
Appears in "Proceedings of the Nineth International Workshop on Languages and Compilers for Parallel Computing," pages 481-500, 1996.Factor-Join: A Unique Approach to CompilingArray Languages for Parallel Machines?Bradford L. Chamberlain Sung-Eun Choi E Christopher LewisCalvin Liny Lawrence Snyder W. Derrick WeathersbyUniversity of Washington, Seattle, WA 98195-2350 USAy University of Texas, Austin, TX 78712 USAAbstract. This paper describes a new approach to compiling and op-timizing array languages for parallel machines. This approach �rst de-composes array language operations into factors, where each factor cor-responds to a di�erent communication or computation structure. Op-timizations are then achieved by combining, or joining, these factors.Because factors preserve high level information about array operations,the analysis necessary to perform these join operations is simpler thanthat required for scalar programs. In particular, we show how data par-allel programs written in the ZPL programming language are compiledand optimized using the factor-join approach, and we show that a smallnumber of factors are su�cient to represent ZPL programs.1 IntroductionArray languages such as Fortran 90 and ZPL introduce compilation issues notencountered in the context of scalar languages such as Fortran 77 or C. Cer-tain problems vanish, others become more complicated, and still others call fortechniques not previously available. This paper shows how compilers can exploitthis new context. Using the ZPL compiler as an example, we describe a new ap-proach to compiling array languages that is particularly useful when compilingfor parallel machines.To see how an array language can simplify the compilation process, considerthe problem of generating explicit interprocessor communication from a scalarlanguage. One challenging problem in compiling scalar Fortran 77 code is per-formingmessage vectorization [9]|the transmission of multiple values in a singlemessage rather than in separate messages. In scalar languages, the base unit ofcomputation is a single value, and communication is generated per-value, makingvectorization an optimization task. But in array languages the unit of computa-tion is a contiguous sub-array, resulting in natural and automatic vectorization,as illustrated in Fig. 1.To illustrate how an array language's high-level concepts motivate new op-timizations, consider ZPL's reduce operators which combine data elements of? This research was supported in part by ARPA Grant N00014-92-J-1824.



an array using an associative operator such as plus, logical-and, or minimum.The implementation of reduce requires local computation, a global reduction,and a broadcast. The communication components of consecutive reduces can bemerged to yield signi�cant performance improvements in much the same waythat message vectorization optimizes access to consecutive scalar values. Thisoptimization is illustrated in Fig. 2. In scalar languages, there is little chance forthe compiler to optimize communication in this way. Even if the reduce conceptis abstracted to a procedure, it is di�cult for a compiler to recognize, much lessrealize, the opportunity to perform the optimization.do 10 j = 1,ndo 10 i = 1,m10 A(i,j) = A(i,j+1)
processor k
allocation

processor k+1
allocation(a) Scalar language. [1..m,1..n] A := A@east;

processor k
allocation

processor k +1
allocation(b) Array language.Fig. 1. Message vectorization in parallelized Fortran 77 and ZPL.The ZPL compiler achieves these sorts of optimizations with the factor-joincompilation strategy in which each array operation is decomposed into basiccomponents called factors. Each factor describes an elementary computationor data transfer operation, and subsequent analyses manipulate and join thesefactors as optimizations. Though more basic than ZPL array operations, theminvel := min<<Vel;maxvel := max<<Vel;(a) ZPL source. t = DBL MAX;for (i=mylow; i<myhi; i++)t = min(t,Vel[i]);Glob Reduce(<t,min>);Broadcast(<t,minvel>);t = -DBL MAX;for (i=mylow; i<myhi; i++)t = max(t,Vel[i]);Glob Reduce(<t,max>);Broadcast(<t,maxvel>);(b) Naive code generation. t1 = DBL MAX;for (i=mylow; i<myhi; i++)t1 = min(t,Vel[i]);t2 = -DBL MAX;for (i=mylow; i<myhi; i++)t2 = max(t2,Vel[i]);Glob Reduce(<t1,min>,<t2,max>);Broadcast(<t1, minvel>,<t2, maxvel>);(c) Optimized code generation.Fig. 2. Combining the communication portions of reductions. Notice the reduce oper-ators in the ZPL source (a): min<< and max<<.



factors preserve the source code's high-level semantics. In contrast to this highlevel approach the IBM HPF compiler may lose semantic information becauseit scalarizes Fortran 90 array structures early in the compilation process [12].The ZPL compiler thus employs standard compilation concepts and tech-niques, but extends them to exploit the language's abstractions and to treatarrays atomically. Our presentation of the ZPL compiler will assume an under-standing of scalar compilation and concentrate only on areas of di�erence. Theseinclude the following.{ Internal representations, particularly the AST{ Run-time assumptions about the virtual machine{ Phases of compilation{ The factor-join technique and its resulting optimizations� loop fusion and array contraction� redundant communication removal� communication pipelining and combiningThis paper presents the �rst description of the ZPL compiler's internal work-ings, and as such it concentrates on compilation strategy rather than perfor-mance. Previous work has shown that the generated code's performance is com-parable with C using explicit message-passing [21] and is generally superior tothe HPF compilers with which it has been compared [19, 22]. ZPL has also beensuccessfully used for scienti�c and engineering applications [8, 18, 24], and itscompiler is available on the Web.2The remainder of this paper is structured as follows. Section 2 briey intro-duces basic ZPL language concepts|more complete descriptions are availableelsewhere [27, 20]. Section 3 describes runtime assumptions that are used in thecompilation process. The compilation process itself is described in Sect. 4, withan emphasis on its structure and use of the factor-join strategy. Section 5 dis-cusses the details of joining, and the �nal two sections present related work andconclusions.2 ZPL Language SummaryZPL is an implicitly parallel array language designed for scienti�c computa-tions [27]. It is an imperative language, supporting standard data types (integer,oat, char, etc.), standard operators (+, -, �, etc.), C-like assignment operators(+=, �=, etc.), procedures with by-value and by-reference parameters, recursion,a standard set of control constructs (if, for, while, etc.), and C-like I/O.In addition, ZPL provides a number of abstractions and operations designedto simplify programming while promoting e�ciency. Regions are a fundamentalconcept, implicitly specifying the parallelism in a ZPL program. A region is aset of indices and can be declared as follows. (Any text to the right of { { is acomment.)2 URL: http://www.cs.washington.edu/research/projects/zpl/



