is the target program with signature τ → τ ′, Σ is a

metric for measuring the size of any value of type τ , and Ψ is a function of

type τ → R that measures the resource usage of P on any input of type τ .

In particular, we write Ψ(s) to denote the resource usage of P on a concrete

input s of type τ . We also use the notation G≤n to denote the largest element

Gi such Σ(Gi) ≤ n.

To compare the resource usage of two patterns, we define the following

binary relation � on a pair of generators:

Definition 2. (Relation �) A generator G is asymptotically better than an-

other generator G′, written G � G′, iff the resource usage of G on the target

12

program exceeds that of G′ for all sufficiently large sizes :

∃n̂.∀n > n̂. Ψ(G≤n) > Ψ(G′≤n)

Given a problem configuration (P,Σ,Ψ), we now formalize our goal as

follows:

Definition 3. The goal of the algorithmic complexity vulnerability testing

problem is to find an input pattern whose asymptotic resource usage on P

is not worse than any other pattern. That is, we want to find a G such that:

∀G′. G′ 6� G

Our problem definition implicitly assumes the existence of a program-

ming language over which generators are defined. While we can, in principle,

use any language for defining generators, we will restrict our attention to

generators that can be expressed as recurrent computation graphs (RCG). In-

tuitively, we choose RCGs as the underlying representation because they are

expressive enough to capture any input pattern of interest, but also restrictive

enough to keep the search space manageable.

2.3.2 Recurrence Computation Graphs

Definition 4. (Recurrent Computation Graph) A recurrent computation

graph G is a triple (I,F,O) where I is a tuple of initialization expressions, F

is a tuple of update expressions (where |I| = |F|), and O is a tuple of output

expressions.

13

Figure 2.3: Recurrent computation graph with c internal states and m output
states.

Before considering the formal semantics of RCGs, we first explain them

informally: An RCG (I,F,O) generates an infinite sequence of values by main-

taining |I| internal states that are initialized using I and updated using F.

Since the number of internal states of the RCG may be different from the

number of arguments that the target program takes, the RCG converts the |I|

internal states to |O| output states using O. As illustrated schematically in

Figure 2.3, we can generate the k’th value in the infinite sequence by applying

the update expression F exactly k times.

RCG semantics. More formally, the semantics of an RCG (I,F,O) is given

by the rules shown in Figure 2.4. Here, si[t] represents the i’th internal state at

time step t, and yi[t] corresponds to the i’th output value at time t. As shown

in Figure 2.4, si[0] is computed using the i’th initialization expression in I,

and si[t+ 1] is obtained from (s1[t], . . . , sc[t]) by applying the update function

Fi. Finally, yj[t] is obtained from the internal state at time t by applying

14

si[0] = JIiK
si[t+ 1] = JFiK[s1 7→ s1[t], . . . , sc 7→ sc[t]]

yj[t] = JOjK[s1 7→ s1[t], . . . , sc 7→ sc[t]]

where 1 ≤ i ≤ c = |I| and 1 ≤ j ≤ m = |O|
J(I,F,O)K =

[
(y1[t], . . . , ym(t)) | t ∈ [0,∞]

]
Figure 2.4: RCG semantics

the output expression Oj to (s1[t], . . . , sc[t]). The semantics of the RCG is

then given by the infinite sequence of values (y1[t], . . . , ym[t]) for t = 0, 1, 2, . . .

Given an RCG G and a value y, we say that y is in the language of G, written

L(G), if y = (y1[t], . . . , ym[t]) for some time step t.

RCG expressions. Our definition of recurrent computation graphs inten-

tionally does not fix the expression language over which I,F,O are specified.

To maximize the flexibility of our approach, RCGs are parametrized by a set

of components C over which the initialization, update, and output expressions

are constructed. Recall that both F and O are functions, and their arguments

correspond to the RCG’s internal states. Hence, expressions e for F and O can

be generated according to the following grammar:

e := si | c | f(e1, . . . , ek)

where si represents the i’th internal state, c is a constant value, and f ∈

C is a function of arity k. Since initialization expressions are required to

15

be constants, init follows a similar grammar except that we do not allow

initialization expressions to refer to the RCG’s internal states.

Example 2.3.1. The quickSort pattern from Section 2.2 can be expressed as

the following 2-state RCG using the components plus, append, prepend, inc,

as well as integer constants {0, 1, 2}.

I = (1, [0])

F = (plus(s1, 2), append(prepend(inc(s1), s2), s1))

O = s2

The first few iterations of the pattern’s evaluation are shown below,

where we use (B), (C), (+) to denote append, prepend, and plus respectively:

s1[0] = 1

s2[0] = [0]

s1[1] = 1 + 2 = 3

s2[1] = (inc(1) C [0]) B 1 = [2, 0, 1]

s1[2] = 3 + 2 = 5

s2[2] = (inc(3) C [2, 0, 1]) B 3)) = [4, 2, 0, 1, 3]

In the previous example, the output state was exactly the same as one

of the internal states. However, as illustrated by the following example, this

is not always the case:

16

Example 2.3.2. Consider the following sequence of inputs: [], [1, 1], [1, 2, 1, 2],

[1, 2, 3, 1, 2, 3], [1, 2, 3, 4, 1, 2, 3, 4], . . . This input pattern can be represented us-

ing the following RCG:

I = (0, [])

F = (plus(s1, 1), append(s2, s1))

O = concat(s2, s2)

Note that the output here is obtained by concatanating two copies of

the input state s2. For this example, there is no simple way to express this

pattern without distinguishing between internal and output states.

2.3.3 Algorithmic Vulnerability Testing as Discrete Optimization

We now formulate the algorithmic complexity vulnerability testing prob-

lem introduced earlier as an optimal program synthesis problem [30]. Towards

this goal, we first introduce the concept of a measurement model for assigning

scores to recurrent computation graphs:

Definition 5. (Ideal measurement model) Given an RCG G, an ideal

measurement model M maps G to a numeric value such that:

∀G,G′. (G � G′ →M(G) >M(G′)) (2.1)

In other words, an ideal measurement model M assigns a higher score

to G compared to G′ if G induces asymptotically worse behavior of the target

17

program compared to G′. Using this notion, we now formulate complexity

testing in terms of the following pattern optimization problem:

Definition 6. (Pattern Optimization) Given an ideal measurement model

M, the pattern optimization problem is to find an RCG that maximizes M,

i.e., find the solution of:

argmax
G

M(G) (2.2)

Because RCGs correspond to programs, Definition 6 is a form of optimal

program synthesis problem, where the goal is to maximize asymptotic resource

usage. The following theorem states that the pattern optimization problem is

equivalent to our definition of the algorithmic complexity vulnerability testing

problem:

Theorem 1. Eqn. 2.2 gives a solution to Definition 3.

Proof: Suppose pattern G satisfies Eqn. 2.2. If G is not a solution to

Definition 3, then we have some G′ such that G′ � G. Using Eqn. 2.1, we

know that M(G′) >M(G), which means G is not the solution to Eqn. 2.2 (i.e.,

contradiction).

Theorem 1 is useful because it allows us to turn the algorithmic com-

plexity vulnerability testing problem into a discrete optimization problem,

assuming that we have access to an ideal measurement model M. However,

due to the black-box nature of our approach, M is difficult to obtain in prac-

tice. In particular, the ideal measurement model requires reasoning about the

18

asymptotic resource usage of the program on all inputs of a given shape, but

this is clearly a very difficult static analysis problem. Thus, as a proxy to this

idealized metric, we instead estimate the quality of an input pattern by using

an empirical measurement model Mn̂. Specifically, a measurement model Mn̂

evaluates the quality of a generator G by running the input program P on

inputs up to size n̂. In the remainder of this chapter, we use the following

empirical model as a proxy for Definition 5:

Definition 7. (Empirical Measurement Model) Our empirical measure-

ment model, denoted Mn̂, evaluates an input pattern by returning the max-

imum resource usage among all inputs whose size does not exceed bound n̂.

More formally:

Mn̂(G) = max
x∈L(G)∧Σ(x)≤n̂

Ψ(x) (2.3)

The following theorem states the conditions under which Mn̂ is a good

approximation of the ideal model:

Theorem 2. Mn̂ is an ideal measurement model (i.e., satisfies equation 2.1)

if n̂ is sufficiently large and we have:

lim
n→∞

Ψ(G≤n) =∞

Proof: We show that G � G′ implies Mn̂(G) � Mn̂(G′) under the con-

ditions stated in the theorem. Suppose G � G′. From Definition 2, this means

there exists n1 such that ∀n ≥ n1. Ψ(G≤n) > Ψ(G′≤n). Because we assume

all patterns’ resource usage increase to infinity as the input size grows, we

19

can show that there exists some n2 such that ∀n ≥ n2.M
n(G) = Ψ(G≤n)

and Mn(G′) = Ψ(G′≤n) using Eqn. 2.3. Thus, for n̂ ≥ max(n1, n2), we have

Mn̂(G) >Mn̂(G′).

2.3.4 Genetic Programming

We now describe a genetic programming (GP) algorithm for solving

the discrete optimization problem from Section 2.3.3. We first present the

top-level algorithm and then explain its subroutines.

Our pattern maximization algorithm is summarized in Algorithm 1

and follows the typical structure of genetic programming. Specifically, we

start with a randomly-generated initial population of RCGs (lines 2-3) and

repeatedly create a new population by combining the fittest individuals from

the old population.

To create a new population pop’, we create m new RCGs by combining

individuals from the existing population pop — this corresponds to the for

loop at lines 6-14. A new individual G is created by randomly choosing a

genetic operator op (line 7) and combining op.arity individuals from the current

population. While there are several different techniques that can be used

to select individuals from the population, our algorithm uses the so-called

deterministic tournament method (lines 8-9). Specifically, we sample K RCGs

and choose the RCG with the best fitness as the winner. 1

1K is a hyper-parameter called tournament size and controls the evolution pressure of
the GP process: When K is set to 1, there is no evolution pressure and all individuals

20

Algorithm 1 Pattern Maximization using GP

Input: gpOps - the set of generic operators to use
Input: m - population size
Input: K - tournament size
Input: n̂ - size bound for performance measurement.
Input: µ, α - hyper-parameters used for calculating fitness
Output: the pattern with the highest fitness score so far

1: procedure FindOptimalRCG(gpOps,m, K, n̂, µ, α)
2: pop ← initPopulation(m)
3: best ← findBest(pop)
4: while not converged() do
5: pop’ ← ∅
6: for i from 1 to m do
7: op ← randomPick(gpOps)
8: for j from 1 to op.arity do
9: argsj ← tournament(pop, K)

10: G ← op(args)
11: G.fitness ← Mn̂(G) · e−(size(G)/µ)4 · αcost(G)

12: if G.fitness > best.fitness then
13: best ← G

14: pop’ ← pop’ ∪ {G}
15: pop ← pop’

16: return best

Given the new RCG G created at line 10, we evaluate G’s fitness (line

11) using a fitness function that we discuss in more detail later. If G is fitter

than the previously fittest RCG, we then update best to be G. The algorithm

terminates with solution best if there has been no fitness improvement on best

for many generations (line 4).

from the population, regardless of their fitness, have the same chance to be picked by the
tournament method; hence, in this case, GP degenerates to random search. When K is
set to the size of the whole population, only the best individual of each population can be
selected to participate in the creation of new individuals.

21

Figure 2.5: Mutation operator

The genetic operators used in Algorithm 1 are described as follows:

Mutation operator. The mutation operator is used to maintain di-

versity from one generation to the next and prevents the algorithm from con-

verging on a local – rather than global – optimum. It creates an RCG G′ from

an existing RCG G by applying modifications to a node in the abstract-syntax

tree (AST) representation of G. Specifically, we first randomly choose an ini-

tialization, update, or output expression e and then select a random node n,

called the mutation point, in e. Our mutation operator then replaces the sub-

tree T rooted at n with a randomly generated AST with the same type as T .

Figure 2.5 illustrates this process.

Crossover operator. The crossover operator is used to combine existing

members of a population into new individuals. Specifically, given RCGs G1

and G2, we choose a mutation point n1 of type τ in G1 as well as another

mutation point n2 of the same type τ from G2. We then create two new RCGs

by swapping the sub-trees rooted at n1 and n2 and randomly pick one of the

two new RCGs. The crossover operation is illustrated in Figure 2.6.

22

Figure 2.6: Crossover operator

Reproduction operator. The reproduction operator is just an identity func-

tion – it simply copies the selected individual into the next generation. Re-

production is used to maintain stability between generations by preserving the

fittest individuals.

ConstFold operator. The ConstFold operator is similar to reproduction

except that it also performs light-weight constant folding on the AST. Using

ConstFold allows continuous evolution of constants used in the RCGs without

growing total AST size.

2.3.5 Fitness Function

Since our goal is to find an RCG that maximizes the target program’s

resource usage, the simplest implementation of the fitness function simply uses

the measurement model M. However, as standard in genetic programming,

the fitness function does not have to be exactly the same as the optimization

objective. We design our fitness function to have the following three properties:

23

1. It should be consistent with the measurement model M, meaning that G is

considered fitter than G′ if M(G) >M(G′).

2. It should prevent individuals from evolving to unboundedly large programs

by penalizing RCGs with very large AST size.

3. When two RCGs have similar size and resource usage, it should use the

Occam’s razor principle to prefer the simpler one.

Based on these criteria, our fitness function F is defined as follows:

F (G) = Mn̂(G) · e−(size(G)/µ)4 · αcost(G)

where size measures the total AST size of G, and cost is a measure of the

complexity of the RCG 2. Both µ and α are tunable hyper-parameters. Specif-

ically, µ is used for bloat control: If the AST size of G is smaller than µ, then

e−(size(G)/µ)4 is close to 1; but, when size(G) > µ, the fitness quickly decays to 0.

The hyper-parameter α must be chosen as a value less than 1 and determines

the penalty factor associated with complexity.

2.4 Implementation

We have implemented the proposed method in a tool called Singu-

larity, which consists of approximately 6,000 lines of Scala code. In what

2We define complexity in terms of the constants used in the RCG. Intuitively, the larger
the constants used in the RCG, the higher the cost.

24

follows, we discuss important design and implementation choices underlying

Singularity.

Resource usage measurement. Recall that our problem definition and

fitness evaluation function use a resource measurement function Ψ. We imple-

ment Ψ by counting the number of executed instructions rather than measuring

absolute running time, as the latter strategy is too noisy due to factors such

as cache warm-up, context switching, garbage collection etc.

To measure the executed number of instructions, we perform static

instrumentation using the Soot framework [176] for Java programs and the

LLVM framework [105] for C/C++ programs. In more detail, we initialize

an integer counter when the application starts and increment it by one after

each instruction. Our implementation also provides a lighter-weight version

of this instrumentation that only increments the counter at method entry

points and loop headers. In practice, we found this alternative strategy to

work quite well, as it strikes a good balance between precision and overhead.

Unless stated otherwise, all of our benchmarks are instrumented using this

lightweight strategy.

RCG components. Recall from Section 2.3.2 that our recurrent computa-

tion graphs are parametrized by a set of components that are used to construct

expressions. Our implementation comes with a library of such components for

most built-in types and collections. For instance, the component library for

integers include methods such as inc, dec, plus, minus, times, mod etc. Sim-

ilarly, for lists, we have generic components such as append, prepend, access,

25

concat, length and so forth. For graphs, we have components that repre-

sent empty graphs as well as operations that add nodes and edges. Since our

framework is generic and extensible, the user can also define new components

for custom data types.

Parameter tuning. As mentioned earlier, genetic programming algorithms

have many tunable parameters such as population size, tournament size, thresh-

old µ and cost penalty factor α used in the fitness function etc. Unfortunately,

these parameters are often hard to configure manually due to the complex dy-

namics of genetic programming and the intricate interaction between different

parameters. To address this problem, we developed an automatic parameter

generator which samples these parameters from a joint distribution. When we

run Singularity multiple times on a problem, we always use different param-

eter sets sampled from this joint distribution. In our experience, this strategy

increases the likelihood that Singularity will find the desired worst-case

pattern.

2.5 Evaluation

To evaluate the usefulness of Singularity, we design a series of ex-

periments that are intended to address the following questions:

1. Is Singularity useful for revealing the worst-case complexity of a given

program?

2. How does Singularity compare with state-of-the-art testing tools that

26

Algorithm Name Best Case Worst Case Found Worst?

Optimized Insertion Sort Θ(n) Θ(n2) 3

Quick Sort Θ(n log n) Θ(n2) 3

Optimized Quick Sort Θ(n log n) Θ(n2) 3

3-way Quick Sort Θ(n log n) Θ(n2) 3

Sequential Search Θ(1) Θ(n) 3

Binary Search Θ(1) Θ(log n) 3

Binary Search Tree Lookup Θ(1) Θ(n) 3

Red-Black Tree Lookup Θ(1) Θ(log n) 3

Separate Chaining Hash Table Lookup Θ(1) Θ(n) 3

Linear Probing Hash Table Lookup Θ(1) Θ(n) 3

NFA regex match Θ(m+ n) Θ(mn) 3

Booyer-Moore substring search Θ(m+ n) Θ(mn) 3

Prim Minimum Spanning Tree Θ(V + E) Θ(E log V) 3

Bellman-Ford shortest path Θ(1) Θ(V (V + E)) 3

Dijkstra shortest path Θ(1) Θ(E log V) 3

Bipartite matching (alternating path) Θ(V) Θ(V (V + E)) 3

Bipartite matching (Hopcroft-Karp) Θ(V) Θ(E
√
V) 7

Table 2.1: Evaluation on textbook algorithms.

address the same problem?

3. Is Singularity useful for detecting algorithmic complexity vulnerabilities

and performance bugs in real world systems?

Unless stated otherwise, experiments are conducted on an Intel Xeon(R)

computer with an E5-1620 v3 CPU and 64G of memory running on Ubuntu

16.04.

2.5.1 Asymptotic Bound Analysis

In this section, we evaluate Singularity on standard algorithms taken

from a widely-used algorithms textbook by Sedgewick and Wayne [153]. The

27

goal of this experiment is to determine whether Singularity can identify the

worst-case asymptotic complexity of a wide range of algorithms that operate

over different data structures.

We use the following methodology for selecting algorithms on which to

evaluate Singularity: First, to ensure that the benchmarks are not trivial,

we only focus on algorithms whose worst-case complexity is different from

their best-case behavior. Second, we only focus on algorithms whose worst-

case input is known to us. Third, we only select algorithms that are related to

sorting, search, graphs, and string matching. Overall, we obtain a total of 17

algorithms and evaluate Singularity on the corresponding implementation

from the textbook website [152]. For each algorithm, we run Singularity

for three hours, restarting the fuzzer with a different random seed whenever

the fitness metric stays unchanged for more than 150 generations. Finally, we

determine worst-case complexity by using the input patterns that maximize

resource usage at n̂ = 250.

The results of this experiments are summarized in Table 2.1. The first

three columns of this table provide the name of the algorithm along with its

corresponding best-case and worst-case asymptotic performance, and the final

column shows whether Singularity is able to trigger the expected worst-case

complexity. To obtain the data shown in the last column, we fit a curve through

data points (x, y) where the x-value represents the theoretical worst case and

the y-value corresponds to the actual performance metric of the pattern. If

the fitted curve shows a linear trend with the R2 metric being no less than

28

0.95, we conclude that Singularity is able to generate the desired inputs

that cause worst-case behavior. 3

As we can see from this table, Singularity can trigger the worst-case

behavior of these algorithms in 16 of the 17 cases (i.e., 94% of our benchmarks).

For the remaining benchmark (i.e., Hopcroft-Karp bipartite matching), the

inputs generated by Singularity trigger O(V + E) complexity rather than

the expected O(E
√
V) complexity. For this algorithm, the worst-case pattern

is quite tricky to construct [116] and cannot be represented using our simple

DSL for manipulating graphs.

2.5.2 Comparison Against SlowFuzz

In our next experiment, we compare Singularity against Slow-

Fuzz [133], a state-of-the-art fuzzing tool for finding availability vulnerabil-

ities. Similar to our approach, SlowFuzz performs resource-usage-guided

evolutionary search but generates concrete inputs, as opposed to input pat-

terns, that maximize resource usage.

We compare Singularity with SlowFuzz in terms of scalability as

well as the quality of the generated inputs. We assess scalability by running

each tool on increasing input sizes ranging from 64 bytes to 2K bytes. To

evaluate the quality of the result, we run each tool 30 times (with a 2-hour

time limit on each run) and pick the inputs I, I ′ from Singularity and

3In addition, we also manually inspect the data to further confirm there is a good linear
fit.

29

SlowFuzz that cause the target program to run the longest time. We then

compare the running time of the corresponding program on I and I ′.

We perform this experiment on the same set of benchmarks reported

in the SlowFuzz paper [133]. These benchmarks include several sorting al-

gorithms from different libraries, a hash table implementation from PHP, 19

regular expression matching problems, and a zip utility from the bzip2 ap-

plication. We do not use the bzip2 example in our evaluation since the vul-

nerability is triggered only when certain bits in the input file header are set;

hence, this benchmark is not related to the input pattern generation problem

addressed in this chapter. Due to the heavy computational workload required

for this experiment, we run both tools on an HPC cluster with Intel Xeon Phi

7250 CPU (68 cores at 1.4GHz) and 96G RAM running CentOS 6.3.

��������

64 128 256 512 1024 2048
1

2

4

8

16

32

64
100

Fuzzing Size

U
sa
ge
R
at
io

Geometric Mean Weighted Geometric Mean

Figure 2.7: Comparison against SlowFuzz
The usage ratio represents the ratio between the worst case resource usage found
by Singularity and by SlowFuzz. Thus, a ratio greater than 1 indicates that
Singularity triggers higher resource usage. We display both the weighted and

unweighted geometric mean of these ratios over the entire benchmark set.

30

Since this experiment involves 27 benchmarks and 6 different config-

urations (one for each input size), we report the aggregate results across all

benchmarks for each input size. For each benchmark b and input size n, we

use the inputs I, I ′ generated by Singularity and SlowFuzz to compute

the following usage ratio rnb :

rnb =
Ψb(I)

Ψb(I ′)

where Ψb(I) denotes the running time (in terms of instruction count) of bench-

mark b on input I. Observe that rnb > 1 indicates that Singularity outper-

forms SlowFuzz (i.e., Singularity-generated inputs cause worse perfor-

mance).

To aggregate over all benchmarks for each input size, we consider two

different metrics:

• Geometric mean: For each input size s and benchmarks b1, . . . , bk, we com-

pute the geometric mean, denoted GM(rnb1 , . . . , r
n
bk

), of ratios rnb1 , . . . , r
n
bk

.

• Weighted geometric mean: Since the usage ratio rnb is close to 1 for about

half of the benchmarks, the geometric mean does not convey the full story.

Thus, we also compute the following weighted geometric mean:

WGM(rnb1 , . . . , r
n
bk

) = exp
(∑k

i=1 ln(rnbi)
3∑k

i=1 ln(rnbi)
2

)
Intuitively, this weighted geometric mean assigns a weight close to 0 to all

ratios that are close to 1 and a higher weight to those where there is a

31

Benchmark Description Input Type DSL Used Input budget Target time AV found?
blogger Blogging web application URL string 5KB 300s 3

graphAnalyzer DOT to PNG/PS converter DOT file graph 5KB 3600s 3

imageProcessor Image classifier PNG file array 70KB 1080s 3

textCrunchr Text analyzer text file string 400KB 300s 7

linearAlgebra Matrix computation service Matrix array 15.25KB 230s 3

airplan1 Online airline scheduler Graph graph 25KB 500s 3

airplan2 Online airline scheduler Graph graph 25KB 500s 3

airplan3 Online airline scheduler Graph graph 25KB 500s 7

searchableBlog Webpage search engine Matrix array 1KB 10s 3

braidit1 Online multiplayer game String string 2KB 300s 3

Table 2.2: Evaluation on STAC Benchmarks.

significant performance difference. 4

The results of this comparison are summarized in Figure 2.7, where the

left bar in each size group shows the geometric mean and the right bar indi-

cates the weighted geometric mean. We can observe two main trends based

on this figure: First, Singularity is able to generate inputs that cause the

applications to run significantly longer within the time frame, showing that

Singularity is more efficient than SlowFuzz in terms of fuzzing efficiency.

Second, the performance ratios grow as n increases, showing that Singular-

ity scales better compared to SlowFuzz. Hence, these results highlight the

scalability advantage of pattern fuzzing over concrete input fuzzing.

32

2.5.3 Availability Vulnerability Detection

To demonstrate that Singularity can generate inputs that exercise

non-trivial algorithmic complexity vulnerabilities, we evaluate Singularity

on ten benchmarks from the DARPA STAC program. Specifically, we choose

exactly those benchmarks that (a) exhibit an availability vulnerability, and (b)

where it is possible to construct an exploit using a malicious input pattern.

In more detail, each STAC benchmark is a Java application containing

between 500 to 20,000 lines of code. Furthermore, each benchmark comes with

a pre-defined input budget b and a target running time t such that the goal

is to craft an attack vector that causes the running time of the application to

exceed t using an input of size at most b. Table 2.2 provides more detailed

information about these STAC benchmarks.