region R = [1..m, 1..n]; { { Declare R=f(1,1), (1,2),: : :, (m,n)gRegions are used to declare arrays as follows.var A: [R] oat; { { A is an m � n array of oatsRegion speci�ers pre�x statements to de�ne the extent of array operations. Astatement whose arrays are of rank r requires a region speci�er of rank r, andthe array indices for which the statement is executed are the indices in theregion speci�er. For example, the following statement assigns the value 1 to theelements of A for the indices R = f(1,1), (1,2),: : :, (m,n)g.[R] A := 1;Dynamically scoped region speci�ers allow a procedure either to supply regionspeci�ers explicitly in its body or to inherit them from the call site. Thus, proce-dures can be written in a region-independent fashion and execute over di�erentregions with each call.
[east of R] A:=1[R] A:=1 [2,1..n] A:=0 [R] ... A@east ...[east in R] A:=0

(a)	 (b)	 (c)	 (d)	 (e)	 (f)

[R] A := A@eastFig. 3. Sequence of region usage examples. Grey boxes represent the value 1 and whiterepresents 0. The hashed area in (e) represents the elements referred to by A@east.Regions can be expressed and manipulated in a variety of ways. Figure 3shows a sequence of operations which use A, R and n as de�ned above, and east= [0,1]. Array and region names are capitalized, while scalar variables are not.In Fig. 3(a), an array assignment, as just described, sets the R region of A, to1. Next, an assignment over the region east in R sets the column inside the eastborder to 0. In 3(c), the region east of R causes the implicit allocation of a newcolumn adjacent to, but outside of, the east border and sets it to 1. Dynamicregions bind their indices at runtime. The dynamic region [2,1..n] in 3(d) speci�esthat the �rst n elements of the second row be set to 0. The @-operator translatesthe speci�ed region, in this case R, by adding the direction to all indices in theregion, so Fig. 3(e) uses diagonal hashing to indicate the values referenced byA@east. In 3(f), the hashed portion of the array is assigned into A, shifting thearray. Notice that the values in the east of R region are unchanged because theyare outside of the applied region R.ZPL supports a full set of reduce and scan (parallel pre�x) operators. Forexample, the following statement reduces A to the value of its largest elementusing the max reduction operator (max<<) and assigns the value to the scalarbiggest.



biggest := max<<A; { { Find largest elementOther reduction operations include min<<, +<<, �<<, and &<<. Scan is simi-lar to reduce, but it produces an array of the same shape and size as its operand,and each element contains the result of the reduction over all lower indexed el-ements (in row-major order).Biggest so far := maxjjA; { { Scan �nding progressively larger itemsZPL also has partial reduces and scans that apply an operator over a subsetof the array's dimensions (see Fig. 4). The dimensions in brackets indicate thesubset of dimensions to scan across.1 1 11 1 11 1 1A 1 2 31 2 31 2 3+jj[2]A 1 1 12 2 23 3 3+jj[1]A 1 2 34 5 67 8 9+jjAFig. 4. Partial scan operation examples.The concepts introduced up to this point are su�cient for understandingthe sample scienti�c computation shown in Fig. 5. This code takes as input avector containing the sampled coordinates of an object at various times (Sam-pleT, SampleXPos, SampleYPos). It assumes the object was at the origin at time0 (lines 18-22) and computes the approximate velocity of the object for eachsampled interval (lines 23-28). It then applies reduction operators to determinethe object's minimum and maximum velocities (lines 29-30). This program willserve as a running example throughout the paper. A complete listing is providedin Appendix A.In addition to the above operations, ZPL contains a number of expressiveabstractions for array manipulation. Due to space limitations, we only give abrief survey below, but complete information is available elsewhere [27, 20].{ Shattered control ow { ZPL has sequential control ow as long as controlstatements involve only scalars (e.g., if (scalar=1) then: : :). Control ow canalso be speci�ed using arrays, (e.g., [R] if (Array=1) then: : :), so that eachindex in the region is given a concurrently-executing thread of control.{ Flooding { Arrays can be declared to be oodable, causing certain dimensionsto be replicated for all indices (e.g., var F:[1..m,�] oat;). The ood opera-tor (>>[R]) can be used to assign rows or columns (indicated by region R)of an array to a oodable array. For example:[1..m,�] F := >>[1..m,4]A; { { Flood F with column 4 of A