To perform this experiment, we run Singularity for a total of three

hours on each benchmark. If the specified input budget b is below some thresh-

old, we parametrize the measurement model with b; otherwise, we use a default

size of n̂ = 1KB.

The results of this experiment are summarized in Table 2.2. At a high

level, Singularity is able to generate the desired attack vector for eight out

of these ten benchmarks. In particular, given a benchmark with input budget

4Like the geometric mean, this metric is fair because if we switch Singularity and
SlowFuzz (i.e., replace rnbi with 1/rnbi for all i), WGM(~rn) becomes 1/WGM(~rn). Many
other common averaging functions (e.g., arithmetic or quadratic mean) do not have this
property.

33

b and target running time t, Singularity can find inputs of size at most b

that cause the application to exceed the specified time t.

To understand the limitations of Singularity, we manually investi-

gate the textCrunchr and airplan3 benchmarks for which Singularity fails

to find an attack vector. For textCrunchr, the root cause of the problem is

the empirical measurement model. In particular, Singularity evaluates the

fitness of an individual based on its performance on inputs with size 1KB,

but since this is much smaller than the input budget of 400KB, our empiri-

cal measurement model does not end up being an ideal one. While we could

circumvent this problem by using a much larger input size, this would sig-

nificantly increase the time to evaluate the fitness of a given input pattern,

thereby slowing down the fuzzing algorithm.

For the airplan3 benchmark, the reason Singularity fails to find the

desired attack vector is the three hour time limit. In particular, running the

application on an input of size of 1KB takes more than 3 minutes after roughly

90 generations of the GP algorithm; thus, Singularity does not converge to

the fittest input pattern within the provided time limit.

2.5.4 Performance Bug Detection

In addition to vulnerability detection, Singularity can also help with

discovering unknown performance bugs in real-world projects. These perfor-

mance bugs do not correspond to any vulnerability since they reside in general-

purpose libraries that are not directly related to any security-critical applica-

34

tions, but finding them is still as hard as finding zero-day vulnerabilities. We

run Singularity on three popular Java libraries, namely Google Guava [77],

Vavr [179], and JGraphT [92]. All of these libraries have more than 1000 stars

on Github and are used by more than 70 other projects on Maven Central.

Hence, any performance issue in these libraries is likely to have significant

real-world impact.

For each library, we manually identify APIs that are related to contain-

ers or graphs, and write driver code to invoke these APIs with data generated

by Singularity. We then use the input patterns generated by Singularity

to determine worst-case complexity by (a) generating inputs of different sizes,

and (b) fitting a curve through these data points. If the complexity reported by

Singularity does not match the expected worst-case, we manually inspect

the code to determine whether there is a performance bug.

Using this methodology, we identified five previously unknown perfor-

mance bugs, all of which have been confirmed by the developers. In what

follows, we include brief descriptions of the performance problems uncovered

by Singularity:

Performance bugs in Guava. Singularity identified two performance

bugs in the ImmutableBiMap and

ImmutableSet container classes in the Guava library. Specifically, both of

these classes provide a method called copyOf that returns an ImmutableBiMap

or

35

ImmutableSet that contains the same elements as the input collection. While

both of these copyOf methods are expected to take linear time, the inputs

generated by Singularity cause O(n2) performance. In particular, Singu-

larity triggers this worst-case behavior by causing hash collisions despite the

existence of a mechanism that tries to protect against hash collisions. The in-

puts generated by Singularity are complex enough to bypass these existing

mitigation mechanisms. Both of these performance bugs have been acknowl-

edged by the developers and already been fixed.

Performance bug in JGraphT Singularity identified a serious perfor-

mance bug in the JGraphT implementation of the push-relabel maximum flow

algorithm [75]. While the theoretical worst-case behavior of this algorithm is

O(n3), Singularity is able to find inputs that trigger O(n5) running time.

The developers have acknowledged this bug and are currently investigating its

root cause.

Performance bug in Vavr Singularity also identified two performance

problems in the Vavr library that provides immutable and persistent collec-

tions. In particular, while the addAll and union methods of LinkedHashSet

are supposed to have worst-case linear complexity, Singularity found inputs

that trigger quadratic behavior. The developers have acknowledged this issue

and added a caveat to the corresponding JavaDocs that these methods have

quadratic rather than the (expected) linear complexity.

36

Chapter 3

Relational Verification for Non-Interference

The technique that we described in Chapter 2 is useful not only for

uncovering performance problems, but also for detecting security vulnerabili-

ties related to algorithmic complexity [26, 181, 44, 117, 118, 188]. Such type

of vulnerabilities typically affect the availability of an application. However,

the same techniques from the previous chapter is insufficient to address a

related class of security vulnerabilities that affects the application’s confiden-

tiality. For example, consider a program whose complexity is Θ(n2) if some

secret value has a certain property, but Θ(n) otherwise. Such an imbalance

in running time corresponds to a confidentiality leak, as an attacker can eas-

ily make inferences about confidential values based on how long the program

takes to run. This type of vulnerabiliteis is known as side-channel vulnera-

bilities, which continue to be uncovered on a regular basis in security-critical

systems [33, 178, 79, 6]. Even though they are at least as important as com-

plexity vulnerabilities, techniques from previous chapter cannot be used to

detect them.

In this chapter, we show how to automatically verify whether there

exists any potential side-channel vulnerability for a given application.

37

3.1 Overview

Our goal here is to help programmers develop side-channel-free appli-

cations by automatically analyzing correlations between variations in resource

usage and differences in security-sensitive data. In particular, given a program

P and a “tolerable” resource deviation ε, we would like to verify that the re-

source usage of P does not vary by more than ε no matter what the value of

the secret. Following the terminology of Goguen and Meseguer [74], we refer

to this property as ε-bounded non-interference. Intuitively, a program that vi-

olates ε-bounded non-interference for even large values of ε exhibits significant

secret-induced differences in resource usage and therefore has a side-channel

vulnerability.

The problem of verifying ε-bounded non-interference is challenging for

at least two reasons: First, the property that we would like to verify is an

instance of a so-called 2-safety property [174] that requires reasoning about all

possible interactions between pairs of program executions. Said differently, a

witness to the violation of ε-bounded interference consists of a pair of program

runs on two different secrets. As mentioned in section 1.1, checking 2-safety is

known to be a much harder problem than checking standard safety properties

(for which many automated tool exists).

In this chapter, we solve these challenges by combining relatively lightweight

static taint analysis with more precise relational verification techniques for

reasoning about k-safety (i.e., properties that concern interactions between k

program runs). Specifically, our approach first uses taint information to iden-

38

tify so-called hot spots, which are program fragments that have the potential

to exhibit a secret-induced imbalance in resource usage. We then use much

more precise relational reasoning techniques to automatically verify that such

hot spots do not violate ε-bounded non-interference.

At the core of our technique is a new program logic called Quantitative

Cartesian Hoare Logic (QCHL) for verifying the ε-bounded non-interference

property. QCHL leverages recent advances in relational verification by build-

ing on top of Cartesian Hoare Logic (CHL) [168] for verifying k-safety prop-

erties. Specifically, QCHL allows us to prove triples of the form 〈φ〉 S 〈ψ〉,

where S is a program fragment and φ, ψ are first-order formulas that relate

the program’s resource usage (e.g., execution time) between an arbitrary pair

of program runs. Starting with the precondition that two runs have the same

public input but different values of the secret, QCHL proof rules allow us to

prove that the difference in resource usage is bounded from above by some

(user-provided) constant ε. Similar to CHL, our QCHL logic allows effective

relational verification by symbolically executing two copies of the program in

lockstep. However, QCHL differs from CHL in that it reasons about the pro-

gram’s resource usage behavior and exploits domain-specific assumptions to

improve both analysis precision and scalability. Furthermore, since the QCHL

proof rules are deterministic (modulo an oracle for finding loop invariants and

proving standard Hoare triples), QCHL immediately lends itself to a fully

automated verification algorithm.

39

1 BigInteger modPow(BigInteger base,

2 BigInteger exponent, BigInteger modulus) {

3 BigInteger s = BigInteger.valueOf(1);

4 // BigInteger r;

5 int width = exponent.bitLength();

6 for (int i = 0; i < width; i++) {

7 s = s.multiply(s).mod(modulus);

8 if(exponent.testBit(width - i - 1))

9 s = s.multiply(base).mod(modulus);

10 //else r = s.multiply(base).mod(modulus);

11 }

12 return s;

13 }

Figure 3.1: Gabfeed code snippet that contains a timing side channel
A possible fix can be obtained by commenting in lines 4 and 10.

{

"epsilon":"0",

"costModel":"time",

"secrets": ["<com.cyberpointllc.stac.auth.KeyExchangeServer:

java.math.BigInteger secretKey>"]

}

Figure 3.2: Themis configuration file for Gabfeed.

3.2 Motivating Example

Suppose that Bob, a security analyst at a government agency, receives

a Java web application called Gabfeed, which implements a web forum that

allows community members to post and search messages1. In this context,

both the user names and passwords are considered confidential and are there-

1Gabfeed is one of the challenge problems from the DARPA STAC project. Please
see http://www.darpa.mil/program/space-time-analysis-for-cybersecurity for more details
about the STAC project.

40

fore encrypted before being stored in the database. Bob’s task is to vet this

application and verify that it does not contain timing side-channel vulnera-

bilities that may compromise user name or password information. However,

Gabfeed contains around 30,000 lines of application code (not including any

libraries); hence, manually searching for a vulnerability in the application is

akin to finding a needle in the haystack.

A security analyst like Bob can greatly benefit from Themis by using

it to automatically verify the absence of side-channel vulnerabilities in the

target application. To use Themis, Bob first identifies application-specific

confidential data (in this case, secretKey) and annotates them as such in a

Themis-specific configuration file, as shown in Figure 3.2. In the same con-

figuration file, Bob also tells Themis the type of side channel to look for (in

this case, timing) by specifying the costModel field and provides a reasonable

value of ε, using the epsilon field. Here, Bob wants to be conservative and

initially sets the value of ε to zero.

Using the information provided by Bob in the configuration file, Themis

first performs static taint analysis to identify methods that are dependent on

confidential data. In this case, one of the methods that access confidential

data is modPow, shown in Figure 3.1. Specifically, Themis determines that the

second argument (exponent) of modPow is tainted and marks it as a “hot spot”

that should be analyzed more precisely using relational verification techniques.

In the next phase, Themis uses its Quantitative Cartesian Hoare Logic

(QCHL) verifier to analyze modPow in more detail. Specifically, the QCHL

41

verifier considers two executions of modPow that have the same values of base

and modulus but that differ in the value of exponent. In this case, the QCHL

verifier fails to prove that the resource usage of any such two runs is identical

and therefore issues a warning about a possible timing side channel in the

modPow procedure.

Next, Bob wonders whether the imbalance in resource usage is large

enough to be actually exploitable in practice. For this reason, he plays around

with different values of the bound ε, gradually increasing it to larger and larger

constants. In the case of timing side channels, ε represents the difference in

the executed number of Java bytecode instructions. However, no matter what

value of ε Bob picks, Themis complains about a possible timing side channel.

This observation indeed makes sense because the difference in resource usage

is proportional to the secret and can therefore not be bounded by a constant.

Bob now inspects the source code of modPow and realizes that a possi-

ble vulnerability arises due to the resource imbalance in the secret-dependent

branch from line 8. To fix the vulnerability, Bob adds the code from lines 4

and 10, with the goal of ensuring that the timing behavior of the program

is not dependent on exponent. To confirm that his fix is valid, Bob now

runs Themis one more time and verifies that his repair eliminates the original

vulnerability.

In this section, we formally present the problem as well as out solution.

42

3.3 Threat Model

We assume that an adversary can observe a program’s total resource

usage, such as timing, memory, and response size. When measuring resource

usage, we further assume that any variations are caused at the application soft-

ware level. Hence, side channels caused by the microarchitecture such as cache

contention [184] and branch prediction [3] are out of the scope of this work.

Physical side channels (including power and electromagnetic radiation [70])

can, in principle, be handled by our our system as long as a precise model of

the corresponding resource usage is given. We assume that the attacker is not

able to observe anything else about the program other than its resource usage.

One possible real-world setting in which the aforementioned assump-

tions hold could be that the attacker and the victim are connected through a

network, and the victim runs a server or P2P software that interacts with other

machines through encrypted communications. In this scenario, the attacker

and the victim are physically separated; hence, the attacker cannot exploit

physical side channels, such as power usage. Furthermore, the attacker does

not have a co-resident process or VM running on the victim’s machine, thus

it is hard to passively observe or actively manipulate OS and hardware-level

side channels. What the attacker can do is to either interact with the server

and measure the time it takes for the server to respond, or observe the net-

work traffic and measure request and response sizes. In our setting, we assume

that data encryption has been properly implemented and the attacker cannot

directly read the contents of any packet.

43

3.4 Side-Channels and Bounded Non-interference

In this section, we introduce the property of ε-bounded non-interference,

which is the security policy that will be subsequently verified using the Themis

system.

Let P be a program that takes a list of input values ~a, and let RP (~a)

denote the resource usage of P on input ~a. Following prior work in the litera-

ture [78, 148, 68], we assume that each input is marked as either high or low,

where high inputs denote security-sensitive data and low inputs denote public

data. Let ~ah (resp. ~al) be the sublist of the inputs that are marked as high

(resp. low). Prior work in the literature [174, 56, 7] considers a program to

be side-channel-free if the following condition is satisfied:

Definition 3.4.1. A program P is free of resource-related side-channel vul-

nerabilities if

∀~a1, ~a2. (~a1
l = ~a2

l ∧ ~a1
h 6= ~a2

h)⇒ RP (~a1) = RP (~a2)

The above definition, which is a direct adaptation of the classical notion

of non-interference [74], states that a program is free of side channels if the

resource usage of the program is deterministic with respect to the public inputs.

In other words, the program’s resource usage does not correlate with any of

its secret inputs.

44

〈expr〉 ::= 〈const〉 | 〈var〉 | 〈expr〉 ◦ 〈expr〉
(◦ ∈ {+,−,×,∨,∧, ...})

〈stmt〉 ::= skip | consume(〈expr〉) | 〈var〉 := 〈expr〉

〈stmts〉 ::= 〈stmt〉 | 〈stmt〉; 〈stmts〉
| if 〈expr〉 then 〈stmts〉 else 〈stmts〉
| while 〈expr〉 do 〈stmts〉

〈params〉 ::= 〈param〉 | 〈param〉, 〈params〉

〈param〉 ::= 〈annot〉 〈var〉

〈annot〉 ::= low | high

〈prog〉 ::= λ〈params〉. 〈stmts〉

Figure 3.3: Language used in our formalization

3.4.1 Language

One of the key technical contributions of this chapter is a new method

for verifying ε-bounded non-interference using QCHL, a variant of Cartesian

Hoare Logic introduced in recent work for verifying k-safety [168]. QCHL

proves triples of the form 〈φ〉 S 〈ψ〉, where S is a program fragment and

φ, ψ are first-order formulas that relate the program’s resource usage between

an arbitrary pair of program runs. Starting with the precondition that the

program’s low inputs are the same for a pair of program runs, QCHL tries to

derive a post-condition that logically implies ε-bounded non-interference.

We will describe our program logic, QCHL, using the simplified im-

perative language shown in Figure 3.3. In this language, program inputs

45

are annotated as high or low, indicating private and public data respectively.

Atomic statements include skip (i.e., a no-op), assignments of the form x := e,

and consume statements, where “consume(e)”indicates the consumption of e

units of resource. Our language also supports standard control-flow constructs,

including sequential composition, if statements, and loops.

Figure 3.4 defines the cost-instrumented operational semantics of this

language using judgments of the form Γ ` S : Γ′, r. The meaning of this judg-

ment is that, assuming we execute S under environment Γ (mapping variables

to values), then S consumes r units of resource and the new environment is

Γ′. As shown in Figure 3.4, we use the notation RP (~a) to denote the resource

usage of program P on input vector ~a. In cases where the resource usage is

irrelevant, we simply omit the cost and write Γ ` S : Γ′.

3.4.2 QCHL Proof Rules

We now turn our attention to the proof rules of Quantitative Cartesian

Hoare Logic (QCHL), which forms the basis of our verification methodology.

Similar to CHL [168], QCHL is a relational program logic that allows proving

relationships between multiple runs of the program. However, unlike CHL,

QCHL is concerned with proving properties about the difference in resource

usage across multiple runs. Towards this goal, QCHL performs cost instru-

mentation and explicitly tracks the program’s resource usage. Furthermore,

since our goal is to prove the specific property of ε-bounded non-interference,

QCHL exploits domain-specific assumptions by incorporating taint informa-

46

P = λ~p.S ∀pi ∈ ~p. Γ(pi) = ai Γ ` S : Γ′, r

RP (~a) = r

S = skip

Γ ` S : Γ, 0

S = (x := e) Γ ` e : v Γ′ = Γ[x← v]

Γ′ ` S : Γ′, 0

S = consume (e) Γ ` e : v

Γ ` S : Γ, v

S = S1;S2

Γ ` S1 : Γ1, r1

Γ1 ` S2 : Γ2, r2

Γ ` S : Γ2, r1 + r2

S = if e then S1 else S2

Γ ` e : true
Γ ` S1 : Γ′, r′

Γ ` S : Γ′, r′

S = if e then S1 else S2

Γ ` e : false
Γ ` S2 : Γ′, r′

Γ ` S : Γ′, r′

S = while e do S′ Γ ` e : false
Γ ` S : Γ, r

S = while e do S′

Γ ` e : true

Γ ` S′ : Γ1, r1

Γ1 ` S : Γ2, r2

Γ ` S : Γ2, r1 + r2

Figure 3.4: Rules for computing resource usage

47

tion into the proof rules. Finally, since the QCHL proof rules we describe

here are deterministic, our program logic can be immediately translated into

a verification algorithm (modulo an oracle for providing loop invariants and

proving standard Hoare triples).

Figure 3.5 presents the proof rules of QCHL. Here, all proof rules,

with the exception of Rule (0), derive judgments of the form Σ ` 〈Φ〉 S1 ~

S2 〈Ψ〉, where S1 and S2 contain a disjoint set of variables and Σ is a taint

environment mapping variables to a taint value drawn from the set {low, high}

. The notation S1 ~ S2 describes a program that is semantically equivalent to

S1;S2 but that is somehow easier to verify (because it tries to execute loops

from different executions in lock step). Hence, we have Σ ` 〈Φ〉 S1 ~ S2 〈Ψ〉

if {Φ}S1;S2{Ψ} is a valid Hoare triple. As we will see shortly, the taint

environment Σ is used as a way of increasing the precision and scalability of

the analysis. In the remainder of this section, we assume that Σ is sound, i.e., if

Σ(x) is low, then the value of x does not depend (either explicitly or implicitly)

on any high inputs. We now explain each of the rules from Figure 3.5 in more

detail.

The first rule labeled (0) corresponds to the top-level verification proce-

dure. If we can derive Σ ` SideChannelFree(P, ε), then P obeys the ε-bounded

non-interference property. In this rule, we use the notation Sτ to denote the

cost-instrumented version of S, defined as follows:

Definition 3.4.2. Given a program P = λ~p.S, its cost-instrumented version

is another program P τ obtained by instrumenting P with a counter variable

48

τ that tracks its resource usage. More formally, P τ = γ(P) where the instru-

mentation procedure γ is defined as:

• γ(λ~p.S) = λ~p.(τ := 0; γ(S))

• γ(skip) = skip

• γ(x := e) = (x := e)

• γ(consume (e)) = (τ := τ + e)

• γ(S1;S2) = γ(S1); γ(S2)

• γ(if e then S1 else S2) =

if e then γ(S1) else γ(S2)

• γ(while e do S) = while e do γ(S)

Essentially, the program P τ is the same as P except that it contains

an additional variable τ that tracks the program’s resource usage. As stated

by the following lemma, our instrumentation is correct with respect to the

operational semantics from Figure 3.4.

Lemma 1. Let program P = λ~p.S and let P τ = λ~p.Sτ . We have

- Sτ does not contain any consume statement.

- If Γ(~p) = ~a and Γ ` Sτ : Γ′, then RP (~a) = Γ′(τ).

49

Hence, rule (0) from Figure 3.5 instruments the original program λ~p. S

to obtain a new program λ~p. Sτ that uses a fresh variable τ to track the pro-

gram’s resource usage. Since bounded non-interference is a 2-safety property,

it then creates two α-renamed copies Sτ1 and Sτ2 of Sτ that have no shared

variables and uses the remaining QCHL proof rules to derive a triple

〈~p1
l = ~p2

l ∧ ~p1
h 6= ~p2

h〉 Sτ1 ~ Sτ2 〈Ψ〉

If the post-condition Ψ logically implies |τ1− τ2| ≤ ε, we have a proof that the

program obeys bounded non-interference. Intuitively, this proof rule considers

an arbitrary pair of executions of S where the low inputs are the same and

tries to prove that the resource usage of the two runs differs by at most ε.

The remaining rules from Figure 3.5 derive QCHL triples of the form

〈Φ〉 S1 ~ S2 〈Ψ〉. Our verification algorithm applies these rules in the reverse

order shown in Figure 3.5. That is, we only use rule labeled i if no rule with

label j > i is applicable. Hence, unlike standard CHL, our verification method

does not perform backtracking search over the proof rules.

Let us now consider the remaining rules in more detail: Rule (1) is

the same as commutativity rule in CHL and states that the ~ operator is

symmetric. Intuitively, since S1 and S2 do not share variables, any interleaving

of S1 and S2 will yield the same result, and we can therefore commute the

two operands when deriving QCHL triples. As will become clear shortly,

the commutativity rule ensures that our verification algorithm makes progress

when none of the other rules are applicable.

50

λ~p1.S
τ
1 = α(λ~p.Sτ)

λ~p2.S
τ
2 = α(λ~p.Sτ)

Φ = (~p1
l = ~p2

l ∧ ~p1
h 6= ~p2

h)

Σ ` 〈Φ〉 Sτ1 ~ Sτ2 〈Ψ〉
|= Ψ→ |τ1 − τ2| ≤ ε

(0)
Σ ` SideChannelFree(λ~p.S, ε)

Σ ` 〈Φ〉 S2 ~ S1 〈Ψ〉
(1)

Σ ` 〈Φ〉 S1 ~ S2 〈Ψ〉

S 6= (S1;S2)

Σ ` 〈Φ〉 S; skip~ S′ 〈Ψ〉
(2)

Σ ` 〈Φ〉 S ~ S′ 〈Ψ〉

` {Φ} S1 {Φ′}
Σ ` 〈Φ′〉 S2 ~ S3 〈Ψ〉

S1 = skip ∨ S1 = (v := e)
(3)

Σ ` 〈Φ〉 S1;S2 ~ S3〈Ψ〉

` {Φ} S {Ψ}
(4)

Σ ` 〈Φ〉 S ~ skip 〈Ψ〉

Σ ` 〈Φ ∧ e〉 S1;S ~ S3〈Ψ1〉
Σ ` 〈Φ ∧ ¬e〉 S2;S ~ S3〈Ψ2〉

(5)
Σ ` 〈Φ〉 if e then S1 else S2;S ~ S3〈Ψ1 ∨Ψ2〉

` {Φ}while e1 do S1{Φ′}
` {Φ′}while e2 do S2{Ψ′}

Σ ` 〈Ψ′〉 S ~ S′ 〈Ψ〉
(6)

Σ ` 〈Φ〉 while e1 do S1;S ~while e2 do S2;S′〈Ψ〉

Σ ` CanSynchronize(e1, e2, S1, S2, I)

Σ ` 〈I ∧ e1 ∧ e2〉S1 ~ S2〈I ′〉
Σ ` 〈I ∧ ¬e1 ∧ ¬e2〉S ~ S′〈Ψ〉
|= Φ→ I |= I ′ → I

(7)
Σ ` 〈Φ〉 while e1 do S1;S ~while e2 do S2;S′〈Ψ〉

Figure 3.5: QCHL proof rules
The notation α(S) denotes an α-renamed version of statement S.

51

The next rule states that we are free to append a skip statement to

any non-sequential statement without affecting its meaning. While this rule

may not seem very useful on its own, it allows us to avoid redundancies in the

proof system by bringing each S1 ~ S2 to a canonical form where S1 is always

of the form S;S ′ or S2 is skip.

Rule (3) specifies the verification logic for S1 ~ S2 when S1 is of the

form A;S where A is an atomic statement. In this case, we simply “consume”

A by deriving the Hoare triple {Φ}A{Φ′} and then use Φ′ as a precondition

for S ~ S2.

Rule (4) serves as the base case for our logic. When we want to prove

〈Φ〉 S ~ skip 〈Ψ〉, we immediately reduce this judgement to the standard

Hoare triple {Φ} S {Ψ} because skip is just a no-op.