. . .3 direction prev = [-1];. . .6 region R = [1..samplecount];7 var SampleT, SampleXPos, SampleYPos : [R] double;8 DeltaT, DeltaXPos, DeltaYPos : [R] double;9 XVel,YVel : [R] double;10 Vel : [R] double;11 procedure VelocityStats();12 var minvel,maxvel : double;. . .14 [R] begin. . .18 [prev of R] begin19 SampleT := 0.0;20 SampleXPos := 0.0;21 SampleYPos := 0.0;22 end;23 DeltaT := SampleT - SampleT@prev;24 DeltaXPos := SampleXPos - SampleXPos@prev;25 DeltaYPos := SampleYPos - SampleYPos@prev;26 XVel := DeltaXPos/DeltaT;27 YVel := DeltaYPos/DeltaT;28 Vel := sqrt(XVel*XVel + YVel*YVel);29 minvel := min<<Vel;30 maxvel := max<<Vel;. . .33 end;Fig. 5. Excerpt from running example in Appendix A. This ZPL code computes ap-proximate minimum and maximum velocities of a particle from a vector of sampledpositions and times.Since F is a ood array, it has no speci�c number of columns, and only asingle copy of its de�ning values is stored at each processor. This provides ahighly e�cient way to refer to substructures of an array. For example, aftercolumn 4 of A has been ooded into F (above), the statement [R] A:=A�Fhas the e�ect of multiplying each column of A by column 4.{ Reect/Wrap { Operations are provided to simplify the computation ofboundary values. When invoked in the context of an of or in region speci�er,reect and wrap cause the array's values in that region to be �lled with thosemirrored across the border (reect) or from the opposite side of the array(wrap).{ Scalars/Arrays/Indexed Arrays { Scalars are replicated and redundantlycomputed. ZPL has two kinds of arrays: parallel arrays (also referred tosimply as \arrays") for which indexing is not needed, and indexed arraysfor which indexing is required. Parallel arrays are distributed across all pro-cessors, while indexed arrays are replicated in the same manner as scalars.Indexed arrays are commonly used as elements of parallel arrays.This concludes our introduction to ZPL. We note that the language's oper-ators, though very regular and structured, can be combined in non-trivial ways



to implement many scienti�c applications. The language is not ideally suited forcertain applications, particularly highly irregular codes. These are handled byZPL's more general parent language, Advanced ZPL [26].3 The ZPL RuntimeBefore describing the ZPL compiler, we state a few assumptions about ZPL'sruntime environment. In ZPL, the region is the basis for a program's impliedparallelism. In the current implementation, the union of all regions' index setsis block distributed across a two dimensional processor mesh. Each array isallocated based on this block distribution, so all array elements with the sameindices are allocated to the same processor.This assumption leads to the trivial identi�cation of communication|bothfor the compiler and the user. For example, line 28 of the running example (Vel :=sqrt(XVel*XVel + YVel*YVel);) can be executed in parallel because correspond-ing elements of arrays Vel, XVel, and YVel are known to reside on the same proces-sor. The shifted array reference in Line 23 (DeltaT := SampleT - SampleT@prev;)will require point-to-point communication to transfer non-local values of Sam-pleT to adjacent processors. As a �nal example, line 29 (minvel := min<<Vel;)computes the minimum-reduction using collective communication involving allprocessors. This identi�cation of necessary communication is crucial to the com-piler's factor-join scheme, as will be seen in Sect. 4.Although arbitrary alignment is not supported, certain optimizations, such asaligning only interacting arrays, are straightforward extensions. However, in thecommon case, a single global distribution scheme has proven very e�ective. Theuse of a two-dimensional block distribution of higher-dimensional regions wasa decision of convenience that results in e�ective compilation for the commoncase. Higher-dimensional and alternative (e.g., cyclic, block-cyclic) distributionsare a relatively straightforward extension to the existing compiler.4 Compiler OverviewThis section describes how the ZPL compiler transforms ZPL source code intoa loosely synchronous SPMD C program that can then be compiled and run onany target machine. The bulk of the work is in compiling array operations into ane�cient distributed scalar implementation. Since source-level scalar operationsare replicated on each processor, their compilation is straightforward and willreceive little attention here.The ZPL compiler �rst parses the ZPL source into an abstract syntax tree(AST). The compiler preserves the source program's high-level array operations,rather than scalarizing them, to allow the compiler to perform optimizations atthe array level. The AST is not transformed into scalar code until the generationof the ANSI C output. Additional AST nodes are introduced during the compi-lation process, for example to explicitly represent data transfer that is implicitlyspeci�ed by the source program.



After parsing, the compiler normalizes the AST to produce a more uniformAST and to eliminate complex interactions between the di�erent types of arrayoperations. Normalization breaks heterogeneous array statements (i.e., state-ments containing di�erent varieties of array operations) into a number of simplerarray statements by inserting temporary scalars or arrays.The compiler then performs optimizations using the factor-join strategy. Eachnormalized statement is decomposed into factors, where each factor representsan elementary array operation involving either local computation (C-factors)or interprocessor data transfer (T-factors). Because each factor represents aparticular communication or computation structure, factors of the same typecan always be joined. The joining of the various types of factors is discussedin Sect. 5. Figure 6 summarizes the factorization of the di�erent types of ZPLarray statements.1 Sarray ! T �pp � C2 Swrap ! Tpp3 Sreect ! Tpp4 Sreduce ! C � Tgr � Tbc5 Sscan ! C � Tgs � (C � Tgs)��(C � Tbc �C)� �C6 Sood ! Tbc KeyC : ComputationT : Transferpp : point-to-pointbc : broadcastgr : global reducegs : global scan� : zero or moreFig. 6. Rules for factoring the di�erent types of array statements.As an example of factorization, the compiler classi�es line 28 (Vel:=sqrt(XVel*XVel+YVel*YVel);) of the running example (Fig. 5) as an element-wise arraystatement (Sarray) and factors it using rule 1 (Fig. 6). This statement requiresno data transfer because no communication-inducing operators are used. Thus,the compiler expands the statement into a single C-factor and no T-factors.The correspondence between C-factors and local computation simpli�es sub-sequent analysis. Each C-factor is represented by a multi-loop (or m-loop) nodethat encapsulates all information needed to generate object code, including theregion over which the statement is executed and the code that forms the loopbody. The AST node that is generated for this example is shown in Fig. 7(a).As another example, consider line 23 (Delta:=SampleT-SampleT@prev;) of therunning example. This statement is also classi�ed as an array statement butrequires communication because it uses the @-operator, so a multi-part T-factorrepresenting point-to-point communication (Tpp) is inserted prior to its C-factor.This T-factor is represented in the AST using Send and Receive nodes3 that3 The ZPL compiler actually uses the Ironman communication interface which ismore hardware independent than a send/receive interface [7]. By using machine-dependent libraries and an unassuming interface, Ironman allows the same ZPLobject code to exploit each machine's customized interprocessor communication fea-tures. This document uses send/receive for simplicity.



M-Loop
region: R

body: Vel := sqrt(XVel*XVel + YVel*YVel);
Vel := sqrt(XVel*XVel + YVel*YVel); (a)

M-Loop
region: 	 R

body: 	DeltaT:=SampleT-SampleT@prev;

Receive

region: 	 R

direction: 	prev

array: 	 SampleT

Send

region: 	 R

direction: 	prev

array: 	 SampleT

DeltaT := SampleT-SampleT@prev; (b)
Broadcast

value: 	 temp

target: 	minvel

Global-
Reduce

region: 	 R

value: 	 temp

operation: 	 min
minvel := min<<Vel;

M-Loop
region: 	R

body: 	 temp := min(temp,Vel);(c)Fig. 7. ZPL source code and the corresponding factored AST. Note that the variousnode properties (e.g., region, direction, body) are actually pointers to symbol tableentries or other parts of the AST.describe the region, array, and direction of data transfer (Fig. 7(b)).Some operators are translated into multiple factors. For example, the reduc-tion in line 29 (minvel:=min<<Vel;) of the running example is factored (by rule4, Fig. 6) into a C-factor that computes the local result for each processor andtwo T-factors: one to combine the local results into a global result (Tgr) anda second to broadcast the global result to all processors (Tbc). AST nodes areinserted for each of these factors, as shown in Fig. 7(c).5 Joining FactorsThis section describes how the ZPL compiler performs optimizations by manip-ulating C-factors and T-factors. The optimization process is simpli�ed becauseonly a small number of C- and T-factors are needed to represent any array oper-ation, and because inter-statement optimizations can take place without havingto consider how the many di�erent types of array statements may interact.5.1 Local Computation: M-LoopsAs the only type of C-factor (i.e., the only way to iterate over arrays), m-loopsrepresent the local portions of any array statement, including element-wise as-



signment, reductions, scans, etc. Thus, optimizing this single factor can yieldsubstantial performance improvement. In the �nal compilation step, an m-loopis translated into a loop nest that executes on each processor and iterates overthat processor's portion of the applicable region.When a loop nest is generated from an m-loop, the compiler determines thenest depth, determined by the rank of the region, and iteration direction of eachgenerated loop, as constrained by the body of the m-loop. These constraintsarise from data dependences and semantic restrictions. Speci�cally, m-loops in-troduced by array statements are initially only semantically constrained, i.e., theright-hand side expression is evaulated before the left-hand side. (It is preciselythis property that allows these operations to be directly parallelized.) M-loopsintroduced by reduce and scan operators induce a pseudo dependence due tothe accumulation via an associative operator. The joining of factors introducesadditional constraints, because additional dependences must be preserved.Joining M-loops. The joining of m-loop factors has the e�ect of fusing loopsin the object C code. Determining whether two m-loops may be legally joinedis similar to the data dependence analysis required to fuse two loop nests [28]:(1) both m-loops must iterate over the same region, and (2) for the joined m-loopthere must exist a loop nest that preserves the unjoined data dependences andrespects semantic restrictions. This join transformation di�ers from traditionalloop fusion in that the structure of the candidate loop nests is not �xed when thejoining decision is made. There are a number of bene�ts to joining m-loops. Someare traditional, e.g., improved cache locality [6] and reduced loop overhead, andothers are unique to the array language context, e.g., joining enables contractionof an array to a scalar when the array's de�nition only reaches uses in the sameiteration.Array Contraction. Array contraction is a well-known technique for scalarlanguages [28], but it is more important for array languages because the pro-grammer has no control over the structure of the compiler-generated loops. Thisleads to a potential performance problem since the programmer cannot cache anarray value in a scalar for later use in the same iteration of a loop, a commontechnique employed in scalar languages. Instead, the array language programmermust use whole arrays as temporaries (e.g., array Vel in the running example),which waste memory, induce contention in the data cache, and ultimately slowexecution of the program. For the programmer, the only alternative to theseintermediate arrays is to introduce redundant computation.Consider the code fragment in Fig. 8(a). Figure 8(b) shows the naive codethat is generated when factors are not joined. Notice that arrays XVel, YVeland Vel are used to cache computed values. If the de�nitions and uses of thesevariables can be joined into a single m-loop, then scalars can hold these values(Fig. 8(c)), as they are not live outside of the iteration. Since m-loops inducedby reductions are no di�erent from m-loops induced by element-wise assignment