Example. Suppose we want to prove (0-bounded) non-interference for

the following program:

λ(low x) . consume (x) ; sk ip ;

First we apply transformation γ and get the resource instrumented

program:

λ(low x) . τ=0; τ = τ + x ; sk ip ;

Ignore the taint environment for now, as we will not use it in this

example. According to rule (0), we only need to prove

〈x1 = x2〉 τ1 = 0; τ1 = τ1 +x1; skip; ~ τ2 = 0; τ2 = τ2 +x2; skip; 〈τ1 = τ2〉

52

Applying rule (3) twice, we can reduce the above judgement to the following

one:

〈x1 = x2 ∧ τ1 = x1〉 skip; ~ τ2 = 0; τ2 = τ2 + x2; skip; 〈τ1 = τ2〉

Swapping the two operands of ~ with rule (1), we get

〈x1 = x2 ∧ τ1 = x1〉 τ2 = 0; τ2 = τ2 + x2; skip; ~ skip; 〈τ1 = τ2〉

After applying rule (4), we get

{x1 = x2 ∧ τ1 = x1} τ2 = 0; τ2 = τ2 + x2; skip; {τ1 = τ2}

Applying Hoare-style strongest postcondition computation, the above Hoare

triple can be reduced to

{x1 = x2 ∧ τ1 = x1 ∧ τ2 = x2} skip; {τ1 = τ2}

Since this Hoare triple is clearly valid, we have proven non-interference using

the QCHL proof rules.

Rule (5) specifies the general verification logic for branch statements.

This rule is an analog of the conditional rule in standard Hoare logic: we

can verify an if statement by embedding the branch condition e into the true

branch and its negation ¬e into the false branch and carry out the proof for

both branches accordingly.

Rule (6) specifies the general verification logic for loops. Without loss

of generality, this rule requires both sides of the ~ operator to be loops: If

53

e1 = α(e) e2 = α(e)
e1 ≡α e2

S1 = α(S) S2 = α(S)

S1 ≡α S2

e1 ≡α e2

S1 ≡α S2

Σ ` e1 : low

Σ ` e2 : low

Σ ` CanSynchronize(e1, e2, S1, S2, I)

|= I → (e1 ↔ e2)

Σ ` CanSynchronize(e1, e2, S1, S2, I)

Figure 3.6: Helper rules for figure 3.5

one side is a not a loop, we can always apply one of the other rules, using rule

(1) to swap the loop to the other side if necessary. The idea here is to apply

self-composition [18]: we run the loop on the left-hand side first, followed by

the loop on the right-hand side, and try to derive the proof as if the two loops

are sequentially composed.

While rule (6) is sound, it is typically difficult to prove 2-safety using

rule (6) alone. In particular, rule (6) does not allow us to synchronize execu-

tions between the two loops, so the resulting Hoare triples are often hard to

verify. The following example illustrates this issue:

Example. Consider the following code snippet:

λ(low n , low k) .
i = 0 ;
whi l e (i < n) {

consume (i) ; i = i + k ;
}

54

To prove that this program obeys ε-bounded non-interference, we need

to show that the difference in resource consumption after executing the two

copies of the loop is at most ε. However, to prove this property using rule (6),

we would need to infer a precise post-condition about resource consumption.

Unfortunately, this requires inferring a complex non-linear loop invariant in-

volving i, n, k. Since such loop invariants are difficult to infer, we cannot prove

non-interference using rule (6).

Rule (7) is one of the most important rules underlying QCHL, as it

allows us to execute loops from different executions in lockstep. This loop can

be applied only when the CanSynchronize predicate is true, meaning that the

two loops are guaranteed to execute the same number of times. The definition

of the CanSynchronize predicate is shown in Figure 3.6: Given two loops

L1 ≡ while(e1) do S1 and L2 ≡ while(e2) do S2, and a loop invariant I for the

“fused” loop while(e1∧e2) do S1;S2, CanSynchronize determines if L1 and L2

must execute the same number of times. In the easy case, this information can

be determined using only taint information: Specifically, suppose that L1, L2

are identical modulo variable renaming and e1, e2 contains only untainted (low)

variables. Since we prove bounded non-interference under the assumption that

low variables from the two runs have the same value, this assumption implies

L1 and L2 must execute the same number of times. If we cannot prove the

CanSynchronize predicate using taint information alone, we may still be able

to prove it using the invariant I for the fused loop. Specifically, if I logically

implies e1 ↔ e2, we know that after each iteration e1, e2 have the same truth

55

value; hence, the loops must again execute the same number of times.

Now, suppose we can prove that CanSynchronize evaluates to true. In

this case, rule (7) conceptually executes the two loops in lock-step. Specifically,

the premise Σ ` 〈I∧e1∧e2〉S1~S2〈I ′〉, together with |= I ′ → I, ensures that I

is an inductive invariant of the fused loop while(e1∧e2) do S1;S2. Thus, I must

hold when the both loops terminate. Thus, we can safely use the predicate

I ∧ ¬e1 ∧ ¬e2 as a precondition when reasoning about the “continuations” S

and S ′.

Example. In the previous example, we illustrated that it is difficult

to prove non-interference using rule (6) even for a relatively simple example.

Let us now see why rule (7) makes verifying 2-safety easier. Since i and n

are both low according to the taint environment Σ, we can show that the

the CanSynchronize predicate evaluates to true. To prove that the program

obeys non-interference, we use the relational loop invariant I = (i1 = i2∧ τ1 =

τ2 ∧ k1 = k2). It is easy to see that I is a suitable inductive relational loop

invariant, because:

• i1, i2, τ1, τ2 are all set to 0 before the loop starts.

• We know k1 = k2 from the precondition (since they are low inputs)

• i1 and i2 are increased by the same amount in each iteration of the loop

since k1 = k2.

56

• τ1 and τ2 are also increased by the same amount in each iteration of the

loop since i1 = i2.

• I implies the post condition |τ1 − τ2| ≤ 0.

Observe that the use of rule (7) allows us to prove the desired property without

reasoning about the total resource consumption of the loop. Hence, we do not

need complicated non-linear loop invariants, and the verification task becomes

much easier to automate.

Theorem 3 (Soundness). Assuming soundness of taint environment Σ, if

Σ ` SideChannelFree(λ~p.S, ε), then the program λ~p.S does not have an

ε-bounded resource side-channel.

3.4.3 Loop Invariant Generation

In the previous subsection, we assumed the existence of an oracle for

finding suitable relational loop invariants (recall rule 7). Here, by “relational

loop invariant”, we mean a simulation relation over variables in programs

S1, S2. Specifically, we use such relational loop invariants in two ways: First,

we use them to check whether two loops execute the same number of times.

Second, we use the relational loop invariant to compute the precondition for

the continuations of the two programs. Hence, to apply rule 7, we need an

algorithm for computing such relational loop invariants.

Algorithm 2 shows our inference engine for computing relational loop

invariants. This algorithm can be viewed as an instance of monomial predicate

57

Algorithm 2 Relational Invariant Generation

Input: Σ, the taint environment.
Input: Φ, the pre-condition of the loop.
Input: e, S, loop condition and loop body.
Input: V , the set of all variables appeared in the loop.
Output: An inductive relational loop invariant

1: function RelationalInvGen(Σ,Φ, e, S, V)
2: (e1, S1) ← α(e, S)
3: (e2, S2) ← α(e, S)
4: Guesses ← {v1 = v2 | v ∈ V }
5: for g ∈ Guesses do
6: if 6|= Φ→ g then
7: Guesses ← Guesses\{g}
8: inductive ← false
9: while ¬ inductive do

10: I ←
∧
g∈Guesses g

11: assume Σ ` 〈I ∧ e1 ∧ e2〉S1 ~ S2〈I ′〉
12: inductive ← true
13: for g ∈ Guesses do
14: if 6|= I ′ → g then
15: Guesses ← Guesses\{g}
16: inductive ← false
17: return

∧
g∈Guesses g

abstraction (i.e., guess-and-check) [104, 64, 156]. Specifically, we consider the

universe Guesses of predicates v1 = v2 relating variables from the two loops.

Because synchronizable loops execute the same number of times, they typically

contain one or more “anchor” variables that are pairwise equal. Thus, we can

often find useful relational invariants over this universe of predicates.

Considering Algorithm 2 in more detail, we first filter our those predi-

cates that are not implied by the precondition Φ (lines 5-7). In lines 9-16, we

58

Secret
data

Java
Bytecode

Taint
Tracking

Points-To
Analysis

QCHL
Verifier

Callgraph

Callgraph

Hotspot

Resource
consumption

instrumentation

Figure 3.7: Workflow of the Themis tool

then further filter out those predicates that are not preserved in the loop body.

In particular, on line 10, we construct the candidate invariant by conjoining

all remaining predicates in our guess set, and, on line 11, we compute the post

condition I ′ of the loop using the proof rules shown in figure 3.5. Since we

have Σ ` 〈I ∧ e1 ∧ e2〉S1 ~ S2〈I ′〉 and 6|= I ′ → g, this means predicate g is not

preserved by the loop body and is therefore removed from our set of predicates.

When the loop in lines 9-16 terminates, we have Σ ` 〈I ∧ e1 ∧ e2〉S1 ~ S2〈I ′〉

and |= I ′ → I; thus, I is an inductive relational loop invariant.

3.5 Implementation

Figure 3.7 gives a high-level schematic overview of Themis’s architec-

ture. In addition to the QCHL verifier discussed in detail in Section 3.4.1,

Themis also incorporates pointer and taint analyses and instruments the pro-

gram to explicitly track resource usage. We now give a brief overview of each

of these components.

59

Pointer analysis. Given the bytecode of a Java application, Themis per-

forms (field- and object-sensitive) pointer analysis to build a precise call graph

and identify all variables that may alias each other. The resulting call graph

and alias information are used by the subsequent taint analysis as well as the

QCHL verifier.

Taint analysis. The use of taint analysis in Themis serves two goals: First,

the QCHL verifier uses the results of the taint analysis to determine whether

two loops can be synchronized. Second, we use taint analysis to identify

hotspots that need to be analyzed more precisely using the QCHL verifier.

The taint analyzer uses the annotations in Themis’s configuration file

to determine taint sources (i.e., high inputs) and propagates taint using a

field- and object-sensitive analysis. Our taint analyzer tracks both explicit

and implicit flows. That is, a variable v is considered tainted if (a) there is

an assignment v := e such that e is tainted (explicit flow), or (b) a write to v

occurs inside a branch whose predicate is tainted (implicit flow).

We use the results of the taint analysis to identify methods that should

be analyzed by the QCHL verifier. A method m is referred to as hot spot if it

reads from a tainted variable. We say that a hot spot m dominates another

hot spot m′ if m′ is a transitive callee of m but not the other way around.

Any hot spot that does not have dominators is given as an entry point to the

QCHL verifier. In principle, this strategy of running the QCHL verifier on

only hot spots can cause our analysis to report false positives. For instance,

60

consider the following example:

main(...) { foo(); bar(); }

foo() {

int x = readSecret();

if(x > 0) consume(1); else consume(100);

}

bar() {

int y = readSecret();

if(y <= 0) consume(1); else consume(100);

}

While this program does not have any secret-dependent imbalance in

resource usage, foo and bar individually do not obey non-interference, caus-

ing our analysis to report false positives. However, in practice, we have not

observed any such false positives, and this strategy greatly increases the scal-

ability of the tool.

Resource usage instrumentation The language we considered for our

formalization in Section 3.4.1 is equipped with a consume(x) statement that

models consumption of x units of resource. Unfortunately, since Java programs

do not come with such statements, our implementation uses a cost model to

instrument the program with such consume statements. In principle, our

framework can detect different classes of side channels, provided that the tool

is given a suitable cost model for the corresponding resource type.

Our current implementation provides cost models for two kinds of re-

source usage, namely, timing and response size. For timing, we use a coarse

61

cost model where every byte code instruction is assumed to have unit cost.

For response size, each string s that is appended to the response consumes

s.length() units of resource.

Counterexample generation If Themis fails to verify the bounded non-

interference property for a given ε, it can also generate counterexamples by

using the models provided by the underlying SMT solver. In particular, when

the verification condition (VC) generated by Themis is invalid, the tool asks

the SMT solver for a falsifying assignment and pretty-prints the model re-

turned from Z3 by replacing Z3 symbols with their corresponding variable

names. Since the VCs depend on automatically inferred loop invariants, the

counterexamples generated by Themis may be spurious if the inference engine

does not infer sufficiently strong loop invariants.

The Themis system is implemented in a combination of Java and

OCaml and leverages multiple existing tools, such as Soot [176], Z3 [51], and

Apron [91]. Specifically, our pointer analysis builds on top of Soot [176], and

we extend the taint analysis provided by FlowDroid [10], which is a state-of-

the-art context-, field-, flow-, and object-sensitive taint analyzer, to also track

implicit flows. Our QCHL verifier is implemented in OCaml and uses the Z3

SMT solver [51] to discharge the generated verification conditions. To prove

the Hoare triples that arise as premises in the QCHL proof rules, we perform

standard weakest precondition computation, leveraging the Apron numerical

abstract domain library [91] to infer standard loop invariants. Recall that

62

we infer relational loop invariants using the monomial predicate abstraction

technique described in Section 3.4.3.

Our formal description of QCHL in chapter 3.4.1 uses a simplified pro-

gramming language that does not have many of the complexities of Java.

Themis handles these complexities by first leveraging the Soot framework

to parse the Java bytecode to Soot IR, and then using an in-house “front-

end” that further lowers Soot IR into a form closer to what is presented in

chapter 3.4.1. In particular, the transformation from Soot to our IR recovers

program structures (loops, conditionals etc.) and encodes heap accesses in

terms of arrays. The verifier performs strongest postcondition calculation over

our internal IR and encodes verification conditions with SMT formulae.

In the remainder of this section, we explain how we handle various

challenges that we encountered while building the Themis frontend.

Object encoding Since objects are pervasive in Java applications, their en-

coding has a significant impact on the precision and scalability of the approach.

In Themis, we adopt a heap encoding that is similar to ESC-Java [66]. Specif-

ically, instance fields of objects are represented as maps from object references

(modeled as integer variables) to the value of the corresponding field. Reads

and writes to the map are modeled using select and update functions defined

by the theory of arrays in SMT solvers. If two object references are known not

to be the same (according to the results of the pointer analysis), we then add

a disequality constraint between the corresponding variables.

63

Method invocation Since the simplified language from Section 3.4.1 did

not allow function calls, we only described an intraprocedural version of the

QCHL verifier. We currently perform interprocedural analysis by function

inlining, which is performed as a preprocessing step at the internal IR level

before the analysis takes place. Since the QCHL verifier only needs to ana-

lyze hot spots (which typically constitute a small fraction of the program),

we do not find inlining to be a major scalability bottleneck. However, since

recursive procedures cannot be handled using function inlining, our current

implementation requires models for recursive procedures that correspond to

hot spots.

Virtual calls and instanceof encoding The result of certain operations in

the Java language, such as virtual calls and the instanceof operator, depends

on the runtime values of their operands. To faithfully model those operations ,

we encode the type of each allocation site as one of its field, and we transform

virtual calls and instanceof to a series of if statements that branch on this

field. For example, if variable a may point to either allocation A1 of type T1

or allocation A2 of type T2, then the polymorphic call site a.foo() will be

modeled as:

i f (a . type == T1)
((T1) a) . foo () ;

e l s e i f (a . type == T2)
((T2) a) . foo () ;

We handle the instanceof operator in a similar way.

64

3.6 Evaluation

In this section, we describe our evaluation of Themis on a set of

security-critical Java applications. Our evaluation is designed to answer the

following research questions:

Q1. How does Themis compare with state-of-the-art tools for side channel

detection in terms of accuracy and scalability?

Q2. Is Themis able to detect known vulnerabilities in real-world Java appli-

cations, and can Themis verify their repaired versions?

Q3. Is Themis useful for detecting zero-day vulnerabilities from the real

world?

In what follows, we describe a series of experiments that are designed

to answer the above questions. All experiments are conducted on an Intel

Xeon(R) computer with an E5-1620 v3 CPU and 64G of memory running on

Ubuntu 16.04.

3.6.1 Comparison Against Blazer

To evaluate how competitive Themis is with existing tools, we compare

Themis against Blazer [9], a state-of-the-art tool for detecting timing side

channels in Java bytecode. Blazer is a static analyzer that uses a novel

decomposition technique for proving non-interference properties. Since the

Blazer tool is not publicly available, we compare Themis against Blazer

65

Benchmark Version Size
Time (s)

Blazer Themis

MicroBench
array Safe 16 1.60 0.28
array Unsafe 14 0.16 0.23
loopAndbranch Safe 15 0.23 0.33
loopAndbranch Unsafe 15 0.65 0.16
nosecret Safe 7 0.35 0.20
notaint Unsafe 9 0.28 0.12
sanity Safe 10 0.63 0.41
sanity Unsafe 9 0.30 0.17
straightline Safe 7 0.21 0.49
straightline Unsafe 7 22.20 5.30

STAC
modPow1 Safe 18 1.47 0.61
modPow1 Unsafe 58 218.54 14.16
modPow2 Safe 20 1.62 0.75
modPow2 Unsafe 106 7813.68 141.36
passwordEq Safe 16 2.70 1.10
passwordEq Unsafe 15 1.30 0.39

Literature
k96 Safe 17 0.70 0.61
k96 Unsafe 15 1.29 0.54
gpt14 Safe 15 1.43 0.46
gpt14 Unsafe 26 219.30 1.25
login Safe 16 1.77 0.54
login Unsafe 11 1.79 0.70

Figure 3.8: Comparison between Themis and Blazer.

66

on the same 22 benchmarks that are used to evaluate Blazer in their PLDI’17

paper [9]. These benchmarks include a combination of challenge problems from

the DARPA STAC program, classic examples from previous literature[72, 98,

132], and some microbenchmarks constructed by the developers of Blazer.

Since Blazer verifies standard non-interference (rather than our proposed

ε-bounded variant), we set the value of ε to be 0 when running Themis.

We summarize the results of our comparison against Blazer in Ta-

ble 3.8. 2 One of the key points here is that Themis is able to automatically

verify all 25 programs from the Blazer data set. Moreover, we see that

Themis is consistently faster than Blazer except for a few benchmarks that

take a very short time to analyze. On average, Themis takes a median of 7.73

seconds to verify a benchmark, whereas the median running time of Blazer

is 376.92 seconds.

In summary, while both Blazer and Themis are sound, this compar-

ison shows that Themis can verify more programs than Blazer in a fraction

of the time.

67

Benchmark Version LOC LOC’ ε = 64 ε = 0 Time (s)

Spring-Security Safe 1630 41 3 3 1.70
Spring-Security Unsafe 1602 32 3 3 1.09
JDK7-MsgDigest Safe 633 30 3 3 1.27
JDK6-MsgDigest Unsafe 619 27 3 3 1.33
Picketbox Safe 208 73 3 7 1.79
Picketbox Unsafe 180 65 3 3 1.55
Tomcat Safe 12221 100 3 7 9.93
Tomcat Unsafe 12173 96 3 3 8.64
Jetty Safe 2667 77 3 3 2.50
Jetty Unsafe 2619 76 3 3 2.07
orientdb Safe 19564 134 3 7 37.99
orientdb Unsafe 19413 131 3 3 38.09
pac4j Safe 1978 104 3 7 3.97
pac4j Unsafe 1900 105 3 3 1.85
boot-auth Safe 7106 74 3 7 9.12
boot-auth Unsafe 6977 69 3 3 8.31
tourPlanner Safe 7735 46 3 3 22.22
tourPlanner Unsafe 7660 34 3 3 22.01
Dyna table Unsafe 175 40 3 3 1.165
Advanced table Unsafe 232 55 3 3 2.01

Figure 3.9: Evaluation on existing vulnerabilities
A checkmark (3) indicates that Themis gives the correct result, while 7 indicates

a false positive.

68

3.6.2 Detection of Known Vulnerabilities

To demonstrate that Themis can be used to detect non-trivial vulner-

abilities in real-world Java programs, we further evaluate Themis on security-

sensitive Java frameworks. The benchmarks we collect come from the following

sources:

1. Response-size side-channel benchmarks from existing

publication [190]3.

2. One benchmark that contains a response-size side channel from the

DARPA STAC project.

3. A well-known timing side channel in the MessageDigest class from JDK6.

4. Seven other benchmarks with known vulnerabilities collected from Github.

Benchmarks that fall in the first two categories contain response-size side-

channel vulnerabilities, and all other benchmarks contain timing side-channels.

All benchmarks except for those in category (1) also come with a repaired

version that does not exhibit the original vulnerability.

2 The Blazer paper reports two sets of numbers for running time, namely time for
safety verification alone, and time including attack specification search. Since Themis does
not perform the latter, we only compare time for safety verification. For the “Size” column
in the table, we use the original metric from Blazer, which indicates the number of basic
blocks.

3We are only able to obtain the source codes for 2 of 3 benchmarks mentioned in the
paper.

69

Before running Themis, we need to specify the entry points of each

application. Since most applications come with test cases, we use these test

harnesses as entry points. For those applications for which we do not have

suitable drivers, we manually construct a harness and specify it as the entry

point.

Main results. The table in Figure 3.9 shows the accuracy and running

time of Themis on these benchmarks. Using a value of ε = 64, Themis

successfully finds vulnerabilities in the original vulnerable versions of these

frameworks and is able to verify that the original vulnerability is no longer

present in the repaired versions. The running time of Themis is also quite

reasonable, taking an average 8.81 seconds to analyze each benchmark.

Benefit of taint analysis. Recall from Sections 3.1 and 3.5 that

Themis performs taint analysis to identify hot spots, which overapproximate

program fragments that may contain a side-channel vulnerability. The QCHL

verifier only analyzes such hot spots rather than the entire program. To demon-

strate the usefulness of taint analysis, we compare the lines of code (in Soot

IR) in the original application (reported in the LOC column) with the lines of

code (also in Soot IR) with those analyzed by the QCHL verifier (reported in

the LOC’ column). As we can see from Figure 3.9, taint analysis significantly

prunes security-irrelevant parts of the application in terms of lines of codes.

This pruning effect can also be observed using other statistics. For example,

the number of reachable methods ranges from 15 to 1487, with an average of

479, before taint analysius, whereas the number of reachable methods after

70

taint analysis ranges from 6 to 35, with an average of 15, after taint analysis.

Thus, pruning using taint information makes the job of the QCHL verifier

significantly easier.

Benefit of ε. To justify the need for our relaxed notion of non-

interference, Figure 3.9 also shows the results of the same experiment using

an ε value of 0. Hence, the ε = 0 column from Figure 3.9 corresponds to the

standard notion of non-interference. As we can see from the table, Themis

reports several false positives using an ε value of 0. In particular, the repaired

versions of some programs still exhibit a minor resource usage imbalance but

this difference is practically infeasible to exploit, so the developers consider

these versions to be side-channel-free. However, these programs are deemed

unsafe using standard non-interference. We believe this comparison shows

that our relaxed policy of ε-bounded non-interference is useful in practice and

allows security analysts to understand the severity of the side channel.

Benefit of relational analysis. To investigate the benefit of re-

lational invariants, we analyze the safe versions of the 20 benchmarks from

Figures 8 and 9 with relational invariant generation disabled. In this case,

Themis can only verify the safety of 10 of the benchmarks.

Although this number can potentially be increased by using a more

sophisticated non-relational loop invariant generation algorithm, Themis cir-

cumvents this need, instead using simple relational in- variants that are con-

junctions of simple equality constraints. This experiment corroborates the

hypothesis that QCHL makes verification easier by requiring simpler loop in-

71

Benchmark LOC Category #Reports Time (s)
Jetty 2619 Server 4 10.17
Tomcat 12173 Server 1 5.86
OpenMRS 10721 Healthcare 1 9.71
OACC 78 Authentication 1 1.83
Apache Shiro 4043 Authentication 0 6.54
Apache Crypto 4505 Crypto 0 4.33
bc-java 5759 Crypto 0 6.89

Figure 3.10: Evaluation Themis on identifying zero-day vulnerabilities from
popular Java applications

variants compared to other techniques like self-composition.

3.6.3 Discovery of Zero-Day Vulnerabilities

To evaluate whether Themis can discover unknown vulnerabilities in

real world Java applications, we conduct an experiment on seven popular Java

frameworks. Our data set covers a wide range of Java applications from dif-

ferent domains such as HTTP servers, health care platforms, authentication

frameworks, etc. For example, Eclipse Jetty is a well-known web server that is

embedded in products such as Apache Spark, Google App Engine, and Twit-

ter’s Streaming API. OpenMRS is the world’s leading open source enterprise

electronic medical record system platform; OACC is a well-known Java ap-

plication security framework, and bc-java is an implementation of the Bounty

Castle crypto API in Java.

As in our previous experiment, we first manually annotate each ap-

plication to indicate the sources of confidential information. We then use

Themis to find timing side channels in these applications using an ε value of

72

10. The results of this experiment are summarized in Figure 3.10. As we can

see from this figure, Themis reports a total of seven vulnerabilities in four of

the analyzed applications. We manually inspected each report and confirmed

that the detected vulnerabilities are indeed true positives. We also reported

the vulnerabilities detected by Themis to the developers, and the majority of

these vulnerabilities were confirmed and fixed by the developers in less than

24 hours. However, the vulnerability that we reported for OpenMRS was re-

jected by the developers. The reason for this false positive is that the leaked

password is actually hashed and salted in the database, but, because the logic

for hashing and salting is not part of the Java implementation, Themis was

not able to reason about this aspect.

To give the reader some intuition about the kinds of side channels de-

tected by Themis, Figure 3.11 shows a security vulnerability from the Eclipse

Jetty web server. The check procedure from Figure 3.11 checks whether the

password provided by the user matches the expected password (cooked).

The original code performs this check by calling the built-in equality method

provided by the java.lang.String library. Since the built-in equality method

returns false as soon as it finds a mismatch between two characters, line 10 in

the check method introduces a timing side-channel vulnerability.

The developers have fixed the vulnerability [1] in this code snippet by

replacing line 10 with the (commented out) code shown in line 9. In particular,

the fix involves calling the safe version of equals, called stringEquals, which

checks for equality between all characters in the strings. This repaired version

73

1 public boolean check(Object credentials)

2 {

3 if (credentials instanceof char[])

4 credentials = new String((char[])credentials);

5 if (!(credentials instanceof String) &&

6 !(credentials instanceof Password))

7 LOG.warn("Can’t check " +

8 credentials.getClass() + " against CRYPT");

9

10 String passwd = credentials.toString();

11 // FIX: return stringEquals(_cooked, UnixCrypt.crypt(passwd,_cooked));

12 return _cooked.equals(

13 UnixCrypt.crypt(passwd,_cooked));

14 }

15

16 /**

17 * <p>Utility method that replaces String.equals()

18 * to avoid timing attacks.</p>

19 */

20 static boolean stringEquals(String s1, String s2)

21 {

22 boolean result = true;

23 int l1 = s1.length();

24 int l2 = s2.length();

25 if(l1 != l2) result = false;

26 int n = (l1 < l2) ? l1 : l2;

27 for (int i = 0; i < n; i++)

28 result &= s1.charAt(i) == s2.charAt(i);

29 return result;

30 }

Figure 3.11: Eclipse Jetty code snippet that contains a timing side channel
Line 12 is the original buggy code. This vulnerability can be fixed by implementing
stringEquals (lines 20 – 30) and calling it instead of the built-in String.equals

method.

74

of the check method no longer contains a vulnerability for any ε > 1, and

Themis can verify that the check procedure is now safe.

3.7 Limitations

Like any other program analysis tool, Themis has a number of limi-

tations. First, due to the fundamental undecidability of the underlying static

analysis problem, Themis is incomplete and may report false positives (e.g.,

due to imprecision in pointer analysis or loop invariant generation). For ex-

ample, our method for inferring relational invariants is based on monomial

predicate abstraction using a fixed set of pre-defined templates, and we restrict

our templates to equalities between variables. In addition, our non-relational

invariant generator is based on traditional abstract interpretation, which does

not distinguish array elements precisely.

Second, dynamic features of the Java language, such as reflective calls,

dynamic class loading, and exceptional handling, pose challenges for Themis.

Our current implementation can handle some cases of reflection (e.g., reflective

calls with string constants), but reflection can, in general, cause Themis to

have false negatives.

Finally, Themis unconditionally trusts all human inputs into the sys-

tem, which may result in false negatives if the user inputs are not accurate.

Said user inputs include application entry points, taint sources, cost instru-

mentations, and models of library methods.

75

Chapter 4

Enhanced Relational Verification Using

Reinforcement Learning

In the previous chapter, we introduce the techinque of verifying non-

interference, a 2-safety property. In this chapter, we generalize this approach

to proving a more general class of relational properties. Recall from section 1.1

that relational properties state the relationships between multiple programs

or multiple runs of the same program. As we saw in Chapter 3, a standard

way to prove such properties is to reduce the original problem into discharging

a set of standard Hoare triples. Despite the power and conceptual simplicity

of this approach, a key challenge is that there are typically many ways to

reduce a relational verification problem to proving standard safety. While

each reduction method corresponds to a valid, provably-sound proof strategy,

some of these strategies are much more amenable to automation than others.

For example, consider the problem of verifying noninterference of pro-

gram P1 and P2 shown in Figure 4.1 under the assumption that all input

arguments are marked as low inputs. Although it is relatively straightforward

for a human to recongnize that the easiest way to prove the noninterference

property is to swap the order of the two loops in P2 and synchronize each of

76

void P1(int n1, int k1) {

for (int i = 0; i < n1; ++i)

consume(k1);

for (int i = 0; i < n1; ++i) {

consume(k1);

consume(k1);

}

}

void P2(int n2, int k2) {

for (int i = 0; i < n2; ++i) {

consume(k2);

consume(k2);

}

for (int i = 0; i < n2; ++i)

consume(k2);

}

Figure 4.1: Example programs

them with the corresponding loops in P1, the verification strategy described

in Chapter 3.4.1 is not intelligent enough to spot the pattern. Instead, it will

näıvely try to synchronize the first loop in P1 with the first loop in P2, rec-

ognizing that synchronization is not feasible due to the difference of resource

consumption in the loop body, and fall back to self-composition where a much

harder loop invariant is required from the underlying invariant generation al-

gorithm.

The problem of finding a good reduction strategy that is most amenable

to automation is not unique to the property of noninterference. The challenge

is shared among all relational verification problems in general. Due to the sig-

nificance of relational verification across many application domains, and due to

the fact that most commonly used approach for relational verification would

inevitably have to handle the problem of reduction strategy selection, this

problem will be the central focus for this chapter. Specifically, we propose an

algorithm to automatically and efficiently synthesize the best reduction strat-

egy using a combination of reinforcement learning and backtracking search.

77

4.1 Verifying Relational Properties

Existing techniques reduce relational verification to safety checking ei-

ther by explicitly constructing a product program [14, 17, 59] or introducing a

proof system where certain proof obligations can be discharged by an off-the-

shelf safety checker [24, 19, 168]. In this chapter, we adopt the latter approach

and think of relational verification as the problem of searching for a proof

within a relational program logic.

Following the formulation in section 3.4, we assume a relational pro-

gram logic that derives judgments of the form

` 〈Φ〉 S1 ~ S2 〈Ψ〉

where S1 and S2 are programs containing disjoint sets of variables and Φ

(resp. Ψ) is a relational precondition (resp. post-condition). In the rest of

this chapter, we refer to triples of the form 〈Φ〉 S1 ~ S2 〈Ψ〉 as relational Hoare

triples.

By studying prior work on relational program verification [24, 168, 14,

17, 60], we built a library of 37 different proof rules and tactics, of which five

representative ones are shown in Figure 4.2. While a detailed discussion of

these proof rules is out of scope for this chapter, we highlight some of their

salient features below.

Reduction to safety. As illustrated by the Lift and Seq rules from Fig-

ure 4.2, the premises of a relational proof rule can involve proving standard

78

` {Φ}S{Ψ}
(Lift)

` 〈Φ〉skip~ S〈Ψ〉

` {Φ}S{Φ′} ` 〈Φ′〉S1 ~ S2〈Ψ〉
(Seq)

` 〈Φ〉S;S1 ~ S2〈Ψ〉

Φ⇒ (e1 ↔ e2) Φ⇒ I
` 〈I ∧ e1 ∧ e2〉S1 ~ S2〈I〉
` 〈I ∧ ¬e1 ∧ ¬e2〉S ~ S′〈Ψ〉

(Sync)
` 〈Φ〉while e1 do S1;S ~while e2 do S2;S′〈Ψ〉

` 〈Φ ∧ e〉S;while e do S;S1 ~ S2〈I〉
` 〈Φ ∧ ¬e〉S1 ~ S2〈Ψ〉

(Peel)
` 〈Φ〉while e do S;S1 ~ S2〈Ψ〉

f1 = λ~p1. S
′
1 f2 = λ~p2. S

′
2 ` 〈P〉S′1 ~ S′2〈Q〉

Φ⇒ P[~a1/~p1, ~a2/~p2]

` 〈Q[~a1/~p1, ~a2/~p2]〉S1 ~ S2〈Ψ〉
(Call)

` 〈Φ〉call f1(~a1);S1 ~ call f2(~a2);S2〈Ψ〉

Figure 4.2: Selected rules for reducing 2-safety verification problem to standard
Hoare triples

79

Hoare triples of the form {P}S{Q}. Thus, relational program logics eventually

reduce the problem to standard safety checking.

Non-determinism. Given a proof goal G = 〈Φ〉 S1 ~ S2 〈Ψ〉, there are typ-

ically many rules that can be used to prove G. For example, if S1 and S2 are

both while loops, we can apply three different rules (namely, Seq, Sync, and

Peel) even for the small subset of proof rules shown in Figure 4.2.

Sensitivity to proof strategy. Let us define a proof strategy to be a map-

ping from each proof subgoal to a proof rule that can be used for discharging

it. Because the base cases of a relational proof require invoking an off-the-shelf

safety checker, the success of a particular proof strategy depends on how easy

or difficult the corresponding safety checking problems are. Thus, some proof

strategies may lead to successful proofs, while others may not.

Large search space. Since there are many proof rules that can be used to

discharge a relational Hoare triple, the search space of proof strategies is very

large. For example, suppose we have m rules with k subgoals. Then, given

two programs S1, S2 of size n, there are up to O((mk)n) possible applications

of the proof rules.

Shape of the rules. As we can see from Figure 4.2, each relational proof

rule R consists of (i) a goal G (i.e., a relational Hoare triple), (ii) a set of

subgoals Ω = {G1, . . . ,Gn}, where each Gi is also a relational Hoare triple, and

80

(iii) a set of verification conditions (VCs) (e.g., Φ → (e1 ↔ e2) and Φ → I in

rule Sync). Thus, we can represent each relational proof rule R as a quadruple

R = (Rid,RG,RΩ,Rϕ), where Rid is the name of the rule, RG,RΩ represent the

goal and subgoals respectively, and Rϕ is a formula that corresponds to the

conjunction of all VCs. Observe that the VCs can involve unknown predicates

such as I in rule Sync or pre- and post-conditions P,Q in rule Call; thus we

represent VCs as a system of Constrained Horn Clauses (CHCs) [50, 121].

Furthermore, since standard Hoare triples can also be encoded as CHCs [29,

49], we also think of the standard Hoare triples that occur in the premises as

part of the VC of the corresponding rule.

Due to non-determinism and sensitivity to proof strategy, it is critical

to have a good proof strategy that reduces the original relational problem into

a standard safety problem that is easy to discharge. However, constructing this

proof strategy can be tricky, especially when the behavior of the underlying

safety checker is opaque. Moreover, the näıve strategy of trying all possible

reduction strategies is also not feasible in practice because of the large search

space. As a result, prior techniques either use domain-specific heuristics (e.g.,

[185, 168, 38, 169]) or require the user to manually specify a suitable reduction

strategy (e.g., [14, 60]). Both of these approaches are sub-optimal in that the

latter one lacks automation whereas the first one, by exploring a limited subset

of possible reduction strategies, may fail to prove the property.

We aims to address this challenge by guiding relational proof search

using machine learning. That is, our goal is the derivation of a probability

81

distribution over possible relational verification strategies such that those that

are deemed more likely-to-be-successful by the machine learning model are

explored first.

4.2 Representing Proof Strategies

Our goal in the rest of this chapter is to automate relational verification

by efficiently searching through a large space of possible proof strategies. In

this section, we will describe how we represent proof strategies and formalize

what we mean by a strategy being successful. Our learning algorithm and

search algorithm will be explained in the following chapters.

Intuitively, a proof strategy specifies which rule to apply to discharge

each proof subgoal. In the rest of this chapter, we represent proof strategies

as trees where nodes correspond to proof subgoals and edges represent the

application of some proof rule.

Definition 8 (Proof strategy). A proof strategy is a tuple Υ = (V,E,AR, Aϕ, AG)

where

- V is a set of nodes.

- E is a set of arcs.

- AR maps each node to either a proof rule R or ⊥.

- Aϕ maps each node to a verification condition.

82

v1

(R1, ϕ1,G1)

v2

(R2, ϕ2,G2)

v4

(R4, ϕ4,G4)

v3

(⊥, true,G3)

(a) Before applying R3

v1

(R1, ϕ1,G1)

v2

(R2, ϕ2,G2)

v4

(R4, ϕ4,G4)

v3

(R3, ϕ3,G3)

v5

(⊥, true,G5)

(b) After applying R3

Figure 4.3: Example proof strategies

- AG maps each node to the corresponding proof goal 〈Φ〉 S1 ~ S2 〈Ψ〉 for

its subtree.

We refer to AR, Aϕ, andAG as the rule, VC, and goal annotations re-

spectively, and we use the symbol ⊥ to indicate open branches of the proof.

That is, if AR(v) is ⊥, this means that we have not yet chosen a proof rule

for proving the subgoal associated with v. Thus, we also differentiate between

complete and incomplete proof strategies:

Definition 9 (Complete proof strategy). We say that v ∈ V is an open

branch of proof strategy S if AR(v) = ⊥. A proof strategy is complete if it

does not have any open branches and incomplete otherwise.

Example 4.2.1. Figure 4.3a shows an example proof strategy Υ. Based on

the tree structure, we see that nodes v2 and v3 correspond to subgoals of v1,

which represents the proof goal G1. Furthermore, since v1 is annotated with

rule R1, we can tell that proof subgoals v2 and v3 were obtained by applying

83

proof rule R1. Also, node v1 is annotated with verification condition ϕ1; this

means ϕ1 must be discharged for the application of rule R1 to be valid. Finally,

note that v3 is an open branch of the proof since we have AR(v3) = ⊥. Thus,

Υ is incomplete.

Since our verification algorithm starts with a completely unconstrained

strategy and iteratively refines it, we define the notion of initial strategy for a

given proof goal G:

Definition 10 (Initial strategy). Given a proof goal G, the initial strategy

for G, denoted Υ0(G), is given by:

({v1}, ∅, {v1 7→ ⊥}, {v1 7→ true}, {v1 7→ G})

Thus, Υ0(G) encodes all possible ways of proving the goal G within the

given proof system. Since our verification algorithm will iteratively refine its

strategy by expanding an open branch, Algorithm 3 desribes how we apply

a proof rule R to strategy Υ. Given a proof rule R and incomplete strategy

Υ, ApplyProofRule yields a refined strategy by generating (a) verification

conditions as prescribed by Rϕ, and (b) new proof subgoals G1, . . . ,Gn accord-

ing to RG. Note that each proof subgoal leads to the addition of an open

branch in the refined strategy. 1

1In Algorithm 3, GenVC and GenSubgoals take a proof rule and a proof goal as input and
generate new VCs and new subgoals according to the proof rules in Figure 4.2, respectively.
The FirstOpenBranch function returns the first open branch of the given strategy. Since
every open branch must be closed eventually, we assume a canonical order for simplicity.

84

Algorithm 3 Rule application

Input: Υ = (V,E,AR, Aϕ, AG): incomplete proof strategy
Input: R = (Rid,RG,RΩ,Rϕ): rule to apply
Output: A refined proof strategy

1: procedure ApplyProofRule(Υ, R)
2: v ← FirstOpenBranch(Υ)
3: AR(v) ← Rid

4: Aϕ(v) ← GenVC(Rϕ, AG(v))
5: Ω ← GenSubgoals(RΩ, AG(v))
6: for Gi ∈ Ω do
7: v′ ← fresh node
8: (V, E) ← (V ∪ { v′ }, E ∪ { v → v′ })
9: (AR, Aϕ) ← (AR[v′ ← ⊥], Aϕ[v′ ← true])

10: AG ← AG[v′ ← Gi]

11: return (V,E,AR, Aϕ, AG)

Example 4.2.2. Figure 4.3b shows the result of applying rule R3 to the open

branch of Figure 4.3a. Here, R3 generates one new subgoal G5 with associated

verification conditions ϕ3. The rule application introduces a new open branch

v5 below v3, with Aϕ(v5) initialized to true.

Definition 11 (Strategy refinement). We say that a strategy Υ′ directly

refines another strategy Υ, written Υ′ �1 Υ, if Υ′ is the result of calling

ApplyProofRule on Υ for some proof rule R. We define � as the reflexive

transitive closure of �1 and say that Υ′ refines Υ whenever Υ′ � Υ.

Given a proof strategy, we need a way of determining whether it results

in a valid proof. Towards this goal, we define a successful proof strategy as

follows:

Definition 12 (Successful proof strategy). A proof strategy Υ = (V,E,AR, Aϕ, AG)

85

is successful if

- Υ is complete.

- The formula
∧
v∈V Aϕ(v) can be proven satisfiable.

Recall from Section 4.1 that we represent verification conditions as

Constrained Horn Clauses (CHCs). Thus, the satisfiability of the formula∧
v∈V Aϕ(v) means that there exists an interpretation of the unknown relations

under which the formula evaluates to true.

Definition 13 (Failing proof strategy). A proof strategy Υ = (V,E,AR, Aϕ, AG)

is failing if the conjunction
∧
v∈V Aϕ(v) is unsatisfiable.

Note that, unlike successful proof strategies, failing strategies need not

be complete. In particular, the formula can become unsatisfiable
∧
v∈V Aϕ(v)

even when the proof contains open branches. Our proof search algorithm will

take advantage of this observation in Section 4.5.

4.3 Learning Algorithm Overview

In this section, we give a high-level overview of our relational verifica-

tion algorithm and highlight its salient features.

Searching for relational proofs. As mentioned earlier, our verification al-

gorithm performs backtracking search over proof strategies, prioritizing those

that are most promising. To this end, we use reinforcement learning to predict

86

which proof strategies are most likely to be successful. Specifically, our rein-

forcement learning algorithm produces a distribution p over complete proof

strategies such that, if p(Υ1) > p(Υ2), then Υ1 is more likely to be a successful

strategy compared to Υ2 according to the learned model.

Given a specific relational verification task t, we use the notation p(t)

to denote the distribution of complete proof strategies Υ that are applicable

to verifying t (i.e., the root node of Υ is annotated with the initial proof goal

for t). Now, to solve a relational verification problem t, our search algorithm

initializes p0 = p(t). Then, on each iteration i = 0, 1, 2, ... (up to some upper

bound r)2, it chooses a complete proof strategy Υi that has high probability

according to pi, and checks whether Υi is successful. If so, the verification

algorithm terminates and returns Υi. Otherwise, based on feedback explaining

why Υi was unsuccessful, our algorithm constrains the support of pi to obtain

a new distribution pi+1 that avoids making mistakes similar to those in Υi. In

Section 4.5, we describe how our search strategy constructs pi+1 given pi and

a failing proof strategy Υi.

Learning objective. The goal of our learning algorithm is to generate a

distribution p that places high probability mass on successful proof strategies.

2While the value of r used by the search algorithm is large (it corresponds to the timeout
set on the search algorithm), during training we choose r to be small. By doing so, we
encourage the the search algorithm to discover a successful proof strategy earlier in the
search.

87

In particular, it aims to solve the following optimization problem:

p∗ = arg max
p

Pr
t∼T,Υ∼ξ(t)r,p

[O(Υ) = 1] (4.1)

where t ∼ T is a uniformly random task, O(Υ) is 1 if Υ is successful and 0

otherwise, and ξ
(t)
r,p is a distribution of proof strategies checked by the search

algorithm, i.e.,

ξ(t)
r,p(Υ) =

1

r

r∑
i=1

p
(t)
i (Υ).

Essentially, the objective in Eq. (4.1) is to maximize the probability that our

search algorithm discovers a successful proof strategy for a uniformly random

task within r iterations.

However, there are three challenges to solving the optimization prob-

lem from Eq. (4.1): First, we do not have positive examples of successful

proof strategies. Second, we only have a finite training set of tasks Ttrain.

Finally, standard reinforcement learning algorithms cannot be applied to op-

timize Eq. (4.1) due to the modified distribution ξ
(t)
r,p. Below, we discuss how

we address these challenges.

Reinforcement learning. Since we do not have positive examples of suc-

cessful proof strategies, we cannot use standard supervised learning algorithms

to optimize Eq. (4.1). Instead, we have oracle access to O in the form of

our proof checker, which makes it possible to use reinforcement learning. In

Section 4.4.2, we describe how to formulate the optimization problem from

Eq. (4.1) as a reinforcement learning problem.

88

Function approximation. Since we are only given a finite subset of tasks

Ttrain ⊆ T, we can only approximate the samples t ∼ T from Eq. (4.1) with

uniformly random samples t ∼ Ttrain. However, the solution to the approx-

imate objective may not generalize to all of T. Thus, we use a feature map

to improve generalization. The essential idea is to restrict the search space

to distributions p(Υ) that only depend on Υ through a handcrafted feature

map φ(Υ) ∈ X = Rd, which is designed to map similar proof strategies to

similar features. In particular, given two strategies Υ and Υ′, we should

have φ(Υ) ≈ φ(Υ′) if the proof goals labeling their roots are similar, and

φ(Υ) 6≈ φ(Υ′) otherwise. Then, if the optimal distribution p∗ assigns high

probability mass to Υ, it similarly assigns high probability mass to Υ′ (as-

suming p∗ is reasonably smooth). Thus, knowledge can be transferred to new

tasks with proof goals that are different from those for training tasks t ∈ T.

We describe this approach in Section 4.4.3.

Reinforcement learning algorithm. Standard reinforcement learning al-

gorithms can only be applied to optimizing Eq. (4.1) for the case ξ
(t)
r,p = p(t),

i.e., where r = 1. In other words, these algorithms can only optimize for the

case where the search algorithm only considers a single proof strategy, so they

are not directly applicable to our setting where the search algorithm tries mul-

tiple consecutive proof strategies. In Section 4.4.4, we describe how we adapt

the standard policy gradient algorithm to our setting.

89

...

...

Figure 4.4: An example of an MDP constructed for a relational verification
problem.

4.4 Reinforcement Learning

4.4.1 Background on Reinforcement Learning

A reinforcement learning problem is typically specified as a Markov

decision process (MDP). Informally, an MDP is a transition system where the

process is in some state Si at each time step, and a decision maker can take

any of the actions A1, . . . , An that is available at state Si and collects some

reward R. The goal of reinforcement learning is to find the optimal action to

take in each state to maximize the expected long-term reward.

Definition 14. A Markov decision process is a tuple M = (S, S0, SF ,A,P,R),

where S is the set of states, S0 is the initial distribution over states, SF is a

set of terminal states, A is the set of actions, P : S × A → S is the (possibly

stochastic) transition function, and R : S → R is the (possibly stochastic)

reward function.3

3Oftentimes, a discount factor γ ∈ (0, 1) is needed to ensure that the learning problem

90

Definition 15. A policy π for an MDP M is a (possibly stochastic) function

π : S→ A specifying which action to take in each state.

When we use a stochastic policy π to choose which actions to take, this results

in a random trajectory, referred to as a rollout, through the state space:

Definition 16. A rollout ζ ∼ π is a random sequence of tuples ζ ∈ (S× (A∪

{∅})× R)∗ constructed as follows:

• sample a random state S0 ∼ S0

• sample actions Ai = π(Si), random transitions Si+1 = P(Si, Ai), and re-

wards Ri = R(Si) for each i ∈ {1, ..., T} until a terminal state ST ∈ SF is

reached.

Then, rollout ζ is the sequence:

((S0, A0, R0), ..., (ST−1, AT−1, RT−1), (ST ,∅, RT))

Note that there is no action AT for the last element since ST is a terminal

state.

As mentioned earlier, the objective in reinforcement learning is to maximize

expected long-term reward:

for the MDP is well-defined; however, in our setting, the MDP always terminates after a
finite number of steps.

91

Definition 17. Given an MDP M, the reinforcement learning problem is to

find the optimal policy π∗ = arg maxπ R
(π), where R(π) denotes the cumulative

reward of π:

R(π) = Eζ∼π

[
T∑
i=0

Ri

]
.

4.4.2 MDP for Relational Verification

To use reinforcement learning in our setting, we need to formulate an

MDP Mproof encoding relational verification problems. Intuitively, given an

(incomplete) proof strategy Υ, we want to learn a policy that chooses a proof

rule R to apply to Υ that maximizes the chance of eventually constructing a

successful (complete) proof strategy. Thus, states in our MDP are proof strate-

gies, and actions are proof rules that can be applied to the current strategy.

More formally, we construct the MDP Mproof = (S, S0, SF ,A,P,R) as follows:

• The states S are proof strategies Υ.

• S0 corresponds to initial proof stategies (recall Def. 10)

• The terminal states SF are complete proof strategies.

• The actions A ∈ A are all pairs (v,R), where R is a proof rule that can be

applied to node v in the current proof strategy Υ.

• The (deterministic) transitions are P(S,A) = S ′, where S ′ is the proof

strategy obtained from S by applying the proof rule A to the first open

branch of S.