26 XVel := DeltaXPos/DeltaT;27 YVel := DeltaYPos/DeltaT;28 Vel := sqrt(XVel*XVel + YVel*YVel);29 minvel := min<<Vel;30 maxvel := max<<Vel;(a) ZPL source.
for (i=mylow; i<myhi; i++)XVel[i] = DeltaXPos[i] / DeltaT[i];for (i=mylow; i<myhi; i++)YVel[i] = DeltaYPos[i] / DeltaT[i];for (i=mylow; i<myhi; i++)Vel[i] = sqrt(XVel[i]*XVel[i]+YVel[i]*YVel[i]);temp = DBL MAX;for (i=mylow; i<myhi; i++)temp = min(temp, Vel[i]);< . . . data transfer code here . . .>< . . . assignment to minvel . . .>temp = -DBL MAX;for (i=mylow; i<myhi; i++)temp = max(temp, Vel[i]);< . . . data transfer code here . . . >< . . . assignment to maxvel . . . >(b) Naive loop generation.for (i=mylow; i<myhi; i++) fxvel = DeltaXPos[i] / DeltaT[i];yvel = DeltaYPos[i] / DeltaT[i];Vel[i] = sqrt(xvel*xvel+yvel*yvel);gtemp = DBL MAX;for (i=mylow; i<myhi; i++)temp = min(temp, Vel[i]);< . . . data transfer . . . >< . . . assignment to minvel . . . >temp = -DBL MAX;for (i=mylow; i<myhi; i++)temp = max(temp, Vel[i]);< . . . data transfer code here . . . >< . . . assignment to maxvel . . . >(c) Partially optimized loop generation.

temp1 = DBL MAX;temp2 = -DBL MAX;for (i=mylow; i<myhi; i++) fxvel = DeltaXPos[i] / DeltaT[i];yvel = DeltaYPos[i] / DeltaT[i];vel = sqrt(xvel*xvel+yvel*yvel);temp1 = min(temp1, vel);temp2 = max(temp2, vel);g< . . . data transfer . . . >< . . . assignment to minvel . . . >< . . . assignment to maxvel . . . >(d) Fully optimized loop generation.Fig. 8. E�ects of joining and contraction on an excerpt from the running example. Anumber of the array references in the bold statements become scalar references. ArraysDeltaXPos, DeltaYPos, DeltaT in the running example may be similarly contracted.statements, array Vel may also be contracted as in Fig. 8(d). In fact, for the run-ning example, all but the Sample arrays are eliminated by this array contraction.We cannot independently join m-loops and perform contraction if we expectto maximize contraction. The compiler therefore joins m-loops with the goal ofenabling maximal array contraction. Using a heuristic ordering of the candidatearrays, all m-loops containing a candidate array are joined if the joining enablescontraction of the candidate array. This simple greedy strategy produces veryhigh quality code [17].Our approach not only contracts arrays that a clever scalar language pro-grammer would, it often succeeds in non-obvious cases. There are cases whena group of m-loops may not legally be joined because they over-constrain theresulting loop nest, but simple transformations eliminate the constraints and en-



able the joining and contraction. The trick of eliminating the constraint is oftensuitably awkward that programmers are unwilling or unable to do this by hand.Indexed Arrays. While the use of m-loops nicely encapsulates the local com-putation that results from array statements, the distinction between m-loopsand source-level loops can produce a runtime performance penalty when thesetwo types of loops interact. Consider the ZPL code fragment in Fig. 9(a), whichuses a parallel array of indexed arrays. An m-loop will be used to iterate over theparallel array, while a source-level loop iterates over each element of the indexedarray (Fig. 9(b)). The problem is that the generated code will exhibit poor cachebehavior unless the source-level loop is moved inside the compiler generated loop,as in Fig. 9(c). A source-level loop is a candidate for this transformation when ititerates over an indexed array that is an element of a parallel array. The trans-formation is performed when all m-loops that contain the involved array may bejoined.region R = [1..n];var A : [R] array [1..m] of integer;. . .[R] for i := 1 to m doA[i] := 1;end; (a) for (i=1; i<=m; i++)for (j=mylow; j<myhi; j++)A[j][i] = 1;(b) for (j=mylow; j<myhi; j++)for (i=1; i<=m; i++)A[j][i] = 1;(c)Fig. 9. The interaction of source-level loops and compiler generated loops. The ZPLsource (a) will naively be compiled into the code in (b). Bringing the source-level loopinside the compiler generated loop (c) will improve cache locality.5.2 Data TransferThere are several types of T-factors. Point-to-point T-factors are implied by thewrap statement, the reect statement, and the @ operator, while the remainingT-factors represent collective communication in operations such as scan, reduceand ood. A point-to-point T-factor is multi-part (send and receive), while asingle T-factor can represent each variety of collective communication. This sec-tion discusses the optimization of data transfer through the manipulation ofT-factors.Data transfer can be optimized in three ways. First, redundant T-factors maybe removed. A T-factor is redundant if and only if the data transfer performedby the T-factor is preceded by a T-factor that satis�es the requested data trans-fer. Next, T-factors involving the same source and destination processors maybe combined. Finally, the components of multi-part T-factors may be pushedapart to pipeline and overlap data transfer and computation. Recall that com-munication in array languages is naturally vectorized, so the compiler does not