92

• The reward function is R(S) = O(S) (i.e., the reward is 1 if S is successful

and 0 otherwise).

Intuitively, the actions in Mproof incrementally construct a complete proof

strategy ST ∈ SF from the initial proof strategy S
(t)
0 , where t ∼ T is a uniformly

random task, and the reward is whether ST is successful.

Example 4.4.1. Figure 4.4 shows an example of an MDP for a relational

verification problem G1. Each state is a proof strategy Υ, and each action is a

pair (v,R) consisting of a node v in the current proof strategy and a proof rule

R that can be applied to v. The initial state is the left-most state. For each

action, an arrow shows the state transition that would occur if that action is

taken. The right-most state on the top is a final state with reward 1 since it

represents a successful proof strategy; all other states have reward 0.

Connection to our objective. Now, we describe the connection between

the optimal policy for Mproof and the optimization problem from Eq. (4.1).

First, we define a correspondence between distributions p over complete proof

strategies and MDP policies π:

Definition 18. Given a policy π for Mproof, its terminal state distribution is

pπ(Υ) = Prζ∼π(ST = Υ),

where ST is the terminal state of ζ.

93

In other words, pπ(Υ) is the probability that a rollout ζ ∼ π ends in terminal

state ST = Υ. Since the terminal states in Mproof are complete proof strate-

gies, pπ is a distribution over complete proof strategies. Then, we have the

following theorem, which relates the problem of maximizing Eq. (4.1) to the

reinforcement learning problem for our MDP Mproof:

Theorem 4. Let π∗ be the optimal policy for Mproof, and

p∗ = arg max
p

Prt∼T,Υ∼p(t) [O(Υ) = 1], (4.2)

where p is a distribution over complete proof strategies. Then, we have p∗ =

pπ∗.

There is a key difference between our objective Eq. (4.1) and the objective

Eq. (4.2) from Theorem 4: In Eq. (4.1), the probability is taken with respect

to complete proof strategies Υ ∼ ξ
(t)
r,p (i.e., the distribution of proof strate-

gies tried by our search algorithm given guiding distribution p(t)), whereas

in Eq. (4.2), the probability is taken with respect to Υ ∼ p(t) (i.e., a sin-

gle proof strategy according to p(t)). In other words, our objective optimizes

over a sequence of complete proof strategies tried by the search algorithm,

whereas Eq. (4.2) optimizes for a single randomly sampled proof strategy. In

Section 4.4.4, we describe how to modify an existing reinforcement learning

algorithm to optimize Eq. (4.1) instead of Eq. (4.2).

94

4.4.3 Function Approximation

Recall that, when we only have a limited set of training tasks available,

then the solution to Eq. (4.1) may not generalize well beyond tasks in the

training set. As standard, we use approximate reinforcement learning to im-

prove generalization power [172]. We first give background on the approximate

RL and then describe our design choices within this framework

Background on approximate reinforcement learning. In approximate

reinforcement learning, one needs to provide:

• A feature map φ : S→ X, where X = Rd, which maps each state S to a

feature vector φ(S) representing S.

• A function family fθ : X → A, parameterized by θ ∈ Θ = Rm, which

maps feature vectors to actions.

Then, rather than search over all possible policies, the reinforcement learning

algorithm restricts to policies of the form fθ(φ(S)) (for θ ∈ Θ):

Definition 19. Given a feature map φ : S → X and function family fθ,

the approximate reinforcement learning problem is to compute the optimal

parameters

θ∗ = arg max
θ∈Θ

R(θ),

where R(θ) = R(πθ) and πθ(S) = fθ(φ(S)).

95

In other words, the goal of approximate reinforcement learning is to

find a policy within function family fθ that maximizes expected cumulative

reward.

In order for approximate reinforcement learning to be effective, the

feature map φ must be constructed using domain expertise to balance two

competing goals: First, given two states S and S ′, if the most promising

actions to take in S and S ′ are similar, then we should have φ(S) ≈ φ(S ′). On

the other hand, if the most promising actions are very different, then we should

have φ(S) 6≈ φ(S ′). Then, if the reinforcement learning algorithm learns the

best actions to take in state S, this knowledge is automatically transferred to

taking good actions in state S ′ (assuming smoothness of fθ).

Approximating our objective. Given a feature map and function family,

we can approximate Eq. (4.1) as follows. First, given parameters θ ∈ Θ, we

have the following corresponding distribution over complete proof strategies:

Definition 20. Given parameters θ ∈ Θ, its terminal state distribution is

pθ = pπθ .

Then, rather than optimize over all distributions p, we restrict to optimizing

over proof strategies of the form pθ (for θ ∈ Θ):

θ∗ = arg max
θ∈Θ

Pr
t∼T,S∼ξ(t)r,θ

[O(S) = 1], (4.3)

where ξr,θ = ξr,pθ .

96

Feature map. In order to apply the approximation framework to our prob-

lem, we need to map each proof strategy to a feature vector. Since proof

strategies are complex tree-structured objects involving many relational Hoare

triples, our feature map grossly over-approximates the states in Mproof . Specifi-

cally, we design φ(Υ) to take into account both (a) the global aspects of Υ (e.g.,

depth and breadth of its tree structure, number of open/closed branches, etc.)

as well as (b) local properties of the first open branch of Υ. For (b), suppose

that the active open branch is labeled with the proof goal G = 〈Φ〉 S1 ~ S2 〈Ψ〉.

We featurize this relational Hoare triple by both considering which proof

rules are (syntactically) applicable for discharging G and also performing a

lightweight “diff” between S1 and S2. In particular, our differencing algorithm

considers features such as whether both S1, S2 start with the same type of

statement, whether they involve loops or recursive functions, the ratio be-

tween their trip count and step size (if both start with loops) etc. Thus,

intuitively two strategies Υ1 and Υ2 will be deemed similar under φ if (a) their

tree structures are similar, and (b) the same proof rule is likely to be successful

for discharging the first open branches of Υ1 and Υ2.

Function family. In addition to the feature map, we also need a func-

tion family fθ for mapping features (i.e., proof strategies) to actions (i.e.,

proof rules). For this, we use a standard choice in the reinforcement learn-

ing literature, namely the function family fθ of neural networks with two

(fully-connected) hidden layers and ReLU activations. Then, θ is the con-

97

catenation of all the weight and bias parameters of the layers in the neural

network [151, 120, 182, 20].

4.4.4 Reinforcement Learning Algorithm

Recall from Section 4.4.2 that an optimal policy for our MDP does not

yield an optimal solution to Eq. 4.1. In particular, standard RL maximizes

expected reward under the assumption that we will explore a single rollout

of the learned policy, whereas we want to maximize expected reward when

exploring multiple rollouts during a backtracking search algorithm. Towards

this goal, we describe a modified reinforcement learning algorithm that directly

optimizes for our objective.

Our proposed optimization method builds on the policy gradient algo-

rithm, which optimizes the cumulative reward R(θ) as a function of the policy

parameters θ ∈ Θ using stochastic gradient descent. There are two key reasons

for building on top of the policy gradient algorithm: First, as we discuss in

the rest of this chapter, policy gradient is easy to adapt to directly optimize

Eq. (4.3). Second, because our feature vector φ(Υ) grossly overapproximates

Υ, we run into the so-called perceptual aliasing problem [41, 115], where two

states that are different look the same under φ. In contrast to alternative

algorithms like Q-learning, it is well-known that policy gradient works better

in this scenario.

98

Background on policy gradient. The key challenge solved by the pol-

icy gradient algorithm is how to compute an estimate of the gradient d
dθ
R(θ).

This algorithm is based on the the following well-known policy gradient theo-

rem [173]:

Theorem 5. We have

d

dθ
R(θ) = Eζ∼πθ [`(ζ)],

where

`(ζ) =
T−1∑
i=0

(
T∑

j=i+1

Rj

)
d

dθ
log πθ(Si, Ai).

In particular, the policy gradient theorem gives the gradient of the objective

R(θ), making it possible to use gradient descent to optimize R(θ) as a function

of θ.

Our algorithm. We now describe our algorithm for optimizing our objective

in Eq. (4.3), i.e.,

J(θ) = Pr
t∼T,S∼ξ(t)r,θ

[O(S) = 1].

To solve this problem, we leverage additional structure of our search algorithm:

Recall that, given guiding distribution p over complete proof strategies, our

search algorithm initializes p0 = p(t), and then iteratively constructs a sequence

of distributions p0, p1, p2, ..., pr. As we describe in Section 4.5, this sequence

of distributions corresponds to a sequence of policies πθ,0, πθ,1, πθ,2, ..., πθ,r,

where pi = p
(t)
πθ,i . Then, we have the following theorem:

99

Theorem 6. We have

dJ

dθ
(θ) =

1

r

r∑
i=1

Eζ∼πθ,i [`(ζ)],

where `(ζ) is the same as in Theorem 5.

As in standard policy gradient, we can use known techniques [173] to approx-

imate the gradient of J(θ) as follows:

dJ

dθ
(θ) ≈ 1

r

r∑
i=1

1

n

n∑
k=1

ˆ̀(ζ(i,k)),

where ζ(i,k) ∼ πi,θ. Thus, we can use this approximate gradient in conjunction

with gradient descent to compute the optimal parameters:

θ∗ = arg max
θ∈Θ

J(θ).

4.5 Policy-Guided Proof Search

In this section, we show how to use the optimal policy π synthesized

using reinforcement learning to perform backtracking search over proof strate-

gies. Towards this goal, a näıve approach would be to explore rollouts of π

according to according to their probability of ending in a successful proof strat-

egy. Essentially, such an approach corresponds to never updating the guiding

distribution p(t), i.e., pi+1 = pi.

However, the drawback of this approach is that failures may be correlated—

two proof strategies Υ and Υ′ that are very probable according to π may be

unsuccessful for similar reasons. Even after discovering that Υ is unsuccessful,

100

the näıve approach would not learn from this failure and would likely try Υ′

on a subsequent iteration.

Our search algorithm addresses this issue by integrating logical learning

into the statistical learning approach described in Section 4.4. Specifically, in

addition to using the stochastic policy to guide the search, we also use the

feedback provided by the verifier (i.e., CHC solver) to block proof strategies

that are guaranteed to result in failure. The main idea is to analyze the root

cause of an unsuccessful proof attempt and use this information to prune the

search space. Based on these ideas, we propose a backtracking search algorithm

that (a) uses the policy to decide which proof strategy to refine next, and (b)

leverages feedback from the verifier to avoid the exploration of proof strategies

that share the same root cause of failure as a previously explored one.

Our relational verification algorithm, called RelVerif, is shown in Al-

gorithm 4. Given a relational Hoare triple G and the stochastic policy π learned

from the training examples, RelVerif returns a successful proof strategy if

one exists and ⊥ otherwise. At a high level, the algorithm works as follows: It

maintains a worklist W of (incomplete) proof strategies, which initially con-

tains the unconstrained strategy Υ0(G) (recall Def. 10). During each iteration,

the algorithm invokes a procedure called ChooseStrategy, discussed in Sec-

tion 4.5.1, to pick the most promising strategy according to policy π (line 5)

and constructs a series of refinements Υ1, . . . ,Υn by applying each one of the

applicable proof rules Ri in the relational proof system ∆ (line 10). If we are

guaranteed that Υi is a failing strategy (i.e., Υi is a refinement of one of the

101

Algorithm 4 Policy-guided backtracking proof search

Input: G - target proof goal
Input: π - learned stochastic policy
Input: ∆ - available proof rules
Output: A successful proof strategy for G, or ⊥ if it does not exist

1: procedure RelVerif(G, π,∆)
2: W ← {Υ0(G)} . worklist of proof strategies
3: B ← ∅ . blocked proof strategies
4: while W 6= ∅ do
5: Υ ← ChooseStrategy(π,W) . Use policy
6: W ← W \ {Υ}
7: for Ri ∈ ∆ do
8: if ¬Applies(Ri,Υ) then
9: continue

10: Υi ← ApplyProofRule(Υ,Ri)
11: if ∃Υ′ ∈ B. Υi � Υ′ then
12: continue
13: if IsSuccessful(Υi) then return Υi

14: if IsFailing(Υi) then
15: B ← B ∪ { Minimize(Υi) }
16: else if ¬IsComplete(Υi) then
17: W ← W ∪ { Υi }
18: return ⊥

blocked strategies B), then we move on the next proof rule without adding Υi

to the worklist W (lines 11-12). On the other hand, if Υi is successful (i.e., it

is complete and the corresponding CHCs are satisfiable), then we return Υi as

a solution to the relational verification problem (line 13). Otherwise, if Υi is

failing, we compute an unsatisfiable core of the VCs used in Υi and add the

corresponding minimal failing strategy to the blocked strategies B (lines 14-

15). As mentioned earlier, this blocking set B allows the algorithm to prune

strategies that are guaranteed to be unsuccessful.

102

In what follows, we explain in more detail (a) how to use π to find the

most promising proof strategy, and (b) how to compute minimal failing proof

strategies.

4.5.1 Using policy to guide search

In order to use policy π to guide search, we need a suitable way to pri-

oritize which states to explore first. Intuitively, we want our search algorithm

to have two desired properties: First, complete proof strategies that have a

higher probability of being successful according to pπ should be explored first.

Second, the search must be exhaustive. That is, given a large enough time

limit, the algorithm should return a successful proof strategy if one exists.

One straightforward way to utilize π is to use a stochastic search al-

gorithm that repeatedly samples complete proof strategies according to the

distribution given by pπ. However, implementing an efficient random sam-

pling algorithm that guarantees exhaustiveness is a challenging task. Instead,

we use a deterministic search algorithm that simply enumerates complete proof

strategies in decreasing order of their probability according pπ. The intuition

is that strategies that are more probable under pπ are more likely to lead to a

successful proof; thus, they should be investigated first.

To ensure that the algorithm prioritizes complete strategies that corre-

spond to more likely rollouts of π, we introduce a prioritization function `π as

follows:

`π(Υ) =

{
1 if Υ = Υ0(G)

`π(Υ′)− log π(Υ′,R) otherwise,

103

where Υ =ApplyProofRule(Υ′,R).

Note that for a complete proof strategy Υ, we have `π(Υ) = −log pπ(Υ).

Thus, complete proof strategies that are more likely to be successful according

to pπ are assigned a lower value according to `π.

Going back to Algorithm 4, the function ChooseStrategy simply uses

the function `π to figure out which proof strategy to dequeue from W . In

particular, ChooseStrategy dequeues the strategy with the lowest `π value.

Theorem 7. Let Υ1 and Υ2 be two complete non-failing proof strategies. If

pπ(Υ1) > pπ(Υ2), then Υ1 will be explored (i.e., dequed from W) before Υ2 by

Algorithm 4.

4.5.2 Finding minimal failing strategies

To prevent the search algorithm from exploring failing strategies that

share the same root cause of failure as previously explored ones, we introduce

the following notion of minimal failing proof strategy :

Definition 21 (Minimal failing proof strategy). Given a failing proof

strategy Υ, we say that Υ′ is a minimally failing proof strategy of Υ if the

following conditions hold:

- Υ � Υ′

- Υ′ is failing

- There does not exist Υ′′ 6= Υ′ such that Υ′ � Υ′′.

104

Algorithm 5 Failing strategy minimization

Input: Υ = (V,E,AR, Aϕ, AG) - a failing proof strategy
Output: The corresponding minimal failing proof strategy

1: procedure Minimize(Υ)
2: U ← MinimalUnsatCore({Aϕ(v) | v ∈ V })
3: V⊥ ← {v | Aϕ(v) ∈ U}
4: Vc ← {v ∈ V | ∃u ∈ V⊥. v u}
5: Vf ← {v ∈ V | v 6∈ Vc ∧ ∃u ∈ Vc. (u→ v) ∈ E}
6: V ′ ← Vc ∪ Vf
7: E ′ ← {u→ v | u ∈ V ′ ∧ v ∈ V ′ ∧ (u→ v) ∈ E}
8: (A′R, A

′
ϕ, A

′
G) ← (AR ↓ V ′, Aϕ ↓ V ′, AG ↓ V ′)

9: for v ∈ Vf do
10: (A′R, A

′
ϕ) ← (A′R[v ← ⊥], A′ϕ[v ←true])

11: return (V ′, E ′, A′R, A
′
ϕ, A

′
G)

Essentially, a minimally failing proof strategy Υ′ for Υ captures the

root cause of failure in the sense that every proof rule in Υ′ is necessary for

generating an unsatisfisfiable system of CHCs in Υ. Thus, any proof strategy

that refines Υ′ is also guaranteed to fail and can be pruned from the search

space without losing completeness.

Now, going back to Algorithm 4, we use a procedure called Minimize

(line 15) to compute a minimally failing strategy. This procedure is summa-

rized in pseudo-code in Algorithm 5. Given a failing strategy Υ, Minimize

first computes a minimal unsatisfiable core of the VCs for Υ. More concretely,

for a failing strategy Υ = (V,E,AG, AR, Aϕ), we compute a subset of nodes

V⊥ ⊆ V such that
∧
v∈V⊥ Aϕ(v) is unsatisfiable but for every U ⊂ V⊥ we have∧

v∈U Aϕ(v) is satisfiable. Hence, V⊥ has the following key properties:

• If we remove nodes that are not in V⊥ from Υ, we still get a failing strategy.

105

• Removing any node in V⊥ from Υ will make it not failing.

In other words, we can view V⊥ as the root cause of failure for strategy

Υ; thus, all nodes that are descendants of V⊥ can be removed from Υ while

preserving unsatisfiability. The Minimize algorithm essentially removes all

nodes V⊥ from Υ but adds open branches as necessary to ensure that the

resulting proof strategy is a valid one that can be refined. 4

The following theorem states that our search algorithm does not prune

any successful proof strategies:

Theorem 8. If there exists a complete proof strategy Υ for goal G such that∧
v∈V Aϕ(v) can be proven satisfiable by the underlying CHC solver, then Al-

gorithm 4 will produce a proof of correctness of G.

4.6 Implementation

We have implemented the proposed ideas in a prototype called Coeus.

Our tool takes as input two C programs and a relational property and outputs

a successful proof strategy if the property can be verified.

As depicted schematically in Figure 4.5, Coeus consists of three ma-

jor components: First, the Proof System component serves as the basis of

the entire system and implements the relational proof rules for reducing the

4In Algorithm 5, the notation v u indicates that there is a path from v to u in Υ, and
the notation A ↓ V yields a new mapping A′ that is the same as A except that its domain
is restricted to V .

106

Proof System Reinforcement Learning

Proof Searcher

Search Policy

Training Input

Testing Input

Proof

Coeus

Figure 4.5: Coeus architecture

relational verification task to standard safety. The Reinforcement Learning

component implements the learning algorithm described in Section 4.4 and

requires a set of representative training examples. Finally, the Proof Search

component uses the learned policy to guide the search for successful proof

strategies, as described in Section 4.5.

The Proof System and the Proof Search components are both imple-

mented in OCaml and use the front-end of the CompCert compiler [108] for

parsing the input C files. As mentioned in Section 4.1, our implementation

uses a CHC solver to both (a) find relational loop invariants, and (b) discharge

the resulting safety verification problems. For this purpose, our implementa-

tion leverages an enhanced version of the Spacer engine [99] distributed with

107

the Z3 SMT solver [51]. 5

The Reinforcement Learning module is implemented in Python and

uses the TensorFlow library [2]. While our implementation largely follows the

description from Section 4.4, it contains an optimization that is designed to

speed up convergence during training. Specifically, rather than starting with

a purely random policy, we bootstrap training using a policy learned via su-

pervised learning. Specifically, supervised learning is conducted using exhaus-

tive enumerative search on small, easy-to-solve training problems. The policy

learned using supervised learning is far from optimal, but we have nonetheless

found it useful for significantly speeding up the training process.

4.7 Evaluation

We evaluate the proposed approach by designing a series of experiments

that address the following questions:

RQ1. How well does Coeus perform across different relational verification

tasks?

RQ2. How does Coeus compare against state-of-the-art relational verification

tools?

RQ3. What is the impact of learning compared to traditional proof search

strategies?

5Similar to the SeaHorn verifier [81], our implementation augments Spacer by incorpo-
rating a Houdini-style algorithm [65] for solving constrained Horn Clauses.

108

RQ4. How important is it to combine the learned policy with backtracking

search?

To answer these questions, we evaluate Coeus on two different bench-

mark suites and compare it against several baselines. For all experiments, we

set a time limit of 300 seconds and a memory limit of 5GB for the proof search

algorithm, and we set a time limit of 15 seconds per CHC solver invocation.

All experiments are conducted on an Arch Linux workstation with an Intel

Xeon E5-2630 CPU (2.6GHz) and 64GB of RAM.

4.7.1 Translation Validation Benchmarks

In our first experiment, we evaluate our approach in the context of

translation validation [134]. Specifically, we use Coeus to check the correct-

ness of various transformations performed by the ROSE compiler infrastruc-

ture [138] from the Lawrence Livermore Laboratory. Specifically, given the

original C program P and its transformed version P ′, we use Coeus to prove

equivalence between P and P ′.

For the purposes of this experiment, we consider five (intra-procedural)

transformation passes from the ROSE library. These transformations include

loop unrolling, loop splitting, loop fission, constant propagation, and partial

redundancy elimination. Given an original C program P , we obtain multiple

transformed programs by applying all possible combinations of these transfor-

mations to P .

109

Training set. Recall that Coeus has an off-line training phase that is used

for learning an optimal search policy via reinforcement learning. Towards

this goal, we wrote a simple program generator that produces random, self-

contained C functions. For each randomly generated program P , we obtain

multiple transformed programs P1, . . . , Pn as described above and use each

(P, Pi) pair as a training example. Using this methodology, we trained Coeus

on a total of 400 translation validation benchmarks.

Test set. The programs in our test set come from approximately 80 functions

collected from popular Github repositories written in C. By applying various

combinations of transformations to these functions and eliminating duplicates,

we obtain a total of 153 benchmarks for our test set.

Results. Figure 4.6 summarizes the results of our evaluation on the trans-

lation validation domain. The x-axis shows the time limit per benchmark,

and the y-axis shows the percentage of benchmarks that can be solved within

that time limit. The different graphs in the figure correspond to the following

several variants of Coeus:

• The blue line (with circles) is the full Coeus system.

• The orange and green lines (with squares and triangles respectively) corre-

spond to variants of Coeus that use the learned policy but not our proposed

search algorithm. Specifically, Single-Rollout only explores a single roll-

110

0 50 100 150 200 250 300
Time Limit (sec)

0%

20%

40%

60%

80%

100%

Pe
rc
en

ta
ge

 o
f s
ol
ve
d
pr
ob

le
m
s

Coeus
MultiRollout
SingleRollout
Random
BFS

Figure 4.6: Comparison on translation validation benchmarks

111

out of the learned policy and Multi-Rollout samples multiple rollouts

until a time limit is reached.

• Both the red graph (with crosses) and the purple graph (with pluses) corre-

spond to variants that do not use learning to guide search. The first variant

(labelled Random) uses our search algorithm with a randomly generated

policy, and the latter variant (BFS) uses breadth-first search.

One of the key conclusions to draw from Figure 4.6 is that learning-

guided search significantly boosts the percentage of benchmarks that can be

solved within a given time limit. In particular, both BFS and Random solve

less than 56% of the benchmarks within a 5 minute time-limit whereas Coeus

can solve 91.5% of the benchmarks within the same limit. The second impor-

tant conclusion is that our proposed search algorithm allows us to effectively

utilize the learned policy. Specifically, the Single-Rollout and Multi-

Rollout variants plateau at 71.9% and 75.2% respectively, whereas Coeus

can continue to solve more benchmarks as we increase the time limit.

Comparison against other tools. In addition to comparing Coeus against

its own variants, we also compare it against two state-of-the-art relational veri-

fication tools, namely VeriMap [50] and a re-implementation of Descartes [168].

VeriMap is a relational verification tool that uses a method called predicate

pairing for solving constrained Horn clauses that arise in relational proofs.

In contrast, Descartes is based on the CHL program logic and performs

112

heuristic-guided backtracking search over the CHL proof rules. Since the orig-

inal version of Descartes is for Java programs, we re-implemented a version

of Descartes for C that uses the same proof rules and search heuristics.

As summarized in Table 4.1, Coeus significantly outperforms both

VeriMap and Descartes. Specifically, VeriMap can solve only 11% of

these benchmarks within the 5-minute time limit . However, upon further

inspection, the low success rate of VeriMap is caused, in part, by the bench-

marks containing features (e.g., bitvectors, multi-dimensional arrays) that are

not supported by this tool. If we exclude 130 out of 153 benchmarks that

are not supported by VeriMap, the success rate increases to 73.9%. That

is, VeriMap solves 17 out of these 23 benchmarks, whereas Coeus solves

all. The success rate of Descartes on this benchmark set is around 50.3%

compared to 91.5% for Coeus.

Bugs found in ROSE. During the process of running this experiment,

Coeus uncovered two sources of unsoundness in the ROSE compiler. Specifi-

cally, since the accuracy of Coeus on the training set was initially lower than

expected, we manually inspected the benchmarks that could not be verified

using Coeus. Our inspection revealed two subtle bugs in the loop unrolling

and fission transformation passes implemented in ROSE. Note that the results

shown in Figure 4.6 are obtained after fixing the loop unrolling bug and filter-

ing out benchmarks that trigger the source of unsoundness in the loop fission

113

Translation Validation
Coeus Descartes VeriMap

Number of benchmarks 153
Number of benchmarks supported by each tool 153 153 23

Number of solved benchmarks 140 77 17
Solved benchmarks / All benchmarks 91.5% 50.3% 11.1%

Solved benchmarks / Supported benchmarks 91.5% 50.3% 73.9%
Number of solved commonly supported benchmarks 23 20 17

Solved commonly suppored benchmarks
/ Commonly supported benchmarks

100% 87% 73.9%

Average running time for solved benchmarks (sec) 10.2 12.3 32.29

Table 4.1: Comparison with other relational verification tools on translation
validation benchmarks .

pass. 6

4.7.2 Medley of Relational Verification Benchmarks

In our second experiment, we evaluate our approach on a medley of

relational verification benchmarks, where the properties to be checked include

equivalence, inequality, monotonicity, injectivity, and others. The benchmarks

used in this experiment come from two sources: First, we use all relational ver-

ification benchmarks evaluated in VeriMAP [50]. Second, we also collect pairs

of independent solutions to programming challenge problems from LeetCode

and HackerRank and use them to prove equivalence. Using this methodology,

we obtain a total of 292 relational verification benchmarks. For this experi-

ment, benchmarks were splitted into training vs. testing set based on their

sizes. Specifically, programs whose size is smaller than a certain threshold were

used for training whereas the larger programs were used for testing. Using this

6We did not fix the latter bug since it did not seem to admit an easy fix.

114

Miscellaneous
Coeus Descartes VeriMap

Number of benchmarks 106
Number of benchmarks supported by each tool 106 79 65

Number of solved benchmarks 89 46 35
Solved benchmarks / All benchmarks 84.0% 43.4% 33.0%

Solved benchmarks / Supported benchmarks 84.0% 58.2% 53.8%
Number of commonly supported benchmarks 52

Number of solved commonly supported benchmarks 48 39 23
Solved commonly suppored benchmarks
/ Commonly supported benchmarks

92.3% 75% 44.2%

Average running time for solved benchmarks (sec) 23.9 17.4 66.52

Table 4.2: Comparison with other relational verification tools on miscellaneous
benchmarks.

methodology, we obtained a training set of 186 benchmarks, and a testing set

of 106 benchmarks.

Results. Figure 4.7 summarizes the results of our evaluation on this bench-

mark set. As in the previous subsection, the x-axis shows the time limit per

benchmark, and the y-axis shows the percentage of benchmarks that can be

solved within that time limit. Also as before, the different graphs from Fig-

ure 4.7 correspond to the Multi-Rollout, Single-Rollout, Random,

and BFS variants of Coeus.

The trend we see in Figure 4.7 largely follows the one from Figure 4.6.

Specifically, we observe that Coeus performs significantly better than both

BFS and Random, highlighting the importance of guiding search using the

RL-based policy. We also observe that Coeus can solve significantly more

benchmarks compared to Single-Rollout and Multi-Rollout as we in-

115

0 50 100 150 200 250 300
Time Limit (sec)

0%

20%

40%

60%

80%

100%

Pe
rc
en

ta
ge

 o
f s
ol
ve
d
pr
ob

le
m
s

Coeus
MultiRollout
SingleRollout
Random
BFS

Figure 4.7: Comparison on existing benchmarks [50] and equivalence checking
problems obtained from solutions to exercises from LeetCode and HackerRank

116

crease the time limit. This second observation again corroborates that our

proposed policy-guided proof search algorithm from Section 4.5 allows us to

use the policy much more effectively.

Comparison against VeriMap. As in Section 4.7.1, we also compare the

performance of Coeus against Descartes and VeriMap on this benchmark

set. As shown in Table 4.2, Coeus solves significantly more benchmarks.

Specifically, VeriMap and Descartes are able to solve 35 and 46 of the 106

benchmarks respectively, whereas Coeus solves 89. However, if we exclude

benchmarks that contain features not supported by both Descartes and

VeriMap, we observe that Coeus solves 92.3% of the benchmarks whereas

VeriMap solves 44.2% and Descartes solves 75%. We believe these re-

sults demonstrate that the proposed approach improves the state-of-the-art in

relational verification.

117

Chapter 5

Related Works

In what follows, we discuss prior work that is most closely related to

this dissertation.

Algorithmic complexity attacks Algorithmic complexity attacks have

been actively studied during the past ten years. Some of these techniques

target a specific class of vulnerabilities. For example, Crosby et al. [48] first

presents a new class of algorithmic complexity attack that exploits the vul-

neralbility in hash tables. Wustholz et al. [181] designs a novel static analy-

sis for automatically finding ReDoS vulnerabilities in Java programs. Cai et

al. [35] intrduces a new algorithmic complexity attack that exploits data races

in Unix file system. Smith et al. [165] explores NIDS (Network Intrusion De-

tection Systems) evasion through algorithmic complexity attacks by leveraging

the pitfall in backtracking algorithms. Shenoy et al. [159] presents a perfor-

mance throttling attack caused by an issue in the original string matching

algorithm. Among approaches that target a broader class of AC vulnerabili-

ties, SlowFuzz [133] is most closely related to the Singularity approach.

In particular, SlowFuzz also uses evolutionary search for generating inputs

but performs mutations at the byte level. In contrast, our method looks for

118

input patterns rather than concrete inputs and can therefore scale better when

large input sizes are required.

Performance bug detection. As demonstrated through our experiments

in chapter 2.5, Singularity can be useful for uncovering performance bugs.

In this sense, our technique is related to a long line of work on performance

bug detection. Most of these techniques target narrow classes of performance

problems, such as redundant traversals [126, 127, 52, 130], loop inefficien-

cies [125, 53, 167], and unnecessary object creation [57]. Compared to these

techniques, Singularity can to detect a broader class of performance bugs

but requires the user to decide whether the reported worst-case complexity

corresponds to a performance bug.

Testing for performance There is a long line of work on automated testing

techniques to uncover performance problems [34, 175, 191, 76, 136, 45, 187].

Among these prior techniques, Wise [34] is the first one to introduce the

complexity testing problem, where the goal is to determine the complexity of a

given program by constructing test cases that exhibit worst-case behavior. At

a high level, Wise uses an optimized version of dynamic symbolic execution

to guide the search towards execution paths with high resource usage. While

Wise is a white-box testing technique, our approach is purely black-box and

can scale to larger input sizes.

From a technical perspective, PerfSyn [175] is more similar to our ap-

119

proach in that it uses black-box evolutionary search to generate tests that

cause performance bottlenecks. Specifically, PerfSyn starts with a minimal

usage example of the method under test and applies a sequence of mutations

that modify the original code. However, a key difference is that PerfSyn fo-

cuses on performance bottlenecks related to API usage, whereas our approach

focuses on finding input patterns that trigger worst-case complexity.

Another idea related to performance testing is empirical computational

complexity [76]. In particular, Goldsmith et al. propose a technique for mea-

suring empirical complexity by running the program on workloads spanning

several orders of magnitude in size and fitting these observations to a model

that predicts performance as a function of input size. Since this technique

requires the user to manually provide representative workloads, our approach

is complementary to theirs.

Side channel attacks Side-channel attacks related to resource usage have

been known for decades. Specifically, side channels have been used to leak

private cryptographic keys [98, 4, 33], infer user accounts [31], steal cellphone

and credit card numbers [71], obtain web browsing history [61], and recover the

plaintext of encrypted TLS traffic [6]. Chen et al. presents a comprehensive

study of side-channel leaks in web applications [39].

Verification for non-interference As mentioned in Section 3.4, we can

prove that a program is free of side channel leaks by proving that it obeys a

120

certain kind of non-interference property. There has been a significant body

of work on proving non-interference. The simplest and most well-known tech-

nique for proving non-interference (and, in general, any 2-safety property)

is self-composition [18]. The general idea underlying self-composition is as

follows: Given a program P and 2-safety property φ, we create a new pro-

gram P ′ which sequentially composes two α-renamed copies of P and then

asserts that φ holds. Effectively, self-composition reduces verification of 2-

safety to standard safety. While this self-composition technique is sound and

relatively complete, successfully verifying the new program often requires the

safety checker to come up with intricate invariants that are difficult to infer

automatically [174]. Dufay et al. try to solve this problem by providing those

invariants through JML annotations [56]; however, the resulting approach re-

quires significant manual effort on the part of the developer or security analyst.

Another popular approach for proving k-safety is to construct so-called

product programs [15, 16, 186]. Similar to self-composition, the product pro-

gram method also reduces k-safety to standard safety by constructing a new

program containing an assertion. While there are several different methods for

constructing the product program, the central idea –shared in this work– is

to execute the different copies of the program in lock step whenever possible.

One disadvantage of this approach is that it can cause a blow-up in program

size. As shown in the work of Sousa and Dillig [168], the product program

approach can therefore suffer from scalability problems.

The approach advocated in this thesis is most closely related to rela-

121

tional program logic, such as Cartesian Hoare Logic [168] and Relational Hoare

Logic [24]. Specifically, the QCHL program logic introduced in Section 3.4.1

builds on top of CHL by instantiating it in the ε-bounded non-interference

setting and augmenting it with additional rules for tracking resource usage

and utilizing taint information. One advantage of this approach over explicit

product construction is that we decompose the proof into smaller lemmas by

constructing small product programs on-the-fly rather than constructing a

monolithic program that is subsequently checked by an off-the-shelf verifier.

The approach described in Chapter 3 also shares similarities with the

work of Terauchi and Aiken, in which they extend self-composition with type-

directed translation [174, 123]. In particular, this technique uses a type system

for secure information flow to guide product construction. Specifically, similar

to our use of taint information to determine when two loops can be synchro-

nized, Terauchi and Aiken use type information to construct a better product

program than standard self-composition. Our verification technique differs

from this approach in two major ways: First, our algorithm is not guided

purely by taint information and uses other forms of semantic information (e.g.,

relational loop invariants) to determine when two loops can be executed in lock

step. Second, similar to other approaches for product construction, the type-

directed translation method generates a new program that is subsequently

verified by an off-the-shelf verifier. In contrast, our method decomposes the

proof into smaller lemmas by constructing mini-products on-the-fly, as needed.

Almeida et al. implement a tool named ct-verif based on aforemen-

122

tioned techniques (involving both product programs and self-composition) [7].

In particular, ct-verif is designed for verifying the constant-time policy, which

roughly corresponds to our notion of 0-bounded non-interference instantiated

with a timing cost model. In addition to using different techniques based

on QCHL and taint analysis, Themis provides support for verifying a more

general property, namely ε-bounded non-interference for any value of ε.

An alternative approach for verifying k-safety is the decomposition

method used in Blazer [9]: This method decomposes execution traces into

different partitions using taint information and then verifies k-safety of the

whole program by proving a standard safety property of each partition. One

possible disadvantage of this approach is that, unlike our method and product

construction techniques, Blazer does not directly reason about the relation-

ship between a pair of program executions. As illustrated through some of the

examples in Section 3.4.1, such relational reasoning can greatly simplify the

verification task in many cases.

In their recent work, Ngo et al. propose a language-based system for

verifying and synthesizing synthesizes programs with constant-resource usage,

meaning that every execution path of the program consumes the same amount

of resource [124]. This technique uses a novel type system to reason both lo-

cally and globally about the resource usage bounds of a given program. Similar

to work for verifying constant-time policy, this technique also does not allow

proving ε-bounded non-interference for arbitrary values of ε. Furthermore,

as a type-based solution for a functional language, this technique puts heav-

123

ier annotation burden on the developer and is not immediately applicable to

standard imperative languages like Java or C.

Secure information flow There has been a significant body of work on

language-based solutions for enforcing information flow properties [189, 135,

122, 183]. For instance, Zhang et al. [189] propose a language-based approach

that tracks side-channel leakage, and

Pottier et al. [135] design a type-based information flow analysis inside

an ML-style language. Themis differs from these language-based solutions in

that it requires minimal annotation effort and works on existing Java programs.

One of the most popular tools for tracking information flow in existing

Java applications is FlowDroid [10], and Themis builds on top of FlowDroid

to identify secret-tainted variables. FlowTracker [146] is another information

flow analysis for C/C++ featuring efficient representation of implicit flow. We

believe these techniques are complimentary to our approach, and a tool like

Themis can directly benefit from advances in such static taint tracking tools.

There have also been attempts at verifying the constant-time policy

directly using information-flow checking [13]. However, this approach is flow-

insensitive (and therefore imprecise) and imposes a number of restrictions on

the input program.

Automatic resource bound computation There has been a flurry of re-

search on statically computing upper bounds for the resource usage of im-

124

perative programs. Existing techniques for this purpose leverage abstract

interpretation [80], size-change abstraction [192], lossy vector addition sys-

tems [163], linear programming [36], difference constraints [164], recurrence

relations [8, 67, 5], and term rewriting [32]. Another line of research, called

AARA [89, 87, 85, 88, 86], performs bound analysis on functional languages.

Themis differs from these approaches in that we perform relational rea-

soning about resource usage. That is, rather than computing an upper bound

on the resource usage of the program, we use QCHL to prove an upper bound

on the difference between the resource usage of two program runs. Similar to

our QCHL, recent work by Çiçek et al. performs relational cost analysis to

reason about the difference in resource usage of a pair of programs [37]. Their

work shares with us the insight that relational analysis may be simplified by

exploiting the structural similarity between the inputs as well as the program

codes. However, their non-relational reasoning relies on range analysis while

Themis relies on Hoare-style weakest precondition computation; as a result

Themis is more precise. Also, Themis analyzes real-world Java programs,

while [37] is built on top of a hypothetical higher-order functional language.

Other defenses against side channels In this thesis, we consider a purely

static approach for detecting resource side channels. However, there are other

possible ways of detecting vulnerabilities and preventing against side channel

attacks. For instance, Bang et al. use symbolic execution and model counting

to quantify leakage for a particular type of side channel [12]. Pasareanu et

125

al. have recently implemented a symbolic execution based algorithm for gen-

erating inputs that maximize side channel measurements (namely timing and

memory usage) [131]. Sidebuster [190] uses a hybrid static/dynamic analysis

to detect side-channels based on irregularities in the One key advantage of our

approach compared to these other techniques is that it can be used to verify

the absence of side-channel vulnerabilities in programs.

There has also been a line of research that focuses for defending against

side channels using runtime systems [114], compilers [119, 140, 141], or secure

hardware [111]. Unlike these techniques, our approach does not result in run-

time overhead.

Relational verification As stated in Section 4, relational verification prob-

lems are typically solved by reducing them to standard safety. Generally

speaking, there are three different strategies for performing this reduction:

Specifically, some approaches explicitly construct a product program that is

safe iff the original relational verification problem is valid [18, 14, 17, 59].

Other approaches [24, 19, 38, 168] propose program logics for decomposing

the relational verification task into a set of Hoare triples. Finally, some tech-

niques [60, 50, 121] directly encode the relational verification problem as a

set of constrained Horn clauses and propose new CHC solving techniques to

deal with the resulting constraints [50, 121]. While these approaches define

the space of strategies for reducing relational verification to safety checking,

they do not propose algorithms for efficiently and intelligently exploring the

126

large search space of different reduction strategies. In contast, the main con-

tribution of Chapter 4 is to show how reinforcement learning can be used for

effectively guiding the search for relational proofs.

Machine learning for program analysis. There has been a number of re-

cent successes applying machine learning to programming languages research,

for example, to infer program invariants [157, 155, 129], to improve program

analysis [109, 113, 144, 139], program synthesis [149, 150, 11, 143, 63, 62,

94, 107], to build probabilistic models of code [145, 27, 142], to infer speci-

fications [100, 112, 23, 84, 28, 21, 22], and to software testing [110, 42, 73].

There has also been a line of work on applying machine learning to theorem

proving by predicting which lemmas might be useful to prove a given theo-

rem, and then feeding those lemmas to a traditional theorem prover [90, 180].

However, these approaches treat the selection of promising lemmas as a one-

shot problem rather than a sequential decision making problem. There has

been work using machine learning (in particular, stochastic search) to per-

form equivalence checking [158]. Unlike our approach, theirs does not transfer

knowledge across programs, and furthermore is tailored specifically to check-

ing equivalence of two loops. Finally, there has been work using reinforcement

learning to improve Polyhedral analysis [162]. In particular, they learn a policy

for choosing parameters for approximating the join transformer. Unlike our

setting, they observe rewards immediately, since they can directly assess the

quality of a candidate approximation without regards to subsequent actions.

127

In contrast, we do not observe rewards until the very end of a rollout, which

make reinforcement learning much more challenging. In particular, whereas

the standard Q learning algorithm suffices in their setting, we use a variant of

the policy gradient algorithm to address these challenges.

128

Chapter 6

Conclusion and Future Work

In this thesis, we discuss three programming analysis techniques: one

dynamic fuzzing technique for identifying worst-case complexity and two static

verification techniques for enforcing relational properties. A common theme

among all these solutions is to exploit problem-specific structures and adapt

existing techniques to exploit those structures accordingly.

In the case of Singularity, the critical observation we rely on is that

worst-case inputs for a give program are often characterized by certain pat-

terns, and for algorithmic complexity analysis pattern searching is more ef-

fective and scalable than directly searching for concrete inputs. Therefore,

we adapt existing evolutionary technique for dynamic fuzzing by equipping it

with a novel program representation, and shift the focus from fuzzing inputs

to optimal program synthesis in this representation accordingly.

In the case of Themis, two key observations are: (1) Reasoning about

cost difference is usually easier to automate than reasoning about cost values

themselves directly. (2) Code that handles secret is typically small in large

software projects. We therefore adapt existing off-the-shelf verifier with QCHL

to fully utilize observation 1, and connect the verifier to a taint tracker based

129

on observation 2.

In the case of Coeus, we observe that the sequences of proof rules that

are most amenable to automation often follow certain patterns but sometimes

deviate from them. Although these patterns can sometimes be hard to specify

by a human, they can be empirically learned from data. The learned model

can also provide us with valuable information to guide an exhaustive search,

which effectively takes care of the aforementioned deviations if the model fails

to predict the best strategy.

Looking to the future, this thesis opens up the following further research

directions:

Applicability of Singularity. In chapter 2.5 we evaluate Singularity

using a simple DSL with a small pool of components. Although our current

selection of components is already good enough for a wise range of applica-

tions, certain problems (such as forcing hash collision on more sophisticated

hash functions like MurmurHash and SipHash) seem to require more powerful

components. Given a new problem domain, adapting the Singularity tech-

nique by designing new components that are likely to maximize the fuzzing

efficiency will be an interesting challenge from a system’s perspective.

Extending Themis with Coeus. Although we motivate the technique in

Coeus with noninterference verification, we did not evaluate the technique

in Themis’ context. It would be interesting to prepare a sizable collection of

130

noninterference verification benchmarks for Themis, and measure how Coeus

could help in terms of false positive rates.

Coeus on other domains. The basic principle behind Coeus is not re-

stricted to relational verification only: Any search problem that can be mod-

eled as a proof system with an oracle, a fixed set of rules and a collection of

training data can be a potential target where Coeus’ principle may be used

to improve the level of proof automation. Finding new domains and designing

automation-friendly proof systems for it may help contributing to the adoption

of formal methods in the real world.

131

Appendix

132

Appendix 1

Proofs of Selected Theorems

1.1 Proof of Theorem 3

Lemma 2. Let program P = λ~p.S. If the following premises hold:

• ~p1 = α(~p), ~p2 = α(~p)

• |= I → ~p1
l = ~p2

l ∧ ~p1
h 6= ~p2

h

• Σ is sound

• Σ ` CanSynchronize(e1, e2, S1, S2, I)

Then |= I → (e1 ↔ e2).

Proof. According to figure 3.6, if Σ ` CanSynchronize(e1, e2, S1, S2, I), then

at least one of the two conditions must be true:

• |= I → (e1 ↔ e2)

• e1 ≡α e2 ∧ S1 ≡α S2 ∧ Σ ` e1 : low ∧ Σ ` e2 : low

133

If the first condition is true, then the conclusion trivially holds. Otherwise,

since Σ is sound, we know that e1 and e2 depend solely on ~p1
l and ~p2

l, re-

spectively. According to the first two premises, I → ~p1
l = ~p2

l. It follows that

I → e1 = e2 and therefore |= I → (e1 ↔ e2).

Lemma 3. Let vars(S) be the set of all free variables in S. If vars(S1) ∩

vars(S2) = ∅, then S1;S2 is semantically equivalent to S2;S1.

Proof. Suppose Γ ` S1;S2 : Γ′, r. Since vars(S1) and vars(S2) are mutually

disjoint, we could break Γ into three partitions Γ = Γ1 t Γ2 t Γ3, where

dom(Γ1) = vars(S1), dom(Γ2) = vars(S2) and dom(Γ3) = dom(Γ)\vars(S1)\

vars(S2). Since Si does not touch Γj where i 6= j, we have

Γ1 ` S1 : Γ′1, r1 Γ2 ` S2 : Γ′2, r2

It follows that

Γ ` S1 : Γ′1 t Γ2 t Γ3, r1 Γ ` S2 : Γ1 t Γ′2 t Γ3, r2

Γ′1 t Γ2 t Γ3 ` S2 : Γ′1 t Γ′2 t Γ3, r1 + r2

Γ1 t Γ′2 t Γ3 ` S1 : Γ′1 t Γ′2 t Γ3, r2 + r1

Using the operational semantics rule for sequential composition shown in fig-

ure 3.4, this means

Γ ` S1;S2 : Γ′1 t Γ′2 t Γ3, r1 + r2

Γ ` S2;S1 : Γ′1 t Γ′2 t Γ3, r2 + r1

134

As S1;S2 and S2;S1 both have the same effect on Γ and consume the same

amount of resource, they are semantically equivalent.

Lemma 4. Let program P = λ~p.S. Under the assumption that the following

premises hold:

• ~p1 = α(~p), ~p2 = α(~p)

• |= Φ→ ~p1
l = ~p2

l ∧ ~p1
h 6= ~p2

h

• Σ is sound

If Σ ` 〈Φ〉 S1 ~ S2〈Ψ〉, then ` {Φ} S1;S2 {Ψ}.

Proof. By structural induction on proof rules shown in figure 3.5.

• Rule (1).

By inductive hypothesis, ` {Φ}S2;S1{Ψ}. Since S1 and S2 belongs to

two different alpha-renamed copies of the program, we have vars(S1) ∩

vars(S2) = ∅. Using lemma 3, we get ` {Φ}S1;S2{Ψ}

• Rule (2).

By inductive hypothesis, ` {Φ}S1; skip;S2{Ψ}. As S1; skip is semanti-

cally equivalent to S1, we have ` {Φ}S1;S2{Ψ}.

• Rule (3).

By inductive hypothesis, ` {Φ′}S2;S3{Ψ}. Also, we know {Φ}S1{Φ′}.

Using the sequence rule in standard Hoare logic, we derive ` {Φ}S1;S2;S3{Ψ}.

135

• Rule (4).

By inductive hypothesis, ` {Φ}S{Ψ}. As S is semantically equivalent

to S; skip, we get {Φ}S; skip{Ψ}.

• Rule (5).

By inductive hypothesis, ` {Φ∧e}S1;S;S3{Ψ1} and ` {Φ∧¬e}S2;S;S3{Ψ2}.

Since |= Ψ1 → Ψ1 ∨ Ψ2 and |= Ψ2 → Ψ1 ∨ Ψ2, according to the conse-

quence rule in standard Hoare logic we have {Φ ∧ e}S1;S;S3{Ψ1 ∨ Ψ2}

and {Φ ∧ ¬e}S2;S;S3{Ψ1 ∨ Ψ2}. With the sequence rule in standard

Hoare logic, assume

1. ` {Φ ∧ e}S1{Φ1}

2. ` {Φ1}S;S3{Ψ1 ∨Ψ2}

3. ` {Φ ∧ ¬e}S2{Φ2}

4. ` {Φ2}S;S3{Ψ1 ∨Ψ2}.

Let Φ′ = wp(Ψ1∨Ψ2). It follows immediately from (2) and (4) that Φ1 →

Φ′ and Φ2 → Φ′. We could apply the consequence rule again to (1) and

(3) and derive ` {Φ∧ e}S1{Φ′} and ` {Φ∧¬e}S2{Φ′}. Using the condi-

tion rule in standard Hoare logic, we have {Φ}if e then S1 else S2{Φ′}.

Combining (2), (4), sequence rule and the definition of wp, we could fi-

nally derive ` {Φ}if e then S1 else S2;S;S3{Ψ1 ∨Ψ2}.

• Rule (6).