perform explicit message vectorization. The removal of redundant T-factors andthe combining of T-factors are exact instances of the join operation, while thepipelining of T-factors enables additional joins to occur. For convenience, wewill refer to each optimization in isolation, though the actual implementationconsiders all three optimizations simultaneously.Point-to-Point Communication. Point-to-point T-factors can be optimizedby all three techniques. These optimizations require information about the usesand modi�cations of the array variables being transferred. This information ismaintained in the form of def/use-sets on a per statement basis. Since arrays arenever indexed, the compiler treats them atomically, much like scalars. Unlikelanguages such as Fortran 77, no index functions or loop bounds informationneed be examined. Rather, the region and direction indicate the slice of an arrayto be transferred. The compiler could perform symbolic analysis on the regionsto obtain more precise def/use-sets, but this is generally not necessary as mostdata parallel computations use a small set of regions.Figure 10 shows a sample code fragment that requires data transfer, alongwith unoptimized and optimized code generated for it. For simplicity, we againassume that the compiler generates message passing code (send and receive calls).To generate the unoptimized code in Fig. 10(b), the compiler need only generatea library call for each @ induced T-factor. The code generated in Fig. 10(c)-(e)illustrate the three data transfer optimizations performed by the compiler, whichare now discussed in turn.Removing redundant T-factors. If the T-factor due to a statement (Fig. 10, state-ment 4) is preceded by a T-factor that has already satis�ed that data trans-fer (statement 3) and there are no intervening modi�cations to the transferreddata, the T-factor for the original statement is redundant and can be eliminated(Fig. 10(c)).Combining T-factors. If several T-factors perform data transfer on di�erent vari-ables in the same direction (statement 3), these T-factors my be combined (seeFig. 10(d)). T-factors from the same (as in this example) or di�erent statementsmay be combined in this way.Pipelining T-factors. The send portion of a T-factor may be pushed up to thelast statement that de�nes the variable involved in the data transfer. This over-laps communication and computation. Statement 2 is the most recent modi�-cation of A or C before the use of A in statement 3. Therefore the pipelinedT-factor can be started immediately after statement 2 (see Fig. 10(e)).Appendix B (lines 20{23) shows the result of data transfer optimizationsin the running example. Notice that the initialization of the identity elementsfor the reductions have been moved between the send and receive due to localjoining operations. Though this is a small amount of computation, in generalthe separation of the send and receive may be large.



1 C := D;2 A := B;. . .3 E := A@prev+C@prev;4 F := A@prev;(a) Original ZPL code. <. . . assign C . . .><. . . assign A . . .>. . .Send(R,<A,prev>);Recv(R,<A,prev>);Send(R,<C,prev>);Recv(R,<C,prev>);<. . . assign E . . .>Send(R,<A,prev>);Recv(R,<A,prev>);<. . . assign F . . .>(b) Unoptimized code. <. . . assign C . . .><. . . assign A . . .>. . .Send(R,<A,prev>);Recv(R,<A,prev>);Send(R,<C,prev>);Recv(R,<C,prev>);<. . . assign E . . .><. . . assign F . . .>(c) Redundant T-factorsremoved.<. . . assign C . . .><. . . assign A . . .>. . .Send(R,<A,prev>,<C,prev>);Recv(R,<A,prev>,<C,prev>);<. . . assign E . . .><. . . assign F . . .>(d) Combined T-factors. <. . . assign C . . .><. . . assign A . . .>Send(R,<A,prev>,<C,prev>);. . .Recv(R,<A,prev>,<C,prev>);<. . . assign E . . .><. . . assign F . . .>(e) Pipelined T-factors.Fig. 10. Example transformations on T-factors.Collective Communication. Just as in the point-to-point case, collective com-munication T-factors of the same type are optimized by one or more of the abovetechniques. Any redundant T-factors may be removed, and all types of collec-tive communication T-factors may be combined with other T-factors of the sametype (see Fig. 2). The key to the optimization is that the communication pat-terns (each factor represents a di�erent pattern) are exposed to the compiler.Library approaches cannot be optimized in this way, for the compiler is unawareof the libraries' contents.Despite this �xed collective communication interface, ZPL does not lose theadvantages of library support. The combined communication compiles to proce-dure calls in the ZPL runtime library. These procedures are optimized for theparticular platform's strengths [7]. For example, on the SP2, the procedure callsare mapped to MPI library routines, while our T3D implementation uses thenative SHMEM library routines [2]. In this way, a single copy of optimized codeexploits the strengths of all target platform.Though we have introduced collective communication operations as each pro-ducing a single T-factor, we often use multi-part T-factors for these operations.These multi-part factors allow for better communication hiding when implement-ing non-hardware supported operations (such as column broadcasts or reduces).



6 Related WorkZPL was designed from �rst principles to execute e�ciently across MIMD com-puters. There exist a number of compilation e�orts that are similar in nature tothat of ZPL. Several are summarized below.The APL language supports the atomic manipulation of and computation onwhole arrays [15]. APL was not designed with parallelism in mind, thus it encour-ages the use of locality insensitive operations. Greenlaw and Snyder demonstratethat the second most common data movement operation in APL (an array sub-scripted array) is very expensive on parallel machines [10]. Budd describes anAPL compiler that decomposes array operations into vector operations for ex-ecution on a vector processor [5]. This �ne grained approach does not extendto distributed memory or MIMD machines. Ju et al. describe a classi�cationand fusion scheme for array language primitives (in APL, Fortran 90, etc.) [16].Their fusion concept di�ers from our join transformation in that it only strives toeliminate intermediate storage. In addition, they assume a shared memorymodeland thus do not consider explicit communication.We optimize computation andcommunication separately.NESL is a data-parallel programming language that emphasizes nested par-allelism [4]. NESL source code is compiled to an intermediate vector-based code,called Vcode, which is either interpreted or compiled [3]. The Vcode intermediateform is well suited for vector and low-latency shared memory machines but notfor distributed memory machines. The primary MIMD compilation e�ort is inincreasing the granularity of parallelism and reducing synchronization overhead.C� and its descendant Dataparallel C are derivatives of C with support fordata parallel programming [25]. The Dataparallel C domain and the ZPL regionboth serve as bases for parallelism; they are used to de�ne distributed arraysand to distribute computation. Despite this similarity, the techniques for com-piling these languages greatly di�er. In particular, the primary Dataparallel Ccompilation e�ort is in overcoming ine�ciencies due to the sequential nature ofthe parent language (C) and the SIMD nature of the language itself [13]. As anexample of the former, a Dataparallel C program may contain arbitrary C code,which resists static analysis due to pointer arithmetic and weak typing.High Performance Fortran (HPF) is a language that requires the user spec-i�cation of parallelism, distribution and alignment via directives in sequentialFortran 77 and Fortran 90 programs [14]. The primary compilation e�ort is inovercoming the sequential nature of the parent language. Arrays are manipu-lated at the element level, thus optimizations must be performed to vectorizecommunication and hoist it from inner loops. HPF and ZPL are similar in thetypes of parallel operations that they support, though ZPL makes clear to theprogrammer the execution cost of each operation [22].Considerable research has been devoted to automatically parallelizing For-tran 77 programs [1, 23, 11]. In contrast to the ZPL approach in which the lan-guage was designed to facilitate the recognition and exploitation of parallelism,the primary e�ort for automatically parallelizing compilers is in recognizing, ex-posing and e�ciently exploiting the parallelism hidden in a sequential program.