By inductive hypothesis, ` {Ψ′}S;S ′{Ψ}. We also know that ` {Φ}while e1 do S1{Φ′}

136

and ` {Φ′}while e2 do S2{Ψ′}. Applying the sequence rule in standard

Hoare logic twice, we get ` {Φ}while e1 do S1; while e2 do S2;S;S ′{Ψ}.

Additionally, S and while e2 do S2 comes from two different alpha-

renamed copies so vars(S)∩vars(while e2 do S2) = ∅. We could apply

lemma 3 and get

` {Φ}while e1 do S1;S; while e2 do S2;S ′{Ψ}

• Rule (7).

By inductive hypothesis, ` {I ∧ e1 ∧ e2}S1;S2{I ′} and ` {I ∧ ¬e1 ∧

e2}S;S ′{Ψ}. As |= I ′ → I, we have ` {I ∧ e1 ∧ e2}S1;S2{I} due to

consequence rule. Now we may apply the while rule in standard Hoare

logic to obtain ` {I}while e1 ∧ e2 do (S1;S2){I ∧ ¬(e1 ∧ e2)}.

Now, as following two statements are semantically equivalent:

- while e1 ∧ e2 do (S1;S2)

- while e1 ∧ e2 do (S1;S2); while e1 do S1; while e2 do S2

we could replace the former with the latter:

` {I}while e1 ∧ e2 do (S1;S2); while e1 do S1;

while e2 do S2{I ∧ ¬(e1 ∧ e2)}

According to lemma 2, |= I → (e1 ↔ e2). But we also know that the pre-

condition I∧¬(e1∧e2) holds before the second loop while e1 do S1. This

implies I¬e1 ∧ ¬e2 and therefore both of the two loops while e1 do S1

and while e2 do S2 would not execute, which means ` {I ∧ ¬(e1 ∧

137

e2)}while e1 do S1; while e2 do S2{I ∧¬(e1 ∧ e2)}. Applying the con-

sequence rule here we end up with

` {I}while e1 do S1; while e2 do S2{I ∧ ¬(e1 ∧ e2)}. Combining this

with |= Φ→ I and the second inductive hypothesis we finally get

` {Φ}while e1 do S1;S; while e2 do S2;S ′{Ψ}.

Theorem 9 (Soundness). Assuming soundness of taint environment Σ, if

Σ ` SideChannelFree(λ~p.S, ε), then the program λ~p.S does not have an

ε-bounded resource side-channel.

Proof. We know that Σ is sound and |= Φ→ ~p1
l = ~p2

l ∧ ~p1
h 6= ~p2

h. Therefore,

lemma 4 applies, and we get ` {Φ}Sτ1 ;Sτ2{Ψ}. Additionally, |= Ψ → |τ1 −

τ2| ≤ ε|. Using the consequence rule in standard Hoare logic, we obtain `

{Φ}Sτ1 ;Sτ2{|τ1 − τ2| ≤ ε|}. By the soundness of Hoare logic, it follows that

|= {Φ}Sτ1 ;Sτ2{|τ1− τ2| ≤ ε|}. By the soundness of self-composition, this means

that

∀~a1, ~a2. ~a1
l = ~a2

l ∧ ~a1
h 6= ~a2

h =⇒ |τ1 − τ2| ≤ ε

By lemma 1, τ1 = RP (~a1) and τ2 = RP (~a2). Substitute τ with RP we arrive

at our conclusion

∀~a1, ~a2. (~a1
l = ~a2

l ∧ ~a1
h 6= ~a2

h) =⇒ |RP (~a1)−RP (~a2)| ≤ ε

138

1.2 Proof of Theorem 4

First, we show that the mapping from policies π to distributions p(π) is

invertible:

Lemma 5. Given a distribution p over complete proof strategies, we have

p(π) = p, where

π(S,A) =

∑
S′�∗P (S,A) p̃(S

′)∑
S′�∗S p̃(S

′)
.

Proof. First, because transitions are deterministic, we have

p(π)(S) ∝
∑
ζ

I[ST = S] · p(S0 | S0) ·
T−1∏
i=0

π(Si, Ai),

where p(S0 | S0) is the probability that the initial state is S0. Furthermore,

note that there is a unique way of constructing any given complete proof strat-

egy S ∈ SF using actions A ∈ A. Letting ζS = ((S0, A0, R0), ..., (ST ,∅, RT))

denote the unique rollout with terminal state ST = S, we have

p(π)(S) = p(S0 | S0) ·
T−1∏
i=0

π(Si, Ai).

Expanding the right-hand side, we have

p(π)(S) = p(S0 | S0) ·
T−1∏
i=0

∑
S′�∗P (Si,Ai)

p(S ′)∑
S′�∗Si p(S

′)

= p(S0 | S0) ·
T−1∏
i=0

∑
S′�∗Si+1

p(S ′)∑
S′�∗Si p(S

′)

= p(S0 | S0) ·
∑

S′�∗ST p(S
′)∑

S′�∗S0
p(S ′)

.

139

Note that the numerator of the last line equals p(ST), since the only S ′ such

that S ′ �∗ ST for a complete state ST is ST itself. Similarly, the denominator

equals p(S0 | S0), since the sets of states {S ′ | S ′ �∗ S0} are disjoint for

different initial states S0. In other words, p(π)(S) = p(S), as claimed.

As a consequence, the space over policies (which reinforcement learning algo-

rithms optimize over) and the space of distributions (which (4.1) optimizes

over) are equal. Next, we prove that given a policy π, its cumulative reward

of π equals the objective (4.1) evaluated at p̃ = p(π):

Lemma 6. For any policy π for Mproof, we have

R(π) = Pr
t∼T,S∼p(π)t

[O(S)],

where p
(π)
t is the distribution p(π) conditioned on task t:

p
(π)
t = p(π) | S is labeled with the initial proof goal for t.

Proof. Note that since complete proofs are terminal states, and we only obtain

reward on successful proofs (which are complete by definition). Thus, we have

R(π) = Eζ∼π

[
T∑
i=0

Ri

]
= Eζ∼π[RT]

= Eζ∼π[O(ST)].

Finally, by definition, the distribution of ST given a randomly sampled rollout

ζ ∼ π equals the distribution p(π), so

R(π) = PrS∼p(π) [O(S)],

as claimed.

140

The proof of Theorem 4 follows from Lemma 5 and Lemma 6.

1.3 Proof of Theorem 6

We can rewrite the objective J(θ) of (4.3) as follows:

Lemma 7. We have

J(θ) =
1

r + 1

r∑
i=0

R(πθ,i).

Proof. Note that

ξ
(t)
r,θ(S) =

1

r + 1

r∑
i=0

pi,

where pi = pπθ,i . Thus, we have

J(θ) = Pr
t∼T,S∼ξ(t)r,θ

[O(S) = 1]

= E
t∼T,S∼ξ(t)r,θ

[O(S)]

= Et∼T

[
1

r + 1

r∑
i=0

E
S∼p(t)πθ,i

[O(S)]

]

=
1

r + 1

r∑
i=0

E
t∼T,S∼p(t)πθ,i

[O(S)]

=
1

r + 1

r∑
i=0

ES∼pπθ,i [O(S)]

=
1

r + 1

r∑
i=0

Eζ∼πθ,i [O(ST)]

=
1

r + 1

r∑
i=0

R(πθ,i),

as claimed.

141

Now, let τ denote the function by which our search algorithm constructs

πθ,i+1 from πθ,i, i.e.,

πθ,i =

{
πθ if i = 0

τ(πθ,i−1, θ) otherwise.

Then, consider the derivative of τ with respect to θ:

dτ

dθ
(π, θ) =

∂τ

∂π
(π, θ)

dπ

dθ
+
∂τ

∂θ
(π, θ),

where the gradient with respect to π is the gradient with respect to the proba-

bilities π(S,A) of taking action A in state S. We have the following important

fact about τ :

Lemma 8. We have

∂τ

∂π
(π, θ) = 0,

except on a measure zero subset.

Proof. (sketch) Our search algorithm constructs πθ,i from πθ,i−1 by first con-

structing the most probable rollout ζmax according to πθ,i−1, and constructing

πθ,i deterministically from ζmax and θ, i.e.,

πθ,i = τ̃(ζmax, θ).

In other words, τ(π, θ) = τ̃(ζmax, θ), where ζmax is the most probable rollout

according to π. However, note that ζmax is from a discrete set. Therefore, for

fixed θ, τ must be a piecewise constant function of π, so the claim follows.

142

Intuitively, this lemma says that the way in which we construct the sequence

of policies πθ,0, πθ,1, ... is not affected by small changes to θ. An important

consequence is that

dτ

dθ
(π, θ) =

∂τ

∂θ
(π, θ).

Finally, Theorem 6 follows directly from Lemma 7, Theorem 5, and Lemma 8.

1.4 Proof of Theorem 7

First, we need to introduce the notion of the length of a proof strategy.

Definition 22. The length of a proof strategy Υ, written as L(Υ), is defined

as follows:

- For any proof goal G, L (Υ0(G)) = 0.

- If Υ �1 Υ′, then L(Υ) = 1 + L(Υ′).

Intuitively, proof length keeps track of how many proof rules have been

applied. In this thesis, we only consider proof strategies of finite

length.

Lemma 9. Given two proof strategies Υ1 and Υ2, if Υ1 � Υ2, then `π(Υ1) ≥

`π(Υ2).

Proof. The lemma can be proved by induction on the difference of length

between Υ1 and Υ2.

143

Lemma 10. If a proof strategy Υ is non-failing, then for all strategy Υ′ such

that Υ � Υ′, Υ′ is non-failing.

Proof. This lemma follows directly from the definition 13: for Υ = (V,E,AR, Aϕ, AG)

and Υ′ = (V ′, E ′, A′R, A
′
ϕ, A

′
G), if Υ � Υ′, then

∧
v∈V ′ A

′
ϕ(v) contains strictly

less clauses than
∧
v∈V Aϕ(v). If the latter is satisfiable, the former must also

be satisfiable as it is strictly weaker.

We now prove Theorem 7 by contradiction. Let Υ1 and Υ2 be two

complete non-failing proof strategies and pπ(Υ1) > pπ(Υ2) (thus `π(Υ1) <

`π(Υ2)). Suppose Υ2 gets dequeued from W before Υ1 on line 5 in Algorithm 4.

Since ChooseStrategy always picks the strategy with the smallest value of `π,

we know that Υ1 must not be in W when Υ2 gets dequeued.

We now consider the “predecessors” of Υ1 in the search algorithm,

i.e. P = {Υ∗|Υ1 � Υ∗}. We know that Υ1 is non-failing, so according to

Lemma 10 strategies in P will also be non-failing and thus will not be blocked

by B on line 11 to 12. Since all proof strategies explored in Algorithm 4

refines the initial strategy Υ0(G) for the initial goal G, and the initial strategy

is enqueued into W on line 2, there must exist one Υ∗ ∈ P such that Υ∗ is in

W when Υ2 is dequeued.

According to lemma 9, we have `π(Υ∗) ≤ `π(Υ1). Hence `π(Υ∗) <

`π(Υ2), which means that when Υ∗ and Υ2 are both in W , Υ∗ will be dequeued

first. This contradicts our earlier assumption that Υ2 is dequeued before Υ∗.

144

1.5 Proof Theorem 8

We only need to prove the proposition that when the function RelVerif(G, π,∆)

returns ⊥, every non-failing strategy must have been checked for successful-

ness on by Algorithm 4 on line 13. Theorem 8 is a direct corollary of this

proposition.

The proof can be carried out by induction on the length of the non-

failing strategies.

- When L(Υ) = 0, Υ = Υ0(G). The conclusion hold trivially as the initial

strategy is guaranteed to reach line 13 in the first iteration of the for loop.

- Assume the proposition holds for non-failing strategies with length n − 1

where n ≥ 1.

Let Υ = ApplyProofRule(Υ′,R) with L(Υ) = n. By inductive hypothesis

we know that line 13 must have been reached with Υi = Υ′ before. As Υ′ is

both not failing and not complete by definition, line 17 will be reached and

Υ′ will be enqueued in W .

Now consider the iteration when Υ′ gets dequeued at line 5. Line 10 is

guaranteed be reached with Υi = Υ. Since Υ is also non-failing, it will

not be blocked by B on line 11 to 12. Therefore, Υ will be checked for

successfulnesss on line 13 as well.

145

Bibliography

[1] A timing channel in jetty. https://github.com/eclipse/jetty.project/

commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea, 2017.

[2] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-

ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-

junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry

Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-

houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems,

2015. Software available from tensorflow.org.

[3] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power

of simple branch prediction analysis. In Proceedings of the 2Nd ACM

Symposium on Information, Computer and Communications Security,

ASIACCS ’07, pages 312–320. ACM, 2007.

[4] Onur Aciiçmez and Werner Schindler. A vulnerability in rsa imple-

mentations due to instruction cache analysis and its demonstration on

146

https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea
https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea

openssl. In Proceedings of the 2008 The Cryptopgraphers’ Track at the

RSA Conference on Topics in Cryptology, CT-RSA’08, pages 256–273.

Springer-Verlag, 2008.

[5] Elvira Albert, Jesús Correas Fernández, and Guillermo Román-Dı́ez.

Non-cumulative resource analysis. In Proceedings of the 21st Inter-

national Conference on Tools and Algorithms for the Construction and

Analysis of Systems - Volume 9035, pages 85–100. Springer-Verlag New

York, Inc., 2015.

[6] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Break-

ing the TLS and DTLS record protocols. In 2013 IEEE Symposium on

Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013,

pages 526–540, 2013.

[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-

soir, and Michael Emmi. Verifying constant-time implementations. In

25th USENIX Security Symposium, USENIX Security 16, Austin, TX,

USA, August 10-12, 2016., pages 53–70, 2016.

[8] Diego Esteban Alonso-Blas and Samir Genaim. On the limits of the clas-

sical approach to cost analysis. In Proceedings of the 19th International

Conference on Static Analysis, SAS’12, pages 405–421. Springer-Verlag,

2012.

[9] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Ta-

chio Terauchi, and Shiyi Wei. Decomposition instead of self-composition

147

for proving the absence of timing channels. In Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and Im-

plementation, PLDI 2017, pages 362–375, New York, NY, USA, 2017.

ACM.

[10] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-

dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D.

McDaniel. Flowdroid: precise context, flow, field, object-sensitive and

lifecycle-aware taint analysis for android apps. In ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI

’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 259–269,

2014.

[11] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin,

and Daniel Tarlow. Deepcoder: Learning to write programs. In ICLR,

2016.

[12] Lucas Bang, Abdulbaki Aydin, Quoc-Sang Phan, Corina S. Păsăreanu,

and Tevfik Bultan. String analysis for side channels with segmented

oracles. In Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, pages

193–204. ACM, 2016.

[13] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David

Pichardie. System-level non-interference for constant-time cryptogra-

148

phy. In Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’14, pages 1267–1279. ACM, 2014.

[14] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verifi-

cation using product programs. In International Symposium on Formal

Methods, pages 200–214. Springer, 2011.

[15] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational veri-

fication using product programs. In FM 2011: Formal Methods - 17th

International Symposium on Formal Methods, Limerick, Ireland, June

20-24, 2011. Proceedings, pages 200–214, 2011.

[16] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Beyond 2-Safety:

Asymmetric Product Programs for Relational Program Verification. In

Sergei N. Artëmov and Anil Nerode, editors, Logical Foundations of

Computer Science, International Symposium, LFCS 2013, San Diego,

CA, USA, January 6-8, 2013. Proceedings, volume 7734, pages 29–43.

Springer, 2013.

[17] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Product programs

and relational program logics. Journal of Logical and Algebraic Methods

in Programming, 85(5):847–859, 2016.

[18] Gilles Barthe, Pedro R D’Argenio, and Tamara Rezk. Secure infor-

mation flow by self-composition. In Computer Security Foundations

Workshop, 2004. Proceedings. 17th IEEE, pages 100–114. IEEE, 2004.

149

[19] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin.

Probabilistic relational reasoning for differential privacy. In ACM SIG-

PLAN Notices, volume 47, pages 97–110. ACM, 2012.

[20] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable

reinforcement learning via policy extraction. In NIPS, 2018.

[21] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Synthe-

sizing program input grammars. In PLDI, volume 52, pages 95–110.

ACM, 2017.

[22] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Ac-

tive learning of points-to specifications. In Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 678–692. ACM, 2018.

[23] Nels E Beckman and Aditya V Nori. Probabilistic, modular and scalable

inference of typestate specifications. In PLDI, volume 46, pages 211–

221. ACM, 2011.

[24] Nick Benton. Simple relational correctness proofs for static analyses

and program transformations. In ACM SIGPLAN Notices, volume 39,

pages 14–25. ACM, 2004.

[25] Jean-Francois Bergeretti and Bernard A. Carré. Information-flow and

data-flow analysis of while-programs. ACM Trans. Program. Lang.

Syst., 7(1):37–61, January 1985.

150

[26] Martin Berglund, Frank Drewes, and Brink van der Merwe. Analyz-

ing catastrophic backtracking behavior in practical regular expression

matching. In AFL, 2014.

[27] Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: probabilistic

model for code. In International Conference on Machine Learning,

pages 2933–2942, 2016.

[28] Pavol Bielik, Veselin Raychev, and Martin Vechev. Learning a static

analyzer from data. In International Conference on Computer Aided

Verification, pages 233–253. Springer, 2017.

[29] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko.

Horn clause solvers for program verification. In Fields of Logic and

Computation II, pages 24–51. Springer, 2015.

[30] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. Op-

timizing synthesis with metasketches. In Proceedings of the 43rd An-

nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’16, pages 775–788, New York, NY, USA, 2016.

ACM.

[31] Andrew Bortz and Dan Boneh. Exposing private information by timing

web applications. In World Wide Web, pages 621–628. ACM, 2007.

[32] Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and

Jürgen Giesl. Analyzing runtime and size complexity of integer pro-

151

grams. ACM Trans. Program. Lang. Syst., 38(4):13:1–13:50, August

2016.

[33] David Brumley and Dan Boneh. Remote timing attacks are practical.

In Proceedings of the 12th USENIX Security Symposium, Washington,

D.C., USA, August 4-8, 2003, 2003.

[34] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated

test generation for worst-case complexity. In Proceedings of the 31st

International Conference on Software Engineering, ICSE ’09, pages 463–

473, Washington, DC, USA, 2009. IEEE Computer Society.

[35] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting unix file-system

races via algorithmic complexity attacks. In 30th IEEE Symposium on

Security and Privacy (S&P 2009), 17-20 May 2009, Oakland, California,

USA, pages 27–41, 2009.

[36] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Composi-

tional certified resource bounds. In Proceedings of the 36th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’15, pages 467–478. ACM, 2015.

[37] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoff-

mann. Relational cost analysis. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL

2017, pages 316–329. ACM, 2017.

152

[38] Jia Chen, Yu Feng, and Isil Dillig. Precise detection of side-channel

vulnerabilities using quantitative cartesian hoare logic. In Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications

Security, pages 875–890. ACM, 2017.

[39] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-

channel leaks in web applications: A reality today, a challenge tomorrow.

In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May

2010, Berleley/Oakland, California, USA, pages 191–206, 2010.

[40] Sujit Rokka Chhetri and Mohammad Abdullah Al Faruque. Side-

channels of cyber-physical systems: Case study in additive manufac-

turing. IEEE Design & Test, 2017.

[41] Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The

perceptual distinctions approach. In AAAI, volume 1992, pages 183–

188. Citeseer, 1992.

[42] Lazaro Clapp, Osbert Bastani, Saswat Anand, and Alex Aiken. Mini-

mizing gui event traces. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages

422–434. ACM, 2016.

[43] Justin Clarke. SQL Injection Attacks and Defense. Syngress Publish-

ing, 1st edition, 2009.

153

[44] CNN. Widespread cyberattack takes down sites worldwide. https:

//tinyurl.com/ycovsk7d.

[45] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. Input-sensitive

profiling. In Proceedings of the 33rd ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’12, pages

89–98, New York, NY, USA, 2012. ACM.

[46] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd

edition, 2009.

[47] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified

lattice model for static analysis of programs by construction or approxi-

mation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, POPL ’77, pages

238–252. ACM, 1977.

[48] Scott A. Crosby and Dan S. Wallach. Denial of service via algorith-

mic complexity attacks. In Proceedings of the 12th USENIX Security

Symposium, Washington, D.C., USA, August 4-8, 2003, 2003.

[49] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Mau-

rizio Proietti. Horn clause transformation for program verification.

Technical report, 2016.

154

https://tinyurl.com/ycovsk7d
https://tinyurl.com/ycovsk7d

[50] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Maur-

izio Proietti. Relational verification through horn clause transformation.

In International Static Analysis Symposium, pages 147–169. Springer,

2016.

[51] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.

In Tools and Algorithms for the Construction and Analysis of Systems,

pages 337–340. Springer, 2008.

[52] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. Performance

problems you can fix: A dynamic analysis of memoization opportunities.

In Proceedings of the 2015 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2015, pages 607–622, New York, NY, USA, 2015. ACM.

[53] Monika Dhok and Murali Krishna Ramanathan. Directed test genera-

tion to detect loop inefficiencies. In Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engi-

neering, FSE 2016, pages 895–907, New York, NY, USA, 2016. ACM.

[54] Will Dietz, Peng Li, John Regehr, and Vikram Adve. Understanding

integer overflow in c/c++. ACM Transactions on Software Engineering

and Methodology (TOSEM), 25(1):2, 2015.

[55] Isil Dillig, Thomas Dillig, and Alex Aiken. Static error detection us-

ing semantic inconsistency inference. In Proceedings of the 28th ACM

155

SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’07, pages 435–445, New York, NY, USA, 2007. ACM.

[56] Guillaume Dufay, Amy Felty, and Stan Matwin. Privacy-sensitive in-

formation flow with jml. In Proceedings of the 20th International Con-

ference on Automated Deduction, CADE’ 20, pages 116–130. Springer-

Verlag, 2005.

[57] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. Blended analysis

for performance understanding of framework-based applications. In

Proceedings of the 2007 International Symposium on Software Testing

and Analysis, ISSTA ’07, pages 118–128, New York, NY, USA, 2007.

ACM.

[58] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan Shoshitaishvili, Christo-

pher Kruegel, and Giovanni Vigna. Heaphopper: Bringing bounded

model checking to heap implementation security. In 27th USENIX Se-

curity Symposium (USENIX Security 18), pages 99–116, Baltimore, MD,

2018. USENIX Association.

[59] Marco Eilers, Peter Müller, and Samuel Hitz. Modular product pro-

grams. In European Symposium on Programming, pages 502–529. Springer,

2018.

[60] Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer,

and Mattias Ulbrich. Automating regression verification. In Proceed-

156

ings of the 29th ACM/IEEE International Conference on Automated

Software Engineering, pages 349–360, 2014.

[61] Edward W. Felten and Michael A. Schneider. Timing attacks on web

privacy. In CCS 2000, Proceedings of the 7th ACM Conference on

Computer and Communications Security, Athens, Greece, November 1-

4, 2000., pages 25–32, 2000.

[62] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program syn-

thesis using conflict-driven learning. In Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation, pages 420–435. ACM, 2018.

[63] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat

Chaudhuri. Component-based synthesis of table consolidation and

transformation tasks from examples. In PLDI, volume 52, pages 422–

436. ACM, 2017.

[64] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation

assistant for esc/java. In Proceedings of the International Symposium

of Formal Methods Europe on Formal Methods for Increasing Software

Productivity, FME ’01, pages 500–517. Springer-Verlag, 2001.

[65] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation

assistant for esc/java. In Proceedings of the International Symposium of

157

Formal Methods Europe on Formal Methods for Increasing Software Pro-

ductivity, FME ’01, pages 500–517, Berlin, Heidelberg, 2001. Springer-

Verlag.

[66] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,

James B. Saxe, and Raymie Stata. Extended static checking for java.

In Proceedings of the ACM SIGPLAN 2002 Conference on Programming

Language Design and Implementation, PLDI ’02, pages 234–245, New

York, NY, USA, 2002. ACM.

[67] Antonio Flores-Montoya and Reiner Hähnle. Resource Analysis of Com-

plex Programs with Cost Equations, pages 275–295. Springer Interna-

tional Publishing, Cham, 2014.

[68] Riccardo Focardi and Roberto Gorrieri. A classification of security

properties for process algebras1. Journal of Computer security, 3(1):5–

33, 1995.

[69] Seth Fogie, Jeremiah Grossman, Robert Hansen, Anton Rager, and

Petko D. Petkov. XSS Attacks: Cross Site Scripting Exploits and De-

fense. Syngress Publishing, 2007.

[70] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromag-

netic analysis: Concrete results. In Proceedings of the Third Inter-

national Workshop on Cryptographic Hardware and Embedded Systems,

CHES ’01, pages 251–261. Springer-Verlag, 2001.

158

[71] Nethanel Gelernter and Amir Herzberg. Cross-site search attacks. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pages 1394–1405. ACM, 2015.

[72] Daniel Genkin, Itamar Pipman, and Eran Tromer. Get your hands

off my laptop: Physical side-channel key-extraction attacks on pcs. In

Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th

International Workshop, Busan, South Korea, September 23-26, 2014.