Furthermore, optimal sequential and parallel solutions to the same problem of-ten require di�erent algorithms, thus it seems unlikely that a compiler will beable (in general) to transform one to the other.7 ConclusionsWe have argued that when compiling for parallelism, array languages presentcompilers with new opportunities and challenges for optimization. The array op-erations of these languages make some standard optimizations (such as messagevectorization) disappear, make new opportunities (such as combining reductionoperations) appear, and add importance to other optimizations (such as arraycontraction).We have described the factor-join approach to compiling array languages andshown how it is used to compile ZPL programs. This approach �rst decomposesarray language constructs into a series of factors, and then joins these factorsto perform various optimizations. Each factor represents a unique communica-tion or computation structure, and only a small number of di�erent factors areneeded to describe ZPL programs. These factors cleanly separate the treatmentof communication and computation. For example, C-factors represent the purelycomputational aspects of all operations (e.g., element-wise array assignments,reductions, scans, etc.), so optimizing C-factors simultaneously optimizes all in-ner loops that the compiler generates for array constructs. This factorizationalso simpli�es the movement and joining of the data-transfer factors (T-factors).This approach provides a framework for optimizations that includes redundantcommunication elimination, message combining, and communication pipelining;and the use of factors abstracts common features of di�erent optimizations. Forexample, the combining of collective communication operations and the combin-ing of point-to-point communication use the same algorithm applied to di�erentT-factors.References1. Saman P. Amarasinghe, Jennifer M. Anderson, Monica S. Lam, and Amy W. Lim.An overview of a compiler for scalable parallel machines. In Sixth Workshop onLanguages and Compilers for Parallel Computing, August 1993.2. Ray Barriuso and Allan Knies. SHMEM user's guide for C. Technical report, CrayResearch Inc., June 1994.3. G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha. Im-plementation of a portable nested data-parallel language. Journal of Parallel andDistributed Computing, 21(1):4{14, April 1994.4. Guy E. Blelloch. NESL: A nested data-parallel language (version 2.6). TechnicalReport CMU-CS-93-129, School of Computer Science, Carnegie Mellon University,1993.5. Timothy A. Budd. An APL compiler for a vector processor. ACM Transactionson Programming Languages and Systems, 6(3):297{313, July 1984.



6. Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler optimizationsfor improved data locality. In Proceedings of the International Conference on Ar-chitectural Support for Programming Languages and Operating Systems, October1994. San Jose, CA.7. Bradford L. Chamberlain, Sung-Eun Choi, and Lawrence Snyder. Ironman: Anarchitecture indepedent communication interface for parallel computers. submittedfor publication, 1996.8. Marios D. Dikaiakos, Calvin Lin, Daphne Manoussaki, and Diana E. Woodward.The portable parallel implementation of two novel mathematical biology algo-rithms in ZPL. In Ninth International Conference on Supercomputing, 1995.9. Michael Gerndt. Updating distributed variables in local computations. Con-currency{Practice and Experience, 2(3):171{193, September 1990.10. R. Greenlaw and L. Snyder. Achieving speedups for APL on an SIMD distributedmemory machine. International Journal of Parallel Programming, 19(2):111{127,April 1990.11. Manish Gupta and Prithviraj Banerjee. PARADIGM: A compiler for automaticdata distribution on multicomputers. In International Conference on Supercom-puting, July 1993.12. Manish Gupta, Sam Midki�, Edith Schonberg, Ven Seshadri, David Shields, Ko-Yang Wang, Wai-Mee Ching, and Ton Ngo. An HPF compiler for the IBM SP2.In Proceedings of Supercomputing '95, December 1995.13. Philip J. Hatcher, Anthony J. Lapadula, Robert R. Jones, Michael J. Quinn, andRay J. Anderson. A production-quality C* compiler for hypercube multicomput-ers. In Proceedings of Third ACM SIGPLAN Symposium on Principles and Prac-tice of Parallel Programming, April 1991.14. High Performance Fortran Forum. High Performance Fortran Speci�cationVersion1.1. November 1994.15. Kenneth E. Iverson. A Programming Language. Wiley, 1962.16. Dz-Ching R. Ju, Chaun-Lin Wu, and Paul Carini. The classi�cation, fusion, andparallelization of array language primitives. IEEE Transactions on Parallel andDistributed Systems, 5(10):1113{1120, October 1994.17. E Christopher Lewis and Calvin Lin. Array contraction in array languages. Tech-nical report, University of Washington, Department of Computer Science and En-gineering, 1996. Forthcoming.18. E Christopher Lewis, Calvin Lin, Lawrence Snyder, and George Turkiyyah. Aportable parallel n-body solver. In D. Bailey, P. Bjorstad, J. Gilbert, M. Mascagni,R. Schreiber, H. Simon, V. Torczon, and L. Watson, editors, Proceedings of theSeventh SIAM Conference on Parallel Processing for Scienti�c Computing, pages331{336. SIAM, 1995.19. C. Lin, L. Snyder, R. Anderson, B. Chamberlain, S. Choi, G. Forman, E. Lewis,and W. D. Weathersby. ZPL vs. HPF: A comparison of performance and pro-gramming style. Technical Report 95{11{05, Department of Computer Scienceand Engineering, University of Washington, 1994.20. Calvin Lin. ZPL language reference manual. Technical Report 94{10{06, Depart-ment of Computer Science and Engineering, University of Washington, 1994.21. Calvin Lin and Lawrence Snyder. SIMPLE performance results in ZPL. In KeshavPingali, Uptal Banerjee, David Gelernter, Alexandru Nicolau, and David Padua,editors, Workshop on Languages and Compilers for Parallel Computing, pages 361{375. Springer-Verlag, 1994.