Proceedings, pages 242–260, 2014.

[73] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Ma-

chine learning for input fuzzing. In Proceedings of the 32nd IEEE/ACM

International Conference on Automated Software Engineering, pages 50–

59. IEEE Press, 2017.

[74] Jan Goguen and Meseguer Jose. Security policies and security models.

In Symposium on Security and Privacy, pages 11–20. IEEE Computer

Society Press, 1982.

[75] A V Goldberg and R E Tarjan. A new approach to the maximum flow

problem. In Proceedings of the Eighteenth Annual ACM Symposium on

Theory of Computing, STOC ’86, pages 136–146, New York, NY, USA,

1986. ACM.

[76] Simon F Goldsmith, Alex S Aiken, and Daniel S Wilkerson. Measuring

empirical computational complexity. In Proceedings of the the 6th joint

159

meeting of the European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software engineering, pages

395–404. ACM, 2007.

[77] Google. Google core libraries for java. https://github.com/google/

guava.

[78] James W Gray III. Toward a mathematical foundation for information

flow security. Journal of Computer Security, 1(3-4):255–294, 1992.

[79] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games

- bringing access-based cache attacks on AES to practice. In 32nd

IEEE Symposium on Security and Privacy, S&P 2011, 22-25 May 2011,

Berkeley, California, USA, pages 490–505, 2011.

[80] Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. Speed: Pre-

cise and efficient static estimation of program computational complexity.

In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’09, pages 127–139.

ACM, 2009.

[81] Arie Gurfinkel, Temesghen Kahsai, and Jorge A. Navas. Seahorn: A

framework for verifying c programs (competition contribution). In

Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the

Construction and Analysis of Systems, pages 447–450, Berlin, Heidel-

berg, 2015. Springer Berlin Heidelberg.

160

https://github.com/google/guava
https://github.com/google/guava

[82] Samuel Z. Guyer and Calvin Lin. Error checking with client-driven

pointer analysis. Sci. Comput. Program., 58(1-2):83–114, October

2005.

[83] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. Differ-

ential privacy under fire. In 20th USENIX Security Symposium, San

Francisco, CA, USA, August 8-12, 2011, Proceedings, 2011.

[84] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. Stratified

synthesis: automatically learning the x86-64 instruction set. In PLDI,

volume 51, pages 237–250. ACM, 2016.

[85] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amor-

tized resource analysis. ACM Trans. Program. Lang. Syst., 34(3):14:1–

14:62, November 2012.

[86] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards automatic

resource bound analysis for ocaml. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL

2017, pages 359–373. ACM, 2017.

[87] Jan Hoffmann and Martin Hofmann. Amortized resource analysis with

polynomial potential: A static inference of polynomial bounds for func-

tional programs. In Proceedings of the 19th European Conference on

Programming Languages and Systems, ESOP’10, pages 287–306. Springer-

Verlag, 2010.

161

[88] Jan Hoffmann and Zhong Shao. Type-Based Amortized Resource Anal-

ysis with Integers and Arrays, pages 152–168. Springer International

Publishing, 2014.

[89] Martin Hofmann and Steffen Jost. Static prediction of heap space

usage for first-order functional programs. In Proceedings of the 30th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’03, pages 185–197. ACM, 2003.

[90] Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Eén,

François Chollet, and Josef Urban. Deepmath-deep sequence models

for premise selection. In Advances in Neural Information Processing

Systems, pages 2235–2243, 2016.

[91] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical

abstract domains for static analysis. In Proceedings of the 21st Inter-

national Conference on Computer Aided Verification, CAV ’09, pages

661–667. Springer-Verlag, 2009.

[92] JGraphT. A free java graph library. http://jgrapht.org/.

[93] Michel Kaempf. Vudo - An object superstitiously believed to embody

magical powers. Phrack Magazine, 57(8), 2001.

[94] Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Pra-

teek Jain, and Sumit Gulwani. Neural-guided deductive search for real-

time program synthesis from examples. In ICLR, 2018.

162

http://jgrapht.org/

[95] James C. King. Symbolic execution and program testing. Communica-

tions of the ACM, 19(7):385–394, 1976.

[96] Alexander Klink and Julian Wälde. Efficient denial of service attacks on

web application platforms. https://events.ccc.de/congress/2011/

Fahrplan/attachments/2007_28C3_Effective_DoS_on_web_application_

platforms.pdf, 2011. [Online; accessed 1-Feb-2018].

[97] Paul Kocher. Timing attacks on implementations of diffie-hellman, rsa,

dss, and other systems. In Advances in Cryptology—CRYPTO’96, pages

104–113. Springer, 1996.

[98] Paul C. Kocher. Timing attacks on implementations of diffie-hellman,

rsa, dss, and other systems. In CRYPTO ’96, 16th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 18-22,

1996, Proceedings, pages 104–113, 1996.

[99] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. Smt-based model

checking for recursive programs. Formal Methods in System Design,

48(3):175–205, June 2016.

[100] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson

Engler. From uncertainty to belief: Inferring the specification within.

In Proceedings of the 7th symposium on Operating systems design and

implementation, pages 161–176, 2006.

163

https://events.ccc.de/congress/2011/Fahrplan/attachments/2007_28C3_Effective_DoS_on_web_application_platforms.pdf
https://events.ccc.de/congress/2011/Fahrplan/attachments/2007_28C3_Effective_DoS_on_web_application_platforms.pdf
https://events.ccc.de/congress/2011/Fahrplan/attachments/2007_28C3_Effective_DoS_on_web_application_platforms.pdf

[101] Shuvendu Lahiri and Shaz Qadeer. Back to the future: Revisiting pre-

cise program verification using smt solvers. In Proceedings of the 35th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’08, pages 171–182. ACM, 2008.

[102] Shuvendu K Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique

Rebêlo. Symdiff: A language-agnostic semantic diff tool for imperative

programs. In International Conference on Computer Aided Verification,

pages 712–717. Springer, 2012.

[103] Shuvendu K Lahiri, Kenneth L McMillan, Rahul Sharma, and Chris

Hawblitzel. Differential assertion checking. In Proceedings of the 2013

9th Joint Meeting on Foundations of Software Engineering, pages 345–

355. ACM, 2013.

[104] Shuvendu K. Lahiri and Shaz Qadeer. Complexity and algorithms

for monomial and clausal predicate abstraction. In Proceedings of

the 22Nd International Conference on Automated Deduction, CADE-22,

pages 214–229. Springer-Verlag, 2009.

[105] Chris Lattner and Vikram Adve. Llvm: A compilation framework for

lifelong program analysis & transformation. In Proceedings of the Inter-

national Symposium on Code Generation and Optimization: Feedback-

directed and Runtime Optimization, CGO ’04, pages 75–. IEEE Com-

puter Society, 2004.

164

[106] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo

Kim, Long Lu, and Wenke Lee. Preventing use-after-free with dangling

pointers nullification. In 22nd Annual Network and Distributed System

Security Symposium, NDSS 2015, San Diego, California, USA, February

8-11, 2015, 2015.

[107] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating

search-based program synthesis using learned probabilistic models. In

Proceedings of the 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 436–449. ACM, 2018.

[108] Xavier Leroy. Formal verification of a realistic compiler. Communica-

tions of the ACM, 52(7):107–115, July 2009.

[109] Percy Liang, Omer Tripp, and Mayur Naik. Learning minimal abstrac-

tions. In POPL, volume 46, pages 31–42. ACM, 2011.

[110] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I

Jordan. Scalable statistical bug isolation. 40(6):15–26, 2005.

[111] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari,

and Elaine Shi. Ghostrider: A hardware-software system for memory

trace oblivious computation. In Proceedings of the Twentieth Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’15, pages 87–101. ACM, 2015.

165

[112] Benjamin Livshits, Aditya V Nori, Sriram K Rajamani, and Anindya

Banerjee. Merlin: specification inference for explicit information flow

problems. volume 44, pages 75–86. ACM, 2009.

[113] Ravi Mangal, Xin Zhang, Aditya V Nori, and Mayur Naik. A user-

guided approach to program analysis. In Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering, pages 462–473.

ACM, 2015.

[114] Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp:

Rethinking timekeeping and performance monitoring mechanisms to mit-

igate side-channel attacks. In Proceedings of the 39th Annual Interna-

tional Symposium on Computer Architecture, ISCA ’12, pages 118–129.

IEEE Computer Society, 2012.

[115] R Andrew McCallum. Overcoming incomplete perception with utile dis-

tinction memory. In Proceedings of the Tenth International Conference

on Machine Learning, pages 190–196, 1993.

[116] Kurt Mehlhorn and Stefan Näher. LEDA: a platform for combinatorial

and geometric computing. Cambridge university press, 1999.

[117] mitre. Cve-2011-5021. https://nvd.nist.gov/vuln/detail/CVE-2011-5021.

[118] mitre. Cve-2015-3192. https://pivotal.io/security/cve-2015-3192.

[119] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The

program counter security model: Automatic detection and removal of

166

https://nvd.nist.gov/vuln/detail/CVE-2011-5021
https://pivotal.io/security/cve-2015-3192

control-flow side channel attacks. In Proceedings of the 8th International

Conference on Information Security and Cryptology, ICISC’05, pages

156–168. Springer-Verlag, 2006.

[120] William H Montgomery and Sergey Levine. Guided policy search via

approximate mirror descent. In Advances in Neural Information Pro-

cessing Systems, pages 4008–4016, 2016.

[121] Dmitry Mordvinov and Grigory Fedyukovich. Synchronizing constrained

horn clauses. LPAR, EPiC Series in Computing. EasyChair, 2017.

[122] Andrew C Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong,

and Nathaniel Nystrom. Jif: Java information flow. Software release.

Located at http://www. cs. cornell. edu/jif, 2005, 2001.

[123] David A. Naumann. From Coupling Relations to Mated Invariants for

Checking Information Flow, pages 279–296. Springer Berlin Heidelberg,

2006.

[124] V. C. Ngo, M. Dehesa-Azuara, M. Fredrikson, and J. Hoffmann. Verify-

ing and synthesizing constant-resource implementations with types. In

2017 IEEE Symposium on Security and Privacy (SP), pages 710–728,

May 2017.

[125] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. Caramel:

Detecting and fixing performance problems that have non-intrusive fixes.

167

In Proceedings of the 37th International Conference on Software Engi-

neering - Volume 1, ICSE ’15, pages 902–912. IEEE Press, 2015.

[126] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler: De-

tecting performance problems via similar memory-access patterns. In

Proceedings of the 2013 International Conference on Software Engineer-

ing, ICSE ’13, pages 562–571. IEEE Press, 2013.

[127] Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymp-

totic performance bugs in collection traversals. In Proceedings of the

36th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’15, pages 369–378, New York, NY, USA, 2015.

ACM.

[128] Aleph One. Smashing the stack for fun and profit. Phrack Magazine,

49(14), 1998.

[129] Saswat Padhi, Rahul Sharma, and Todd Millstein. Data-driven pre-

condition inference with learned features. In PLDI, volume 51, pages

42–56. ACM, 2016.

[130] Rohan Padhye and Koushik Sen. Travioli: A dynamic analysis for

detecting data-structure traversals. In Proceedings of the 39th Inter-

national Conference on Software Engineering, ICSE ’17, pages 473–483,

Piscataway, NJ, USA, 2017. IEEE Press.

168

[131] Corina Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. Multi-

run side-channel analysis using symbolic execution and max-smt. In

Computer Security Foundations Symposium. IEEE, 2016.

[132] Corina S. Pasareanu, Quoc-Sang Phan, and Pasquale Malacaria. Multi-

run side-channel analysis using symbolic execution and max-smt. In

IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lis-

bon, Portugal, June 27 - July 1, 2016, pages 387–400, 2016.

[133] Theofilos Petsios, Jason Zhao, Angelos D. Keromytis, and Suman Jana.

Slowfuzz: Automated domain-independent detection of algorithmic com-

plexity vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Con-

ference on Computer and Communications Security, CCS 2017, Dallas,

TX, USA, October 30 - November 03, 2017, pages 2155–2168, 2017.

[134] Amir Pnueli, Michael Siegel, and Eli Singerman. Translation valida-

tion. In Proceedings of the 4th International Conference on Tools and

Algorithms for Construction and Analysis of Systems, TACAS ’98, pages

151–166, Berlin, Heidelberg, 1998. Springer-Verlag.

[135] François Pottier and Vincent Simonet. Information flow inference for

ml. ACM Trans. Program. Lang. Syst., 25(1):117–158, January 2003.

[136] Michael Pradel, Markus Huggler, and Thomas R Gross. Performance

regression testing of concurrent classes. In Proceedings of the 2014

International Symposium on Software Testing and Analysis, pages 13–

25. ACM, 2014.

169

[137] Manish Prasad and Tzi-cker Chiueh. A binary rewriting defense against

stack based buffer overflow attacks. In Proceedings of the General Track:

2003 USENIX Annual Technical Conference, June 9-14, 2003, San An-

tonio, Texas, USA, pages 211–224, 2003.

[138] Dan Quinlan and Chunhua Liao. The rose source-to-source compiler

infrastructure. In Cetus Users and Compiler Infrastructure Workshop,

in conjunction with PACT 2011, October 2011.

[139] Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik.

User-guided program reasoning using bayesian inference. In Proceedings

of the 39th ACM SIGPLAN Conference on Programming Language De-

sign and Implementation, pages 722–735. ACM, 2018.

[140] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital

side-channels through obfuscated execution. In 24th USENIX Security

Symposium (USENIX Security 15), pages 431–446, Washington, D.C.,

2015. USENIX Association.

[141] Ashay Rane, Calvin Lin, and Mohit Tiwari. Secure, precise, and fast

floating-point operations on x86 processors. In 25th USENIX Secu-

rity Symposium (USENIX Security 16), pages 71–86, Austin, TX, 2016.

USENIX Association.

[142] Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model

for code with decision trees. In OOPSLA, volume 51, pages 731–747.

ACM, 2016.

170

[143] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause.

Learning programs from noisy data. In POPL, volume 51, pages 761–

774. ACM, 2016.

[144] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting pro-

gram properties from big code. In POPL, volume 50, pages 111–124.

ACM, 2015.

[145] Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion

with statistical language models. In PLDI, volume 49, pages 419–428.

ACM, 2014.

[146] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha.

Sparse representation of implicit flows with applications to side-channel

detection. In Proceedings of the 25th International Conference on Com-

piler Construction, CC 2016, pages 110–120. ACM, 2016.

[147] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.

Return-oriented programming: Systems, languages, and applications.

ACM Trans. Inf. Syst. Secur., 15(1):2:1–2:34, March 2012.

[148] Andrei Sabelfeld and Andrew C Myers. Language-based information-

flow security. IEEE Journal on selected areas in communications, 21(1):5–

19, 2003.

[149] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superopti-

mization. In ASPLOS, volume 41, pages 305–316. ACM, 2013.

171

[150] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic optimization

of floating-point programs with tunable precision. In PLDI, volume 49,

pages 53–64. ACM, 2014.

[151] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and

Philipp Moritz. Trust region policy optimization. In International

Conference on Machine Learning, pages 1889–1897, 2015.

[152] Robert Sedgewick and Kevin Wayne. Java algorithms and clients.

https://algs4.cs.princeton.edu/code/.

[153] Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley

Professional, 4th edition, 2011.

[154] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry

Vyukov. Addresssanitizer: A fast address sanity checker. In Proceed-

ings of the 2012 USENIX Conference on Annual Technical Conference,

USENIX ATC’12, pages 28–28, Berkeley, CA, USA, 2012. USENIX As-

sociation.

[155] Rahul Sharma and Alex Aiken. From invariant checking to invariant

inference using randomized search. In CAV, 2014.

[156] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy

Liang, and Aditya V. Nori. A data driven approach for algebraic loop

invariants. In Proceedings of the 22Nd European Conference on Pro-

172

https://algs4.cs.princeton.edu/code/

gramming Languages and Systems, ESOP’13, pages 574–592. Springer-

Verlag, 2013.

[157] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and

Aditya V Nori. Verification as learning geometric concepts. In Interna-

tional Static Analysis Symposium, pages 388–411. Springer, 2013.

[158] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. Data-

driven equivalence checking. In OOPSLA, volume 48, pages 391–406.

ACM, 2013.

[159] Govind Sreekar Shenoy, Jordi Tubella, and Antonio González. Im-

proving the resilience of an IDS against performance throttling attacks.

In Security and Privacy in Communication Networks - 8th Interna-

tional ICST Conference, SecureComm 2012, Padua, Italy, September

3-5, 2012. Revised Selected Papers, pages 167–184, 2012.

[160] Robert W. Shirey. Internet Security Glossary, Version 2. RFC 4949,

RFC Editor, Aug 2007.

[161] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning.

In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, Denver, CO, USA, October 12-6, 2015, pages

1310–1321, 2015.

[162] Gagandeep Singh, Markus Püschel, and Martin Vechev. Fast numerical

173

program analysis with reinforcement learning. In International Confer-

ence on Computer Aided Verification, pages 211–229. Springer, 2018.

[163] Moritz Sinn, Florian Zuleger, and Helmut Veith. A Simple and Scalable

Static Analysis for Bound Analysis and Amortized Complexity Analysis,

pages 745–761. Springer International Publishing, 2014.

[164] Moritz Sinn, Florian Zuleger, and Helmut Veith. Complexity and

resource bound analysis of imperative programs using difference con-

straints. Journal of Automated Reasoning, pages 1–43, 2017.

[165] Randy Smith, Cristian Estan, and Somesh Jha. Backtracking algo-

rithmic complexity attacks against a NIDS. In 22nd Annual Computer

Security Applications Conference (ACSAC 2006), 11-15 December 2006,

Miami Beach, Florida, USA, pages 89–98, 2006.

[166] Dawn Song. Formal verification for computer security: Lessons learned

and future directions. In Proceedings of the 16th Conference on Formal

Methods in Computer-Aided Design, FMCAD ’16, pages 1–1, Austin,

TX, 2016. FMCAD Inc.

[167] Linhai Song and Shan Lu. Performance diagnosis for inefficient loops.

In Proceedings of the 39th International Conference on Software Engi-

neering, ICSE ’17, pages 370–380, Piscataway, NJ, USA, 2017. IEEE

Press.

174

[168] Marcelo Sousa and Isil Dillig. Cartesian hoare logic for verifying k-safety

properties. In Proceedings of the 37th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’16, pages

57–69, New York, NY, USA, 2016. ACM.

[169] Marcelo Sousa, Isil Dillig, and Shuvendu Lahiri. Verifying semantic

conflict-freedom in three-way program merges. arXiv preprint arXiv:1802.06551,

2018.

[170] Manu Sridharan and Rastislav Bod́ık. Refinement-based context-sensitive

points-to analysis for java. In Proceedings of the 27th ACM SIG-

PLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’06, pages 387–400. ACM, 2006.

[171] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: Brute

Force Vulnerability Discovery. Addison-Wesley Professional, 2007.

[172] Richard S Sutton and Andrew G Barto. Reinforcement learning: An

introduction. MIT press, 2018.

[173] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay

Mansour. Policy gradient methods for reinforcement learning with func-

tion approximation. In Advances in neural information processing sys-

tems, pages 1057–1063, 2000.

[174] Tachio Terauchi and Alexander Aiken. Secure information flow as a

safety problem. In Static Analysis, 12th International Symposium, SAS

175

2005, London, UK, September 7-9, 2005, Proceedings, pages 352–367,

2005.

[175] Luca Della Toffola, Michael Pradel, and Thomas R. Gross. Synthesizing

programs that expose performance bottlenecks. In Proceedings of the

2018 International Symposium on Code Generation and Optimization,

pages 1–13, 2018.

[176] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. Soot - a java bytecode optimization frame-

work. In Proceedings of the 1999 Conference of the Centre for Advanced

Studies on Collaborative Research, CASCON ’99, pages 13–. IBM Press,

1999.

[177] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. Dangsan:

Scalable use-after-free detection. In Proceedings of the Twelfth European

Conference on Computer Systems, EuroSys ’17, pages 405–419. ACM,

2017.

[178] Serge Vaudenay. Security flaws induced by CBC padding - applica-

tions to ssl, ipsec, WTLS ... In Advances in Cryptology - EUROCRYPT

2002, International Conference on the Theory and Applications of Cryp-

tographic Techniques, Amsterdam, The Netherlands, April 28 - May 2,

2002, Proceedings, pages 534–546, 2002.

[179] Vavr. An object-functional language extension to java 8. https:

//github.com/vavr-io/vavr.

176

https://github.com/vavr-io/vavr
https://github.com/vavr-io/vavr

[180] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection

for theorem proving by deep graph embedding. In Advances in Neural

Information Processing Systems, pages 2786–2796, 2017.

[181] Valentin Wüstholz, Oswaldo Olivo, Marijn J. H. Heule, and Isil Dillig.

Static detection of dos vulnerabilities in programs that use regular ex-

pressions. In Tools and Algorithms for the Construction and Analysis

of Systems - 23rd International Conference, TACAS 2017, Held as Part

of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II,

pages 3–20, 2017.

[182] Wenhan Xiong, Thien Hoang, and William Yang Wang. Deeppath:

A reinforcement learning method for knowledge graph reasoning. In

EMNLP, 2017.

[183] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A language for

automatically enforcing privacy policies. In ACM SIGPLAN Notices,

volume 47, pages 85–96. ACM, 2012.

[184] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A Tim-

ing Attack on OpenSSL Constant Time RSA, pages 346–367. Springer

Berlin Heidelberg, 2016.

[185] Anna Zaks and Amir Pnueli. Covac: Compiler validation by program

analysis of the cross-product. In FM 2008: Formal Methods, pages

35–51. Springer, 2008.

177

[186] Anna Zaks and Amir Pnueli. Covac: Compiler validation by program

analysis of the cross-product. In Proceedings of the 15th International

Symposium on Formal Methods, FM ’08, pages 35–51, Berlin, Heidel-

berg, 2008. Springer-Verlag.

[187] Dmitrijs Zaparanuks and Matthias Hauswirth. Algorithmic profiling.

In Proceedings of the 33rd ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI ’12, pages 67–76, New

York, NY, USA, 2012. ACM.

[188] ZDNet. The average dos attack cost for businesses rises to over 2.5

million. https://tinyurl.com/m7mvzfc.

[189] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. Language-

based control and mitigation of timing channels. In Proceedings of the

33rd ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’12, pages 99–110. ACM, 2012.

[190] Kehuan Zhang, Zhou Li, Rui Wang, XiaoFeng Wang, and Shuo Chen.

Sidebuster: Automated detection and quantification of side-channel leaks

in web application development. In Computer and Communications Se-

curity, pages 595–606. ACM, 2010.

[191] Pingyu Zhang, Sebastian Elbaum, and Matthew B. Dwyer. Automatic

generation of load tests. In Proceedings of the 2011 26th IEEE/ACM

International Conference on Automated Software Engineering, ASE ’11,

pages 43–52, Washington, DC, USA, 2011. IEEE Computer Society.

178

https://tinyurl.com/m7mvzfc

[192] Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound

analysis of imperative programs with the size-change abstraction. In

Proceedings of the 18th International Conference on Static Analysis,

SAS’11, pages 280–297. Springer-Verlag, 2011.

179

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Motivation
	Contributions
	Understanding worst case complexity
	Detecting side-channel vulnerability
	Proving general relational properties

	Thesis Outline

	Chapter 2. Dynamic Detection of Algorithmic Complexity Vulnerabilities
	Overview
	Motivating Example
	Formal Description
	Problem Definition
	Recurrence Computation Graphs
	Algorithmic Vulnerability Testing as Discrete Optimization
	Genetic Programming
	Fitness Function

	Implementation
	Evaluation
	Asymptotic Bound Analysis
	Comparison Against SlowFuzz
	Availability Vulnerability Detection
	Performance Bug Detection

	Chapter 3. Relational Verification for Non-Interference
	Overview
	Motivating Example
	Threat Model
	Side-Channels and Bounded Non-interference
	Language
	QCHL Proof Rules
	Loop Invariant Generation

	Implementation
	Evaluation
	Comparison Against Blazer
	Detection of Known Vulnerabilities
	Discovery of Zero-Day Vulnerabilities

	Limitations

	Chapter 4. Enhanced Relational Verification Using Reinforcement Learning
	Verifying Relational Properties
	Representing Proof Strategies
	Learning Algorithm Overview
	Reinforcement Learning
	Background on Reinforcement Learning
	MDP for Relational Verification
	Function Approximation
	Reinforcement Learning Algorithm

	Policy-Guided Proof Search
	Using policy to guide search
	Finding minimal failing strategies

	Implementation
	Evaluation
	Translation Validation Benchmarks
	Medley of Relational Verification Benchmarks

	Chapter 5. Related Works
	Chapter 6. Conclusion and Future Work
	Appendix
	Appendix 1. Proofs of Selected Theorems
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 6
	Proof of Theorem 7
	Proof Theorem 8

	Bibliography