22. Ton A. Ngo. The E�ectiveness of Two Data Parallel Languages, HPF and ZPL.PhD thesis, University of Washington, Department of Computer Science, 1996. Inpreparation.23. C. D. Polychronopoulos, M. B. Girkar, M. R. Haghighat, C. L. Lee, B. P. Leung,and D. A. Schouten. The structure of Parafrase-2: an advanced parallelizing com-piler for C and Fortran. In Workshop on Languages and Compilers for ParallelComputing, pages 423{453, 1990.24. George Wilkey Richardson. Evaluation of a parallel Chaos router simulator. Mas-ter's thesis, University of Arizona, Department of Electrical and Computer Engi-neering, 1995.25. J.R. Rose and Guy L. Steele Jr. C*: An extended C language for data parallelprogramming. Technical Report PL 87-5, Thinking Machines Corporation, 1987.26. Lawrence Snyder. Foundations of practical aprallel programming languages. InTony Hey and Jeanne Ferrante, editors, Portability and performance for parallelprocessing, pages 1{19, New York, 1994. Wiley.27. Lawrence Snyder. The ZPL Programmer's Guide. May 1996.28. Michael Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cam-bridge, MA, 1989.



A Sample ZPL Source Code1 /* VelocityStats - compute approximate minimum andmaximum velocity of particle from sample positions */2 program VelocityStats;3 direction prev = [-1];4 con�g var samplecount : integer=10;5 data�le : string=\samples.dat";6 region R = [1..samplecount];7 var SampleT, SampleXPos, SampleYPos : [R] double; - - samples of location (sorted by t)8 DeltaT, DeltaXPos, DeltaYPos : [R] double; - - delta from one sample to next9 XVel,YVel : [R] double; - - X- and Y-components of velocity10 Vel : [R] double; - - velocity11 procedure VelocityStats();12 var minvel,maxvel : double; - - min/max velocities13 in�le : �le;14 [R] begin15 in�le := open(data�le,\r");16 read(in�le,SampleT,SampleXPos,SampleYPos);17 close(in�le);18 [prev of R] begin19 SampleT := 0.0;20 SampleXPos := 0.0;21 SampleYPos := 0.0;22 end;23 DeltaT := SampleT - SampleT@prev;24 DeltaXPos := SampleXPos - SampleXPos@prev;25 DeltaYPos := SampleYPos - SampleYPos@prev;26 XVel := DeltaXPos/DeltaT;27 YVel := DeltaYPos/DeltaT;28 Vel := sqrt(XVel*XVel + YVel*YVel);29 minvel := min<<Vel;30 maxvel := max<<Vel;31 writeln(\Minimum velocity was: ", minvel);32 writeln(\Maximum velocity was: ", maxvel);33 end;



B Resulting Pseudo-C Code1 integer samplecount = 10;2 char * data�le = \samples.dat";3 region R, prev of R;4 double *SampleT, *SampleXPos, *SampleYPos;5 double deltat, deltaxpos, deltaypos;6 double xvel, yvel, vel;7 void VelocityStats(void) f8 double minvel, maxvel;9 FILE * in�le;10 double temp1,temp2;11 in�le = fopen(data�le,\r");12 FScanParallelArray(in�le,<R,SampleT>,<R,SampleXPos>,<R,SampleYPos>);13 fclose(in�le);14 for (i = prev of R.mylo; i <= prev of R.myhi; i++)15 SampleT[i] = 0.0;16 for (i = prev of R.mylo; i <= prev of R.myhi; i++)17 SampleXPos[i] = 0.0;18 for (i = prev of R.mylo; i <= prev of R.myhi; i++)19 SampleYPos[i] = 0.0;20 Send(R,<SampleT,prev>,<SampleXPos,prev>,<SampleYPos,prev>);21 temp1 = DBL MAX;22 temp2 = -DBL MAX;23 Receive(R,<SampleT,prev>,<SampleXPos,prev>,<SampleYPos,prev>);24 for (i = R.mylo; i <= R.myhi; i++) f25 deltat = SampleT[i] - SampleT[i-1];26 deltaxpos = SampleXPos[i] - SampleXPos[i-1];27 deltaypos = SampleYPos[i] - SampleYPos[i-1];28 xvel = deltaxpos/deltat;29 yvel = deltaypos/deltat;30 vel = sqrt(xvel*xvel + yvel*yvel);31 temp1 = min(temp1,vel);32 temp2 = max(temp2,vel);33 g34 Glob Reduce(R,<temp1,min>,<temp2,max>);35 Broadcast(<temp1,minvel>,<temp2,maxvel>);36 printf(\Minimum velocity was: %fnn",minvel);37 printf(\Maximum velocity was: %fnn",maxvel);38 g39 void main(int argc,char * argv[]) f40 DistributeRegions(<R,1,m>,<prev of R,0,0>);41 AllocateArrays(<R,SampleT>,<R,SampleXPos>,<R,SampleYPos>);42 VelocityStats();43 g


